/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include <QtCore/qglobal.h>
#include <QtCore/qmutex.h>

#define QT_FT_BEGIN_HEADER
#define QT_FT_END_HEADER

#include <private/qrasterdefs_p.h>
#include <private/qgrayraster_p.h>

#include <qpainterpath.h>
#include <qdebug.h>
#include <qhash.h>
#include <qlabel.h>
#include <qbitmap.h>
#include <qmath.h>

#if defined (Q_WS_X11)
#  include <private/qfontengine_ft_p.h>
#endif

//   #include <private/qdatabuffer_p.h>
//   #include <private/qpainter_p.h>
#include <private/qmath_p.h>
#include <private/qtextengine_p.h>
#include <private/qfontengine_p.h>
#include <private/qpixmap_raster_p.h>
//   #include <private/qpolygonclipper_p.h>
//   #include <private/qrasterizer_p.h>
#include <private/qimage_p.h>
#include <private/qstatictext_p.h>
#include <private/qcosmeticstroker_p.h>
#include "qmemrotate_p.h"

#include "qpaintengine_raster_p.h"
//   #include "qbezier_p.h"
#include "qoutlinemapper_p.h"

#if defined(Q_WS_WIN)
#  include <qt_windows.h>
#  include <qvarlengtharray.h>
#  include <private/qfontengine_p.h>
#  if defined(Q_OS_WINCE)
#    include "qguifunctions_wince.h"
#  endif
#elif defined(Q_WS_MAC)
#  include <private/qt_mac_p.h>
#  include <private/qpixmap_mac_p.h>
#  include <private/qpaintengine_mac_p.h>
#elif defined(Q_WS_QWS)
#  if !defined(QT_NO_FREETYPE)
#    include <private/qfontengine_ft_p.h>
#  endif
#  if !defined(QT_NO_QWS_QPF2)
#    include <private/qfontengine_qpf_p.h>
#  endif
#  include <private/qabstractfontengine_p.h>
#elif defined(Q_OS_SYMBIAN) && defined(QT_NO_FREETYPE)
#  include <private/qfontengine_s60_p.h>
#elif defined(Q_WS_QPA)
#  include <private/qfontengine_ft_p.h>
#endif

#if defined(Q_WS_WIN64)
#  include <malloc.h>
#endif
#include <limits.h>

QT_BEGIN_NAMESPACE

Q_GUI_EXPORT extern bool qt_scaleForTransform(const QTransform &transform, qreal *scale); // qtransform.cpp

#define qreal_to_fixed_26_6(f) (int(f * 64))
#define qt_swap_int(x, y) { int tmp = (x); (x) = (y); (y) = tmp; }
#define qt_swap_qreal(x, y) { qreal tmp = (x); (x) = (y); (y) = tmp; }

// #define QT_DEBUG_DRAW
#ifdef QT_DEBUG_DRAW
void dumpClip(int width, int height, const QClipData *clip);
#endif

#define QT_FAST_SPANS


// A little helper macro to get a better approximation of dimensions.
// If we have a rect that starting at 0.5 of width 3.5 it should span
// 4 pixels.
#define int_dim(pos, dim) (int(pos+dim) - int(pos))

// use the same rounding as in qrasterizer.cpp (6 bit fixed point)
static const qreal aliasedCoordinateDelta = 0.5 - 0.015625;

#ifdef Q_WS_WIN
extern bool qt_cleartype_enabled;
#endif

#ifdef Q_WS_MAC
extern bool qt_applefontsmoothing_enabled;
#endif


/********************************************************************************
 * Span functions
 */
static void qt_span_fill_clipRect(int count, const QSpan *spans, void *userData);
static void qt_span_fill_clipped(int count, const QSpan *spans, void *userData);
static void qt_span_clip(int count, const QSpan *spans, void *userData);
static void qt_merge_clip(const QClipData *c1, const QClipData *c2, QClipData *result);

struct ClipData
{
    QClipData *oldClip;
    QClipData *newClip;
    Qt::ClipOperation operation;
};

enum LineDrawMode {
    LineDrawClipped,
    LineDrawNormal,
    LineDrawIncludeLastPixel
};

static void drawEllipse_midpoint_i(const QRect &rect, const QRect &clip,
                                   ProcessSpans pen_func, ProcessSpans brush_func,
                                   QSpanData *pen_data, QSpanData *brush_data);

struct QRasterFloatPoint {
    qreal x;
    qreal y;
};

#ifdef QT_DEBUG_DRAW
static const QRectF boundingRect(const QPointF *points, int pointCount)
{
    const QPointF *e = points;
    const QPointF *last = points + pointCount;
    qreal minx, maxx, miny, maxy;
    minx = maxx = e->x();
    miny = maxy = e->y();
    while (++e < last) {
        if (e->x() < minx)
            minx = e->x();
        else if (e->x() > maxx)
            maxx = e->x();
        if (e->y() < miny)
            miny = e->y();
        else if (e->y() > maxy)
            maxy = e->y();
    }
    return QRectF(QPointF(minx, miny), QPointF(maxx, maxy));
}
#endif

template <typename T> static inline bool isRect(const T *pts, int elementCount) {
    return (elementCount == 5 // 5-point polygon, check for closed rect
            && pts[0] == pts[8] && pts[1] == pts[9] // last point == first point
            && pts[0] == pts[6] && pts[2] == pts[4] // x values equal
            && pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
            && pts[0] < pts[4] && pts[1] < pts[5]
            ) ||
           (elementCount == 4 // 4-point polygon, check for unclosed rect
            && pts[0] == pts[6] && pts[2] == pts[4] // x values equal
            && pts[1] == pts[3] && pts[5] == pts[7] // y values equal...
            && pts[0] < pts[4] && pts[1] < pts[5]
            );
}


static void qt_ft_outline_move_to(qfixed x, qfixed y, void *data)
{
    ((QOutlineMapper *) data)->moveTo(QPointF(qt_fixed_to_real(x), qt_fixed_to_real(y)));
}

static void qt_ft_outline_line_to(qfixed x, qfixed y, void *data)
{
    ((QOutlineMapper *) data)->lineTo(QPointF(qt_fixed_to_real(x), qt_fixed_to_real(y)));
}

static void qt_ft_outline_cubic_to(qfixed c1x, qfixed c1y,
                             qfixed c2x, qfixed c2y,
                             qfixed ex, qfixed ey,
                             void *data)
{
    ((QOutlineMapper *) data)->curveTo(QPointF(qt_fixed_to_real(c1x), qt_fixed_to_real(c1y)),
                                       QPointF(qt_fixed_to_real(c2x), qt_fixed_to_real(c2y)),
                                       QPointF(qt_fixed_to_real(ex), qt_fixed_to_real(ey)));
}


#if !defined(QT_NO_DEBUG) && 0
static void qt_debug_path(const QPainterPath &path)
{
    const char *names[] = {
        "MoveTo     ",
        "LineTo     ",
        "CurveTo    ",
        "CurveToData"
    };

    fprintf(stderr,"\nQPainterPath: elementCount=%d\n", path.elementCount());
    for (int i=0; i<path.elementCount(); ++i) {
        const QPainterPath::Element &e = path.elementAt(i);
        Q_ASSERT(e.type >= 0 && e.type <= QPainterPath::CurveToDataElement);
        fprintf(stderr," - %3d:: %s, (%.2f, %.2f)\n", i, names[e.type], e.x, e.y);
    }
}
#endif

QRasterPaintEnginePrivate::QRasterPaintEnginePrivate() :
    QPaintEngineExPrivate(),
    cachedLines(0)
{
}


/*!
    \class QRasterPaintEngine
    \preliminary
    \ingroup qws
    \since 4.2

    \brief The QRasterPaintEngine class enables hardware acceleration
    of painting operations in Qt for Embedded Linux.

    Note that this functionality is only available in
    \l{Qt for Embedded Linux}.

    In \l{Qt for Embedded Linux}, painting is a pure software
    implementation. But starting with Qt 4.2, it is
    possible to add an accelerated graphics driver to take advantage
    of available hardware resources.

    Hardware acceleration is accomplished by creating a custom screen
    driver, accelerating the copying from memory to the screen, and
    implementing a custom paint engine accelerating the various
    painting operations. Then a custom paint device (derived from the
    QCustomRasterPaintDevice class) and a custom window surface
    (derived from QWSWindowSurface) must be implemented to make
    \l{Qt for Embedded Linux} aware of the accelerated driver.

    \note The QRasterPaintEngine class does not support 8-bit images.
    Instead, they need to be converted to a supported format, such as
    QImage::Format_ARGB32_Premultiplied.

    See the \l {Adding an Accelerated Graphics Driver to Qt for Embedded Linux}
    documentation for details.

    \sa QCustomRasterPaintDevice, QPaintEngine
*/

/*!
    \fn Type QRasterPaintEngine::type() const
    \reimp
*/

/*!
    \typedef QSpan
    \relates QRasterPaintEngine

    A struct equivalent to QT_FT_Span, containing a position (x,
    y), the span's length in pixels and its color/coverage (a value
    ranging from 0 to 255).
*/

/*!
    \since 4.5

    Creates a raster based paint engine for operating on the given
    \a device, with the complete set of \l
    {QPaintEngine::PaintEngineFeature}{paint engine features and
    capabilities}.
*/
QRasterPaintEngine::QRasterPaintEngine(QPaintDevice *device)
    : QPaintEngineEx(*(new QRasterPaintEnginePrivate))
{
    d_func()->device = device;
    init();
}

/*!
    \internal
*/
QRasterPaintEngine::QRasterPaintEngine(QRasterPaintEnginePrivate &dd, QPaintDevice *device)
    : QPaintEngineEx(dd)
{
    d_func()->device = device;
    init();
}

void QRasterPaintEngine::init()
{
    Q_D(QRasterPaintEngine);


#ifdef Q_WS_WIN
    d->hdc = 0;
#endif

    // The antialiasing raster.
    d->grayRaster.reset(new QT_FT_Raster);
    Q_CHECK_PTR(d->grayRaster.data());
    if (qt_ft_grays_raster.raster_new(d->grayRaster.data()))
        QT_THROW(std::bad_alloc()); // an error creating the raster is caused by a bad malloc


    d->rasterizer.reset(new QRasterizer);
    d->rasterBuffer.reset(new QRasterBuffer());
    d->outlineMapper.reset(new QOutlineMapper);
    d->outlinemapper_xform_dirty = true;

    d->basicStroker.setMoveToHook(qt_ft_outline_move_to);
    d->basicStroker.setLineToHook(qt_ft_outline_line_to);
    d->basicStroker.setCubicToHook(qt_ft_outline_cubic_to);

    d->baseClip.reset(new QClipData(d->device->height()));
    d->baseClip->setClipRect(QRect(0, 0, d->device->width(), d->device->height()));

    d->image_filler.init(d->rasterBuffer.data(), this);
    d->image_filler.type = QSpanData::Texture;

    d->image_filler_xform.init(d->rasterBuffer.data(), this);
    d->image_filler_xform.type = QSpanData::Texture;

    d->solid_color_filler.init(d->rasterBuffer.data(), this);
    d->solid_color_filler.type = QSpanData::Solid;

    d->deviceDepth = d->device->depth();

    d->mono_surface = false;
    gccaps &= ~PorterDuff;

    QImage::Format format = QImage::Format_Invalid;

    switch (d->device->devType()) {
    case QInternal::Pixmap:
        qWarning("QRasterPaintEngine: unsupported for pixmaps...");
        break;
    case QInternal::Image:
        format = d->rasterBuffer->prepare(static_cast<QImage *>(d->device));
        break;
#ifdef Q_WS_QWS
    case QInternal::CustomRaster:
        d->rasterBuffer->prepare(static_cast<QCustomRasterPaintDevice*>(d->device));
        break;
#endif
    default:
        qWarning("QRasterPaintEngine: unsupported target device %d\n", d->device->devType());
        d->device = 0;
        return;
    }

    switch (format) {
    case QImage::Format_MonoLSB:
    case QImage::Format_Mono:
        d->mono_surface = true;
        break;
    case QImage::Format_ARGB8565_Premultiplied:
    case QImage::Format_ARGB8555_Premultiplied:
    case QImage::Format_ARGB6666_Premultiplied:
    case QImage::Format_ARGB4444_Premultiplied:
    case QImage::Format_ARGB32_Premultiplied:
    case QImage::Format_ARGB32:
        gccaps |= PorterDuff;
        break;
    case QImage::Format_RGB32:
    case QImage::Format_RGB444:
    case QImage::Format_RGB555:
    case QImage::Format_RGB666:
    case QImage::Format_RGB888:
    case QImage::Format_RGB16:
        break;
    default:
        break;
    }
}




/*!
    Destroys this paint engine.
*/
QRasterPaintEngine::~QRasterPaintEngine()
{
    Q_D(QRasterPaintEngine);

    qt_ft_grays_raster.raster_done(*d->grayRaster.data());
}

/*!
    \reimp
*/
bool QRasterPaintEngine::begin(QPaintDevice *device)
{
    Q_D(QRasterPaintEngine);

    if (device->devType() == QInternal::Pixmap) {
        QPixmap *pixmap = static_cast<QPixmap *>(device);
        QPixmapData *pd = pixmap->pixmapData();
        if (pd->classId() == QPixmapData::RasterClass || pd->classId() == QPixmapData::BlitterClass)
            d->device = pd->buffer();
    } else {
        d->device = device;
    }

    // Make sure QPaintEngine::paintDevice() returns the proper device.
    d->pdev = d->device;

    Q_ASSERT(d->device->devType() == QInternal::Image
             || d->device->devType() == QInternal::CustomRaster);

    d->systemStateChanged();

    QRasterPaintEngineState *s = state();
    ensureOutlineMapper();
    d->outlineMapper->m_clip_rect = d->deviceRect;

    if (d->outlineMapper->m_clip_rect.width() > QT_RASTER_COORD_LIMIT)
        d->outlineMapper->m_clip_rect.setWidth(QT_RASTER_COORD_LIMIT);
    if (d->outlineMapper->m_clip_rect.height() > QT_RASTER_COORD_LIMIT)
        d->outlineMapper->m_clip_rect.setHeight(QT_RASTER_COORD_LIMIT);

    d->rasterizer->setClipRect(d->deviceRect);

    s->penData.init(d->rasterBuffer.data(), this);
    s->penData.setup(s->pen.brush(), s->intOpacity, s->composition_mode);
    s->stroker = &d->basicStroker;
    d->basicStroker.setClipRect(d->deviceRect);

    s->brushData.init(d->rasterBuffer.data(), this);
    s->brushData.setup(s->brush, s->intOpacity, s->composition_mode);

    d->rasterBuffer->compositionMode = QPainter::CompositionMode_SourceOver;

    setDirty(DirtyBrushOrigin);

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::begin(" << (void *) device
             << ") devType:" << device->devType()
             << "devRect:" << d->deviceRect;
    if (d->baseClip) {
        dumpClip(d->rasterBuffer->width(), d->rasterBuffer->height(), &*d->baseClip);
    }
#endif

#if defined(Q_WS_WIN)
    d->isPlain45DegreeRotation = true;
#endif

    if (d->mono_surface)
        d->glyphCacheType = QFontEngineGlyphCache::Raster_Mono;
#if defined(Q_WS_WIN)
    else if (qt_cleartype_enabled)
#elif defined (Q_WS_MAC)
    else if (qt_applefontsmoothing_enabled)
#else
    else if (false)
#endif
    {
        QImage::Format format = static_cast<QImage *>(d->device)->format();
        if (format == QImage::Format_ARGB32_Premultiplied || format == QImage::Format_RGB32)
            d->glyphCacheType = QFontEngineGlyphCache::Raster_RGBMask;
        else
            d->glyphCacheType = QFontEngineGlyphCache::Raster_A8;
    } else
        d->glyphCacheType = QFontEngineGlyphCache::Raster_A8;

    setActive(true);
    return true;
}

/*!
    \reimp
*/
bool QRasterPaintEngine::end()
{
#ifdef QT_DEBUG_DRAW
    Q_D(QRasterPaintEngine);
    qDebug() << "QRasterPaintEngine::end devRect:" << d->deviceRect;
    if (d->baseClip) {
        dumpClip(d->rasterBuffer->width(), d->rasterBuffer->height(), &*d->baseClip);
    }
#endif

    return true;
}

/*!
    \internal
*/
void QRasterPaintEngine::releaseBuffer()
{
    Q_D(QRasterPaintEngine);
    d->rasterBuffer.reset(new QRasterBuffer);
}

/*!
    \internal
*/
QSize QRasterPaintEngine::size() const
{
    Q_D(const QRasterPaintEngine);
    return QSize(d->rasterBuffer->width(), d->rasterBuffer->height());
}

/*!
    \internal
*/
#ifndef QT_NO_DEBUG
void QRasterPaintEngine::saveBuffer(const QString &s) const
{
    Q_D(const QRasterPaintEngine);
    d->rasterBuffer->bufferImage().save(s, "PNG");
}
#endif

/*!
    \internal
*/
void QRasterPaintEngine::updateMatrix(const QTransform &matrix)
{
    QRasterPaintEngineState *s = state();
    // FALCON: get rid of this line, see drawImage call below.
    s->matrix = matrix;
    QTransform::TransformationType txop = s->matrix.type();

    switch (txop) {

    case QTransform::TxNone:
        s->flags.int_xform = true;
        break;

    case QTransform::TxTranslate:
        s->flags.int_xform = qreal(int(s->matrix.dx())) == s->matrix.dx()
                            && qreal(int(s->matrix.dy())) == s->matrix.dy();
        break;

    case QTransform::TxScale:
        s->flags.int_xform = qreal(int(s->matrix.dx())) == s->matrix.dx()
                            && qreal(int(s->matrix.dy())) == s->matrix.dy()
                            && qreal(int(s->matrix.m11())) == s->matrix.m11()
                            && qreal(int(s->matrix.m22())) == s->matrix.m22();
        break;

    default: // shear / perspective...
        s->flags.int_xform = false;
        break;
    }

    s->flags.tx_noshear = qt_scaleForTransform(s->matrix, &s->txscale);

    ensureOutlineMapper();

#ifdef Q_WS_WIN
    Q_D(QRasterPaintEngine);
    d->isPlain45DegreeRotation = false;
    if (txop >= QTransform::TxRotate) {
        d->isPlain45DegreeRotation =
            (qFuzzyIsNull(matrix.m11())
             && qFuzzyIsNull(matrix.m12() - qreal(1))
             && qFuzzyIsNull(matrix.m21() + qreal(1))
             && qFuzzyIsNull(matrix.m22())
                )
            ||
            (qFuzzyIsNull(matrix.m11() + qreal(1))
             && qFuzzyIsNull(matrix.m12())
             && qFuzzyIsNull(matrix.m21())
             && qFuzzyIsNull(matrix.m22() + qreal(1))
                )
            ||
            (qFuzzyIsNull(matrix.m11())
             && qFuzzyIsNull(matrix.m12() + qreal(1))
             && qFuzzyIsNull(matrix.m21() - qreal(1))
             && qFuzzyIsNull(matrix.m22())
                )
            ;
    }
#endif

}



QRasterPaintEngineState::~QRasterPaintEngineState()
{
    if (flags.has_clip_ownership)
        delete clip;
}


QRasterPaintEngineState::QRasterPaintEngineState()
{
    stroker = 0;

    fillFlags = 0;
    strokeFlags = 0;
    pixmapFlags = 0;

    intOpacity = 256;

    txscale = 1.;

    flags.fast_pen = true;
    flags.antialiased = false;
    flags.bilinear = false;
    flags.fast_text = true;
    flags.int_xform = true;
    flags.tx_noshear = true;
    flags.fast_images = true;

    clip = 0;
    flags.has_clip_ownership = false;

    dirty = 0;
}

QRasterPaintEngineState::QRasterPaintEngineState(QRasterPaintEngineState &s)
    : QPainterState(s)
    , lastPen(s.lastPen)
    , penData(s.penData)
    , stroker(s.stroker)
    , strokeFlags(s.strokeFlags)
    , lastBrush(s.lastBrush)
    , brushData(s.brushData)
    , fillFlags(s.fillFlags)
    , pixmapFlags(s.pixmapFlags)
    , intOpacity(s.intOpacity)
    , txscale(s.txscale)
    , clip(s.clip)
    , dirty(s.dirty)
    , flag_bits(s.flag_bits)
{
    brushData.tempImage = 0;
    penData.tempImage = 0;
    flags.has_clip_ownership = false;
}

/*!
    \internal
*/
QPainterState *QRasterPaintEngine::createState(QPainterState *orig) const
{
    QRasterPaintEngineState *s;
    if (!orig)
        s = new QRasterPaintEngineState();
    else
        s = new QRasterPaintEngineState(*static_cast<QRasterPaintEngineState *>(orig));

    return s;
}

/*!
    \internal
*/
void QRasterPaintEngine::setState(QPainterState *s)
{
    Q_D(QRasterPaintEngine);
    QPaintEngineEx::setState(s);
    d->rasterBuffer->compositionMode = s->composition_mode;
}

/*!
    \fn QRasterPaintEngineState *QRasterPaintEngine::state()
    \internal
*/

/*!
    \fn const QRasterPaintEngineState *QRasterPaintEngine::state() const
    \internal
*/

/*!
    \internal
*/
void QRasterPaintEngine::penChanged()
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::penChanged():" << state()->pen;
#endif
    QRasterPaintEngineState *s = state();
    s->strokeFlags |= DirtyPen;
    s->dirty |= DirtyPen;
}

/*!
    \internal
*/
void QRasterPaintEngine::updatePen(const QPen &pen)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::updatePen():" << s->pen;
#endif

    Qt::PenStyle pen_style = qpen_style(pen);

    s->lastPen = pen;
    s->strokeFlags = 0;

    s->penData.clip = d->clip();
    s->penData.setup(pen_style == Qt::NoPen ? QBrush() : pen.brush(), s->intOpacity, s->composition_mode);

    if (s->strokeFlags & QRasterPaintEngine::DirtyTransform
        || pen.brush().transform().type() >= QTransform::TxNone) {
        d->updateMatrixData(&s->penData, pen.brush(), s->matrix);
    }

    // Slightly ugly handling of an uncommon case... We need to change
    // the pen because it is reused in draw_midpoint to decide dashed
    // or non-dashed.
    if (pen_style == Qt::CustomDashLine && pen.dashPattern().size() == 0) {
        pen_style = Qt::SolidLine;
        s->lastPen.setStyle(Qt::SolidLine);
    }

    d->basicStroker.setJoinStyle(qpen_joinStyle(pen));
    d->basicStroker.setCapStyle(qpen_capStyle(pen));
    d->basicStroker.setMiterLimit(pen.miterLimit());

    qreal penWidth = qpen_widthf(pen);
    if (penWidth == 0)
        d->basicStroker.setStrokeWidth(1);
    else
        d->basicStroker.setStrokeWidth(penWidth);

    if(pen_style == Qt::SolidLine) {
        s->stroker = &d->basicStroker;
    } else if (pen_style != Qt::NoPen) {
        if (!d->dashStroker)
            d->dashStroker.reset(new QDashStroker(&d->basicStroker));
        if (pen.isCosmetic()) {
            d->dashStroker->setClipRect(d->deviceRect);
        } else {
            // ### I've seen this inverted devrect multiple places now...
            QRectF clipRect = s->matrix.inverted().mapRect(QRectF(d->deviceRect));
            d->dashStroker->setClipRect(clipRect);
        }
        d->dashStroker->setDashPattern(pen.dashPattern());
        d->dashStroker->setDashOffset(pen.dashOffset());
        s->stroker = d->dashStroker.data();
    } else {
        s->stroker = 0;
    }

    ensureState(); // needed because of tx_noshear...
    s->flags.fast_pen = pen_style > Qt::NoPen
            && s->penData.blend
            && ((pen.isCosmetic() && penWidth <= 1)
                || (s->flags.tx_noshear && penWidth * s->txscale <= 1));

    s->flags.non_complex_pen = qpen_capStyle(s->lastPen) <= Qt::SquareCap && s->flags.tx_noshear;

    s->strokeFlags = 0;
}



/*!
    \internal
*/
void QRasterPaintEngine::brushOriginChanged()
{
    QRasterPaintEngineState *s = state();
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::brushOriginChanged()" << s->brushOrigin;
#endif

    s->fillFlags |= DirtyBrushOrigin;
}


/*!
    \internal
*/
void QRasterPaintEngine::brushChanged()
{
    QRasterPaintEngineState *s = state();
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::brushChanged():" << s->brush;
#endif
    s->fillFlags |= DirtyBrush;
}




/*!
    \internal
*/
void QRasterPaintEngine::updateBrush(const QBrush &brush)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::updateBrush()" << brush;
#endif
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();
    // must set clip prior to setup, as setup uses it...
    s->brushData.clip = d->clip();
    s->brushData.setup(brush, s->intOpacity, s->composition_mode);
    if (s->fillFlags & DirtyTransform
        || brush.transform().type() >= QTransform::TxNone)
        d_func()->updateMatrixData(&s->brushData, brush, d->brushMatrix());
    s->lastBrush = brush;
    s->fillFlags = 0;
}

void QRasterPaintEngine::updateOutlineMapper()
{
    Q_D(QRasterPaintEngine);
    d->outlineMapper->setMatrix(state()->matrix);
}

void QRasterPaintEngine::updateState()
{
    QRasterPaintEngineState *s = state();

    if (s->dirty & DirtyTransform)
        updateMatrix(s->matrix);

    if (s->dirty & (DirtyPen|DirtyCompositionMode|DirtyOpacity)) {
        const QPainter::CompositionMode mode = s->composition_mode;
        s->flags.fast_text = (s->penData.type == QSpanData::Solid)
                       && s->intOpacity == 256
                       && (mode == QPainter::CompositionMode_Source
                           || (mode == QPainter::CompositionMode_SourceOver
                               && qAlpha(s->penData.solid.color) == 255));
    }

    s->dirty = 0;
}


/*!
    \internal
*/
void QRasterPaintEngine::opacityChanged()
{
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::opacityChanged()" << s->opacity;
#endif

    s->fillFlags |= DirtyOpacity;
    s->strokeFlags |= DirtyOpacity;
    s->pixmapFlags |= DirtyOpacity;
    s->dirty |= DirtyOpacity;
    s->intOpacity = (int) (s->opacity * 256);
}

/*!
    \internal
*/
void QRasterPaintEngine::compositionModeChanged()
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::compositionModeChanged()" << s->composition_mode;
#endif

    s->fillFlags |= DirtyCompositionMode;
    s->dirty |= DirtyCompositionMode;

    s->strokeFlags |= DirtyCompositionMode;
    d->rasterBuffer->compositionMode = s->composition_mode;

    d->recalculateFastImages();
}

/*!
    \internal
*/
void QRasterPaintEngine::renderHintsChanged()
{
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::renderHintsChanged()" << hex << s->renderHints;
#endif

    bool was_aa = s->flags.antialiased;
    bool was_bilinear = s->flags.bilinear;

    s->flags.antialiased = bool(s->renderHints & QPainter::Antialiasing);
    s->flags.bilinear = bool(s->renderHints & QPainter::SmoothPixmapTransform);

    if (was_aa != s->flags.antialiased)
        s->strokeFlags |= DirtyHints;

    if (was_bilinear != s->flags.bilinear) {
        s->strokeFlags |= DirtyPen;
        s->fillFlags |= DirtyBrush;
    }

    Q_D(QRasterPaintEngine);
    d->recalculateFastImages();
}

/*!
    \internal
*/
void QRasterPaintEngine::transformChanged()
{
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::transformChanged()" << s->matrix;
#endif

    s->fillFlags |= DirtyTransform;
    s->strokeFlags |= DirtyTransform;

    s->dirty |= DirtyTransform;

    Q_D(QRasterPaintEngine);
    d->recalculateFastImages();
}

/*!
    \internal
*/
void QRasterPaintEngine::clipEnabledChanged()
{
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::clipEnabledChanged()" << s->clipEnabled;
#endif

    if (s->clip) {
        s->clip->enabled = s->clipEnabled;
        s->fillFlags |= DirtyClipEnabled;
        s->strokeFlags |= DirtyClipEnabled;
        s->pixmapFlags |= DirtyClipEnabled;
    }
}

#ifdef Q_WS_QWS
void QRasterPaintEnginePrivate::prepare(QCustomRasterPaintDevice *device)
{
    rasterBuffer->prepare(device);
}
#endif

void QRasterPaintEnginePrivate::drawImage(const QPointF &pt,
                                          const QImage &img,
                                          SrcOverBlendFunc func,
                                          const QRect &clip,
                                          int alpha,
                                          const QRect &sr)
{
    if (alpha == 0 || !clip.isValid())
        return;

    Q_ASSERT(img.depth() >= 8);

    int srcBPL = img.bytesPerLine();
    const uchar *srcBits = img.bits();
    int srcSize = img.depth() >> 3; // This is the part that is incompatible with lower than 8-bit..
    int iw = img.width();
    int ih = img.height();

    if (!sr.isEmpty()) {
        iw = sr.width();
        ih = sr.height();
        // Adjust the image according to the source offset...
        srcBits += ((sr.y() * srcBPL) + sr.x() * srcSize);
    }

    // adapt the x parameters
    int x = qRound(pt.x());
    int cx1 = clip.x();
    int cx2 = clip.x() + clip.width();
    if (x < cx1) {
        int d = cx1 - x;
        srcBits += srcSize * d;
        iw -= d;
        x = cx1;
    }
    if (x + iw > cx2) {
        int d = x + iw - cx2;
        iw -= d;
    }
    if (iw <= 0)
        return;

    // adapt the y paremeters...
    int cy1 = clip.y();
    int cy2 = clip.y() + clip.height();
    int y = qRound(pt.y());
    if (y < cy1) {
        int d = cy1 - y;
        srcBits += srcBPL * d;
        ih -= d;
        y = cy1;
    }
    if (y + ih > cy2) {
        int d = y + ih - cy2;
        ih -= d;
    }
    if (ih <= 0)
        return;

    // call the blend function...
    int dstSize = rasterBuffer->bytesPerPixel();
    int dstBPL = rasterBuffer->bytesPerLine();
    func(rasterBuffer->buffer() + x * dstSize + y * dstBPL, dstBPL,
         srcBits, srcBPL,
         iw, ih,
         alpha);
}


void QRasterPaintEnginePrivate::systemStateChanged()
{
    QRect clipRect(0, 0,
            qMin(QT_RASTER_COORD_LIMIT, device->width()),
            qMin(QT_RASTER_COORD_LIMIT, device->height()));

    if (!systemClip.isEmpty()) {
        QRegion clippedDeviceRgn = systemClip & clipRect;
        deviceRect = clippedDeviceRgn.boundingRect();
        baseClip->setClipRegion(clippedDeviceRgn);
    } else {
        deviceRect = clipRect;
        baseClip->setClipRect(deviceRect);
    }
#ifdef QT_DEBUG_DRAW
    qDebug() << "systemStateChanged" << this << "deviceRect" << deviceRect << clipRect << systemClip;
#endif

    exDeviceRect = deviceRect;

    Q_Q(QRasterPaintEngine);
    q->state()->strokeFlags |= QPaintEngine::DirtyClipRegion;
    q->state()->fillFlags |= QPaintEngine::DirtyClipRegion;
    q->state()->pixmapFlags |= QPaintEngine::DirtyClipRegion;
}

void QRasterPaintEnginePrivate::updateMatrixData(QSpanData *spanData, const QBrush &b, const QTransform &m)
{
    if (b.d->style == Qt::NoBrush || b.d->style == Qt::SolidPattern)
        return;

    Q_Q(QRasterPaintEngine);
    bool bilinear = q->state()->flags.bilinear;

    if (b.d->transform.type() > QTransform::TxNone) { // FALCON: optimize
        spanData->setupMatrix(b.transform() * m, bilinear);
    } else {
        if (m.type() <= QTransform::TxTranslate) {
            // specialize setupMatrix for translation matrices
            // to avoid needless matrix inversion
            spanData->m11 = 1;
            spanData->m12 = 0;
            spanData->m13 = 0;
            spanData->m21 = 0;
            spanData->m22 = 1;
            spanData->m23 = 0;
            spanData->m33 = 1;
            spanData->dx = -m.dx();
            spanData->dy = -m.dy();
            spanData->txop = m.type();
            spanData->bilinear = bilinear;
            spanData->fast_matrix = qAbs(m.dx()) < 1e4 && qAbs(m.dy()) < 1e4;
            spanData->adjustSpanMethods();
        } else {
            spanData->setupMatrix(m, bilinear);
        }
    }
}

// #define QT_CLIPPING_RATIOS

#ifdef QT_CLIPPING_RATIOS
int rectClips;
int regionClips;
int totalClips;

static void checkClipRatios(QRasterPaintEnginePrivate *d)
{
    if (d->clip()->hasRectClip)
        rectClips++;
    if (d->clip()->hasRegionClip)
        regionClips++;
    totalClips++;

    if ((totalClips % 5000) == 0) {
        printf("Clipping ratio: rectangular=%f%%, region=%f%%, complex=%f%%\n",
               rectClips * 100.0 / (qreal) totalClips,
               regionClips * 100.0 / (qreal) totalClips,
               (totalClips - rectClips - regionClips) * 100.0 / (qreal) totalClips);
        totalClips = 0;
        rectClips = 0;
        regionClips = 0;
    }

}
#endif

static void qrasterpaintengine_state_setNoClip(QRasterPaintEngineState *s)
{
    if (s->flags.has_clip_ownership)
        delete s->clip;
    s->clip = 0;
    s->flags.has_clip_ownership = false;
}

static void qrasterpaintengine_dirty_clip(QRasterPaintEnginePrivate *d, QRasterPaintEngineState *s)
{
    s->fillFlags |= QPaintEngine::DirtyClipPath;
    s->strokeFlags |= QPaintEngine::DirtyClipPath;
    s->pixmapFlags |= QPaintEngine::DirtyClipPath;

    d->solid_color_filler.clip = d->clip();
    d->solid_color_filler.adjustSpanMethods();

#ifdef QT_DEBUG_DRAW
    dumpClip(d->rasterBuffer->width(), d->rasterBuffer->height(), &*d->clip());
#endif

}


/*!
    \internal
*/
void QRasterPaintEngine::clip(const QVectorPath &path, Qt::ClipOperation op)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::clip(): " << path << op;

    if (path.elements()) {
        for (int i=0; i<path.elementCount(); ++i) {
            qDebug() << " - " << path.elements()[i]
                     << '(' << path.points()[i*2] << ", " << path.points()[i*2+1] << ')';
        }
    } else {
        for (int i=0; i<path.elementCount(); ++i) {
            qDebug() << " ---- "
                     << '(' << path.points()[i*2] << ", " << path.points()[i*2+1] << ')';
        }
    }
#endif

    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    const qreal *points = path.points();
    const QPainterPath::ElementType *types = path.elements();

    // There are some cases that are not supported by clip(QRect)
    if (op != Qt::UniteClip && (op != Qt::IntersectClip || !s->clip
                                || s->clip->hasRectClip || s->clip->hasRegionClip)) {
        if (s->matrix.type() <= QTransform::TxScale
            && ((path.shape() == QVectorPath::RectangleHint)
                || (isRect(points, path.elementCount())
                    && (!types || (types[0] == QPainterPath::MoveToElement
                                   && types[1] == QPainterPath::LineToElement
                                   && types[2] == QPainterPath::LineToElement
                                   && types[3] == QPainterPath::LineToElement))))) {
#ifdef QT_DEBUG_DRAW
            qDebug() << " --- optimizing vector clip to rect clip...";
#endif

            QRectF r(points[0], points[1], points[4]-points[0], points[5]-points[1]);
            if (setClipRectInDeviceCoords(s->matrix.mapRect(r).toRect(), op))
                return;
        }
    }

    if (op == Qt::NoClip) {
        qrasterpaintengine_state_setNoClip(s);

    } else {
        QClipData *base = d->baseClip.data();

        // Intersect with current clip when available...
        if (op == Qt::IntersectClip && s->clip)
            base = s->clip;

        // We always intersect, except when there is nothing to
        // intersect with, in which case we simplify the operation to
        // a replace...
        Qt::ClipOperation isectOp = Qt::IntersectClip;
        if (base == 0)
            isectOp = Qt::ReplaceClip;

        QClipData *newClip = new QClipData(d->rasterBuffer->height());
        newClip->initialize();
        ClipData clipData = { base, newClip, isectOp };
        ensureOutlineMapper();
        d->rasterize(d->outlineMapper->convertPath(path), qt_span_clip, &clipData, 0);

        newClip->fixup();

        if (op == Qt::UniteClip) {
            // merge clips
            QClipData *result = new QClipData(d->rasterBuffer->height());
            QClipData *current = s->clip ? s->clip : new QClipData(d->rasterBuffer->height());
            qt_merge_clip(current, newClip, result);
            result->fixup();
            delete newClip;
            if (!s->clip)
                delete current;
            newClip = result;
        }

        if (s->flags.has_clip_ownership)
            delete s->clip;

        s->clip = newClip;
        s->flags.has_clip_ownership = true;
    }
    qrasterpaintengine_dirty_clip(d, s);
}



/*!
    \internal
*/
void QRasterPaintEngine::clip(const QRect &rect, Qt::ClipOperation op)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::clip(): " << rect << op;
#endif

    QRasterPaintEngineState *s = state();

    if (op == Qt::NoClip) {
        qrasterpaintengine_state_setNoClip(s);

    } else if (op == Qt::UniteClip || s->matrix.type() > QTransform::TxScale) {
        QPaintEngineEx::clip(rect, op);
        return;

    } else if (!setClipRectInDeviceCoords(s->matrix.mapRect(rect), op)) {
        QPaintEngineEx::clip(rect, op);
        return;
    }
}


bool QRasterPaintEngine::setClipRectInDeviceCoords(const QRect &r, Qt::ClipOperation op)
{
    Q_D(QRasterPaintEngine);
    QRect clipRect = r & d->deviceRect;
    QRasterPaintEngineState *s = state();

    if (op == Qt::ReplaceClip || s->clip == 0) {

        // No current clip, hence we intersect with sysclip and be
        // done with it...
        QRegion clipRegion = systemClip();
        QClipData *clip = new QClipData(d->rasterBuffer->height());

        if (clipRegion.isEmpty())
            clip->setClipRect(clipRect);
        else
            clip->setClipRegion(clipRegion & clipRect);

        if (s->flags.has_clip_ownership)
            delete s->clip;

        s->clip = clip;
        s->clip->enabled = true;
        s->flags.has_clip_ownership = true;

    } else if (op == Qt::IntersectClip){ // intersect clip with current clip
        QClipData *base = s->clip;

        Q_ASSERT(base);
        if (base->hasRectClip || base->hasRegionClip) {
            if (!s->flags.has_clip_ownership) {
                s->clip = new QClipData(d->rasterBuffer->height());
                s->flags.has_clip_ownership = true;
            }
            if (base->hasRectClip)
                s->clip->setClipRect(base->clipRect & clipRect);
            else
                s->clip->setClipRegion(base->clipRegion & clipRect);
            s->clip->enabled = true;
        } else {
            return false;
        }
    } else {
        return false;
    }

    qrasterpaintengine_dirty_clip(d, s);
    return true;
}


/*!
    \internal
*/
void QRasterPaintEngine::clip(const QRegion &region, Qt::ClipOperation op)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::clip(): " << region << op;
#endif

    Q_D(QRasterPaintEngine);

    if (region.rectCount() == 1) {
        clip(region.boundingRect(), op);
        return;
    }

    QRasterPaintEngineState *s = state();
    const QClipData *clip = d->clip();
    const QClipData *baseClip = d->baseClip.data();

    if (op == Qt::NoClip) {
        qrasterpaintengine_state_setNoClip(s);
    } else if (s->matrix.type() > QTransform::TxScale
               || op == Qt::UniteClip
               || (op == Qt::IntersectClip && !clip->hasRectClip && !clip->hasRegionClip)
               || (op == Qt::ReplaceClip && !baseClip->hasRectClip && !baseClip->hasRegionClip)) {
        QPaintEngineEx::clip(region, op);
    } else {
        const QClipData *curClip;
        QClipData *newClip;

        if (op == Qt::IntersectClip)
            curClip = clip;
        else
            curClip = baseClip;

        if (s->flags.has_clip_ownership) {
            newClip = s->clip;
            Q_ASSERT(newClip);
        } else {
            newClip = new QClipData(d->rasterBuffer->height());
            s->clip = newClip;
            s->flags.has_clip_ownership = true;
        }

        QRegion r = s->matrix.map(region);
        if (curClip->hasRectClip)
            newClip->setClipRegion(r & curClip->clipRect);
        else if (curClip->hasRegionClip)
            newClip->setClipRegion(r & curClip->clipRegion);

        qrasterpaintengine_dirty_clip(d, s);
    }
}

/*!
    \internal
*/
void QRasterPaintEngine::fillPath(const QPainterPath &path, QSpanData *fillData)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " --- fillPath, bounds=" << path.boundingRect();
#endif

    if (!fillData->blend)
        return;

    Q_D(QRasterPaintEngine);

    const QRectF controlPointRect = path.controlPointRect();

    QRasterPaintEngineState *s = state();
    const QRect deviceRect = s->matrix.mapRect(controlPointRect).toRect();
    ProcessSpans blend = d->getBrushFunc(deviceRect, fillData);
    const bool do_clip = (deviceRect.left() < -QT_RASTER_COORD_LIMIT
                          || deviceRect.right() > QT_RASTER_COORD_LIMIT
                          || deviceRect.top() < -QT_RASTER_COORD_LIMIT
                          || deviceRect.bottom() > QT_RASTER_COORD_LIMIT);

    if (!s->flags.antialiased && !do_clip) {
        d->initializeRasterizer(fillData);
        d->rasterizer->rasterize(path * s->matrix, path.fillRule());
        return;
    }

    ensureOutlineMapper();
    d->rasterize(d->outlineMapper->convertPath(path), blend, fillData, d->rasterBuffer.data());
}

static void fillRect_normalized(const QRect &r, QSpanData *data,
                                QRasterPaintEnginePrivate *pe)
{
    int x1, x2, y1, y2;

    bool rectClipped = true;

    if (data->clip) {
        x1 = qMax(r.x(), data->clip->xmin);
        x2 = qMin(r.x() + r.width(), data->clip->xmax);
        y1 = qMax(r.y(), data->clip->ymin);
        y2 = qMin(r.y() + r.height(), data->clip->ymax);
        rectClipped = data->clip->hasRectClip;

    } else if (pe) {
        x1 = qMax(r.x(), pe->deviceRect.x());
        x2 = qMin(r.x() + r.width(), pe->deviceRect.x() + pe->deviceRect.width());
        y1 = qMax(r.y(), pe->deviceRect.y());
        y2 = qMin(r.y() + r.height(), pe->deviceRect.y() + pe->deviceRect.height());
    } else {
        x1 = qMax(r.x(), 0);
        x2 = qMin(r.x() + r.width(), data->rasterBuffer->width());
        y1 = qMax(r.y(), 0);
        y2 = qMin(r.y() + r.height(), data->rasterBuffer->height());
    }

    if (x2 <= x1 || y2 <= y1)
        return;

    const int width = x2 - x1;
    const int height = y2 - y1;

    bool isUnclipped = rectClipped
                       || (pe && pe->isUnclipped_normalized(QRect(x1, y1, width, height)));

    if (pe && isUnclipped) {
        const QPainter::CompositionMode mode = pe->rasterBuffer->compositionMode;

        if (data->fillRect && (mode == QPainter::CompositionMode_Source
                               || (mode == QPainter::CompositionMode_SourceOver
                                   && qAlpha(data->solid.color) == 255)))
        {
            data->fillRect(data->rasterBuffer, x1, y1, width, height,
                           data->solid.color);
            return;
        }
    }

    ProcessSpans blend = isUnclipped ? data->unclipped_blend : data->blend;

    const int nspans = 256;
    QT_FT_Span spans[nspans];

    Q_ASSERT(data->blend);
    int y = y1;
    while (y < y2) {
        int n = qMin(nspans, y2 - y);
        int i = 0;
        while (i < n) {
            spans[i].x = x1;
            spans[i].len = width;
            spans[i].y = y + i;
            spans[i].coverage = 255;
            ++i;
        }

        blend(n, spans, data);
        y += n;
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawRects(const QRect *rects, int rectCount)
{
#ifdef QT_DEBUG_DRAW
    qDebug(" - QRasterPaintEngine::drawRect(), rectCount=%d", rectCount);
#endif
    Q_D(QRasterPaintEngine);
    ensureState();
    QRasterPaintEngineState *s = state();

    // Fill
    ensureBrush();
    if (s->brushData.blend) {
        if (!s->flags.antialiased && s->matrix.type() <= QTransform::TxTranslate) {
            const QRect *r = rects;
            const QRect *lastRect = rects + rectCount;

            int offset_x = int(s->matrix.dx());
            int offset_y = int(s->matrix.dy());
            while (r < lastRect) {
                QRect rect = r->normalized();
                QRect rr = rect.translated(offset_x, offset_y);
                fillRect_normalized(rr, &s->brushData, d);
                ++r;
            }
        } else {
            QRectVectorPath path;
            for (int i=0; i<rectCount; ++i) {
                path.set(rects[i]);
                fill(path, s->brush);
            }
        }
    }

    ensurePen();
    if (s->penData.blend) {
        QRectVectorPath path;
        if (s->flags.fast_pen) {
            QCosmeticStroker stroker(s, d->deviceRect);
            for (int i = 0; i < rectCount; ++i) {
                path.set(rects[i]);
                stroker.drawPath(path);
            }
        } else {
            for (int i = 0; i < rectCount; ++i) {
                path.set(rects[i]);
                stroke(path, s->pen);
            }
        }
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawRects(const QRectF *rects, int rectCount)
{
#ifdef QT_DEBUG_DRAW
    qDebug(" - QRasterPaintEngine::drawRect(QRectF*), rectCount=%d", rectCount);
#endif
#ifdef QT_FAST_SPANS
    Q_D(QRasterPaintEngine);
    ensureState();
    QRasterPaintEngineState *s = state();


    if (s->flags.tx_noshear) {
        ensureBrush();
        if (s->brushData.blend) {
            d->initializeRasterizer(&s->brushData);
            for (int i = 0; i < rectCount; ++i) {
                const QRectF &rect = rects[i].normalized();
                if (rect.isEmpty())
                    continue;
                const QPointF a = s->matrix.map((rect.topLeft() + rect.bottomLeft()) * 0.5f);
                const QPointF b = s->matrix.map((rect.topRight() + rect.bottomRight()) * 0.5f);
                d->rasterizer->rasterizeLine(a, b, rect.height() / rect.width());
            }
        }

        ensurePen();
        if (s->penData.blend) {
            QRectVectorPath path;
            if (s->flags.fast_pen) {
                QCosmeticStroker stroker(s, d->deviceRect);
                for (int i = 0; i < rectCount; ++i) {
                    path.set(rects[i]);
                    stroker.drawPath(path);
                }
            } else {
                for (int i = 0; i < rectCount; ++i) {
                    path.set(rects[i]);
                    QPaintEngineEx::stroke(path, s->lastPen);
                }
            }
        }

        return;
    }
#endif // QT_FAST_SPANS
    QPaintEngineEx::drawRects(rects, rectCount);
}


/*!
    \internal
*/
void QRasterPaintEngine::stroke(const QVectorPath &path, const QPen &pen)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen(pen);
    if (!s->penData.blend)
        return;

    if (s->flags.fast_pen) {
        QCosmeticStroker stroker(s, d->deviceRect);
        stroker.drawPath(path);
    } else if (s->flags.non_complex_pen && path.shape() == QVectorPath::LinesHint) {
        qreal width = s->lastPen.isCosmetic()
                      ? (qpen_widthf(s->lastPen) == 0 ? 1 : qpen_widthf(s->lastPen))
                      : qpen_widthf(s->lastPen) * s->txscale;
        int dashIndex = 0;
        qreal dashOffset = s->lastPen.dashOffset();
        bool inDash = true;
        qreal patternLength = 0;
        const QVector<qreal> pattern = s->lastPen.dashPattern();
        for (int i = 0; i < pattern.size(); ++i)
            patternLength += pattern.at(i);

        if (patternLength > 0) {
            int n = qFloor(dashOffset / patternLength);
            dashOffset -= n * patternLength;
            while (dashOffset >= pattern.at(dashIndex)) {
                dashOffset -= pattern.at(dashIndex);
                if (++dashIndex >= pattern.size())
                    dashIndex = 0;
                inDash = !inDash;
            }
        }

        Q_D(QRasterPaintEngine);
        d->initializeRasterizer(&s->penData);
        int lineCount = path.elementCount() / 2;
        const QLineF *lines = reinterpret_cast<const QLineF *>(path.points());

        for (int i = 0; i < lineCount; ++i) {
            if (lines[i].p1() == lines[i].p2()) {
                if (s->lastPen.capStyle() != Qt::FlatCap) {
                    QPointF p = lines[i].p1();
                    QLineF line = s->matrix.map(QLineF(QPointF(p.x() - width*0.5, p.y()),
                                                       QPointF(p.x() + width*0.5, p.y())));
                    d->rasterizer->rasterizeLine(line.p1(), line.p2(), 1);
                }
                continue;
            }

            const QLineF line = s->matrix.map(lines[i]);
            if (qpen_style(s->lastPen) == Qt::SolidLine) {
                d->rasterizer->rasterizeLine(line.p1(), line.p2(),
                                            width / line.length(),
                                            s->lastPen.capStyle() == Qt::SquareCap);
            } else {
                d->rasterizeLine_dashed(line, width,
                                        &dashIndex, &dashOffset, &inDash);
            }
        }
    }
    else
        QPaintEngineEx::stroke(path, pen);
}

static inline QRect toNormalizedFillRect(const QRectF &rect)
{
    int x1 = qRound(rect.x() + aliasedCoordinateDelta);
    int y1 = qRound(rect.y() + aliasedCoordinateDelta);
    int x2 = qRound(rect.right() + aliasedCoordinateDelta);
    int y2 = qRound(rect.bottom() + aliasedCoordinateDelta);

    if (x2 < x1)
        qSwap(x1, x2);
    if (y2 < y1)
        qSwap(y1, y2);

    return QRect(x1, y1, x2 - x1, y2 - y1);
}

/*!
    \internal
*/
void QRasterPaintEngine::fill(const QVectorPath &path, const QBrush &brush)
{
    if (path.isEmpty())
        return;
#ifdef QT_DEBUG_DRAW
    QRectF rf = path.controlPointRect();
    qDebug() << "QRasterPaintEngine::fill(): "
             << "size=" << path.elementCount()
             << ", hints=" << hex << path.hints()
             << rf << brush;
#endif

    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensureBrush(brush);
    if (!s->brushData.blend)
        return;

    if (path.shape() == QVectorPath::RectangleHint) {
        if (!s->flags.antialiased && s->matrix.type() <= QTransform::TxScale) {
            const qreal *p = path.points();
            QPointF tl = QPointF(p[0], p[1]) * s->matrix;
            QPointF br = QPointF(p[4], p[5]) * s->matrix;
            fillRect_normalized(toNormalizedFillRect(QRectF(tl, br)), &s->brushData, d);
            return;
        }
        ensureState();
        if (s->flags.tx_noshear) {
            d->initializeRasterizer(&s->brushData);
            // ### Is normalizing really necessary here?
            const qreal *p = path.points();
            QRectF r = QRectF(p[0], p[1], p[2] - p[0], p[7] - p[1]).normalized();
            if (!r.isEmpty()) {
                const QPointF a = s->matrix.map((r.topLeft() + r.bottomLeft()) * 0.5f);
                const QPointF b = s->matrix.map((r.topRight() + r.bottomRight()) * 0.5f);
                d->rasterizer->rasterizeLine(a, b, r.height() / r.width());
            }
            return;
        }
    }

    // ### Optimize for non transformed ellipses and rectangles...
    QRectF cpRect = path.controlPointRect();
    const QRect deviceRect = s->matrix.mapRect(cpRect).toRect();
    ProcessSpans blend = d->getBrushFunc(deviceRect, &s->brushData);

        // ### Falcon
//         const bool do_clip = (deviceRect.left() < -QT_RASTER_COORD_LIMIT
//                               || deviceRect.right() > QT_RASTER_COORD_LIMIT
//                               || deviceRect.top() < -QT_RASTER_COORD_LIMIT
//                               || deviceRect.bottom() > QT_RASTER_COORD_LIMIT);

        // ### Falonc: implement....
//         if (!s->flags.antialiased && !do_clip) {
//             d->initializeRasterizer(&s->brushData);
//             d->rasterizer->rasterize(path * d->matrix, path.fillRule());
//             return;
//         }

    ensureOutlineMapper();
    d->rasterize(d->outlineMapper->convertPath(path), blend, &s->brushData, d->rasterBuffer.data());
}

void QRasterPaintEngine::fillRect(const QRectF &r, QSpanData *data)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    if (!s->flags.antialiased) {
        uint txop = s->matrix.type();
        if (txop == QTransform::TxNone) {
            fillRect_normalized(toNormalizedFillRect(r), data, d);
            return;
        } else if (txop == QTransform::TxTranslate) {
            const QRect rr = toNormalizedFillRect(r.translated(s->matrix.dx(), s->matrix.dy()));
            fillRect_normalized(rr, data, d);
            return;
        } else if (txop == QTransform::TxScale) {
            const QRect rr = toNormalizedFillRect(s->matrix.mapRect(r));
            fillRect_normalized(rr, data, d);
            return;
        }
    }
    ensureState();
    if (s->flags.tx_noshear) {
        d->initializeRasterizer(data);
        QRectF nr = r.normalized();
        if (!nr.isEmpty()) {
            const QPointF a = s->matrix.map((nr.topLeft() + nr.bottomLeft()) * 0.5f);
            const QPointF b = s->matrix.map((nr.topRight() + nr.bottomRight()) * 0.5f);
            d->rasterizer->rasterizeLine(a, b, nr.height() / nr.width());
        }
        return;
    }

    QPainterPath path;
    path.addRect(r);
    ensureOutlineMapper();
    fillPath(path, data);
}

/*!
    \reimp
*/
void QRasterPaintEngine::fillRect(const QRectF &r, const QBrush &brush)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::fillRecct(): " << r << brush;
#endif
    QRasterPaintEngineState *s = state();

    ensureBrush(brush);
    if (!s->brushData.blend)
        return;

    fillRect(r, &s->brushData);
}

/*!
    \reimp
*/
void QRasterPaintEngine::fillRect(const QRectF &r, const QColor &color)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << "QRasterPaintEngine::fillRect(): " << r << color;
#endif
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    d->solid_color_filler.solid.color = PREMUL(ARGB_COMBINE_ALPHA(color.rgba(), s->intOpacity));
    if ((d->solid_color_filler.solid.color & 0xff000000) == 0
        && s->composition_mode == QPainter::CompositionMode_SourceOver) {
        return;
    }
    d->solid_color_filler.clip = d->clip();
    d->solid_color_filler.adjustSpanMethods();
    fillRect(r, &d->solid_color_filler);
}

static inline bool isAbove(const QPointF *a, const QPointF *b)
{
    return a->y() < b->y();
}

static bool splitPolygon(const QPointF *points, int pointCount, QVector<QPointF> *upper, QVector<QPointF> *lower)
{
    Q_ASSERT(upper);
    Q_ASSERT(lower);

    Q_ASSERT(pointCount >= 2);

    QVector<const QPointF *> sorted;
    sorted.reserve(pointCount);

    upper->reserve(pointCount * 3 / 4);
    lower->reserve(pointCount * 3 / 4);

    for (int i = 0; i < pointCount; ++i)
        sorted << points + i;

    qSort(sorted.begin(), sorted.end(), isAbove);

    qreal splitY = sorted.at(sorted.size() / 2)->y();

    const QPointF *end = points + pointCount;
    const QPointF *last = end - 1;

    QVector<QPointF> *bin[2] = { upper, lower };

    for (const QPointF *p = points; p < end; ++p) {
        int side = p->y() < splitY;
        int lastSide = last->y() < splitY;

        if (side != lastSide) {
            if (qFuzzyCompare(p->y(), splitY)) {
                bin[!side]->append(*p);
            } else if (qFuzzyCompare(last->y(), splitY)) {
                bin[side]->append(*last);
            } else {
                QPointF delta = *p - *last;
                QPointF intersection(p->x() + delta.x() * (splitY - p->y()) / delta.y(), splitY);

                bin[0]->append(intersection);
                bin[1]->append(intersection);
            }
        }

        bin[side]->append(*p);

        last = p;
    }

    // give up if we couldn't reduce the point count
    return upper->size() < pointCount && lower->size() < pointCount;
}

/*!
  \internal
 */
void QRasterPaintEngine::fillPolygon(const QPointF *points, int pointCount, PolygonDrawMode mode)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    const int maxPoints = 0xffff;

    // max amount of points that raster engine can reliably handle
    if (pointCount > maxPoints) {
        QVector<QPointF> upper, lower;

        if (splitPolygon(points, pointCount, &upper, &lower)) {
            fillPolygon(upper.constData(), upper.size(), mode);
            fillPolygon(lower.constData(), lower.size(), mode);
        } else
            qWarning("Polygon too complex for filling.");

        return;
    }

    // Compose polygon fill..,
    QVectorPath vp((qreal *) points, pointCount, 0, QVectorPath::polygonFlags(mode));
    ensureOutlineMapper();
    QT_FT_Outline *outline = d->outlineMapper->convertPath(vp);

    // scanconvert.
    ProcessSpans brushBlend = d->getBrushFunc(d->outlineMapper->controlPointRect,
                                              &s->brushData);
    d->rasterize(outline, brushBlend, &s->brushData, d->rasterBuffer.data());
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawPolygon(const QPointF *points, int pointCount, PolygonDrawMode mode)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug(" - QRasterPaintEngine::drawPolygon(F), pointCount=%d", pointCount);
    for (int i=0; i<pointCount; ++i)
        qDebug() << "   - " << points[i];
#endif
    Q_ASSERT(pointCount >= 2);

    if (mode != PolylineMode && isRect((qreal *) points, pointCount)) {
        QRectF r(points[0], points[2]);
        drawRects(&r, 1);
        return;
    }

    ensurePen();
    if (mode != PolylineMode) {
        // Do the fill...
        ensureBrush();
        if (s->brushData.blend) {
            d->outlineMapper->setCoordinateRounding(s->penData.blend && s->flags.fast_pen && s->lastPen.brush().isOpaque());
            fillPolygon(points, pointCount, mode);
            d->outlineMapper->setCoordinateRounding(false);
        }
    }

    // Do the outline...
    if (s->penData.blend) {
        QVectorPath vp((qreal *) points, pointCount, 0, QVectorPath::polygonFlags(mode));
        if (s->flags.fast_pen) {
            QCosmeticStroker stroker(s, d->deviceRect);
            stroker.drawPath(vp);
        } else {
            QPaintEngineEx::stroke(vp, s->lastPen);
        }
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawPolygon(const QPoint *points, int pointCount, PolygonDrawMode mode)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    qDebug(" - QRasterPaintEngine::drawPolygon(I), pointCount=%d", pointCount);
    for (int i=0; i<pointCount; ++i)
        qDebug() << "   - " << points[i];
#endif
    Q_ASSERT(pointCount >= 2);
    if (mode != PolylineMode && isRect((int *) points, pointCount)) {
        QRect r(points[0].x(),
                points[0].y(),
                points[2].x() - points[0].x(),
                points[2].y() - points[0].y());
        drawRects(&r, 1);
        return;
    }

    ensurePen();

    // Do the fill
    if (mode != PolylineMode) {
        ensureBrush();
        if (s->brushData.blend) {
            // Compose polygon fill..,
            ensureOutlineMapper();
            d->outlineMapper->setCoordinateRounding(s->penData.blend != 0);
            d->outlineMapper->beginOutline(mode == WindingMode ? Qt::WindingFill : Qt::OddEvenFill);
            d->outlineMapper->moveTo(*points);
            const QPoint *p = points;
            const QPoint *ep = points + pointCount - 1;
            do {
                d->outlineMapper->lineTo(*(++p));
            } while (p < ep);
            d->outlineMapper->endOutline();

            // scanconvert.
            ProcessSpans brushBlend = d->getBrushFunc(d->outlineMapper->controlPointRect,
                                                      &s->brushData);
            d->rasterize(d->outlineMapper->outline(), brushBlend, &s->brushData, d->rasterBuffer.data());
            d->outlineMapper->setCoordinateRounding(false);
        }
    }

    // Do the outline...
    if (s->penData.blend) {
        int count = pointCount * 2;
        QVarLengthArray<qreal> fpoints(count);
    #ifdef Q_WS_MAC
        for (int i=0; i<count; i+=2) {
            fpoints[i] = ((int *) points)[i+1];
            fpoints[i+1] = ((int *) points)[i];
        }
    #else
        for (int i=0; i<count; ++i)
            fpoints[i] = ((int *) points)[i];
    #endif
        QVectorPath vp((qreal *) fpoints.data(), pointCount, 0, QVectorPath::polygonFlags(mode));

        if (s->flags.fast_pen) {
            QCosmeticStroker stroker(s, d->deviceRect);
            stroker.drawPath(vp);
        } else {
            QPaintEngineEx::stroke(vp, s->lastPen);
        }
    }
}

/*!
    \internal
*/
void QRasterPaintEngine::drawPixmap(const QPointF &pos, const QPixmap &pixmap)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawPixmap(), pos=" << pos << " pixmap=" << pixmap.size() << "depth=" << pixmap.depth();
#endif

    QPixmapData *pd = pixmap.pixmapData();
    if (pd->classId() == QPixmapData::RasterClass) {
        const QImage &image = static_cast<QRasterPixmapData *>(pd)->image;
        if (image.depth() == 1) {
            Q_D(QRasterPaintEngine);
            QRasterPaintEngineState *s = state();
            if (s->matrix.type() <= QTransform::TxTranslate) {
                ensurePen();
                drawBitmap(pos + QPointF(s->matrix.dx(), s->matrix.dy()), image, &s->penData);
            } else {
                drawImage(pos, d->rasterBuffer->colorizeBitmap(image, s->pen.color()));
            }
        } else {
            QRasterPaintEngine::drawImage(pos, image);
        }
    } else {
        const QImage image = pixmap.toImage();
        if (pixmap.depth() == 1) {
            Q_D(QRasterPaintEngine);
            QRasterPaintEngineState *s = state();
            if (s->matrix.type() <= QTransform::TxTranslate) {
                ensurePen();
                drawBitmap(pos + QPointF(s->matrix.dx(), s->matrix.dy()), image, &s->penData);
            } else {
                drawImage(pos, d->rasterBuffer->colorizeBitmap(image, s->pen.color()));
            }
        } else {
            QRasterPaintEngine::drawImage(pos, image);
        }
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawPixmap(const QRectF &r, const QPixmap &pixmap, const QRectF &sr)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawPixmap(), r=" << r << " sr=" << sr << " pixmap=" << pixmap.size() << "depth=" << pixmap.depth();
#endif

    QPixmapData* pd = pixmap.pixmapData();
    if (pd->classId() == QPixmapData::RasterClass) {
        const QImage &image = static_cast<QRasterPixmapData *>(pd)->image;
        if (image.depth() == 1) {
            Q_D(QRasterPaintEngine);
            QRasterPaintEngineState *s = state();
            if (s->matrix.type() <= QTransform::TxTranslate
                && r.size() == sr.size()
                && r.size() == pixmap.size()) {
                ensurePen();
                drawBitmap(r.topLeft() + QPointF(s->matrix.dx(), s->matrix.dy()), image, &s->penData);
                return;
            } else {
                drawImage(r, d->rasterBuffer->colorizeBitmap(image, s->pen.color()), sr);
            }
        } else {
            drawImage(r, image, sr);
        }
    } else {
        QRect clippedSource = sr.toAlignedRect().intersected(pixmap.rect());
        const QImage image = pd->toImage(clippedSource);
        QRectF translatedSource = sr.translated(-clippedSource.topLeft());
        if (image.depth() == 1) {
            Q_D(QRasterPaintEngine);
            QRasterPaintEngineState *s = state();
            if (s->matrix.type() <= QTransform::TxTranslate
                && r.size() == sr.size()
                && r.size() == pixmap.size()) {
                ensurePen();
                drawBitmap(r.topLeft() + QPointF(s->matrix.dx(), s->matrix.dy()), image, &s->penData);
                return;
            } else {
                drawImage(r, d->rasterBuffer->colorizeBitmap(image, s->pen.color()), translatedSource);
            }
        } else {
            drawImage(r, image, translatedSource);
        }
    }
}

// assumes that rect has positive width and height
static inline const QRect toRect_normalized(const QRectF &rect)
{
    const int x = qRound(rect.x());
    const int y = qRound(rect.y());
    const int w = int(rect.width() + qreal(0.5));
    const int h = int(rect.height() + qreal(0.5));

    return QRect(x, y, w, h);
}

static inline int fast_ceil_positive(const qreal &v)
{
    const int iv = int(v);
    if (v - iv == 0)
        return iv;
    else
        return iv + 1;
}

static inline const QRect toAlignedRect_positive(const QRectF &rect)
{
    const int xmin = int(rect.x());
    const int xmax = int(fast_ceil_positive(rect.right()));
    const int ymin = int(rect.y());
    const int ymax = int(fast_ceil_positive(rect.bottom()));
    return QRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

/*!
    \internal
*/
void QRasterPaintEngine::drawImage(const QPointF &p, const QImage &img)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawImage(), p=" <<  p << " image=" << img.size() << "depth=" << img.depth();
#endif

    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    if (s->matrix.type() > QTransform::TxTranslate) {
        drawImage(QRectF(p.x(), p.y(), img.width(), img.height()),
                  img,
                  QRectF(0, 0, img.width(), img.height()));
    } else {

        const QClipData *clip = d->clip();
        QPointF pt(p.x() + s->matrix.dx(), p.y() + s->matrix.dy());

        if (d->canUseFastImageBlending(d->rasterBuffer->compositionMode, img)) {
            SrcOverBlendFunc func = qBlendFunctions[d->rasterBuffer->format][img.format()];
            if (func) {
                if (!clip) {
                    d->drawImage(pt, img, func, d->deviceRect, s->intOpacity);
                    return;
                } else if (clip->hasRectClip) {
                    d->drawImage(pt, img, func, clip->clipRect, s->intOpacity);
                    return;
                }
            }
        }



        d->image_filler.clip = clip;
        d->image_filler.initTexture(&img, s->intOpacity, QTextureData::Plain, img.rect());
        if (!d->image_filler.blend)
            return;
        d->image_filler.dx = -pt.x();
        d->image_filler.dy = -pt.y();
        QRect rr = img.rect().translated(qRound(pt.x()), qRound(pt.y()));

        fillRect_normalized(rr, &d->image_filler, d);
    }

}

QRectF qt_mapRect_non_normalizing(const QRectF &r, const QTransform &t)
{
    return QRectF(r.topLeft() * t, r.bottomRight() * t);
}

namespace {
    enum RotationType {
        Rotation90,
        Rotation180,
        Rotation270,
        NoRotation
    };

    inline RotationType qRotationType(const QTransform &transform)
    {
        QTransform::TransformationType type = transform.type();

        if (type > QTransform::TxRotate)
            return NoRotation;

        if (type == QTransform::TxRotate && qFuzzyIsNull(transform.m11()) && qFuzzyCompare(transform.m12(), qreal(-1))
            && qFuzzyCompare(transform.m21(), qreal(1)) && qFuzzyIsNull(transform.m22()))
            return Rotation90;

        if (type == QTransform::TxScale && qFuzzyCompare(transform.m11(), qreal(-1)) && qFuzzyIsNull(transform.m12())
            && qFuzzyIsNull(transform.m21()) && qFuzzyCompare(transform.m22(), qreal(-1)))
            return Rotation180;

        if (type == QTransform::TxRotate && qFuzzyIsNull(transform.m11()) && qFuzzyCompare(transform.m12(), qreal(1))
            && qFuzzyCompare(transform.m21(), qreal(-1)) && qFuzzyIsNull(transform.m22()))
            return Rotation270;

        return NoRotation;
    }

    inline bool isPixelAligned(const QRectF &rect) {
        return QRectF(rect.toRect()) == rect;
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawImage(const QRectF &r, const QImage &img, const QRectF &sr,
                                   Qt::ImageConversionFlags)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawImage(), r=" << r << " sr=" << sr << " image=" << img.size() << "depth=" << img.depth();
#endif

    if (r.isEmpty())
        return;

    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();
    int sr_l = qFloor(sr.left());
    int sr_r = qCeil(sr.right()) - 1;
    int sr_t = qFloor(sr.top());
    int sr_b = qCeil(sr.bottom()) - 1;

    if (s->matrix.type() <= QTransform::TxScale && !s->flags.antialiased && sr_l == sr_r && sr_t == sr_b) {
        // as fillRect will apply the aliased coordinate delta we need to
        // subtract it here as we don't use it for image drawing
        QTransform old = s->matrix;
        s->matrix = s->matrix * QTransform::fromTranslate(-aliasedCoordinateDelta, -aliasedCoordinateDelta);

        // Do whatever fillRect() does, but without premultiplying the color if it's already premultiplied.
        QRgb color = img.pixel(sr_l, sr_t);
        switch (img.format()) {
        case QImage::Format_ARGB32_Premultiplied:
        case QImage::Format_ARGB8565_Premultiplied:
        case QImage::Format_ARGB6666_Premultiplied:
        case QImage::Format_ARGB8555_Premultiplied:
        case QImage::Format_ARGB4444_Premultiplied:
            // Combine premultiplied color with the opacity set on the painter.
            d->solid_color_filler.solid.color =
                ((((color & 0x00ff00ff) * s->intOpacity) >> 8) & 0x00ff00ff)
                | ((((color & 0xff00ff00) >> 8) * s->intOpacity) & 0xff00ff00);
            break;
        default:
            d->solid_color_filler.solid.color = PREMUL(ARGB_COMBINE_ALPHA(color, s->intOpacity));
            break;
        }

        if ((d->solid_color_filler.solid.color & 0xff000000) == 0
            && s->composition_mode == QPainter::CompositionMode_SourceOver) {
            return;
        }

        d->solid_color_filler.clip = d->clip();
        d->solid_color_filler.adjustSpanMethods();
        fillRect(r, &d->solid_color_filler);

        s->matrix = old;
        return;
    }

    bool stretch_sr = r.width() != sr.width() || r.height() != sr.height();

    const QClipData *clip = d->clip();

    if (s->matrix.type() > QTransform::TxTranslate
        && !stretch_sr
        && (!clip || clip->hasRectClip)
        && s->intOpacity == 256
        && (d->rasterBuffer->compositionMode == QPainter::CompositionMode_SourceOver
            || d->rasterBuffer->compositionMode == QPainter::CompositionMode_Source)
        && d->rasterBuffer->format == img.format()
        && (d->rasterBuffer->format == QImage::Format_RGB16
            || d->rasterBuffer->format == QImage::Format_RGB32
            || (d->rasterBuffer->format == QImage::Format_ARGB32_Premultiplied
                && d->rasterBuffer->compositionMode == QPainter::CompositionMode_Source)))
    {
        RotationType rotationType = qRotationType(s->matrix);

        if (rotationType != NoRotation && qMemRotateFunctions[d->rasterBuffer->format][rotationType] && img.rect().contains(sr.toAlignedRect())) {
            QRectF transformedTargetRect = s->matrix.mapRect(r);

            if ((!(s->renderHints & QPainter::SmoothPixmapTransform) && !(s->renderHints & QPainter::Antialiasing))
                || (isPixelAligned(transformedTargetRect) && isPixelAligned(sr)))
            {
                QRect clippedTransformedTargetRect = transformedTargetRect.toRect().intersected(clip ? clip->clipRect : d->deviceRect);
                if (clippedTransformedTargetRect.isNull())
                    return;

                QRectF clippedTargetRect = s->matrix.inverted().mapRect(QRectF(clippedTransformedTargetRect));

                QRect clippedSourceRect
                    = QRectF(sr.x() + clippedTargetRect.x() - r.x(), sr.y() + clippedTargetRect.y() - r.y(),
                            clippedTargetRect.width(), clippedTargetRect.height()).toRect();

                uint dbpl = d->rasterBuffer->bytesPerLine();
                uint sbpl = img.bytesPerLine();

                uchar *dst = d->rasterBuffer->buffer();
                uint bpp = img.depth() >> 3;

                const uchar *srcBase = img.bits() + clippedSourceRect.y() * sbpl + clippedSourceRect.x() * bpp;
                uchar *dstBase = dst + clippedTransformedTargetRect.y() * dbpl + clippedTransformedTargetRect.x() * bpp;

                uint cw = clippedSourceRect.width();
                uint ch = clippedSourceRect.height();

                qMemRotateFunctions[d->rasterBuffer->format][rotationType](srcBase, cw, ch, sbpl, dstBase, dbpl);

                return;
            }
        }
    }

    if (s->matrix.type() > QTransform::TxTranslate || stretch_sr) {

        QRectF targetBounds = s->matrix.mapRect(r);
        bool exceedsPrecision = targetBounds.width() > 0xffff
                                || targetBounds.height() > 0xffff;

        if (!exceedsPrecision && d->canUseFastImageBlending(d->rasterBuffer->compositionMode, img)) {
            if (s->matrix.type() > QTransform::TxScale) {
                SrcOverTransformFunc func = qTransformFunctions[d->rasterBuffer->format][img.format()];
                if (func && (!clip || clip->hasRectClip)) {
                    func(d->rasterBuffer->buffer(), d->rasterBuffer->bytesPerLine(), img.bits(),
                         img.bytesPerLine(), r, sr, !clip ? d->deviceRect : clip->clipRect,
                         s->matrix, s->intOpacity);
                    return;
                }
            } else {
                SrcOverScaleFunc func = qScaleFunctions[d->rasterBuffer->format][img.format()];
                if (func && (!clip || clip->hasRectClip)) {
                    func(d->rasterBuffer->buffer(), d->rasterBuffer->bytesPerLine(),
                         img.bits(), img.bytesPerLine(),
                         qt_mapRect_non_normalizing(r, s->matrix), sr,
                         !clip ? d->deviceRect : clip->clipRect,
                         s->intOpacity);
                    return;
                }
            }
        }

        QTransform copy = s->matrix;
        copy.translate(r.x(), r.y());
        if (stretch_sr)
            copy.scale(r.width() / sr.width(), r.height() / sr.height());
        copy.translate(-sr.x(), -sr.y());

        d->image_filler_xform.clip = clip;
        d->image_filler_xform.initTexture(&img, s->intOpacity, QTextureData::Plain, toAlignedRect_positive(sr));
        if (!d->image_filler_xform.blend)
            return;
        d->image_filler_xform.setupMatrix(copy, s->flags.bilinear);

        if (!s->flags.antialiased && s->matrix.type() == QTransform::TxScale) {
            QPointF rr_tl = s->matrix.map(r.topLeft());
            QPointF rr_br = s->matrix.map(r.bottomRight());

            int x1 = qRound(rr_tl.x());
            int y1 = qRound(rr_tl.y());
            int x2 = qRound(rr_br.x());
            int y2 = qRound(rr_br.y());

            if (x1 > x2)
                qSwap(x1, x2);
            if (y1 > y2)
                qSwap(y1, y2);

            fillRect_normalized(QRect(x1, y1, x2-x1, y2-y1), &d->image_filler_xform, d);
            return;
        }

#ifdef QT_FAST_SPANS
        ensureState();
        if (s->flags.tx_noshear || s->matrix.type() == QTransform::TxScale) {
            d->initializeRasterizer(&d->image_filler_xform);
            d->rasterizer->setAntialiased(s->flags.antialiased);

            const QPointF offs = s->flags.antialiased ? QPointF() : QPointF(aliasedCoordinateDelta, aliasedCoordinateDelta);

            const QRectF &rect = r.normalized();
            const QPointF a = s->matrix.map((rect.topLeft() + rect.bottomLeft()) * 0.5f) - offs;
            const QPointF b = s->matrix.map((rect.topRight() + rect.bottomRight()) * 0.5f) - offs;

            if (s->flags.tx_noshear)
                d->rasterizer->rasterizeLine(a, b, rect.height() / rect.width());
            else
                d->rasterizer->rasterizeLine(a, b, qAbs((s->matrix.m22() * rect.height()) / (s->matrix.m11() * rect.width())));
            return;
        }
#endif
        const qreal offs = s->flags.antialiased ? qreal(0) : aliasedCoordinateDelta;
        QPainterPath path;
        path.addRect(r);
        QTransform m = s->matrix;
        s->matrix = QTransform(m.m11(), m.m12(), m.m13(),
                               m.m21(), m.m22(), m.m23(),
                               m.m31() - offs, m.m32() - offs, m.m33());
        fillPath(path, &d->image_filler_xform);
        s->matrix = m;
    } else {
        if (d->canUseFastImageBlending(d->rasterBuffer->compositionMode, img)) {
            SrcOverBlendFunc func = qBlendFunctions[d->rasterBuffer->format][img.format()];
            if (func) {
                QPointF pt(r.x() + s->matrix.dx(), r.y() + s->matrix.dy());
                if (!clip) {
                    d->drawImage(pt, img, func, d->deviceRect, s->intOpacity, sr.toRect());
                    return;
                } else if (clip->hasRectClip) {
                    d->drawImage(pt, img, func, clip->clipRect, s->intOpacity, sr.toRect());
                    return;
                }
            }
        }

        d->image_filler.clip = clip;
        d->image_filler.initTexture(&img, s->intOpacity, QTextureData::Plain, toAlignedRect_positive(sr));
        if (!d->image_filler.blend)
            return;
        d->image_filler.dx = -(r.x() + s->matrix.dx()) + sr.x();
        d->image_filler.dy = -(r.y() + s->matrix.dy()) + sr.y();

        QRectF rr = r;
        rr.translate(s->matrix.dx(), s->matrix.dy());

        const int x1 = qRound(rr.x());
        const int y1 = qRound(rr.y());
        const int x2 = qRound(rr.right());
        const int y2 = qRound(rr.bottom());

        fillRect_normalized(QRect(x1, y1, x2-x1, y2-y1), &d->image_filler, d);
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawTiledPixmap(const QRectF &r, const QPixmap &pixmap, const QPointF &sr)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawTiledPixmap(), r=" << r << "pixmap=" << pixmap.size();
#endif
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    QImage image;

    QPixmapData *pd = pixmap.pixmapData();
    if (pd->classId() == QPixmapData::RasterClass) {
        image = static_cast<QRasterPixmapData *>(pd)->image;
    } else {
        image = pixmap.toImage();
    }

    if (image.depth() == 1)
        image = d->rasterBuffer->colorizeBitmap(image, s->pen.color());

    if (s->matrix.type() > QTransform::TxTranslate) {
        QTransform copy = s->matrix;
        copy.translate(r.x(), r.y());
        copy.translate(-sr.x(), -sr.y());
        d->image_filler_xform.clip = d->clip();
        d->image_filler_xform.initTexture(&image, s->intOpacity, QTextureData::Tiled);
        if (!d->image_filler_xform.blend)
            return;
        d->image_filler_xform.setupMatrix(copy, s->flags.bilinear);

#ifdef QT_FAST_SPANS
        ensureState();
        if (s->flags.tx_noshear || s->matrix.type() == QTransform::TxScale) {
            d->initializeRasterizer(&d->image_filler_xform);
            d->rasterizer->setAntialiased(s->flags.antialiased);

            const QRectF &rect = r.normalized();
            const QPointF a = s->matrix.map((rect.topLeft() + rect.bottomLeft()) * 0.5f);
            const QPointF b = s->matrix.map((rect.topRight() + rect.bottomRight()) * 0.5f);
            if (s->flags.tx_noshear)
                d->rasterizer->rasterizeLine(a, b, rect.height() / rect.width());
            else
                d->rasterizer->rasterizeLine(a, b, qAbs((s->matrix.m22() * rect.height()) / (s->matrix.m11() * rect.width())));
            return;
        }
#endif
        QPainterPath path;
        path.addRect(r);
        fillPath(path, &d->image_filler_xform);
    } else {
        d->image_filler.clip = d->clip();

        d->image_filler.initTexture(&image, s->intOpacity, QTextureData::Tiled);
        if (!d->image_filler.blend)
            return;
        d->image_filler.dx = -(r.x() + s->matrix.dx()) + sr.x();
        d->image_filler.dy = -(r.y() + s->matrix.dy()) + sr.y();

        QRectF rr = r;
        rr.translate(s->matrix.dx(), s->matrix.dy());
        fillRect_normalized(rr.toRect().normalized(), &d->image_filler, d);
    }
}


//QWS hack
static inline bool monoVal(const uchar* s, int x)
{
    return  (s[x>>3] << (x&7)) & 0x80;
}

/*!
    \internal
*/
void QRasterPaintEngine::alphaPenBlt(const void* src, int bpl, int depth, int rx,int ry,int w,int h)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    if (!s->penData.blend)
        return;

    QRasterBuffer *rb = d->rasterBuffer.data();

    const QRect rect(rx, ry, w, h);
    const QClipData *clip = d->clip();
    bool unclipped = false;
    if (clip) {
        // inlined QRect::intersects
        const bool intersects = qMax(clip->xmin, rect.left()) <= qMin(clip->xmax - 1, rect.right())
                                && qMax(clip->ymin, rect.top()) <= qMin(clip->ymax - 1, rect.bottom());

        if (clip->hasRectClip) {
            unclipped = rx > clip->xmin
                        && rx + w < clip->xmax
                        && ry > clip->ymin
                        && ry + h < clip->ymax;
        }

        if (!intersects)
            return;
    } else {
        // inlined QRect::intersects
        const bool intersects = qMax(0, rect.left()) <= qMin(rb->width() - 1, rect.right())
                                && qMax(0, rect.top()) <= qMin(rb->height() - 1, rect.bottom());
        if (!intersects)
            return;

        // inlined QRect::contains
        const bool contains = rect.left() >= 0 && rect.right() < rb->width()
                              && rect.top() >= 0 && rect.bottom() < rb->height();

        unclipped = contains && d->isUnclipped_normalized(rect);
    }

    ProcessSpans blend = unclipped ? s->penData.unclipped_blend : s->penData.blend;
    const uchar * scanline = static_cast<const uchar *>(src);

    if (s->flags.fast_text) {
        if (unclipped) {
            if (depth == 1) {
                if (s->penData.bitmapBlit) {
                    s->penData.bitmapBlit(rb, rx, ry, s->penData.solid.color,
                                          scanline, w, h, bpl);
                    return;
                }
            } else if (depth == 8) {
                if (s->penData.alphamapBlit) {
                    s->penData.alphamapBlit(rb, rx, ry, s->penData.solid.color,
                                            scanline, w, h, bpl, 0);
                    return;
                }
            } else if (depth == 32) {
                // (A)RGB Alpha mask where the alpha component is not used.
                if (s->penData.alphaRGBBlit) {
                    s->penData.alphaRGBBlit(rb, rx, ry, s->penData.solid.color,
                                            (const uint *) scanline, w, h, bpl / 4, 0);
                    return;
                }
            }
        } else if (d->deviceDepth == 32 && (depth == 8 || depth == 32)) {
            // (A)RGB Alpha mask where the alpha component is not used.
            if (!clip) {
                int nx = qMax(0, rx);
                int ny = qMax(0, ry);

                // Move scanline pointer to compensate for moved x and y
                int xdiff = nx - rx;
                int ydiff = ny - ry;
                scanline += ydiff * bpl;
                scanline += xdiff * (depth == 32 ? 4 : 1);

                w -= xdiff;
                h -= ydiff;

                if (nx + w > d->rasterBuffer->width())
                    w = d->rasterBuffer->width() - nx;
                if (ny + h > d->rasterBuffer->height())
                    h = d->rasterBuffer->height() - ny;

                rx = nx;
                ry = ny;
            }
            if (depth == 8 && s->penData.alphamapBlit) {
                s->penData.alphamapBlit(rb, rx, ry, s->penData.solid.color,
                                        scanline, w, h, bpl, clip);
            } else if (depth == 32 && s->penData.alphaRGBBlit) {
                s->penData.alphaRGBBlit(rb, rx, ry, s->penData.solid.color,
                                        (const uint *) scanline, w, h, bpl / 4, clip);
            }
            return;
        }
    }

    int x0 = 0;
    if (rx < 0) {
        x0 = -rx;
        w -= x0;
    }

    int y0 = 0;
    if (ry < 0) {
        y0 = -ry;
        scanline += bpl * y0;
        h -= y0;
    }

    w = qMin(w, rb->width() - qMax(0, rx));
    h = qMin(h, rb->height() - qMax(0, ry));

    if (w <= 0 || h <= 0)
        return;

    const int NSPANS = 256;
    QSpan spans[NSPANS];
    int current = 0;

    const int x1 = x0 + w;
    const int y1 = y0 + h;

    if (depth == 1) {
        for (int y = y0; y < y1; ++y) {
            for (int x = x0; x < x1; ) {
                if (!monoVal(scanline, x)) {
                    ++x;
                    continue;
                }

                if (current == NSPANS) {
                    blend(current, spans, &s->penData);
                    current = 0;
                }
                spans[current].x = x + rx;
                spans[current].y = y + ry;
                spans[current].coverage = 255;
                int len = 1;
                ++x;
                // extend span until we find a different one.
                while (x < x1 && monoVal(scanline, x)) {
                    ++x;
                    ++len;
                }
                spans[current].len = len;
                ++current;
            }
            scanline += bpl;
        }
    } else if (depth == 8) {
        for (int y = y0; y < y1; ++y) {
            for (int x = x0; x < x1; ) {
                // Skip those with 0 coverage
                if (scanline[x] == 0) {
                    ++x;
                    continue;
                }

                if (current == NSPANS) {
                    blend(current, spans, &s->penData);
                    current = 0;
                }
                int coverage = scanline[x];
                spans[current].x = x + rx;
                spans[current].y = y + ry;
                spans[current].coverage = coverage;
                int len = 1;
                ++x;

                // extend span until we find a different one.
                while (x < x1 && scanline[x] == coverage) {
                    ++x;
                    ++len;
                }
                spans[current].len = len;
                ++current;
            }
            scanline += bpl;
        }
    } else { // 32-bit alpha...
        uint *sl = (uint *) src;
        for (int y = y0; y < y1; ++y) {
            for (int x = x0; x < x1; ) {
                // Skip those with 0 coverage
                if ((sl[x] & 0x00ffffff) == 0) {
                    ++x;
                    continue;
                }

                if (current == NSPANS) {
                    blend(current, spans, &s->penData);
                    current = 0;
                }
                uint rgbCoverage = sl[x];
                int coverage = qGreen(rgbCoverage);
                spans[current].x = x + rx;
                spans[current].y = y + ry;
                spans[current].coverage = coverage;
                int len = 1;
                ++x;

                // extend span until we find a different one.
                while (x < x1 && sl[x] == rgbCoverage) {
                    ++x;
                    ++len;
                }
                spans[current].len = len;
                ++current;
            }
            sl += bpl / sizeof(uint);
        }
    }
//     qDebug() << "alphaPenBlt: num spans=" << current
//              << "span:" << spans->x << spans->y << spans->len << spans->coverage;
        // Call span func for current set of spans.
    if (current != 0)
        blend(current, spans, &s->penData);
}

bool QRasterPaintEngine::drawCachedGlyphs(int numGlyphs, const glyph_t *glyphs,
                                          const QFixedPoint *positions, QFontEngine *fontEngine)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();
    const QFixed offs = QFixed::fromReal(aliasedCoordinateDelta);

#if !defined(QT_NO_FREETYPE)
    if (fontEngine->type() == QFontEngine::Freetype) {
        QFontEngineFT *fe = static_cast<QFontEngineFT *>(fontEngine);
        const QFixed xOffs = fe->supportsSubPixelPositions() ? 0 : offs;
        QFontEngineFT::GlyphFormat neededFormat =
            painter()->device()->devType() == QInternal::Widget
            ? fe->defaultGlyphFormat()
            : QFontEngineFT::Format_A8;

        if (d_func()->mono_surface
            || fe->isBitmapFont() // alphaPenBlt can handle mono, too
            )
            neededFormat = QFontEngineFT::Format_Mono;

        if (neededFormat == QFontEngineFT::Format_None)
            neededFormat = QFontEngineFT::Format_A8;

        QFontEngineFT::QGlyphSet *gset = fe->defaultGlyphs();
        if (s->matrix.type() >= QTransform::TxScale) {
            if (s->matrix.isAffine())
                gset = fe->loadTransformedGlyphSet(s->matrix);
            else
                gset = 0;
        }

        if (!gset || gset->outline_drawing
            || !fe->loadGlyphs(gset, glyphs, numGlyphs, positions, neededFormat))
            return false;

        FT_Face lockedFace = 0;

        int depth;
        switch (neededFormat) {
        case QFontEngineFT::Format_Mono:
            depth = 1;
            break;
        case QFontEngineFT::Format_A8:
            depth = 8;
            break;
        case QFontEngineFT::Format_A32:
            depth = 32;
            break;
        default:
            Q_ASSERT(false);
            depth = 0;
        };

        for (int i = 0; i < numGlyphs; i++) {
            QFixed spp = fe->subPixelPositionForX(positions[i].x);
            QFontEngineFT::Glyph *glyph = gset->getGlyph(glyphs[i], spp);

            if (!glyph || glyph->format != neededFormat) {
                if (!lockedFace)
                    lockedFace = fe->lockFace();
                glyph = fe->loadGlyph(gset, glyphs[i], spp, neededFormat);
            }

            if (!glyph || !glyph->data)
                continue;

            int pitch;
            switch (neededFormat) {
            case QFontEngineFT::Format_Mono:
                pitch = ((glyph->width + 31) & ~31) >> 3;
                break;
            case QFontEngineFT::Format_A8:
                pitch = (glyph->width + 3) & ~3;
                break;
            case QFontEngineFT::Format_A32:
                pitch = glyph->width * 4;
                break;
            default:
                Q_ASSERT(false);
                pitch = 0;
            };

            alphaPenBlt(glyph->data, pitch, depth,
                        qFloor(positions[i].x + xOffs) + glyph->x,
                        qFloor(positions[i].y + offs) - glyph->y,
                        glyph->width, glyph->height);
        }
        if (lockedFace)
            fe->unlockFace();
    } else
#endif
    {
        QFontEngineGlyphCache::Type glyphType = fontEngine->glyphFormat >= 0
                ? QFontEngineGlyphCache::Type(fontEngine->glyphFormat)
                : d->glyphCacheType;

        QImageTextureGlyphCache *cache =
            static_cast<QImageTextureGlyphCache *>(fontEngine->glyphCache(0, glyphType, s->matrix));
        if (!cache) {
            cache = new QImageTextureGlyphCache(glyphType, s->matrix);
            fontEngine->setGlyphCache(0, cache);
        }

        cache->populate(fontEngine, numGlyphs, glyphs, positions);
        cache->fillInPendingGlyphs();

        const QImage &image = cache->image();
        int bpl = image.bytesPerLine();

        int depth = image.depth();
        int rightShift = 0;
        int leftShift = 0;
        if (depth == 32)
            leftShift = 2; // multiply by 4
        else if (depth == 1)
            rightShift = 3; // divide by 8

        int margin = cache->glyphMargin();
        const uchar *bits = image.bits();
        for (int i=0; i<numGlyphs; ++i) {

            QFixed subPixelPosition = cache->subPixelPositionForX(positions[i].x);
            QTextureGlyphCache::GlyphAndSubPixelPosition glyph(glyphs[i], subPixelPosition);
            const QTextureGlyphCache::Coord &c = cache->coords[glyph];
            if (c.isNull())
                continue;

            int x = qFloor(positions[i].x) + c.baseLineX - margin;
            int y = qFloor(positions[i].y + offs) - c.baseLineY - margin;

            // printf("drawing [%d %d %d %d] baseline [%d %d], glyph: %d, to: %d %d, pos: %d %d\n",
            //        c.x, c.y,
            //        c.w, c.h,
            //        c.baseLineX, c.baseLineY,
            //        glyphs[i],
            //        x, y,
            //        positions[i].x.toInt(), positions[i].y.toInt());

            alphaPenBlt(bits + ((c.x << leftShift) >> rightShift) + c.y * bpl, bpl, depth, x, y, c.w, c.h);
        }
    }
    return true;
}

#if defined(Q_OS_SYMBIAN) && defined(QT_NO_FREETYPE)
void QRasterPaintEngine::drawGlyphsS60(const QPointF &p, const QTextItemInt &ti)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    QFontEngine *fontEngine = ti.fontEngine;
    if (fontEngine->type() != QFontEngine::S60FontEngine) {
        QPaintEngineEx::drawTextItem(p, ti);
        return;
    }

    QFontEngineS60 *fe = static_cast<QFontEngineS60 *>(fontEngine);

    QVarLengthArray<QFixedPoint> positions;
    QVarLengthArray<glyph_t> glyphs;
    QTransform matrix = s->matrix;
    matrix.translate(p.x(), p.y());
    if (matrix.type() == QTransform::TxScale)
        fe->setFontScale(matrix.m11());
    ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);

    const QFixed aliasDelta = QFixed::fromReal(aliasedCoordinateDelta);

    for (int i=0; i<glyphs.size(); ++i) {
        TOpenFontCharMetrics tmetrics;
        const TUint8 *glyphBitmapBytes;
        TSize glyphBitmapSize;
        fe->getCharacterData(glyphs[i], tmetrics, glyphBitmapBytes, glyphBitmapSize);
        const int x = qFloor(positions[i].x + tmetrics.HorizBearingX() + aliasDelta);
        const int y = qFloor(positions[i].y - tmetrics.HorizBearingY() + aliasDelta);
        alphaPenBlt(glyphBitmapBytes, glyphBitmapSize.iWidth, 8, x, y, glyphBitmapSize.iWidth, glyphBitmapSize.iHeight);
    }

    if (matrix.type() == QTransform::TxScale)
        fe->setFontScale(1.0);

    return;
}
#endif // Q_OS_SYMBIAN && QT_NO_FREETYPE

/*!
 * Returns true if the rectangle is completely within the current clip
 * state of the paint engine.
 */
bool QRasterPaintEnginePrivate::isUnclipped_normalized(const QRect &r) const
{
    const QClipData *cl = clip();
    if (!cl) {
        // inline contains() for performance (we know the rects are normalized)
        const QRect &r1 = deviceRect;
        return (r.left() >= r1.left() && r.right() <= r1.right()
                && r.top() >= r1.top() && r.bottom() <= r1.bottom());
    }


    if (cl->hasRectClip) {
        // currently all painting functions clips to deviceRect internally
        if (cl->clipRect == deviceRect)
            return true;

        // inline contains() for performance (we know the rects are normalized)
        const QRect &r1 = cl->clipRect;
        return (r.left() >= r1.left() && r.right() <= r1.right()
                && r.top() >= r1.top() && r.bottom() <= r1.bottom());
    } else {
        return qt_region_strictContains(cl->clipRegion, r);
    }
}

bool QRasterPaintEnginePrivate::isUnclipped(const QRect &rect,
                                            int penWidth) const
{
    Q_Q(const QRasterPaintEngine);
    const QRasterPaintEngineState *s = q->state();
    const QClipData *cl = clip();
    if (!cl) {
        QRect r = rect.normalized();
        // inline contains() for performance (we know the rects are normalized)
        const QRect &r1 = deviceRect;
        return (r.left() >= r1.left() && r.right() <= r1.right()
                && r.top() >= r1.top() && r.bottom() <= r1.bottom());
    }


    // currently all painting functions that call this function clip to deviceRect internally
    if (cl->hasRectClip && cl->clipRect == deviceRect)
        return true;

    if (s->flags.antialiased)
        ++penWidth;

    QRect r = rect.normalized();
    if (penWidth > 0) {
        r.setX(r.x() - penWidth);
        r.setY(r.y() - penWidth);
        r.setWidth(r.width() + 2 * penWidth);
        r.setHeight(r.height() + 2 * penWidth);
    }

    if (cl->hasRectClip) {
        // inline contains() for performance (we know the rects are normalized)
        const QRect &r1 = cl->clipRect;
        return (r.left() >= r1.left() && r.right() <= r1.right()
                && r.top() >= r1.top() && r.bottom() <= r1.bottom());
    } else {
        return qt_region_strictContains(cl->clipRegion, r);
    }
}

inline bool QRasterPaintEnginePrivate::isUnclipped(const QRectF &rect,
                                                   int penWidth) const
{
    return isUnclipped(rect.normalized().toAlignedRect(), penWidth);
}

inline ProcessSpans
QRasterPaintEnginePrivate::getBrushFunc(const QRect &rect,
                                        const QSpanData *data) const
{
    return isUnclipped(rect, 0) ? data->unclipped_blend : data->blend;
}

inline ProcessSpans
QRasterPaintEnginePrivate::getBrushFunc(const QRectF &rect,
                                        const QSpanData *data) const
{
    return isUnclipped(rect, 0) ? data->unclipped_blend : data->blend;
}

inline ProcessSpans
QRasterPaintEnginePrivate::getPenFunc(const QRectF &rect,
                                      const QSpanData *data) const
{
    Q_Q(const QRasterPaintEngine);
    const QRasterPaintEngineState *s = q->state();

    if (!s->flags.fast_pen && s->matrix.type() > QTransform::TxTranslate)
        return data->blend;
    const int penWidth = s->flags.fast_pen ? 1 : qCeil(s->lastPen.widthF());
    return isUnclipped(rect, penWidth) ? data->unclipped_blend : data->blend;
}

/*!
   \reimp
*/
void QRasterPaintEngine::drawStaticTextItem(QStaticTextItem *textItem)
{
    ensurePen();
    ensureState();

    QFontEngine *fontEngine = textItem->fontEngine();
    if (!supportsTransformations(fontEngine)) {
        drawCachedGlyphs(textItem->numGlyphs, textItem->glyphs, textItem->glyphPositions,
                         fontEngine);
    } else {
        QPaintEngineEx::drawStaticTextItem(textItem);
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawTextItem(const QPointF &p, const QTextItem &textItem)
{
    const QTextItemInt &ti = static_cast<const QTextItemInt &>(textItem);
    QRasterPaintEngineState *s = state();

#ifdef QT_DEBUG_DRAW
    Q_D(QRasterPaintEngine);
    fprintf(stderr," - QRasterPaintEngine::drawTextItem(), (%.2f,%.2f), string=%s ct=%d\n",
           p.x(), p.y(), QString::fromRawData(ti.chars, ti.num_chars).toLatin1().data(),
           d->glyphCacheType);
#endif

    ensurePen();
    ensureState();

#if defined (Q_WS_WIN) || defined(Q_WS_MAC)

    if (!supportsTransformations(ti.fontEngine)) {
        QVarLengthArray<QFixedPoint> positions;
        QVarLengthArray<glyph_t> glyphs;

        QTransform matrix = s->matrix;
        matrix.translate(p.x(), p.y());

        ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);

        drawCachedGlyphs(glyphs.size(), glyphs.constData(), positions.constData(), ti.fontEngine);
        return;
    }

#elif defined (Q_OS_SYMBIAN) && defined(QT_NO_FREETYPE) // Q_WS_WIN || Q_WS_MAC
    if (s->matrix.type() <= QTransform::TxTranslate
        || (s->matrix.type() == QTransform::TxScale
                && (qFuzzyCompare(s->matrix.m11(), s->matrix.m22())))) {
        drawGlyphsS60(p, ti);
        return;
    }
#else // Q_WS_WIN || Q_WS_MAC

    QFontEngine *fontEngine = ti.fontEngine;

#if defined(Q_WS_QWS)
    if (fontEngine->type() == QFontEngine::Box) {
        fontEngine->draw(this, qFloor(p.x()), qFloor(p.y()), ti);
        return;
    }

    if (s->matrix.type() < QTransform::TxScale
        && (fontEngine->type() == QFontEngine::QPF1 || fontEngine->type() == QFontEngine::QPF2
            || (fontEngine->type() == QFontEngine::Proxy
                && !(static_cast<QProxyFontEngine *>(fontEngine)->drawAsOutline()))
            )) {
        fontEngine->draw(this, qFloor(p.x() + aliasedCoordinateDelta), qFloor(p.y() + aliasedCoordinateDelta), ti);
        return;
    }
#endif // Q_WS_QWS

#ifdef Q_WS_QPA
    if (s->matrix.type() < QTransform::TxScale) {

        QVarLengthArray<QFixedPoint> positions;
        QVarLengthArray<glyph_t> glyphs;
        QTransform matrix = state()->transform();

        qreal _x = qFloor(p.x());
        qreal _y = qFloor(p.y());
        matrix.translate(_x, _y);

        fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);
        if (glyphs.size() == 0)
            return;

        for(int i = 0; i < glyphs.size(); i++) {
            QImage img = fontEngine->alphaMapForGlyph(glyphs[i]);
            glyph_metrics_t metrics = fontEngine->boundingBox(glyphs[i]);
            // ### hm, perhaps an QFixed offs = QFixed::fromReal(aliasedCoordinateDelta) is needed here?
            alphaPenBlt(img.bits(), img.bytesPerLine(), img.depth(),
                                         qRound(positions[i].x + metrics.x),
                                         qRound(positions[i].y + metrics.y),
                                         img.width(), img.height());
        }
        return;
    }
#endif //Q_WS_QPA

#if (defined(Q_WS_X11) || defined(Q_WS_QWS) || defined(Q_OS_SYMBIAN)) && !defined(QT_NO_FREETYPE)

#if defined(Q_WS_QWS) && !defined(QT_NO_QWS_QPF2)
    if (fontEngine->type() == QFontEngine::QPF2) {
        QFontEngine *renderingEngine = static_cast<QFontEngineQPF *>(fontEngine)->renderingEngine();
        if (renderingEngine)
            fontEngine = renderingEngine;
    }
#endif

    if (fontEngine->type() != QFontEngine::Freetype) {
        QPaintEngineEx::drawTextItem(p, ti);
        return;
    }

    QFontEngineFT *fe = static_cast<QFontEngineFT *>(fontEngine);

    QTransform matrix = s->matrix;
    matrix.translate(p.x(), p.y());

    QVarLengthArray<QFixedPoint> positions;
    QVarLengthArray<glyph_t> glyphs;
    fe->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions);
    if (glyphs.size() == 0)
        return;

    if (!drawCachedGlyphs(glyphs.size(), glyphs.constData(), positions.constData(), fontEngine))
        QPaintEngine::drawTextItem(p, ti);

    return;
#endif
#endif

    QPaintEngineEx::drawTextItem(p, ti);
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawPoints(const QPointF *points, int pointCount)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen();
    if (!s->penData.blend)
        return;

    if (!s->flags.fast_pen) {
        QPaintEngineEx::drawPoints(points, pointCount);
        return;
    }

    QCosmeticStroker stroker(s, d->deviceRect);
    stroker.drawPoints(points, pointCount);
}


void QRasterPaintEngine::drawPoints(const QPoint *points, int pointCount)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen();
    if (!s->penData.blend)
        return;

    if (!s->flags.fast_pen) {
        QPaintEngineEx::drawPoints(points, pointCount);
        return;
    }

    QCosmeticStroker stroker(s, d->deviceRect);
    stroker.drawPoints(points, pointCount);
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawLines(const QLine *lines, int lineCount)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawLines(QLine*)" << lineCount;
#endif
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen();
    if (!s->penData.blend)
        return;

    if (s->flags.fast_pen) {
        QCosmeticStroker stroker(s, d->deviceRect);
        for (int i=0; i<lineCount; ++i) {
            const QLine &l = lines[i];
            stroker.drawLine(l.p1(), l.p2());
        }
    } else {
        QPaintEngineEx::drawLines(lines, lineCount);
    }
}

void QRasterPaintEnginePrivate::rasterizeLine_dashed(QLineF line,
                                                     qreal width,
                                                     int *dashIndex,
                                                     qreal *dashOffset,
                                                     bool *inDash)
{
    Q_Q(QRasterPaintEngine);
    QRasterPaintEngineState *s = q->state();

    const QPen &pen = s->lastPen;
    const bool squareCap = (pen.capStyle() == Qt::SquareCap);
    const QVector<qreal> pattern = pen.dashPattern();

    qreal patternLength = 0;
    for (int i = 0; i < pattern.size(); ++i)
        patternLength += pattern.at(i);

    if (patternLength <= 0)
        return;

    qreal length = line.length();
    Q_ASSERT(length > 0);
    while (length > 0) {
        const bool rasterize = *inDash;
        qreal dash = (pattern.at(*dashIndex) - *dashOffset) * width;
        QLineF l = line;

        if (dash >= length) {
            dash = length;
            *dashOffset += dash / width;
            length = 0;
        } else {
            *dashOffset = 0;
            *inDash = !(*inDash);
            if (++*dashIndex >= pattern.size())
                *dashIndex = 0;
            length -= dash;
            l.setLength(dash);
            line.setP1(l.p2());
        }

        if (rasterize && dash > 0)
            rasterizer->rasterizeLine(l.p1(), l.p2(), width / dash, squareCap);
    }
}

/*!
    \reimp
*/
void QRasterPaintEngine::drawLines(const QLineF *lines, int lineCount)
{
#ifdef QT_DEBUG_DRAW
    qDebug() << " - QRasterPaintEngine::drawLines(QLineF *)" << lineCount;
#endif
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen();
    if (!s->penData.blend)
        return;
    if (s->flags.fast_pen) {
        QCosmeticStroker stroker(s, d->deviceRect);
        for (int i=0; i<lineCount; ++i) {
            QLineF line = lines[i];
            stroker.drawLine(line.p1(), line.p2());
        }
    } else {
        QPaintEngineEx::drawLines(lines, lineCount);
    }
}


/*!
    \reimp
*/
void QRasterPaintEngine::drawEllipse(const QRectF &rect)
{
    Q_D(QRasterPaintEngine);
    QRasterPaintEngineState *s = state();

    ensurePen();
    if (((qpen_style(s->lastPen) == Qt::SolidLine && s->flags.fast_pen)
           || (qpen_style(s->lastPen) == Qt::NoPen))
        && !s->flags.antialiased
        && qMax(rect.width(), rect.height()) < QT_RASTER_COORD_LIMIT
        && !rect.isEmpty()
        && s->matrix.type() <= QTransform::TxScale) // no shear
    {
        ensureBrush();
        const QRectF r = s->matrix.mapRect(rect);
        ProcessSpans penBlend = d->getPenFunc(r, &s->penData);
        ProcessSpans brushBlend = d->getBrushFunc(r, &s->brushData);
        const QRect brect = QRect(int(r.x()), int(r.y()),
                                  int_dim(r.x(), r.width()),
                                  int_dim(r.y(), r.height()));
        if (brect == r) {
            drawEllipse_midpoint_i(brect, d->deviceRect, penBlend, brushBlend,
                                   &s->penData, &s->brushData);
            return;
        }
    }
    QPaintEngineEx::drawEllipse(rect);
}

/*!
    \internal
*/
#ifdef Q_WS_MAC
void QRasterPaintEngine::setCGContext(CGContextRef ctx)
{
    Q_D(QRasterPaintEngine);
    d->cgContext = ctx;
}

/*!
    \internal
*/
CGContextRef QRasterPaintEngine::getCGContext() const
{
    Q_D(const QRasterPaintEngine);
    return d->cgContext;
}
#endif

#ifdef Q_WS_WIN
/*!
    \internal
*/
void QRasterPaintEngine::setDC(HDC hdc) {
    Q_D(QRasterPaintEngine);
    d->hdc = hdc;
}

/*!
    \internal
*/
HDC QRasterPaintEngine::getDC() const
{
    Q_D(const QRasterPaintEngine);
    return d->hdc;
}

/*!
    \internal
*/
void QRasterPaintEngine::releaseDC(HDC) const
{
}

#endif

bool QRasterPaintEngine::supportsTransformations(const QFontEngine *fontEngine) const
{
    const QTransform &m = state()->matrix;
#if defined(Q_WS_WIN) && !defined(Q_WS_WINCE)
    QFontEngine::Type fontEngineType = fontEngine->type();
    if ((fontEngineType == QFontEngine::Win && !((QFontEngineWin *) fontEngine)->ttf && m.type() > QTransform::TxTranslate)
        || (m.type() <= QTransform::TxTranslate
            && (fontEngineType == QFontEngine::TestFontEngine
                || fontEngineType == QFontEngine::Box))) {
            return true;
    }
#endif
    return supportsTransformations(fontEngine->fontDef.pixelSize, m);
}

bool QRasterPaintEngine::supportsTransformations(qreal pixelSize, const QTransform &m) const
{
#if defined(Q_WS_MAC)
    // Mac font engines don't support scaling and rotation
    if (m.type() > QTransform::TxTranslate)
#else
    if (m.type() >= QTransform::TxProject)
#endif
        return true;

    if (pixelSize * pixelSize * qAbs(m.determinant()) >= 64 * 64)
        return true;

    return false;
}

/*!
    \internal
*/
QPoint QRasterPaintEngine::coordinateOffset() const
{
    return QPoint(0, 0);
}

/*!
    Draws the given color \a spans with the specified \a color. The \a
    count parameter specifies the number of spans.

    The default implementation does nothing; reimplement this function
    to draw the given color \a spans with the specified \a color. Note
    that this function \e must be reimplemented if the framebuffer is
    not memory-mapped.

    \sa drawBufferSpan()
*/
#if defined(Q_WS_QWS) && !defined(QT_NO_RASTERCALLBACKS)
void QRasterPaintEngine::drawColorSpans(const QSpan *spans, int count, uint color)
{
    Q_UNUSED(spans);
    Q_UNUSED(count);
    Q_UNUSED(color);
    qFatal("QRasterPaintEngine::drawColorSpans must be reimplemented on "
           "a non memory-mapped device");
}

/*!
    \fn void QRasterPaintEngine::drawBufferSpan(const uint *buffer, int size, int x, int y, int length, uint alpha)

    Draws the given \a buffer.

    The default implementation does nothing; reimplement this function
    to draw a buffer that contains more than one color. Note that this
    function \e must be reimplemented if the framebuffer is not
    memory-mapped.

    The \a size parameter specifies the total size of the given \a
    buffer, while the \a length parameter specifies the number of
    pixels to draw. The buffer's position is given by (\a x, \a
    y). The provided \a alpha value is added to each pixel in the
    buffer when drawing.

    \sa drawColorSpans()
*/
void QRasterPaintEngine::drawBufferSpan(const uint *buffer, int bufsize,
                                        int x, int y, int length, uint const_alpha)
{
    Q_UNUSED(buffer);
    Q_UNUSED(bufsize);
    Q_UNUSED(x);
    Q_UNUSED(y);
    Q_UNUSED(length);
    Q_UNUSED(const_alpha);
    qFatal("QRasterPaintEngine::drawBufferSpan must be reimplemented on "
           "a non memory-mapped device");
}
#endif // Q_WS_QWS

void QRasterPaintEngine::drawBitmap(const QPointF &pos, const QImage &image, QSpanData *fg)
{
    Q_ASSERT(fg);
    if (!fg->blend)
        return;
    Q_D(QRasterPaintEngine);

    Q_ASSERT(image.depth() == 1);

    const int spanCount = 256;
    QT_FT_Span spans[spanCount];
    int n = 0;

    // Boundaries
    int w = image.width();
    int h = image.height();
    int ymax = qMin(qRound(pos.y() + h), d->rasterBuffer->height());
    int ymin = qMax(qRound(pos.y()), 0);
    int xmax = qMin(qRound(pos.x() + w), d->rasterBuffer->width());
    int xmin = qMax(qRound(pos.x()), 0);

    int x_offset = xmin - qRound(pos.x());

    QImage::Format format = image.format();
    for (int y = ymin; y < ymax; ++y) {
        const uchar *src = image.scanLine(y - qRound(pos.y()));
        if (format == QImage::Format_MonoLSB) {
            for (int x = 0; x < xmax - xmin; ++x) {
                int src_x = x + x_offset;
                uchar pixel = src[src_x >> 3];
                if (!pixel) {
                    x += 7 - (src_x%8);
                    continue;
                }
                if (pixel & (0x1 << (src_x & 7))) {
                    spans[n].x = xmin + x;
                    spans[n].y = y;
                    spans[n].coverage = 255;
                    int len = 1;
                    while (src_x < w-1 && src[(src_x+1) >> 3] & (0x1 << ((src_x+1) & 7))) {
                        ++src_x;
                        ++len;
                    }
                    spans[n].len = ((len + spans[n].x) > xmax) ? (xmax - spans[n].x) : len;
                    x += len;
                    ++n;
                    if (n == spanCount) {
                        fg->blend(n, spans, fg);
                        n = 0;
                    }
                }
            }
        } else {
            for (int x = 0; x < xmax - xmin; ++x) {
                int src_x = x + x_offset;
                uchar pixel = src[src_x >> 3];
                if (!pixel) {
                    x += 7 - (src_x%8);
                    continue;
                }
                if (pixel & (0x80 >> (x & 7))) {
                    spans[n].x = xmin + x;
                    spans[n].y = y;
                    spans[n].coverage = 255;
                    int len = 1;
                    while (src_x < w-1 && src[(src_x+1) >> 3] & (0x80 >> ((src_x+1) & 7))) {
                        ++src_x;
                        ++len;
                    }
                    spans[n].len = ((len + spans[n].x) > xmax) ? (xmax - spans[n].x) : len;
                    x += len;
                    ++n;
                    if (n == spanCount) {
                        fg->blend(n, spans, fg);
                        n = 0;
                    }
                }
            }
        }
    }
    if (n) {
        fg->blend(n, spans, fg);
        n = 0;
    }
}

/*!
    \enum QRasterPaintEngine::ClipType
    \internal

    \value RectClip Indicates that the currently set clip is a single rectangle.
    \value ComplexClip Indicates that the currently set clip is a combination of several shapes.
*/

/*!
    \internal
    Returns the type of the clip currently set.
*/
QRasterPaintEngine::ClipType QRasterPaintEngine::clipType() const
{
    Q_D(const QRasterPaintEngine);

    const QClipData *clip = d->clip();
    if (!clip || clip->hasRectClip)
        return RectClip;
    else
        return ComplexClip;
}

/*!
    \internal
    Returns the bounding rect of the currently set clip.
*/
QRect QRasterPaintEngine::clipBoundingRect() const
{
    Q_D(const QRasterPaintEngine);

    const QClipData *clip = d->clip();

    if (!clip)
        return d->deviceRect;

    if (clip->hasRectClip)
        return clip->clipRect;

    return QRect(clip->xmin, clip->ymin, clip->xmax - clip->xmin, clip->ymax - clip->ymin);
}

static void qt_merge_clip(const QClipData *c1, const QClipData *c2, QClipData *result)
{
    Q_ASSERT(c1->clipSpanHeight == c2->clipSpanHeight && c1->clipSpanHeight == result->clipSpanHeight);

    QVarLengthArray<short, 4096> buffer;

    QClipData::ClipLine *c1ClipLines = const_cast<QClipData *>(c1)->clipLines();
    QClipData::ClipLine *c2ClipLines = const_cast<QClipData *>(c2)->clipLines();
    result->initialize();

    for (int y = 0; y < c1->clipSpanHeight; ++y) {
        const QSpan *c1_spans = c1ClipLines[y].spans;
        int c1_count = c1ClipLines[y].count;
        const QSpan *c2_spans = c2ClipLines[y].spans;
        int c2_count = c2ClipLines[y].count;

        if (c1_count == 0 && c2_count == 0)
            continue;
        if (c1_count == 0) {
            result->appendSpans(c2_spans, c2_count);
            continue;
        } else if (c2_count == 0) {
            result->appendSpans(c1_spans, c1_count);
            continue;
        }

        // we need to merge the two

        // find required length
        int max = qMax(c1_spans[c1_count - 1].x + c1_spans[c1_count - 1].len,
                c2_spans[c2_count - 1].x + c2_spans[c2_count - 1].len);
        buffer.resize(max);
        memset(buffer.data(), 0, buffer.size() * sizeof(short));

        // Fill with old spans.
        for (int i = 0; i < c1_count; ++i) {
            const QSpan *cs = c1_spans + i;
            for (int j=cs->x; j<cs->x + cs->len; ++j)
                buffer[j] = cs->coverage;
        }

        // Fill with new spans
        for (int i = 0; i < c2_count; ++i) {
            const QSpan *cs = c2_spans + i;
            for (int j = cs->x; j < cs->x + cs->len; ++j) {
                buffer[j] += cs->coverage;
                if (buffer[j] > 255)
                    buffer[j] = 255;
            }
        }

        int x = 0;
        while (x<max) {

            // Skip to next span
            while (x < max && buffer[x] == 0) ++x;
            if (x >= max) break;

            int sx = x;
            int coverage = buffer[x];

            // Find length of span
            while (x < max && buffer[x] == coverage)
                ++x;

            result->appendSpan(sx, x - sx, y, coverage);
        }
    }
}

void QRasterPaintEnginePrivate::initializeRasterizer(QSpanData *data)
{
    Q_Q(QRasterPaintEngine);
    QRasterPaintEngineState *s = q->state();

    rasterizer->setAntialiased(s->flags.antialiased);

    QRect clipRect(deviceRect);
    ProcessSpans blend;
    // ### get from optimized rectbased QClipData

    const QClipData *c = clip();
    if (c) {
        const QRect r(QPoint(c->xmin, c->ymin),
                      QSize(c->xmax - c->xmin, c->ymax - c->ymin));
        clipRect = clipRect.intersected(r);
        blend = data->blend;
    } else {
        blend = data->unclipped_blend;
    }

    rasterizer->setClipRect(clipRect);
    rasterizer->initialize(blend, data);
}

void QRasterPaintEnginePrivate::rasterize(QT_FT_Outline *outline,
                                          ProcessSpans callback,
                                          QSpanData *spanData, QRasterBuffer *rasterBuffer)
{
    if (!callback || !outline)
        return;

    Q_Q(QRasterPaintEngine);
    QRasterPaintEngineState *s = q->state();

    if (!s->flags.antialiased) {
        initializeRasterizer(spanData);

        const Qt::FillRule fillRule = outline->flags == QT_FT_OUTLINE_NONE
                                      ? Qt::WindingFill
                                      : Qt::OddEvenFill;

        rasterizer->rasterize(outline, fillRule);
        return;
    }

    rasterize(outline, callback, (void *)spanData, rasterBuffer);
}

extern "C" {
    int q_gray_rendered_spans(QT_FT_Raster raster);
}

void QRasterPaintEnginePrivate::rasterize(QT_FT_Outline *outline,
                                          ProcessSpans callback,
                                          void *userData, QRasterBuffer *)
{
    if (!callback || !outline)
        return;

    Q_Q(QRasterPaintEngine);
    QRasterPaintEngineState *s = q->state();

    if (!s->flags.antialiased) {
        rasterizer->setAntialiased(s->flags.antialiased);
        rasterizer->setClipRect(deviceRect);
        rasterizer->initialize(callback, userData);

        const Qt::FillRule fillRule = outline->flags == QT_FT_OUTLINE_NONE
                                      ? Qt::WindingFill
                                      : Qt::OddEvenFill;

        rasterizer->rasterize(outline, fillRule);
        return;
    }

    // Initial size for raster pool is MINIMUM_POOL_SIZE so as to
    // minimize memory reallocations. However if initial size for
    // raster pool is changed for lower value, reallocations will
    // occur normally.
    const int rasterPoolInitialSize = MINIMUM_POOL_SIZE;
    int rasterPoolSize = rasterPoolInitialSize;
    unsigned char *rasterPoolBase;
#if defined(Q_WS_WIN64)
    rasterPoolBase =
        // We make use of setjmp and longjmp in qgrayraster.c which requires
        // 16-byte alignment, hence we hardcode this requirement here..
        (unsigned char *) _aligned_malloc(rasterPoolSize, sizeof(void*) * 2);
#else
    unsigned char rasterPoolOnStack[rasterPoolInitialSize];
    rasterPoolBase = rasterPoolOnStack;
#endif
    Q_CHECK_PTR(rasterPoolBase);

    qt_ft_grays_raster.raster_reset(*grayRaster.data(), rasterPoolBase, rasterPoolSize);

    void *data = userData;

    QT_FT_BBox clip_box = { deviceRect.x(),
                            deviceRect.y(),
                            deviceRect.x() + deviceRect.width(),
                            deviceRect.y() + deviceRect.height() };

    QT_FT_Raster_Params rasterParams;
    rasterParams.target = 0;
    rasterParams.source = outline;
    rasterParams.flags = QT_FT_RASTER_FLAG_CLIP;
    rasterParams.gray_spans = 0;
    rasterParams.black_spans = 0;
    rasterParams.bit_test = 0;
    rasterParams.bit_set = 0;
    rasterParams.user = data;
    rasterParams.clip_box = clip_box;

    bool done = false;
    int error;

    int rendered_spans = 0;

    while (!done) {

        rasterParams.flags |= (QT_FT_RASTER_FLAG_AA | QT_FT_RASTER_FLAG_DIRECT);
        rasterParams.gray_spans = callback;
        rasterParams.skip_spans = rendered_spans;
        error = qt_ft_grays_raster.raster_render(*grayRaster.data(), &rasterParams);

        // Out of memory, reallocate some more and try again...
        if (error == -6) { // ErrRaster_OutOfMemory from qgrayraster.c
            int new_size = rasterPoolSize * 2;
            if (new_size > 1024 * 1024) {
                qWarning("QPainter: Rasterization of primitive failed");
                break;
            }

            rendered_spans += q_gray_rendered_spans(*grayRaster.data());

#if defined(Q_WS_WIN64)
            _aligned_free(rasterPoolBase);
#else
            if (rasterPoolBase != rasterPoolOnStack) // initially on the stack
                free(rasterPoolBase);
#endif

            rasterPoolSize = new_size;
            rasterPoolBase =
#if defined(Q_WS_WIN64)
                // We make use of setjmp and longjmp in qgrayraster.c which requires
                // 16-byte alignment, hence we hardcode this requirement here..
                (unsigned char *) _aligned_malloc(rasterPoolSize, sizeof(void*) * 2);
#else
                (unsigned char *) malloc(rasterPoolSize);
#endif
            Q_CHECK_PTR(rasterPoolBase); // note: we just freed the old rasterPoolBase. I hope it's not fatal.

            qt_ft_grays_raster.raster_done(*grayRaster.data());
            qt_ft_grays_raster.raster_new(grayRaster.data());
            qt_ft_grays_raster.raster_reset(*grayRaster.data(), rasterPoolBase, rasterPoolSize);
        } else {
            done = true;
        }
    }

#if defined(Q_WS_WIN64)
    _aligned_free(rasterPoolBase);
#else
    if (rasterPoolBase != rasterPoolOnStack) // initially on the stack
        free(rasterPoolBase);
#endif
}

void QRasterPaintEnginePrivate::recalculateFastImages()
{
    Q_Q(QRasterPaintEngine);
    QRasterPaintEngineState *s = q->state();

    s->flags.fast_images = !(s->renderHints & QPainter::SmoothPixmapTransform)
                           && s->matrix.type() <= QTransform::TxShear;
}

bool QRasterPaintEnginePrivate::canUseFastImageBlending(QPainter::CompositionMode mode, const QImage &image) const
{
    Q_Q(const QRasterPaintEngine);
    const QRasterPaintEngineState *s = q->state();

    return s->flags.fast_images
           && (mode == QPainter::CompositionMode_SourceOver
               || (mode == QPainter::CompositionMode_Source
                   && !image.hasAlphaChannel()));
}

QImage QRasterBuffer::colorizeBitmap(const QImage &image, const QColor &color)
{
    Q_ASSERT(image.depth() == 1);

    QImage sourceImage = image.convertToFormat(QImage::Format_MonoLSB);
    QImage dest = QImage(sourceImage.size(), QImage::Format_ARGB32_Premultiplied);

    QRgb fg = PREMUL(color.rgba());
    QRgb bg = 0;

    int height = sourceImage.height();
    int width = sourceImage.width();
    for (int y=0; y<height; ++y) {
        uchar *source = sourceImage.scanLine(y);
        QRgb *target = reinterpret_cast<QRgb *>(dest.scanLine(y));
        if (!source || !target)
            QT_THROW(std::bad_alloc()); // we must have run out of memory
        for (int x=0; x < width; ++x)
            target[x] = (source[x>>3] >> (x&7)) & 1 ? fg : bg;
    }
    return dest;
}

QRasterBuffer::~QRasterBuffer()
{
}

void QRasterBuffer::init()
{
    compositionMode = QPainter::CompositionMode_SourceOver;
    monoDestinationWithClut = false;
    destColor0 = 0;
    destColor1 = 0;
}

QImage::Format QRasterBuffer::prepare(QImage *image)
{
    m_buffer = (uchar *)image->bits();
    m_width = qMin(QT_RASTER_COORD_LIMIT, image->width());
    m_height = qMin(QT_RASTER_COORD_LIMIT, image->height());
    bytes_per_pixel = image->depth()/8;
    bytes_per_line = image->bytesPerLine();

    format = image->format();
    drawHelper = qDrawHelper + format;
    if (image->depth() == 1 && image->colorTable().size() == 2) {
        monoDestinationWithClut = true;
        destColor0 = PREMUL(image->colorTable()[0]);
        destColor1 = PREMUL(image->colorTable()[1]);
    }

    return format;
}

void QRasterBuffer::resetBuffer(int val)
{
    memset(m_buffer, val, m_height*bytes_per_line);
}


#if defined(Q_WS_QWS)
void QRasterBuffer::prepare(QCustomRasterPaintDevice *device)
{
    m_buffer = reinterpret_cast<uchar*>(device->memory());
    m_width = qMin(QT_RASTER_COORD_LIMIT, device->width());
    m_height = qMin(QT_RASTER_COORD_LIMIT, device->height());
    bytes_per_pixel = device->depth() / 8;
    bytes_per_line = device->bytesPerLine();
    format = device->format();
#ifndef QT_NO_RASTERCALLBACKS
    if (!m_buffer)
        drawHelper = qDrawHelperCallback + format;
    else
#endif
        drawHelper = qDrawHelper + format;
}

int QCustomRasterPaintDevice::metric(PaintDeviceMetric m) const
{
    switch (m) {
    case PdmWidth:
        return widget->frameGeometry().width();
    case PdmHeight:
        return widget->frameGeometry().height();
    default:
        break;
    }

    return qt_paint_device_metric(widget, m);
}

int QCustomRasterPaintDevice::bytesPerLine() const
{
    return (width() * depth() + 7) / 8;
}

#elif defined(Q_OS_SYMBIAN)

void QRasterBuffer::prepareBuffer(int /* width */, int /* height */)
{
}

#endif // Q_OS_SYMBIAN

/*!
    \class QCustomRasterPaintDevice
    \preliminary
    \ingroup qws
    \since 4.2

    \brief The QCustomRasterPaintDevice class is provided to activate
    hardware accelerated paint engines in Qt for Embedded Linux.

    Note that this class is only available in \l{Qt for Embedded Linux}.

    In \l{Qt for Embedded Linux}, painting is a pure software
    implementation. But starting with Qt 4.2, it is
    possible to add an accelerated graphics driver to take advantage
    of available hardware resources.

    Hardware acceleration is accomplished by creating a custom screen
    driver, accelerating the copying from memory to the screen, and
    implementing a custom paint engine accelerating the various
    painting operations. Then a custom paint device (derived from the
    QCustomRasterPaintDevice class) and a custom window surface
    (derived from QWSWindowSurface) must be implemented to make
    \l{Qt for Embedded Linux} aware of the accelerated driver.

    See the \l {Adding an Accelerated Graphics Driver to Qt for Embedded Linux}
    documentation for details.

    \sa QRasterPaintEngine, QPaintDevice
*/

/*!
    \fn QCustomRasterPaintDevice::QCustomRasterPaintDevice(QWidget *widget)

    Constructs a custom raster based paint device for the given
    top-level \a widget.
*/

/*!
    \fn int QCustomRasterPaintDevice::bytesPerLine() const

    Returns the number of bytes per line in the framebuffer. Note that
    this number might be larger than the framebuffer width.
*/

/*!
    \fn int QCustomRasterPaintDevice::devType() const
    \internal
*/

/*!
    \fn QImage::Format QCustomRasterPaintDevice::format() const

    Returns the format of the device's memory buffet.

    The default format is QImage::Format_ARGB32_Premultiplied. The
    only other valid format is QImage::Format_RGB16.
*/

/*!
    \fn void * QCustomRasterPaintDevice::memory () const

    Returns a pointer to the paint device's memory buffer, or 0 if no
    such buffer exists.
*/

/*!
    \fn int QCustomRasterPaintDevice::metric ( PaintDeviceMetric m ) const
    \reimp
*/

/*!
    \fn QSize QCustomRasterPaintDevice::size () const
    \internal
*/


QClipData::QClipData(int height)
{
    clipSpanHeight = height;
    m_clipLines = 0;

    allocated = 0;
    m_spans = 0;
    xmin = xmax = ymin = ymax = 0;
    count = 0;

    enabled = true;
    hasRectClip = hasRegionClip = false;
}

QClipData::~QClipData()
{
    if (m_clipLines)
        free(m_clipLines);
    if (m_spans)
        free(m_spans);
}

void QClipData::initialize()
{
    if (m_spans)
        return;

    if (!m_clipLines)
        m_clipLines = (ClipLine *)calloc(sizeof(ClipLine), clipSpanHeight);

    Q_CHECK_PTR(m_clipLines);
    QT_TRY {
        m_spans = (QSpan *)malloc(clipSpanHeight*sizeof(QSpan));
        allocated = clipSpanHeight;
        Q_CHECK_PTR(m_spans);

        QT_TRY {
            if (hasRectClip) {
                int y = 0;
                while (y < ymin) {
                    m_clipLines[y].spans = 0;
                    m_clipLines[y].count = 0;
                    ++y;
                }

                const int len = clipRect.width();
                count = 0;
                while (y < ymax) {
                    QSpan *span = m_spans + count;
                    span->x = xmin;
                    span->len = len;
                    span->y = y;
                    span->coverage = 255;
                    ++count;

                    m_clipLines[y].spans = span;
                    m_clipLines[y].count = 1;
                    ++y;
                }

                while (y < clipSpanHeight) {
                    m_clipLines[y].spans = 0;
                    m_clipLines[y].count = 0;
                    ++y;
                }
            } else if (hasRegionClip) {

                const QVector<QRect> rects = clipRegion.rects();
                const int numRects = rects.size();

                { // resize
                    const int maxSpans = (ymax - ymin) * numRects;
                    if (maxSpans > allocated) {
                        m_spans = q_check_ptr((QSpan *)realloc(m_spans, maxSpans * sizeof(QSpan)));
                        allocated = maxSpans;
                    }
                }

                int y = 0;
                int firstInBand = 0;
                count = 0;
                while (firstInBand < numRects) {
                    const int currMinY = rects.at(firstInBand).y();
                    const int currMaxY = currMinY + rects.at(firstInBand).height();

                    while (y < currMinY) {
                        m_clipLines[y].spans = 0;
                        m_clipLines[y].count = 0;
                        ++y;
                    }

                    int lastInBand = firstInBand;
                    while (lastInBand + 1 < numRects && rects.at(lastInBand+1).top() == y)
                        ++lastInBand;

                    while (y < currMaxY) {

                        m_clipLines[y].spans = m_spans + count;
                        m_clipLines[y].count = lastInBand - firstInBand + 1;

                        for (int r = firstInBand; r <= lastInBand; ++r) {
                            const QRect &currRect = rects.at(r);
                            QSpan *span = m_spans + count;
                            span->x = currRect.x();
                            span->len = currRect.width();
                            span->y = y;
                            span->coverage = 255;
                            ++count;
                        }
                        ++y;
                    }

                    firstInBand = lastInBand + 1;
                }

                Q_ASSERT(count <= allocated);

                while (y < clipSpanHeight) {
                    m_clipLines[y].spans = 0;
                    m_clipLines[y].count = 0;
                    ++y;
                }

            }
        } QT_CATCH(...) {
            free(m_spans); // have to free m_spans again or someone might think that we were successfully initialized.
            m_spans = 0;
            QT_RETHROW;
        }
    } QT_CATCH(...) {
        free(m_clipLines); // same for clipLines
        m_clipLines = 0;
        QT_RETHROW;
    }
}

void QClipData::fixup()
{
    Q_ASSERT(m_spans);

    if (count == 0) {
        ymin = ymax = xmin = xmax = 0;
        return;
    }

    int y = -1;
    ymin = m_spans[0].y;
    ymax = m_spans[count-1].y + 1;
    xmin = INT_MAX;
    xmax = 0;

    const int firstLeft = m_spans[0].x;
    const int firstRight = m_spans[0].x + m_spans[0].len;
    bool isRect = true;

    for (int i = 0; i < count; ++i) {
        QT_FT_Span_& span = m_spans[i];

        if (span.y != y) {
            if (span.y != y + 1 && y != -1)
                isRect = false;
            y = span.y;
            m_clipLines[y].spans = &span;
            m_clipLines[y].count = 1;
        } else
            ++m_clipLines[y].count;

        const int spanLeft = span.x;
        const int spanRight = spanLeft + span.len;

        if (spanLeft < xmin)
            xmin = spanLeft;

        if (spanRight > xmax)
            xmax = spanRight;

        if (spanLeft != firstLeft || spanRight != firstRight)
            isRect = false;
    }

    if (isRect) {
        hasRectClip = true;
        clipRect.setRect(xmin, ymin, xmax - xmin, ymax - ymin);
    }
}

/*
    Convert \a rect to clip spans.
 */
void QClipData::setClipRect(const QRect &rect)
{
    if (hasRectClip && rect == clipRect)
        return;

//    qDebug() << "setClipRect" << clipSpanHeight << count << allocated << rect;
    hasRectClip = true;
    hasRegionClip = false;
    clipRect = rect;

    xmin = rect.x();
    xmax = rect.x() + rect.width();
    ymin = qMin(rect.y(), clipSpanHeight);
    ymax = qMin(rect.y() + rect.height(), clipSpanHeight);

    if (m_spans) {
        free(m_spans);
        m_spans = 0;
    }

//    qDebug() << xmin << xmax << ymin << ymax;
}

/*
    Convert \a region to clip spans.
 */
void QClipData::setClipRegion(const QRegion &region)
{
    if (region.rectCount() == 1) {
        setClipRect(region.rects().at(0));
        return;
    }

    hasRegionClip = true;
    hasRectClip = false;
    clipRegion = region;

    { // set bounding rect
        const QRect rect = region.boundingRect();
        xmin = rect.x();
        xmax = rect.x() + rect.width();
        ymin = rect.y();
        ymax = rect.y() + rect.height();
    }

    if (m_spans) {
        free(m_spans);
        m_spans = 0;
    }

}

/*!
    \internal
    spans must be sorted on y
*/
static const QSpan *qt_intersect_spans(const QClipData *clip, int *currentClip,
                                       const QSpan *spans, const QSpan *end,
                                       QSpan **outSpans, int available)
{
    const_cast<QClipData *>(clip)->initialize();

    QSpan *out = *outSpans;

    const QSpan *clipSpans = clip->m_spans + *currentClip;
    const QSpan *clipEnd = clip->m_spans + clip->count;

    while (available && spans < end ) {
        if (clipSpans >= clipEnd) {
            spans = end;
            break;
        }
        if (clipSpans->y > spans->y) {
            ++spans;
            continue;
        }
        if (spans->y != clipSpans->y) {
            if (spans->y < clip->count && clip->m_clipLines[spans->y].spans)
                clipSpans = clip->m_clipLines[spans->y].spans;
            else
                ++clipSpans;
            continue;
        }
        Q_ASSERT(spans->y == clipSpans->y);

        int sx1 = spans->x;
        int sx2 = sx1 + spans->len;
        int cx1 = clipSpans->x;
        int cx2 = cx1 + clipSpans->len;

        if (cx1 < sx1 && cx2 < sx1) {
            ++clipSpans;
            continue;
        } else if (sx1 < cx1 && sx2 < cx1) {
            ++spans;
            continue;
        }
        int x = qMax(sx1, cx1);
        int len = qMin(sx2, cx2) - x;
        if (len) {
            out->x = qMax(sx1, cx1);
            out->len = qMin(sx2, cx2) - out->x;
            out->y = spans->y;
            out->coverage = qt_div_255(spans->coverage * clipSpans->coverage);
            ++out;
            --available;
        }
        if (sx2 < cx2) {
            ++spans;
        } else {
            ++clipSpans;
        }
    }

    *outSpans = out;
    *currentClip = clipSpans - clip->m_spans;
    return spans;
}

static void qt_span_fill_clipped(int spanCount, const QSpan *spans, void *userData)
{
//     qDebug() << "qt_span_fill_clipped" << spanCount;
    QSpanData *fillData = reinterpret_cast<QSpanData *>(userData);

    Q_ASSERT(fillData->blend && fillData->unclipped_blend);

    const int NSPANS = 256;
    QSpan cspans[NSPANS];
    int currentClip = 0;
    const QSpan *end = spans + spanCount;
    while (spans < end) {
        QSpan *clipped = cspans;
        spans = qt_intersect_spans(fillData->clip, &currentClip, spans, end, &clipped, NSPANS);
//         qDebug() << "processed " << spanCount - (end - spans) << "clipped" << clipped-cspans
//                  << "span:" << cspans->x << cspans->y << cspans->len << spans->coverage;

        if (clipped - cspans)
            fillData->unclipped_blend(clipped - cspans, cspans, fillData);
    }
}

/*
    \internal
    Clip spans to \a{clip}-rectangle.
    Returns number of unclipped spans
*/
static int qt_intersect_spans(QT_FT_Span *spans, int numSpans,
                              const QRect &clip)
{
    const short minx = clip.left();
    const short miny = clip.top();
    const short maxx = clip.right();
    const short maxy = clip.bottom();

    int n = 0;
    for (int i = 0; i < numSpans; ++i) {
        if (spans[i].y > maxy)
            break;
        if (spans[i].y < miny
            || spans[i].x > maxx
            || spans[i].x + spans[i].len <= minx) {
            continue;
        }
        if (spans[i].x < minx) {
            spans[n].len = qMin(spans[i].len - (minx - spans[i].x), maxx - minx + 1);
            spans[n].x = minx;
        } else {
            spans[n].x = spans[i].x;
            spans[n].len = qMin(spans[i].len, ushort(maxx - spans[n].x + 1));
        }
        if (spans[n].len == 0)
            continue;
        spans[n].y = spans[i].y;
        spans[n].coverage = spans[i].coverage;
        ++n;
    }
    return n;
}


static void qt_span_fill_clipRect(int count, const QSpan *spans,
                                  void *userData)
{
    QSpanData *fillData = reinterpret_cast<QSpanData *>(userData);
    Q_ASSERT(fillData->blend && fillData->unclipped_blend);

    Q_ASSERT(fillData->clip);
    Q_ASSERT(!fillData->clip->clipRect.isEmpty());

    // hw: check if this const_cast<> is safe!!!
    count = qt_intersect_spans(const_cast<QSpan*>(spans), count,
                               fillData->clip->clipRect);
    if (count > 0)
        fillData->unclipped_blend(count, spans, fillData);
}

static void qt_span_clip(int count, const QSpan *spans, void *userData)
{
    ClipData *clipData = reinterpret_cast<ClipData *>(userData);

//     qDebug() << " qt_span_clip: " << count << clipData->operation;
//     for (int i = 0; i < qMin(count, 10); ++i) {
//         qDebug() << "    " << spans[i].x << spans[i].y << spans[i].len << spans[i].coverage;
//     }

    switch (clipData->operation) {

    case Qt::IntersectClip:
        {
            QClipData *newClip = clipData->newClip;
            newClip->initialize();

            int currentClip = 0;
            const QSpan *end = spans + count;
            while (spans < end) {
                QSpan *newspans = newClip->m_spans + newClip->count;
                spans = qt_intersect_spans(clipData->oldClip, &currentClip, spans, end,
                                           &newspans, newClip->allocated - newClip->count);
                newClip->count = newspans - newClip->m_spans;
                if (spans < end) {
                    newClip->m_spans = q_check_ptr((QSpan *)realloc(newClip->m_spans, newClip->allocated*2*sizeof(QSpan)));
                    newClip->allocated *= 2;
                }
            }
        }
        break;

    case Qt::UniteClip:
    case Qt::ReplaceClip:
        clipData->newClip->appendSpans(spans, count);
        break;
    case Qt::NoClip:
        break;
    }
}

#ifndef QT_NO_DEBUG
QImage QRasterBuffer::bufferImage() const
{
    QImage image(m_width, m_height, QImage::Format_ARGB32_Premultiplied);

    for (int y = 0; y < m_height; ++y) {
        uint *span = (uint *)const_cast<QRasterBuffer *>(this)->scanLine(y);

        for (int x=0; x<m_width; ++x) {
            uint argb = span[x];
            image.setPixel(x, y, argb);
        }
    }
    return image;
}
#endif


void QRasterBuffer::flushToARGBImage(QImage *target) const
{
    int w = qMin(m_width, target->width());
    int h = qMin(m_height, target->height());

    for (int y=0; y<h; ++y) {
        uint *sourceLine = (uint *)const_cast<QRasterBuffer *>(this)->scanLine(y);
        QRgb *dest = (QRgb *) target->scanLine(y);
        for (int x=0; x<w; ++x) {
            QRgb pixel = sourceLine[x];
            int alpha = qAlpha(pixel);
            if (!alpha) {
                dest[x] = 0;
            } else {
                dest[x] = (alpha << 24)
                        | ((255*qRed(pixel)/alpha) << 16)
                        | ((255*qGreen(pixel)/alpha) << 8)
                        | ((255*qBlue(pixel)/alpha) << 0);
            }
        }
    }
}


class QGradientCache
{
    struct CacheInfo
    {
        inline CacheInfo(QGradientStops s, int op, QGradient::InterpolationMode mode) :
            stops(s), opacity(op), interpolationMode(mode) {}
        uint buffer[GRADIENT_STOPTABLE_SIZE];
        QGradientStops stops;
        int opacity;
        QGradient::InterpolationMode interpolationMode;
    };

    typedef QMultiHash<quint64, CacheInfo> QGradientColorTableHash;

public:
    inline const uint *getBuffer(const QGradient &gradient, int opacity) {
        quint64 hash_val = 0;

        QGradientStops stops = gradient.stops();
        for (int i = 0; i < stops.size() && i <= 2; i++)
            hash_val += stops[i].second.rgba();

        QMutexLocker lock(&mutex);
        QGradientColorTableHash::const_iterator it = cache.constFind(hash_val);

        if (it == cache.constEnd())
            return addCacheElement(hash_val, gradient, opacity);
        else {
            do {
                const CacheInfo &cache_info = it.value();
                if (cache_info.stops == stops && cache_info.opacity == opacity && cache_info.interpolationMode == gradient.interpolationMode())
                    return cache_info.buffer;
                ++it;
            } while (it != cache.constEnd() && it.key() == hash_val);
            // an exact match for these stops and opacity was not found, create new cache
            return addCacheElement(hash_val, gradient, opacity);
        }
    }

    inline int paletteSize() const { return GRADIENT_STOPTABLE_SIZE; }
protected:
    inline int maxCacheSize() const { return 60; }
    inline void generateGradientColorTable(const QGradient& g,
                                           uint *colorTable,
                                           int size, int opacity) const;
    uint *addCacheElement(quint64 hash_val, const QGradient &gradient, int opacity) {
        if (cache.size() == maxCacheSize()) {
            // may remove more than 1, but OK
            cache.erase(cache.begin() + (qrand() % maxCacheSize()));
        }
        CacheInfo cache_entry(gradient.stops(), opacity, gradient.interpolationMode());
        generateGradientColorTable(gradient, cache_entry.buffer, paletteSize(), opacity);
        return cache.insert(hash_val, cache_entry).value().buffer;
    }

    QGradientColorTableHash cache;
    QMutex mutex;
};

void QGradientCache::generateGradientColorTable(const QGradient& gradient, uint *colorTable, int size, int opacity) const
{
    QGradientStops stops = gradient.stops();
    int stopCount = stops.count();
    Q_ASSERT(stopCount > 0);

    bool colorInterpolation = (gradient.interpolationMode() == QGradient::ColorInterpolation);

    if (stopCount == 2) {
        uint first_color = ARGB_COMBINE_ALPHA(stops[0].second.rgba(), opacity);
        uint second_color = ARGB_COMBINE_ALPHA(stops[1].second.rgba(), opacity);

        qreal first_stop = stops[0].first;
        qreal second_stop = stops[1].first;

        if (second_stop < first_stop) {
            qSwap(first_color, second_color);
            qSwap(first_stop, second_stop);
        }

        if (colorInterpolation) {
            first_color = PREMUL(first_color);
            second_color = PREMUL(second_color);
        }

        int first_index = qRound(first_stop * (GRADIENT_STOPTABLE_SIZE-1));
        int second_index = qRound(second_stop * (GRADIENT_STOPTABLE_SIZE-1));

        uint red_first = qRed(first_color) << 16;
        uint green_first = qGreen(first_color) << 16;
        uint blue_first = qBlue(first_color) << 16;
        uint alpha_first = qAlpha(first_color) << 16;

        uint red_second = qRed(second_color) << 16;
        uint green_second = qGreen(second_color) << 16;
        uint blue_second = qBlue(second_color) << 16;
        uint alpha_second = qAlpha(second_color) << 16;

        int i = 0;
        for (; i <= qMin(GRADIENT_STOPTABLE_SIZE, first_index); ++i) {
            if (colorInterpolation)
                colorTable[i] = first_color;
            else
                colorTable[i] = PREMUL(first_color);
        }

        if (i < second_index) {
            qreal reciprocal = qreal(1) / (second_index - first_index);

            int red_delta = qRound(int(red_second - red_first) * reciprocal);
            int green_delta = qRound(int(green_second - green_first) * reciprocal);
            int blue_delta = qRound(int(blue_second - blue_first) * reciprocal);
            int alpha_delta = qRound(int(alpha_second - alpha_first) * reciprocal);

            // rounding
            red_first += 1 << 15;
            green_first += 1 << 15;
            blue_first += 1 << 15;
            alpha_first += 1 << 15;

            for (; i < qMin(GRADIENT_STOPTABLE_SIZE, second_index); ++i) {
                red_first += red_delta;
                green_first += green_delta;
                blue_first += blue_delta;
                alpha_first += alpha_delta;

                const uint color = ((alpha_first << 8) & 0xff000000) | (red_first & 0xff0000)
                                 | ((green_first >> 8) & 0xff00) | (blue_first >> 16);

                if (colorInterpolation)
                    colorTable[i] = color;
                else
                    colorTable[i] = PREMUL(color);
            }
        }

        for (; i < GRADIENT_STOPTABLE_SIZE; ++i) {
            if (colorInterpolation)
                colorTable[i] = second_color;
            else
                colorTable[i] = PREMUL(second_color);
        }

        return;
    }

    uint current_color = ARGB_COMBINE_ALPHA(stops[0].second.rgba(), opacity);
    if (stopCount == 1) {
        current_color = PREMUL(current_color);
        for (int i = 0; i < size; ++i)
            colorTable[i] = current_color;
        return;
    }

    // The position where the gradient begins and ends
    qreal begin_pos = stops[0].first;
    qreal end_pos = stops[stopCount-1].first;

    int pos = 0; // The position in the color table.
    uint next_color;

    qreal incr = 1 / qreal(size); // the double increment.
    qreal dpos = 1.5 * incr; // current position in gradient stop list (0 to 1)

     // Up to first point
    colorTable[pos++] = PREMUL(current_color);
    while (dpos <= begin_pos) {
        colorTable[pos] = colorTable[pos - 1];
        ++pos;
        dpos += incr;
    }

    int current_stop = 0; // We always interpolate between current and current + 1.

    qreal t; // position between current left and right stops
    qreal t_delta; // the t increment per entry in the color table

    if (dpos < end_pos) {
        // Gradient area
        while (dpos > stops[current_stop+1].first)
            ++current_stop;

        if (current_stop != 0)
            current_color = ARGB_COMBINE_ALPHA(stops[current_stop].second.rgba(), opacity);
        next_color = ARGB_COMBINE_ALPHA(stops[current_stop+1].second.rgba(), opacity);

        if (colorInterpolation) {
            current_color = PREMUL(current_color);
            next_color = PREMUL(next_color);
        }

        qreal diff = stops[current_stop+1].first - stops[current_stop].first;
        qreal c = (diff == 0) ? qreal(0) : 256 / diff;
        t = (dpos - stops[current_stop].first) * c;
        t_delta = incr * c;

        while (true) {
            Q_ASSERT(current_stop < stopCount);

            int dist = qRound(t);
            int idist = 256 - dist;

            if (colorInterpolation)
                colorTable[pos] = INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist);
            else
                colorTable[pos] = PREMUL(INTERPOLATE_PIXEL_256(current_color, idist, next_color, dist));

            ++pos;
            dpos += incr;

            if (dpos >= end_pos)
                break;

            t += t_delta;

            int skip = 0;
            while (dpos > stops[current_stop+skip+1].first)
                ++skip;

            if (skip != 0) {
                current_stop += skip;
                if (skip == 1)
                    current_color = next_color;
                else
                    current_color = ARGB_COMBINE_ALPHA(stops[current_stop].second.rgba(), opacity);
                next_color = ARGB_COMBINE_ALPHA(stops[current_stop+1].second.rgba(), opacity);

                if (colorInterpolation) {
                    if (skip != 1)
                        current_color = PREMUL(current_color);
                    next_color = PREMUL(next_color);
                }

                qreal diff = stops[current_stop+1].first - stops[current_stop].first;
                qreal c = (diff == 0) ? qreal(0) : 256 / diff;
                t = (dpos - stops[current_stop].first) * c;
                t_delta = incr * c;
            }
        }
    }

    // After last point
    current_color = PREMUL(ARGB_COMBINE_ALPHA(stops[stopCount - 1].second.rgba(), opacity));
    while (pos < size - 1) {
        colorTable[pos] = current_color;
        ++pos;
    }

    // Make sure the last color stop is represented at the end of the table
    colorTable[size - 1] = current_color;
}

Q_GLOBAL_STATIC(QGradientCache, qt_gradient_cache)


void QSpanData::init(QRasterBuffer *rb, const QRasterPaintEngine *pe)
{
    rasterBuffer = rb;
#ifdef Q_WS_QWS
    rasterEngine = const_cast<QRasterPaintEngine *>(pe);
#endif
    type = None;
    txop = 0;
    bilinear = false;
    m11 = m22 = m33 = 1.;
    m12 = m13 = m21 = m23 = dx = dy = 0.0;
    clip = pe ? pe->d_func()->clip() : 0;
}

Q_GUI_EXPORT extern QImage qt_imageForBrush(int brushStyle, bool invert);

void QSpanData::setup(const QBrush &brush, int alpha, QPainter::CompositionMode compositionMode)
{
    Qt::BrushStyle brushStyle = qbrush_style(brush);
    switch (brushStyle) {
    case Qt::SolidPattern: {
        type = Solid;
        QColor c = qbrush_color(brush);
        QRgb rgba = c.rgba();
        solid.color = PREMUL(ARGB_COMBINE_ALPHA(rgba, alpha));
        if ((solid.color & 0xff000000) == 0
            && compositionMode == QPainter::CompositionMode_SourceOver) {
            type = None;
        }
        break;
    }

    case Qt::LinearGradientPattern:
        {
            type = LinearGradient;
            const QLinearGradient *g = static_cast<const QLinearGradient *>(brush.gradient());
            gradient.alphaColor = !brush.isOpaque() || alpha != 256;
            gradient.colorTable = const_cast<uint*>(qt_gradient_cache()->getBuffer(*g, alpha));
            gradient.spread = g->spread();

            QLinearGradientData &linearData = gradient.linear;

            linearData.origin.x = g->start().x();
            linearData.origin.y = g->start().y();
            linearData.end.x = g->finalStop().x();
            linearData.end.y = g->finalStop().y();
            break;
        }

    case Qt::RadialGradientPattern:
        {
            type = RadialGradient;
            const QRadialGradient *g = static_cast<const QRadialGradient *>(brush.gradient());
            gradient.alphaColor = !brush.isOpaque() || alpha != 256;
            gradient.colorTable = const_cast<uint*>(qt_gradient_cache()->getBuffer(*g, alpha));
            gradient.spread = g->spread();

            QRadialGradientData &radialData = gradient.radial;

            QPointF center = g->center();
            radialData.center.x = center.x();
            radialData.center.y = center.y();
            radialData.center.radius = g->centerRadius();
            QPointF focal = g->focalPoint();
            radialData.focal.x = focal.x();
            radialData.focal.y = focal.y();
            radialData.focal.radius = g->focalRadius();
        }
        break;

    case Qt::ConicalGradientPattern:
        {
            type = ConicalGradient;
            const QConicalGradient *g = static_cast<const QConicalGradient *>(brush.gradient());
            gradient.alphaColor = !brush.isOpaque() || alpha != 256;
            gradient.colorTable = const_cast<uint*>(qt_gradient_cache()->getBuffer(*g, alpha));
            gradient.spread = QGradient::RepeatSpread;

            QConicalGradientData &conicalData = gradient.conical;

            QPointF center = g->center();
            conicalData.center.x = center.x();
            conicalData.center.y = center.y();
            conicalData.angle = g->angle() * 2 * Q_PI / 360.0;
        }
        break;

    case Qt::Dense1Pattern:
    case Qt::Dense2Pattern:
    case Qt::Dense3Pattern:
    case Qt::Dense4Pattern:
    case Qt::Dense5Pattern:
    case Qt::Dense6Pattern:
    case Qt::Dense7Pattern:
    case Qt::HorPattern:
    case Qt::VerPattern:
    case Qt::CrossPattern:
    case Qt::BDiagPattern:
    case Qt::FDiagPattern:
    case Qt::DiagCrossPattern:
        type = Texture;
        if (!tempImage)
            tempImage = new QImage();
        *tempImage = rasterBuffer->colorizeBitmap(qt_imageForBrush(brushStyle, true), brush.color());
        initTexture(tempImage, alpha, QTextureData::Tiled);
        break;
    case Qt::TexturePattern:
        type = Texture;
        if (!tempImage)
            tempImage = new QImage();

        if (qHasPixmapTexture(brush) && brush.texture().isQBitmap())
            *tempImage = rasterBuffer->colorizeBitmap(brush.textureImage(), brush.color());
        else
            *tempImage = brush.textureImage();
        initTexture(tempImage, alpha, QTextureData::Tiled, tempImage->rect());
        break;

    case Qt::NoBrush:
    default:
        type = None;
        break;
    }
    adjustSpanMethods();
}

void QSpanData::adjustSpanMethods()
{
    bitmapBlit = 0;
    alphamapBlit = 0;
    alphaRGBBlit = 0;

    fillRect = 0;

    switch(type) {
    case None:
        unclipped_blend = 0;
        break;
    case Solid:
        unclipped_blend = rasterBuffer->drawHelper->blendColor;
        bitmapBlit = rasterBuffer->drawHelper->bitmapBlit;
        alphamapBlit = rasterBuffer->drawHelper->alphamapBlit;
        alphaRGBBlit = rasterBuffer->drawHelper->alphaRGBBlit;
        fillRect = rasterBuffer->drawHelper->fillRect;
        break;
    case LinearGradient:
    case RadialGradient:
    case ConicalGradient:
        unclipped_blend = rasterBuffer->drawHelper->blendGradient;
        break;
    case Texture:
#ifdef Q_WS_QWS
#ifndef QT_NO_RASTERCALLBACKS
        if (!rasterBuffer->buffer())
            unclipped_blend = qBlendTextureCallback;
        else
#endif
            unclipped_blend = qBlendTexture;
#else
        unclipped_blend = qBlendTexture;
#endif
        if (!texture.imageData)
            unclipped_blend = 0;

        break;
    }
    // setup clipping
    if (!unclipped_blend) {
        blend = 0;
    } else if (!clip) {
        blend = unclipped_blend;
    } else if (clip->hasRectClip) {
        blend = clip->clipRect.isEmpty() ? 0 : qt_span_fill_clipRect;
    } else {
        blend = qt_span_fill_clipped;
    }
}

void QSpanData::setupMatrix(const QTransform &matrix, int bilin)
{
    QTransform delta;
    // make sure we round off correctly in qdrawhelper.cpp
    delta.translate(1.0 / 65536, 1.0 / 65536);

    QTransform inv = (delta * matrix).inverted();
    m11 = inv.m11();
    m12 = inv.m12();
    m13 = inv.m13();
    m21 = inv.m21();
    m22 = inv.m22();
    m23 = inv.m23();
    m33 = inv.m33();
    dx = inv.dx();
    dy = inv.dy();
    txop = inv.type();
    bilinear = bilin;

    const bool affine = !m13 && !m23;
    fast_matrix = affine
        && m11 * m11 + m21 * m21 < 1e4
        && m12 * m12 + m22 * m22 < 1e4
        && qAbs(dx) < 1e4
        && qAbs(dy) < 1e4;

    adjustSpanMethods();
}

extern const QVector<QRgb> *qt_image_colortable(const QImage &image);

void QSpanData::initTexture(const QImage *image, int alpha, QTextureData::Type _type, const QRect &sourceRect)
{
    const QImageData *d = const_cast<QImage *>(image)->data_ptr();
    if (!d || d->height == 0) {
        texture.imageData = 0;
        texture.width = 0;
        texture.height = 0;
        texture.x1 = 0;
        texture.y1 = 0;
        texture.x2 = 0;
        texture.y2 = 0;
        texture.bytesPerLine = 0;
        texture.format = QImage::Format_Invalid;
        texture.colorTable = 0;
        texture.hasAlpha = alpha != 256;
    } else {
        texture.imageData = d->data;
        texture.width = d->width;
        texture.height = d->height;

        if (sourceRect.isNull()) {
            texture.x1 = 0;
            texture.y1 = 0;
            texture.x2 = texture.width;
            texture.y2 = texture.height;
        } else {
            texture.x1 = sourceRect.x();
            texture.y1 = sourceRect.y();
            texture.x2 = qMin(texture.x1 + sourceRect.width(), d->width);
            texture.y2 = qMin(texture.y1 + sourceRect.height(), d->height);
        }

        texture.bytesPerLine = d->bytes_per_line;

        texture.format = d->format;
        texture.colorTable = (d->format <= QImage::Format_Indexed8 && !d->colortable.isEmpty()) ? &d->colortable : 0;
        texture.hasAlpha = image->hasAlphaChannel() || alpha != 256;
    }
    texture.const_alpha = alpha;
    texture.type = _type;

    adjustSpanMethods();
}

/*!
    \internal
    \a x and \a y is relative to the midpoint of \a rect.
*/
static inline void drawEllipsePoints(int x, int y, int length,
                                     const QRect &rect,
                                     const QRect &clip,
                                     ProcessSpans pen_func, ProcessSpans brush_func,
                                     QSpanData *pen_data, QSpanData *brush_data)
{
    if (length == 0)
        return;

    QT_FT_Span outline[4];
    const int midx = rect.x() + (rect.width() + 1) / 2;
    const int midy = rect.y() + (rect.height() + 1) / 2;

    x = x + midx;
    y = midy - y;

    // topleft
    outline[0].x = midx + (midx - x) - (length - 1) - (rect.width() & 0x1);
    outline[0].len = qMin(length, x - outline[0].x);
    outline[0].y = y;
    outline[0].coverage = 255;

    // topright
    outline[1].x = x;
    outline[1].len = length;
    outline[1].y = y;
    outline[1].coverage = 255;

    // bottomleft
    outline[2].x = outline[0].x;
    outline[2].len = outline[0].len;
    outline[2].y = midy + (midy - y) - (rect.height() & 0x1);
    outline[2].coverage = 255;

    // bottomright
    outline[3].x = x;
    outline[3].len = length;
    outline[3].y = outline[2].y;
    outline[3].coverage = 255;

    if (brush_func && outline[0].x + outline[0].len < outline[1].x) {
        QT_FT_Span fill[2];

        // top fill
        fill[0].x = outline[0].x + outline[0].len - 1;
        fill[0].len = qMax(0, outline[1].x - fill[0].x);
        fill[0].y = outline[1].y;
        fill[0].coverage = 255;

        // bottom fill
        fill[1].x = outline[2].x + outline[2].len - 1;
        fill[1].len = qMax(0, outline[3].x - fill[1].x);
        fill[1].y = outline[3].y;
        fill[1].coverage = 255;

        int n = (fill[0].y >= fill[1].y ? 1 : 2);
        n = qt_intersect_spans(fill, n, clip);
        if (n > 0)
            brush_func(n, fill, brush_data);
    }
    if (pen_func) {
        int n = (outline[1].y >= outline[2].y ? 2 : 4);
        n = qt_intersect_spans(outline, n, clip);
        if (n > 0)
            pen_func(n, outline, pen_data);
    }
}

/*!
    \internal
    Draws an ellipse using the integer point midpoint algorithm.
*/
static void drawEllipse_midpoint_i(const QRect &rect, const QRect &clip,
                                   ProcessSpans pen_func, ProcessSpans brush_func,
                                   QSpanData *pen_data, QSpanData *brush_data)
{
    const qreal a = qreal(rect.width()) / 2;
    const qreal b = qreal(rect.height()) / 2;
    qreal d = b*b - (a*a*b) + 0.25*a*a;

    int x = 0;
    int y = (rect.height() + 1) / 2;
    int startx = x;

    // region 1
    while (a*a*(2*y - 1) > 2*b*b*(x + 1)) {
        if (d < 0) { // select E
            d += b*b*(2*x + 3);
            ++x;
        } else {     // select SE
            d += b*b*(2*x + 3) + a*a*(-2*y + 2);
            drawEllipsePoints(startx, y, x - startx + 1, rect, clip,
                              pen_func, brush_func, pen_data, brush_data);
            startx = ++x;
            --y;
        }
    }
    drawEllipsePoints(startx, y, x - startx + 1, rect, clip,
                      pen_func, brush_func, pen_data, brush_data);

    // region 2
    d = b*b*(x + 0.5)*(x + 0.5) + a*a*((y - 1)*(y - 1) - b*b);
    const int miny = rect.height() & 0x1;
    while (y > miny) {
        if (d < 0) { // select SE
            d += b*b*(2*x + 2) + a*a*(-2*y + 3);
            ++x;
        } else {     // select S
            d += a*a*(-2*y + 3);
        }
        --y;
        drawEllipsePoints(x, y, 1, rect, clip,
                          pen_func, brush_func, pen_data, brush_data);
    }
}

/*!
    \fn void QRasterPaintEngine::drawPoints(const QPoint *points, int pointCount)
    \overload

    Draws the first \a pointCount points in the buffer \a points

    The default implementation converts the first \a pointCount QPoints in \a points
    to QPointFs and calls the floating point version of drawPoints.
*/

/*!
    \fn void QRasterPaintEngine::drawEllipse(const QRect &rect)
    \overload

    Reimplement this function to draw the largest ellipse that can be
    contained within rectangle \a rect.
*/

#ifdef QT_DEBUG_DRAW
void dumpClip(int width, int height, const QClipData *clip)
{
    QImage clipImg(width, height, QImage::Format_ARGB32_Premultiplied);
    clipImg.fill(0xffff0000);

    int x0 = width;
    int x1 = 0;
    int y0 = height;
    int y1 = 0;

    ((QClipData *) clip)->spans(); // Force allocation of the spans structure...

    for (int i = 0; i < clip->count; ++i) {
        const QSpan *span = ((QClipData *) clip)->spans() + i;
        for (int j = 0; j < span->len; ++j)
            clipImg.setPixel(span->x + j, span->y, 0xffffff00);
        x0 = qMin(x0, int(span->x));
        x1 = qMax(x1, int(span->x + span->len - 1));

        y0 = qMin(y0, int(span->y));
        y1 = qMax(y1, int(span->y));
    }

    static int counter = 0;

    Q_ASSERT(y0 >= 0);
    Q_ASSERT(x0 >= 0);
    Q_ASSERT(y1 >= 0);
    Q_ASSERT(x1 >= 0);

    fprintf(stderr,"clip %d: %d %d - %d %d\n", counter, x0, y0, x1, y1);
    clipImg.save(QString::fromLatin1("clip-%0.png").arg(counter++));
}
#endif


QT_END_NAMESPACE