/**************************************************************************** ** ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qpainterpath.h" #include "qpainterpath_p.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #include #else #define PM_INIT #define PM_MEASURE(x) #define PM_DISPLAY #endif QT_BEGIN_NAMESPACE struct QPainterPathPrivateDeleter { static inline void cleanup(QPainterPathPrivate *d) { // note - we must up-cast to QPainterPathData since QPainterPathPrivate // has a non-virtual destructor! if (d && !d->ref.deref()) delete static_cast(d); } }; // This value is used to determine the length of control point vectors // when approximating arc segments as curves. The factor is multiplied // with the radius of the circle. // #define QPP_DEBUG // #define QPP_STROKE_DEBUG //#define QPP_FILLPOLYGONS_DEBUG QPainterPath qt_stroke_dash(const QPainterPath &path, qreal *dashes, int dashCount); void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, QPointF* startPoint, QPointF *endPoint) { if (r.isNull()) { if (startPoint) *startPoint = QPointF(); if (endPoint) *endPoint = QPointF(); return; } qreal w2 = r.width() / 2; qreal h2 = r.height() / 2; qreal angles[2] = { angle, angle + length }; QPointF *points[2] = { startPoint, endPoint }; for (int i = 0; i < 2; ++i) { if (!points[i]) continue; qreal theta = angles[i] - 360 * qFloor(angles[i] / 360); qreal t = theta / 90; // truncate int quadrant = int(t); t -= quadrant; t = qt_t_for_arc_angle(90 * t); // swap x and y? if (quadrant & 1) t = 1 - t; qreal a, b, c, d; QBezier::coefficients(t, a, b, c, d); QPointF p(a + b + c*QT_PATH_KAPPA, d + c + b*QT_PATH_KAPPA); // left quadrants if (quadrant == 1 || quadrant == 2) p.rx() = -p.x(); // top quadrants if (quadrant == 0 || quadrant == 1) p.ry() = -p.y(); *points[i] = r.center() + QPointF(w2 * p.x(), h2 * p.y()); } } #ifdef QPP_DEBUG static void qt_debug_path(const QPainterPath &path) { const char *names[] = { "MoveTo ", "LineTo ", "CurveTo ", "CurveToData" }; printf("\nQPainterPath: elementCount=%d\n", path.elementCount()); for (int i=0; i= 0 && e.type <= QPainterPath::CurveToDataElement); printf(" - %3d:: %s, (%.2f, %.2f)\n", i, names[e.type], e.x, e.y); } } #endif /*! \class QPainterPath \ingroup painting \ingroup shared \brief The QPainterPath class provides a container for painting operations, enabling graphical shapes to be constructed and reused. A painter path is an object composed of a number of graphical building blocks, such as rectangles, ellipses, lines, and curves. Building blocks can be joined in closed subpaths, for example as a rectangle or an ellipse. A closed path has coinciding start and end points. Or they can exist independently as unclosed subpaths, such as lines and curves. A QPainterPath object can be used for filling, outlining, and clipping. To generate fillable outlines for a given painter path, use the QPainterPathStroker class. The main advantage of painter paths over normal drawing operations is that complex shapes only need to be created once; then they can be drawn many times using only calls to the QPainter::drawPath() function. QPainterPath provides a collection of functions that can be used to obtain information about the path and its elements. In addition it is possible to reverse the order of the elements using the toReversed() function. There are also several functions to convert this painter path object into a polygon representation. \tableofcontents \section1 Composing a QPainterPath A QPainterPath object can be constructed as an empty path, with a given start point, or as a copy of another QPainterPath object. Once created, lines and curves can be added to the path using the lineTo(), arcTo(), cubicTo() and quadTo() functions. The lines and curves stretch from the currentPosition() to the position passed as argument. The currentPosition() of the QPainterPath object is always the end position of the last subpath that was added (or the initial start point). Use the moveTo() function to move the currentPosition() without adding a component. The moveTo() function implicitly starts a new subpath, and closes the previous one. Another way of starting a new subpath is to call the closeSubpath() function which closes the current path by adding a line from the currentPosition() back to the path's start position. Note that the new path will have (0, 0) as its initial currentPosition(). QPainterPath class also provides several convenience functions to add closed subpaths to a painter path: addEllipse(), addPath(), addRect(), addRegion() and addText(). The addPolygon() function adds an \e unclosed subpath. In fact, these functions are all collections of moveTo(), lineTo() and cubicTo() operations. In addition, a path can be added to the current path using the connectPath() function. But note that this function will connect the last element of the current path to the first element of given one by adding a line. Below is a code snippet that shows how a QPainterPath object can be used: \table 100% \row \o \inlineimage qpainterpath-construction.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 0 \endtable The painter path is initially empty when constructed. We first add a rectangle, which is a closed subpath. Then we add two bezier curves which together form a closed subpath even though they are not closed individually. Finally we draw the entire path. The path is filled using the default fill rule, Qt::OddEvenFill. Qt provides two methods for filling paths: \table \header \o Qt::OddEvenFill \o Qt::WindingFill \row \o \inlineimage qt-fillrule-oddeven.png \o \inlineimage qt-fillrule-winding.png \endtable See the Qt::FillRule documentation for the definition of the rules. A painter path's currently set fill rule can be retrieved using the fillRule() function, and altered using the setFillRule() function. \section1 QPainterPath Information The QPainterPath class provides a collection of functions that returns information about the path and its elements. The currentPosition() function returns the end point of the last subpath that was added (or the initial start point). The elementAt() function can be used to retrieve the various subpath elements, the \e number of elements can be retrieved using the elementCount() function, and the isEmpty() function tells whether this QPainterPath object contains any elements at all. The controlPointRect() function returns the rectangle containing all the points and control points in this path. This function is significantly faster to compute than the exact boundingRect() which returns the bounding rectangle of this painter path with floating point precision. Finally, QPainterPath provides the contains() function which can be used to determine whether a given point or rectangle is inside the path, and the intersects() function which determines if any of the points inside a given rectangle also are inside this path. \section1 QPainterPath Conversion For compatibility reasons, it might be required to simplify the representation of a painter path: QPainterPath provides the toFillPolygon(), toFillPolygons() and toSubpathPolygons() functions which convert the painter path into a polygon. The toFillPolygon() returns the painter path as one single polygon, while the two latter functions return a list of polygons. The toFillPolygons() and toSubpathPolygons() functions are provided because it is usually faster to draw several small polygons than to draw one large polygon, even though the total number of points drawn is the same. The difference between the two is the \e number of polygons they return: The toSubpathPolygons() creates one polygon for each subpath regardless of intersecting subpaths (i.e. overlapping bounding rectangles), while the toFillPolygons() functions creates only one polygon for overlapping subpaths. The toFillPolygon() and toFillPolygons() functions first convert all the subpaths to polygons, then uses a rewinding technique to make sure that overlapping subpaths can be filled using the correct fill rule. Note that rewinding inserts additional lines in the polygon so the outline of the fill polygon does not match the outline of the path. \section1 Examples Qt provides the \l {painting/painterpaths}{Painter Paths Example} and the \l {demos/deform}{Vector Deformation Demo} which are located in Qt's example and demo directories respectively. The \l {painting/painterpaths}{Painter Paths Example} shows how painter paths can be used to build complex shapes for rendering and lets the user experiment with the filling and stroking. The \l {demos/deform}{Vector Deformation Demo} shows how to use QPainterPath to draw text. \table \header \o \l {painting/painterpaths}{Painter Paths Example} \o \l {demos/deform}{Vector Deformation Demo} \row \o \inlineimage qpainterpath-example.png \o \inlineimage qpainterpath-demo.png \endtable \sa QPainterPathStroker, QPainter, QRegion, {Painter Paths Example} */ /*! \enum QPainterPath::ElementType This enum describes the types of elements used to connect vertices in subpaths. Note that elements added as closed subpaths using the addEllipse(), addPath(), addPolygon(), addRect(), addRegion() and addText() convenience functions, is actually added to the path as a collection of separate elements using the moveTo(), lineTo() and cubicTo() functions. \value MoveToElement A new subpath. See also moveTo(). \value LineToElement A line. See also lineTo(). \value CurveToElement A curve. See also cubicTo() and quadTo(). \value CurveToDataElement The extra data required to describe a curve in a CurveToElement element. \sa elementAt(), elementCount() */ /*! \class QPainterPath::Element \brief The QPainterPath::Element class specifies the position and type of a subpath. Once a QPainterPath object is constructed, subpaths like lines and curves can be added to the path (creating QPainterPath::LineToElement and QPainterPath::CurveToElement components). The lines and curves stretch from the currentPosition() to the position passed as argument. The currentPosition() of the QPainterPath object is always the end position of the last subpath that was added (or the initial start point). The moveTo() function can be used to move the currentPosition() without adding a line or curve, creating a QPainterPath::MoveToElement component. \sa QPainterPath */ /*! \variable QPainterPath::Element::x \brief the x coordinate of the element's position. \sa {operator QPointF()} */ /*! \variable QPainterPath::Element::y \brief the y coordinate of the element's position. \sa {operator QPointF()} */ /*! \variable QPainterPath::Element::type \brief the type of element \sa isCurveTo(), isLineTo(), isMoveTo() */ /*! \fn bool QPainterPath::Element::operator==(const Element &other) const \since 4.2 Returns true if this element is equal to \a other; otherwise returns false. \sa operator!=() */ /*! \fn bool QPainterPath::Element::operator!=(const Element &other) const \since 4.2 Returns true if this element is not equal to \a other; otherwise returns false. \sa operator==() */ /*! \fn bool QPainterPath::Element::isCurveTo () const Returns true if the element is a curve, otherwise returns false. \sa type, QPainterPath::CurveToElement */ /*! \fn bool QPainterPath::Element::isLineTo () const Returns true if the element is a line, otherwise returns false. \sa type, QPainterPath::LineToElement */ /*! \fn bool QPainterPath::Element::isMoveTo () const Returns true if the element is moving the current position, otherwise returns false. \sa type, QPainterPath::MoveToElement */ /*! \fn QPainterPath::Element::operator QPointF () const Returns the element's position. \sa x, y */ /*! \fn void QPainterPath::addEllipse(qreal x, qreal y, qreal width, qreal height) \overload Creates an ellipse within the bounding rectangle defined by its top-left corner at (\a x, \a y), \a width and \a height, and adds it to the painter path as a closed subpath. */ /*! \since 4.4 \fn void QPainterPath::addEllipse(const QPointF ¢er, qreal rx, qreal ry) \overload Creates an ellipse positioned at \a{center} with radii \a{rx} and \a{ry}, and adds it to the painter path as a closed subpath. */ /*! \fn void QPainterPath::addText(qreal x, qreal y, const QFont &font, const QString &text) \overload Adds the given \a text to this path as a set of closed subpaths created from the \a font supplied. The subpaths are positioned so that the left end of the text's baseline lies at the point specified by (\a x, \a y). */ /*! \fn int QPainterPath::elementCount() const Returns the number of path elements in the painter path. \sa ElementType, elementAt(), isEmpty() */ /*! \fn const QPainterPath::Element &QPainterPath::elementAt(int index) const Returns the element at the given \a index in the painter path. \sa ElementType, elementCount(), isEmpty() */ /*! \fn void QPainterPath::setElementPositionAt(int index, qreal x, qreal y) \since 4.2 Sets the x and y coordinate of the element at index \a index to \a x and \a y. */ /*### \fn QPainterPath &QPainterPath::operator +=(const QPainterPath &other) Appends the \a other painter path to this painter path and returns a reference to the result. */ /*! Constructs an empty QPainterPath object. */ QPainterPath::QPainterPath() : d_ptr(0) { } /*! \fn QPainterPath::QPainterPath(const QPainterPath &path) Creates a QPainterPath object that is a copy of the given \a path. \sa operator=() */ QPainterPath::QPainterPath(const QPainterPath &other) : d_ptr(other.d_ptr.data()) { if (d_ptr) d_ptr->ref.ref(); } /*! Creates a QPainterPath object with the given \a startPoint as its current position. */ QPainterPath::QPainterPath(const QPointF &startPoint) : d_ptr(new QPainterPathData) { Element e = { startPoint.x(), startPoint.y(), MoveToElement }; d_func()->elements << e; } /*! \internal */ void QPainterPath::detach_helper() { QPainterPathPrivate *data = new QPainterPathData(*d_func()); d_ptr.reset(data); } /*! \internal */ void QPainterPath::ensureData_helper() { QPainterPathPrivate *data = new QPainterPathData; data->elements.reserve(16); QPainterPath::Element e = { 0, 0, QPainterPath::MoveToElement }; data->elements << e; d_ptr.reset(data); Q_ASSERT(d_ptr != 0); } /*! \fn QPainterPath &QPainterPath::operator=(const QPainterPath &path) Assigns the given \a path to this painter path. \sa QPainterPath() */ QPainterPath &QPainterPath::operator=(const QPainterPath &other) { if (other.d_func() != d_func()) { QPainterPathPrivate *data = other.d_func(); if (data) data->ref.ref(); d_ptr.reset(data); } return *this; } /*! Destroys this QPainterPath object. */ QPainterPath::~QPainterPath() { } /*! Closes the current subpath by drawing a line to the beginning of the subpath, automatically starting a new path. The current point of the new path is (0, 0). If the subpath does not contain any elements, this function does nothing. \sa moveTo(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::closeSubpath() { #ifdef QPP_DEBUG printf("QPainterPath::closeSubpath()\n"); #endif if (isEmpty()) return; detach(); d_func()->close(); } /*! \fn void QPainterPath::moveTo(qreal x, qreal y) \overload Moves the current position to (\a{x}, \a{y}) and starts a new subpath, implicitly closing the previous path. */ /*! \fn void QPainterPath::moveTo(const QPointF &point) Moves the current point to the given \a point, implicitly starting a new subpath and closing the previous one. \sa closeSubpath(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::moveTo(const QPointF &p) { #ifdef QPP_DEBUG printf("QPainterPath::moveTo() (%.2f,%.2f)\n", p.x(), p.y()); #endif if (!qt_is_finite(p.x()) || !qt_is_finite(p.y())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::moveTo: Adding point where x or y is NaN or Inf, ignoring call"); #endif return; } ensureData(); detach(); QPainterPathData *d = d_func(); Q_ASSERT(!d->elements.isEmpty()); d->require_moveTo = false; if (d->elements.last().type == MoveToElement) { d->elements.last().x = p.x(); d->elements.last().y = p.y(); } else { Element elm = { p.x(), p.y(), MoveToElement }; d->elements.append(elm); } d->cStart = d->elements.size() - 1; } /*! \fn void QPainterPath::lineTo(qreal x, qreal y) \overload Draws a line from the current position to the point (\a{x}, \a{y}). */ /*! \fn void QPainterPath::lineTo(const QPointF &endPoint) Adds a straight line from the current position to the given \a endPoint. After the line is drawn, the current position is updated to be at the end point of the line. \sa addPolygon(), addRect(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::lineTo(const QPointF &p) { #ifdef QPP_DEBUG printf("QPainterPath::lineTo() (%.2f,%.2f)\n", p.x(), p.y()); #endif if (!qt_is_finite(p.x()) || !qt_is_finite(p.y())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::lineTo: Adding point where x or y is NaN or Inf, ignoring call"); #endif return; } ensureData(); detach(); QPainterPathData *d = d_func(); Q_ASSERT(!d->elements.isEmpty()); d->maybeMoveTo(); if (p == QPointF(d->elements.last())) return; Element elm = { p.x(), p.y(), LineToElement }; d->elements.append(elm); d->convex = d->elements.size() == 3 || (d->elements.size() == 4 && d->isClosed()); } /*! \fn void QPainterPath::cubicTo(qreal c1X, qreal c1Y, qreal c2X, qreal c2Y, qreal endPointX, qreal endPointY); \overload Adds a cubic Bezier curve between the current position and the end point (\a{endPointX}, \a{endPointY}) with control points specified by (\a{c1X}, \a{c1Y}) and (\a{c2X}, \a{c2Y}). */ /*! \fn void QPainterPath::cubicTo(const QPointF &c1, const QPointF &c2, const QPointF &endPoint) Adds a cubic Bezier curve between the current position and the given \a endPoint using the control points specified by \a c1, and \a c2. After the curve is added, the current position is updated to be at the end point of the curve. \table 100% \row \o \inlineimage qpainterpath-cubicto.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 1 \endtable \sa quadTo(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::cubicTo(const QPointF &c1, const QPointF &c2, const QPointF &e) { #ifdef QPP_DEBUG printf("QPainterPath::cubicTo() (%.2f,%.2f), (%.2f,%.2f), (%.2f,%.2f)\n", c1.x(), c1.y(), c2.x(), c2.y(), e.x(), e.y()); #endif if (!qt_is_finite(c1.x()) || !qt_is_finite(c1.y()) || !qt_is_finite(c2.x()) || !qt_is_finite(c2.y()) || !qt_is_finite(e.x()) || !qt_is_finite(e.y())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::cubicTo: Adding point where x or y is NaN or Inf, ignoring call"); #endif return; } ensureData(); detach(); QPainterPathData *d = d_func(); Q_ASSERT(!d->elements.isEmpty()); // Abort on empty curve as a stroker cannot handle this and the // curve is irrelevant anyway. if (d->elements.last() == c1 && c1 == c2 && c2 == e) return; d->maybeMoveTo(); Element ce1 = { c1.x(), c1.y(), CurveToElement }; Element ce2 = { c2.x(), c2.y(), CurveToDataElement }; Element ee = { e.x(), e.y(), CurveToDataElement }; d->elements << ce1 << ce2 << ee; } /*! \fn void QPainterPath::quadTo(qreal cx, qreal cy, qreal endPointX, qreal endPointY); \overload Adds a quadratic Bezier curve between the current point and the endpoint (\a{endPointX}, \a{endPointY}) with the control point specified by (\a{cx}, \a{cy}). */ /*! \fn void QPainterPath::quadTo(const QPointF &c, const QPointF &endPoint) Adds a quadratic Bezier curve between the current position and the given \a endPoint with the control point specified by \a c. After the curve is added, the current point is updated to be at the end point of the curve. \sa cubicTo(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::quadTo(const QPointF &c, const QPointF &e) { #ifdef QPP_DEBUG printf("QPainterPath::quadTo() (%.2f,%.2f), (%.2f,%.2f)\n", c.x(), c.y(), e.x(), e.y()); #endif if (!qt_is_finite(c.x()) || !qt_is_finite(c.y()) || !qt_is_finite(e.x()) || !qt_is_finite(e.y())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::quadTo: Adding point where x or y is NaN or Inf, ignoring call"); #endif return; } ensureData(); detach(); Q_D(QPainterPath); Q_ASSERT(!d->elements.isEmpty()); const QPainterPath::Element &elm = d->elements.at(elementCount()-1); QPointF prev(elm.x, elm.y); // Abort on empty curve as a stroker cannot handle this and the // curve is irrelevant anyway. if (prev == c && c == e) return; QPointF c1((prev.x() + 2*c.x()) / 3, (prev.y() + 2*c.y()) / 3); QPointF c2((e.x() + 2*c.x()) / 3, (e.y() + 2*c.y()) / 3); cubicTo(c1, c2, e); } /*! \fn void QPainterPath::arcTo(qreal x, qreal y, qreal width, qreal height, qreal startAngle, qreal sweepLength) \overload Creates an arc that occupies the rectangle QRectF(\a x, \a y, \a width, \a height), beginning at the specified \a startAngle and extending \a sweepLength degrees counter-clockwise. */ /*! \fn void QPainterPath::arcTo(const QRectF &rectangle, qreal startAngle, qreal sweepLength) Creates an arc that occupies the given \a rectangle, beginning at the specified \a startAngle and extending \a sweepLength degrees counter-clockwise. Angles are specified in degrees. Clockwise arcs can be specified using negative angles. Note that this function connects the starting point of the arc to the current position if they are not already connected. After the arc has been added, the current position is the last point in arc. To draw a line back to the first point, use the closeSubpath() function. \table 100% \row \o \inlineimage qpainterpath-arcto.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 2 \endtable \sa arcMoveTo(), addEllipse(), QPainter::drawArc(), QPainter::drawPie(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::arcTo(const QRectF &rect, qreal startAngle, qreal sweepLength) { #ifdef QPP_DEBUG printf("QPainterPath::arcTo() (%.2f, %.2f, %.2f, %.2f, angle=%.2f, sweep=%.2f\n", rect.x(), rect.y(), rect.width(), rect.height(), startAngle, sweepLength); #endif if (!qt_is_finite(rect.x()) && !qt_is_finite(rect.y()) || !qt_is_finite(rect.width()) || !qt_is_finite(rect.height()) || !qt_is_finite(startAngle) || !qt_is_finite(sweepLength)) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN or Inf, ignoring call"); #endif return; } if (rect.isNull()) return; ensureData(); detach(); int point_count; QPointF pts[15]; QPointF curve_start = qt_curves_for_arc(rect, startAngle, sweepLength, pts, &point_count); lineTo(curve_start); for (int i=0; ielements.isEmpty() ? QPointF() : QPointF(d_func()->elements.last().x, d_func()->elements.last().y); } /*! \fn void QPainterPath::addRect(qreal x, qreal y, qreal width, qreal height) \overload Adds a rectangle at position (\a{x}, \a{y}), with the given \a width and \a height, as a closed subpath. */ /*! \fn void QPainterPath::addRect(const QRectF &rectangle) Adds the given \a rectangle to this path as a closed subpath. The \a rectangle is added as a clockwise set of lines. The painter path's current position after the \a rectangle has been added is at the top-left corner of the rectangle. \table 100% \row \o \inlineimage qpainterpath-addrectangle.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 3 \endtable \sa addRegion(), lineTo(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addRect(const QRectF &r) { if (!qt_is_finite(r.x()) || !qt_is_finite(r.y()) || !qt_is_finite(r.width()) || !qt_is_finite(r.height())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::addRect: Adding rect where a parameter is NaN or Inf, ignoring call"); #endif return; } if (r.isNull()) return; ensureData(); detach(); bool first = d_func()->elements.size() < 2; d_func()->elements.reserve(d_func()->elements.size() + 5); moveTo(r.x(), r.y()); Element l1 = { r.x() + r.width(), r.y(), LineToElement }; Element l2 = { r.x() + r.width(), r.y() + r.height(), LineToElement }; Element l3 = { r.x(), r.y() + r.height(), LineToElement }; Element l4 = { r.x(), r.y(), LineToElement }; d_func()->elements << l1 << l2 << l3 << l4; d_func()->require_moveTo = true; d_func()->convex = first; } /*! Adds the given \a polygon to the path as an (unclosed) subpath. Note that the current position after the polygon has been added, is the last point in \a polygon. To draw a line back to the first point, use the closeSubpath() function. \table 100% \row \o \inlineimage qpainterpath-addpolygon.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 4 \endtable \sa lineTo(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addPolygon(const QPolygonF &polygon) { if (polygon.isEmpty()) return; ensureData(); detach(); d_func()->elements.reserve(d_func()->elements.size() + polygon.size()); moveTo(polygon.first()); for (int i=1; ielements << elm; } } /*! \fn void QPainterPath::addEllipse(const QRectF &boundingRectangle) Creates an ellipse within the specified \a boundingRectangle and adds it to the painter path as a closed subpath. The ellipse is composed of a clockwise curve, starting and finishing at zero degrees (the 3 o'clock position). \table 100% \row \o \inlineimage qpainterpath-addellipse.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 5 \endtable \sa arcTo(), QPainter::drawEllipse(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addEllipse(const QRectF &boundingRect) { if (!qt_is_finite(boundingRect.x()) || !qt_is_finite(boundingRect.y()) || !qt_is_finite(boundingRect.width()) || !qt_is_finite(boundingRect.height())) { #ifndef QT_NO_DEBUG qWarning("QPainterPath::addEllipse: Adding ellipse where a parameter is NaN or Inf, ignoring call"); #endif return; } if (boundingRect.isNull()) return; ensureData(); detach(); Q_D(QPainterPath); bool first = d_func()->elements.size() < 2; d->elements.reserve(d->elements.size() + 13); QPointF pts[12]; int point_count; QPointF start = qt_curves_for_arc(boundingRect, 0, -360, pts, &point_count); moveTo(start); cubicTo(pts[0], pts[1], pts[2]); // 0 -> 270 cubicTo(pts[3], pts[4], pts[5]); // 270 -> 180 cubicTo(pts[6], pts[7], pts[8]); // 180 -> 90 cubicTo(pts[9], pts[10], pts[11]); // 90 - >0 d_func()->require_moveTo = true; d_func()->convex = first; } /*! \fn void QPainterPath::addText(const QPointF &point, const QFont &font, const QString &text) Adds the given \a text to this path as a set of closed subpaths created from the \a font supplied. The subpaths are positioned so that the left end of the text's baseline lies at the specified \a point. \table 100% \row \o \inlineimage qpainterpath-addtext.png \o \snippet doc/src/snippets/code/src_gui_painting_qpainterpath.cpp 6 \endtable \sa QPainter::drawText(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addText(const QPointF &point, const QFont &f, const QString &text) { if (text.isEmpty()) return; ensureData(); detach(); QTextLayout layout(text, f); layout.setCacheEnabled(true); QTextEngine *eng = layout.engine(); layout.beginLayout(); QTextLine line = layout.createLine(); layout.endLayout(); const QScriptLine &sl = eng->lines[0]; if (!sl.length || !eng->layoutData) return; int nItems = eng->layoutData->items.size(); qreal x(point.x()); qreal y(point.y()); QVarLengthArray visualOrder(nItems); QVarLengthArray levels(nItems); for (int i = 0; i < nItems; ++i) levels[i] = eng->layoutData->items[i].analysis.bidiLevel; QTextEngine::bidiReorder(nItems, levels.data(), visualOrder.data()); for (int i = 0; i < nItems; ++i) { int item = visualOrder[i]; QScriptItem &si = eng->layoutData->items[item]; if (si.analysis.flags < QScriptAnalysis::TabOrObject) { QGlyphLayout glyphs = eng->shapedGlyphs(&si); QFontEngine *fe = f.d->engineForScript(si.analysis.script); Q_ASSERT(fe); fe->addOutlineToPath(x, y, glyphs, this, si.analysis.bidiLevel % 2 ? QTextItem::RenderFlags(QTextItem::RightToLeft) : QTextItem::RenderFlags(0)); const qreal lw = fe->lineThickness().toReal(); if (f.d->underline) { qreal pos = fe->underlinePosition().toReal(); addRect(x, y + pos, si.width.toReal(), lw); } if (f.d->overline) { qreal pos = fe->ascent().toReal() + 1; addRect(x, y - pos, si.width.toReal(), lw); } if (f.d->strikeOut) { qreal pos = fe->ascent().toReal() / 3; addRect(x, y - pos, si.width.toReal(), lw); } } x += si.width.toReal(); } } /*! \fn void QPainterPath::addPath(const QPainterPath &path) Adds the given \a path to \e this path as a closed subpath. \sa connectPath(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addPath(const QPainterPath &other) { if (other.isEmpty()) return; ensureData(); detach(); QPainterPathData *d = reinterpret_cast(d_func()); // Remove last moveto so we don't get multiple moveto's if (d->elements.last().type == MoveToElement) d->elements.remove(d->elements.size()-1); // Locate where our own current subpath will start after the other path is added. int cStart = d->elements.size() + other.d_func()->cStart; d->elements += other.d_func()->elements; d->cStart = cStart; d->require_moveTo = other.d_func()->isClosed(); } /*! \fn void QPainterPath::connectPath(const QPainterPath &path) Connects the given \a path to \e this path by adding a line from the last element of this path to the first element of the given path. \sa addPath(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::connectPath(const QPainterPath &other) { if (other.isEmpty()) return; ensureData(); detach(); QPainterPathData *d = reinterpret_cast(d_func()); // Remove last moveto so we don't get multiple moveto's if (d->elements.last().type == MoveToElement) d->elements.remove(d->elements.size()-1); // Locate where our own current subpath will start after the other path is added. int cStart = d->elements.size() + other.d_func()->cStart; int first = d->elements.size(); d->elements += other.d_func()->elements; if (first != 0) d->elements[first].type = LineToElement; // avoid duplicate points if (first > 0 && QPointF(d->elements[first]) == QPointF(d->elements[first - 1])) { d->elements.remove(first--); --cStart; } if (cStart != first) d->cStart = cStart; } /*! Adds the given \a region to the path by adding each rectangle in the region as a separate closed subpath. \sa addRect(), {QPainterPath#Composing a QPainterPath}{Composing a QPainterPath} */ void QPainterPath::addRegion(const QRegion ®ion) { ensureData(); detach(); QVector rects = region.rects(); d_func()->elements.reserve(rects.size() * 5); for (int i=0; ifillRule; } /*! \fn void QPainterPath::setFillRule(Qt::FillRule fillRule) Sets the fill rule of the painter path to the given \a fillRule. Qt provides two methods for filling paths: \table \header \o Qt::OddEvenFill (default) \o Qt::WindingFill \row \o \inlineimage qt-fillrule-oddeven.png \o \inlineimage qt-fillrule-winding.png \endtable \sa fillRule() */ void QPainterPath::setFillRule(Qt::FillRule fillRule) { ensureData(); if (d_func()->fillRule == fillRule) return; detach(); d_func()->fillRule = fillRule; } #define QT_BEZIER_A(bezier, coord) 3 * (-bezier.coord##1 \ + 3*bezier.coord##2 \ - 3*bezier.coord##3 \ +bezier.coord##4) #define QT_BEZIER_B(bezier, coord) 6 * (bezier.coord##1 \ - 2*bezier.coord##2 \ + bezier.coord##3) #define QT_BEZIER_C(bezier, coord) 3 * (- bezier.coord##1 \ + bezier.coord##2) #define QT_BEZIER_CHECK_T(bezier, t) \ if (t >= 0 && t <= 1) { \ QPointF p(b.pointAt(t)); \ if (p.x() < minx) minx = p.x(); \ else if (p.x() > maxx) maxx = p.x(); \ if (p.y() < miny) miny = p.y(); \ else if (p.y() > maxy) maxy = p.y(); \ } static QRectF qt_painterpath_bezier_extrema(const QBezier &b) { qreal minx, miny, maxx, maxy; // initialize with end points if (b.x1 < b.x4) { minx = b.x1; maxx = b.x4; } else { minx = b.x4; maxx = b.x1; } if (b.y1 < b.y4) { miny = b.y1; maxy = b.y4; } else { miny = b.y4; maxy = b.y1; } // Update for the X extrema { qreal ax = QT_BEZIER_A(b, x); qreal bx = QT_BEZIER_B(b, x); qreal cx = QT_BEZIER_C(b, x); // specialcase quadratic curves to avoid div by zero if (qFuzzyIsNull(ax)) { // linear curves are covered by initialization. if (!qFuzzyIsNull(bx)) { qreal t = -cx / bx; QT_BEZIER_CHECK_T(b, t); } } else { const qreal tx = bx * bx - 4 * ax * cx; if (tx >= 0) { qreal temp = qSqrt(tx); qreal rcp = 1 / (2 * ax); qreal t1 = (-bx + temp) * rcp; QT_BEZIER_CHECK_T(b, t1); qreal t2 = (-bx - temp) * rcp; QT_BEZIER_CHECK_T(b, t2); } } } // Update for the Y extrema { qreal ay = QT_BEZIER_A(b, y); qreal by = QT_BEZIER_B(b, y); qreal cy = QT_BEZIER_C(b, y); // specialcase quadratic curves to avoid div by zero if (qFuzzyIsNull(ay)) { // linear curves are covered by initialization. if (!qFuzzyIsNull(by)) { qreal t = -cy / by; QT_BEZIER_CHECK_T(b, t); } } else { const qreal ty = by * by - 4 * ay * cy; if (ty > 0) { qreal temp = qSqrt(ty); qreal rcp = 1 / (2 * ay); qreal t1 = (-by + temp) * rcp; QT_BEZIER_CHECK_T(b, t1); qreal t2 = (-by - temp) * rcp; QT_BEZIER_CHECK_T(b, t2); } } } return QRectF(minx, miny, maxx - minx, maxy - miny); } /*! Returns the bounding rectangle of this painter path as a rectangle with floating point precision. \sa controlPointRect() */ QRectF QPainterPath::boundingRect() const { if (!d_ptr) return QRectF(); QPainterPathData *d = d_func(); if (d->dirtyBounds) computeBoundingRect(); return d->bounds; } /*! Returns the rectangle containing all the points and control points in this path. This function is significantly faster to compute than the exact boundingRect(), and the returned rectangle is always a superset of the rectangle returned by boundingRect(). \sa boundingRect() */ QRectF QPainterPath::controlPointRect() const { if (!d_ptr) return QRectF(); QPainterPathData *d = d_func(); if (d->dirtyControlBounds) computeControlPointRect(); return d->controlBounds; } /*! \fn bool QPainterPath::isEmpty() const Returns true if either there are no elements in this path, or if the only element is a MoveToElement; otherwise returns false. \sa elementCount() */ /*! Creates and returns a reversed copy of the path. It is the order of the elements that is reversed: If a QPainterPath is composed by calling the moveTo(), lineTo() and cubicTo() functions in the specified order, the reversed copy is composed by calling cubicTo(), lineTo() and moveTo(). */ QPainterPath QPainterPath::toReversed() const { Q_D(const QPainterPath); QPainterPath rev; if (isEmpty()) { rev = *this; return rev; } rev.moveTo(d->elements.at(d->elements.size()-1).x, d->elements.at(d->elements.size()-1).y); for (int i=d->elements.size()-1; i>=1; --i) { const QPainterPath::Element &elm = d->elements.at(i); const QPainterPath::Element &prev = d->elements.at(i-1); switch (elm.type) { case LineToElement: rev.lineTo(prev.x, prev.y); break; case MoveToElement: rev.moveTo(prev.x, prev.y); break; case CurveToDataElement: { Q_ASSERT(i>=3); const QPainterPath::Element &cp1 = d->elements.at(i-2); const QPainterPath::Element &sp = d->elements.at(i-3); Q_ASSERT(prev.type == CurveToDataElement); Q_ASSERT(cp1.type == CurveToElement); rev.cubicTo(prev.x, prev.y, cp1.x, cp1.y, sp.x, sp.y); i -= 2; break; } default: Q_ASSERT(!"qt_reversed_path"); break; } } //qt_debug_path(rev); return rev; } /*! Converts the path into a list of polygons using the QTransform \a matrix, and returns the list. This function creates one polygon for each subpath regardless of intersecting subpaths (i.e. overlapping bounding rectangles). To make sure that such overlapping subpaths are filled correctly, use the toFillPolygons() function instead. \sa toFillPolygons(), toFillPolygon(), {QPainterPath#QPainterPath Conversion}{QPainterPath Conversion} */ QList QPainterPath::toSubpathPolygons(const QTransform &matrix) const { Q_D(const QPainterPath); QList flatCurves; if (isEmpty()) return flatCurves; QPolygonF current; for (int i=0; ielements.at(i); switch (e.type) { case QPainterPath::MoveToElement: if (current.size() > 1) flatCurves += current; current.clear(); current.reserve(16); current += QPointF(e.x, e.y) * matrix; break; case QPainterPath::LineToElement: current += QPointF(e.x, e.y) * matrix; break; case QPainterPath::CurveToElement: { Q_ASSERT(d->elements.at(i+1).type == QPainterPath::CurveToDataElement); Q_ASSERT(d->elements.at(i+2).type == QPainterPath::CurveToDataElement); QBezier bezier = QBezier::fromPoints(QPointF(d->elements.at(i-1).x, d->elements.at(i-1).y) * matrix, QPointF(e.x, e.y) * matrix, QPointF(d->elements.at(i+1).x, d->elements.at(i+1).y) * matrix, QPointF(d->elements.at(i+2).x, d->elements.at(i+2).y) * matrix); bezier.addToPolygon(¤t); i+=2; break; } case QPainterPath::CurveToDataElement: Q_ASSERT(!"QPainterPath::toSubpathPolygons(), bad element type"); break; } } if (current.size()>1) flatCurves += current; return flatCurves; } /*! \overload */ QList QPainterPath::toSubpathPolygons(const QMatrix &matrix) const { return toSubpathPolygons(QTransform(matrix)); } /*! Converts the path into a list of polygons using the QTransform \a matrix, and returns the list. The function differs from the toFillPolygon() function in that it creates several polygons. It is provided because it is usually faster to draw several small polygons than to draw one large polygon, even though the total number of points drawn is the same. The toFillPolygons() function differs from the toSubpathPolygons() function in that it create only polygon for subpaths that have overlapping bounding rectangles. Like the toFillPolygon() function, this function uses a rewinding technique to make sure that overlapping subpaths can be filled using the correct fill rule. Note that rewinding inserts addition lines in the polygons so the outline of the fill polygon does not match the outline of the path. \sa toSubpathPolygons(), toFillPolygon(), {QPainterPath#QPainterPath Conversion}{QPainterPath Conversion} */ QList QPainterPath::toFillPolygons(const QTransform &matrix) const { QList polys; QList subpaths = toSubpathPolygons(matrix); int count = subpaths.size(); if (count == 0) return polys; QList bounds; for (int i=0; i > isects; isects.resize(count); // find all intersections for (int j=0; j ¤t_isects = isects.at(i); for (int j=0; j &subpath_list = isects[i]; if (!subpath_list.isEmpty()) { QPolygonF buildUp; for (int j=0; j QPainterPath::toFillPolygons(const QMatrix &matrix) const { return toFillPolygons(QTransform(matrix)); } //same as qt_polygon_isect_line in qpolygon.cpp static void qt_painterpath_isect_line(const QPointF &p1, const QPointF &p2, const QPointF &pos, int *winding) { qreal x1 = p1.x(); qreal y1 = p1.y(); qreal x2 = p2.x(); qreal y2 = p2.y(); qreal y = pos.y(); int dir = 1; if (qFuzzyCompare(y1, y2)) { // ignore horizontal lines according to scan conversion rule return; } else if (y2 < y1) { qreal x_tmp = x2; x2 = x1; x1 = x_tmp; qreal y_tmp = y2; y2 = y1; y1 = y_tmp; dir = -1; } if (y >= y1 && y < y2) { qreal x = x1 + ((x2 - x1) / (y2 - y1)) * (y - y1); // count up the winding number if we're if (x<=pos.x()) { (*winding) += dir; } } } static void qt_painterpath_isect_curve(const QBezier &bezier, const QPointF &pt, int *winding, int depth = 0) { qreal y = pt.y(); qreal x = pt.x(); QRectF bounds = bezier.bounds(); // potential intersection, divide and try again... // Please note that a sideeffect of the bottom exclusion is that // horizontal lines are dropped, but this is correct according to // scan conversion rules. if (y >= bounds.y() && y < bounds.y() + bounds.height()) { // hit lower limit... This is a rough threshold, but its a // tradeoff between speed and precision. const qreal lower_bound = qreal(.001); if (depth == 32 || (bounds.width() < lower_bound && bounds.height() < lower_bound)) { // We make the assumption here that the curve starts to // approximate a line after while (i.e. that it doesn't // change direction drastically during its slope) if (bezier.pt1().x() <= x) { (*winding) += (bezier.pt4().y() > bezier.pt1().y() ? 1 : -1); } return; } // split curve and try again... QBezier first_half, second_half; bezier.split(&first_half, &second_half); qt_painterpath_isect_curve(first_half, pt, winding, depth + 1); qt_painterpath_isect_curve(second_half, pt, winding, depth + 1); } } /*! \fn bool QPainterPath::contains(const QPointF &point) const Returns true if the given \a point is inside the path, otherwise returns false. \sa intersects() */ bool QPainterPath::contains(const QPointF &pt) const { if (isEmpty() || !controlPointRect().contains(pt)) return false; QPainterPathData *d = d_func(); int winding_number = 0; QPointF last_pt; QPointF last_start; for (int i=0; ielements.size(); ++i) { const Element &e = d->elements.at(i); switch (e.type) { case MoveToElement: if (i > 0) // implicitly close all paths. qt_painterpath_isect_line(last_pt, last_start, pt, &winding_number); last_start = last_pt = e; break; case LineToElement: qt_painterpath_isect_line(last_pt, e, pt, &winding_number); last_pt = e; break; case CurveToElement: { const QPainterPath::Element &cp2 = d->elements.at(++i); const QPainterPath::Element &ep = d->elements.at(++i); qt_painterpath_isect_curve(QBezier::fromPoints(last_pt, e, cp2, ep), pt, &winding_number); last_pt = ep; } break; default: break; } } // implicitly close last subpath if (last_pt != last_start) qt_painterpath_isect_line(last_pt, last_start, pt, &winding_number); return (d->fillRule == Qt::WindingFill ? (winding_number != 0) : ((winding_number % 2) != 0)); } static bool qt_painterpath_isect_line_rect(qreal x1, qreal y1, qreal x2, qreal y2, const QRectF &rect) { qreal left = rect.left(); qreal right = rect.right(); qreal top = rect.top(); qreal bottom = rect.bottom(); enum { Left, Right, Top, Bottom }; // clip the lines, after cohen-sutherland, see e.g. http://www.nondot.org/~sabre/graphpro/line6.html int p1 = ((x1 < left) << Left) | ((x1 > right) << Right) | ((y1 < top) << Top) | ((y1 > bottom) << Bottom); int p2 = ((x2 < left) << Left) | ((x2 > right) << Right) | ((y2 < top) << Top) | ((y2 > bottom) << Bottom); if (p1 & p2) // completely inside return false; if (p1 | p2) { qreal dx = x2 - x1; qreal dy = y2 - y1; // clip x coordinates if (x1 < left) { y1 += dy/dx * (left - x1); x1 = left; } else if (x1 > right) { y1 -= dy/dx * (x1 - right); x1 = right; } if (x2 < left) { y2 += dy/dx * (left - x2); x2 = left; } else if (x2 > right) { y2 -= dy/dx * (x2 - right); x2 = right; } p1 = ((y1 < top) << Top) | ((y1 > bottom) << Bottom); p2 = ((y2 < top) << Top) | ((y2 > bottom) << Bottom); if (p1 & p2) return false; // clip y coordinates if (y1 < top) { x1 += dx/dy * (top - y1); y1 = top; } else if (y1 > bottom) { x1 -= dx/dy * (y1 - bottom); y1 = bottom; } if (y2 < top) { x2 += dx/dy * (top - y2); y2 = top; } else if (y2 > bottom) { x2 -= dx/dy * (y2 - bottom); y2 = bottom; } p1 = ((x1 < left) << Left) | ((x1 > right) << Right); p2 = ((x2 < left) << Left) | ((x2 > right) << Right); if (p1 & p2) return false; return true; } return false; } static bool qt_isect_curve_horizontal(const QBezier &bezier, qreal y, qreal x1, qreal x2, int depth = 0) { QRectF bounds = bezier.bounds(); if (y >= bounds.top() && y < bounds.bottom() && bounds.right() >= x1 && bounds.left() < x2) { const qreal lower_bound = qreal(.01); if (depth == 32 || bounds.width() < lower_bound && bounds.height() < lower_bound) return true; QBezier first_half, second_half; bezier.split(&first_half, &second_half); if (qt_isect_curve_horizontal(first_half, y, x1, x2, depth + 1) || qt_isect_curve_horizontal(second_half, y, x1, x2, depth + 1)) return true; } return false; } static bool qt_isect_curve_vertical(const QBezier &bezier, qreal x, qreal y1, qreal y2, int depth = 0) { QRectF bounds = bezier.bounds(); if (x >= bounds.left() && x < bounds.right() && bounds.bottom() >= y1 && bounds.top() < y2) { const qreal lower_bound = qreal(.01); if (depth == 32 || bounds.width() < lower_bound && bounds.height() < lower_bound) return true; QBezier first_half, second_half; bezier.split(&first_half, &second_half); if (qt_isect_curve_vertical(first_half, x, y1, y2, depth + 1) || qt_isect_curve_vertical(second_half, x, y1, y2, depth + 1)) return true; } return false; } /* Returns true if any lines or curves cross the four edges in of rect */ static bool qt_painterpath_check_crossing(const QPainterPath *path, const QRectF &rect) { QPointF last_pt; QPointF last_start; for (int i=0; ielementCount(); ++i) { const QPainterPath::Element &e = path->elementAt(i); switch (e.type) { case QPainterPath::MoveToElement: if (i > 0 && qFuzzyCompare(last_pt.x(), last_start.x()) && qFuzzyCompare(last_pt.y(), last_start.y()) && qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), last_start.x(), last_start.y(), rect)) return true; last_start = last_pt = e; break; case QPainterPath::LineToElement: if (qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), e.x, e.y, rect)) return true; last_pt = e; break; case QPainterPath::CurveToElement: { QPointF cp2 = path->elementAt(++i); QPointF ep = path->elementAt(++i); QBezier bezier = QBezier::fromPoints(last_pt, e, cp2, ep); if (qt_isect_curve_horizontal(bezier, rect.top(), rect.left(), rect.right()) || qt_isect_curve_horizontal(bezier, rect.bottom(), rect.left(), rect.right()) || qt_isect_curve_vertical(bezier, rect.left(), rect.top(), rect.bottom()) || qt_isect_curve_vertical(bezier, rect.right(), rect.top(), rect.bottom())) return true; last_pt = ep; } break; default: break; } } // implicitly close last subpath if (last_pt != last_start && qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), last_start.x(), last_start.y(), rect)) return true; return false; } /*! \fn bool QPainterPath::intersects(const QRectF &rectangle) const Returns true if any point in the given \a rectangle intersects the path; otherwise returns false. There is an intersection if any of the lines making up the rectangle crosses a part of the path or if any part of the rectangle overlaps with any area enclosed by the path. This function respects the current fillRule to determine what is considered inside the path. \sa contains() */ bool QPainterPath::intersects(const QRectF &rect) const { if (elementCount() == 1 && rect.contains(elementAt(0))) return true; if (isEmpty()) return false; QRectF cp = controlPointRect(); QRectF rn = rect.normalized(); // QRectF::intersects returns false if one of the rects is a null rect // which would happen for a painter path consisting of a vertical or // horizontal line if (qMax(rn.left(), cp.left()) > qMin(rn.right(), cp.right()) || qMax(rn.top(), cp.top()) > qMin(rn.bottom(), cp.bottom())) return false; // If any path element cross the rect its bound to be an intersection if (qt_painterpath_check_crossing(this, rect)) return true; if (contains(rect.center())) return true; Q_D(QPainterPath); // Check if the rectangle surounds any subpath... for (int i=0; ielements.size(); ++i) { const Element &e = d->elements.at(i); if (e.type == QPainterPath::MoveToElement && rect.contains(e)) return true; } return false; } /*! Translates all elements in the path by (\a{dx}, \a{dy}). \since 4.6 \sa translated() */ void QPainterPath::translate(qreal dx, qreal dy) { if (!d_ptr || (dx == 0 && dy == 0)) return; int elementsLeft = d_ptr->elements.size(); if (elementsLeft <= 0) return; detach(); QPainterPath::Element *element = d_func()->elements.data(); Q_ASSERT(element); while (elementsLeft--) { element->x += dx; element->y += dy; ++element; } } /*! \fn void QPainterPath::translate(const QPointF &offset) \overload \since 4.6 Translates all elements in the path by the given \a offset. \sa translated() */ /*! Returns a copy of the path that is translated by (\a{dx}, \a{dy}). \since 4.6 \sa translate() */ QPainterPath QPainterPath::translated(qreal dx, qreal dy) const { QPainterPath copy(*this); copy.translate(dx, dy); return copy; } /*! \fn QPainterPath QPainterPath::translated(const QPointF &offset) const; \overload \since 4.6 Returns a copy of the path that is translated by the given \a offset. \sa translate() */ /*! \fn bool QPainterPath::contains(const QRectF &rectangle) const Returns true if the given \a rectangle is inside the path, otherwise returns false. */ bool QPainterPath::contains(const QRectF &rect) const { Q_D(QPainterPath); // the path is empty or the control point rect doesn't completely // cover the rectangle we abort stratight away. if (isEmpty() || !controlPointRect().contains(rect)) return false; // if there are intersections, chances are that the rect is not // contained, except if we have winding rule, in which case it // still might. if (qt_painterpath_check_crossing(this, rect)) { if (fillRule() == Qt::OddEvenFill) { return false; } else { // Do some wague sampling in the winding case. This is not // precise but it should mostly be good enough. if (!contains(rect.topLeft()) || !contains(rect.topRight()) || !contains(rect.bottomRight()) || !contains(rect.bottomLeft())) return false; } } // If there exists a point inside that is not part of the path its // because: rectangle lies completely outside path or a subpath // excludes parts of the rectangle. Both cases mean that the rect // is not contained if (!contains(rect.center())) return false; // If there are any subpaths inside this rectangle we need to // check if they are still contained as a result of the fill // rule. This can only be the case for WindingFill though. For // OddEvenFill the rect will never be contained if it surrounds a // subpath. (the case where two subpaths are completely identical // can be argued but we choose to neglect it). for (int i=0; ielements.size(); ++i) { const Element &e = d->elements.at(i); if (e.type == QPainterPath::MoveToElement && rect.contains(e)) { if (fillRule() == Qt::OddEvenFill) return false; bool stop = false; for (; !stop && ielements.size(); ++i) { const Element &el = d->elements.at(i); switch (el.type) { case MoveToElement: stop = true; break; case LineToElement: if (!contains(el)) return false; break; case CurveToElement: if (!contains(d->elements.at(i+2))) return false; i += 2; break; default: break; } } // compensate for the last ++i in the inner for --i; } } return true; } static inline bool epsilonCompare(const QPointF &a, const QPointF &b, const QSizeF &epsilon) { return qAbs(a.x() - b.x()) <= epsilon.width() && qAbs(a.y() - b.y()) <= epsilon.height(); } /*! Returns true if this painterpath is equal to the given \a path. Note that comparing paths may involve a per element comparison which can be slow for complex paths. \sa operator!=() */ bool QPainterPath::operator==(const QPainterPath &path) const { QPainterPathData *d = reinterpret_cast(d_func()); if (path.d_func() == d) return true; else if (!d || !path.d_func()) return false; else if (d->fillRule != path.d_func()->fillRule) return false; else if (d->elements.size() != path.d_func()->elements.size()) return false; const qreal qt_epsilon = sizeof(qreal) == sizeof(double) ? 1e-12 : qreal(1e-5); QSizeF epsilon = boundingRect().size(); epsilon.rwidth() *= qt_epsilon; epsilon.rheight() *= qt_epsilon; for (int i = 0; i < d->elements.size(); ++i) if (d->elements.at(i).type != path.d_func()->elements.at(i).type || !epsilonCompare(d->elements.at(i), path.d_func()->elements.at(i), epsilon)) return false; return true; } /*! Returns true if this painter path differs from the given \a path. Note that comparing paths may involve a per element comparison which can be slow for complex paths. \sa operator==() */ bool QPainterPath::operator!=(const QPainterPath &path) const { return !(*this==path); } /*! \since 4.5 Returns the intersection of this path and the \a other path. \sa intersected(), operator&=(), united(), operator|() */ QPainterPath QPainterPath::operator&(const QPainterPath &other) const { return intersected(other); } /*! \since 4.5 Returns the union of this path and the \a other path. \sa united(), operator|=(), intersected(), operator&() */ QPainterPath QPainterPath::operator|(const QPainterPath &other) const { return united(other); } /*! \since 4.5 Returns the union of this path and the \a other path. This function is equivalent to operator|(). \sa united(), operator+=(), operator-() */ QPainterPath QPainterPath::operator+(const QPainterPath &other) const { return united(other); } /*! \since 4.5 Subtracts the \a other path from a copy of this path, and returns the copy. \sa subtracted(), operator-=(), operator+() */ QPainterPath QPainterPath::operator-(const QPainterPath &other) const { return subtracted(other); } /*! \since 4.5 Intersects this path with \a other and returns a reference to this path. \sa intersected(), operator&(), operator|=() */ QPainterPath &QPainterPath::operator&=(const QPainterPath &other) { return *this = (*this & other); } /*! \since 4.5 Unites this path with \a other and returns a reference to this path. \sa united(), operator|(), operator&=() */ QPainterPath &QPainterPath::operator|=(const QPainterPath &other) { return *this = (*this | other); } /*! \since 4.5 Unites this path with \a other, and returns a reference to this path. This is equivalent to operator|=(). \sa united(), operator+(), operator-=() */ QPainterPath &QPainterPath::operator+=(const QPainterPath &other) { return *this = (*this + other); } /*! \since 4.5 Subtracts \a other from this path, and returns a reference to this path. \sa subtracted(), operator-(), operator+=() */ QPainterPath &QPainterPath::operator-=(const QPainterPath &other) { return *this = (*this - other); } #ifndef QT_NO_DATASTREAM /*! \fn QDataStream &operator<<(QDataStream &stream, const QPainterPath &path) \relates QPainterPath Writes the given painter \a path to the given \a stream, and returns a reference to the \a stream. \sa {Serializing Qt Data Types} */ QDataStream &operator<<(QDataStream &s, const QPainterPath &p) { if (p.isEmpty()) { s << 0; return s; } s << p.elementCount(); for (int i=0; i < p.d_func()->elements.size(); ++i) { const QPainterPath::Element &e = p.d_func()->elements.at(i); s << int(e.type); s << double(e.x) << double(e.y); } s << p.d_func()->cStart; s << int(p.d_func()->fillRule); return s; } /*! \fn QDataStream &operator>>(QDataStream &stream, QPainterPath &path) \relates QPainterPath Reads a painter path from the given \a stream into the specified \a path, and returns a reference to the \a stream. \sa {Serializing Qt Data Types} */ QDataStream &operator>>(QDataStream &s, QPainterPath &p) { int size; s >> size; if (size == 0) return s; p.ensureData(); // in case if p.d_func() == 0 if (p.d_func()->elements.size() == 1) { Q_ASSERT(p.d_func()->elements.at(0).type == QPainterPath::MoveToElement); p.d_func()->elements.clear(); } p.d_func()->elements.reserve(p.d_func()->elements.size() + size); for (int i=0; i> type; s >> x; s >> y; Q_ASSERT(type >= 0 && type <= 3); if (!qt_is_finite(x) || !qt_is_finite(y)) { #ifndef QT_NO_DEBUG qWarning("QDataStream::operator>>: NaN or Inf element found in path, skipping it"); #endif continue; } QPainterPath::Element elm = { x, y, QPainterPath::ElementType(type) }; p.d_func()->elements.append(elm); } s >> p.d_func()->cStart; int fillRule; s >> fillRule; Q_ASSERT(fillRule == Qt::OddEvenFill || Qt::WindingFill); p.d_func()->fillRule = Qt::FillRule(fillRule); p.d_func()->dirtyBounds = true; p.d_func()->dirtyControlBounds = true; return s; } #endif // QT_NO_DATASTREAM /******************************************************************************* * class QPainterPathStroker */ void qt_path_stroke_move_to(qfixed x, qfixed y, void *data) { ((QPainterPath *) data)->moveTo(qt_fixed_to_real(x), qt_fixed_to_real(y)); } void qt_path_stroke_line_to(qfixed x, qfixed y, void *data) { ((QPainterPath *) data)->lineTo(qt_fixed_to_real(x), qt_fixed_to_real(y)); } void qt_path_stroke_cubic_to(qfixed c1x, qfixed c1y, qfixed c2x, qfixed c2y, qfixed ex, qfixed ey, void *data) { ((QPainterPath *) data)->cubicTo(qt_fixed_to_real(c1x), qt_fixed_to_real(c1y), qt_fixed_to_real(c2x), qt_fixed_to_real(c2y), qt_fixed_to_real(ex), qt_fixed_to_real(ey)); } /*! \since 4.1 \class QPainterPathStroker \ingroup painting \brief The QPainterPathStroker class is used to generate fillable outlines for a given painter path. By calling the createStroke() function, passing a given QPainterPath as argument, a new painter path representing the outline of the given path is created. The newly created painter path can then be filled to draw the original painter path's outline. You can control the various design aspects (width, cap styles, join styles and dash pattern) of the outlining using the following functions: \list \o setWidth() \o setCapStyle() \o setJoinStyle() \o setDashPattern() \endlist The setDashPattern() function accepts both a Qt::PenStyle object and a vector representation of the pattern as argument. In addition you can specify a curve's threshold, controlling the granularity with which a curve is drawn, using the setCurveThreshold() function. The default threshold is a well adjusted value (0.25), and normally you should not need to modify it. However, you can make the curve's appearance smoother by decreasing its value. You can also control the miter limit for the generated outline using the setMiterLimit() function. The miter limit describes how far from each join the miter join can extend. The limit is specified in the units of width so the pixelwise miter limit will be \c {miterlimit * width}. This value is only used if the join style is Qt::MiterJoin. The painter path generated by the createStroke() function should only be used for outlining the given painter path. Otherwise it may cause unexpected behavior. Generated outlines also require the Qt::WindingFill rule which is set by default. \sa QPen, QBrush */ QPainterPathStrokerPrivate::QPainterPathStrokerPrivate() : dashOffset(0) { stroker.setMoveToHook(qt_path_stroke_move_to); stroker.setLineToHook(qt_path_stroke_line_to); stroker.setCubicToHook(qt_path_stroke_cubic_to); } /*! Creates a new stroker. */ QPainterPathStroker::QPainterPathStroker() : d_ptr(new QPainterPathStrokerPrivate) { } /*! Destroys the stroker. */ QPainterPathStroker::~QPainterPathStroker() { } /*! Generates a new path that is a fillable area representing the outline of the given \a path. The various design aspects of the outline are based on the stroker's properties: width(), capStyle(), joinStyle(), dashPattern(), curveThreshold() and miterLimit(). The generated path should only be used for outlining the given painter path. Otherwise it may cause unexpected behavior. Generated outlines also require the Qt::WindingFill rule which is set by default. */ QPainterPath QPainterPathStroker::createStroke(const QPainterPath &path) const { QPainterPathStrokerPrivate *d = const_cast(d_func()); QPainterPath stroke; if (path.isEmpty()) return path; if (d->dashPattern.isEmpty()) { d->stroker.strokePath(path, &stroke, QTransform()); } else { QDashStroker dashStroker(&d->stroker); dashStroker.setDashPattern(d->dashPattern); dashStroker.setDashOffset(d->dashOffset); dashStroker.setClipRect(d->stroker.clipRect()); dashStroker.strokePath(path, &stroke, QTransform()); } stroke.setFillRule(Qt::WindingFill); return stroke; } /*! Sets the width of the generated outline painter path to \a width. The generated outlines will extend approximately 50% of \a width to each side of the given input path's original outline. */ void QPainterPathStroker::setWidth(qreal width) { Q_D(QPainterPathStroker); if (width <= 0) width = 1; d->stroker.setStrokeWidth(qt_real_to_fixed(width)); } /*! Returns the width of the generated outlines. */ qreal QPainterPathStroker::width() const { return qt_fixed_to_real(d_func()->stroker.strokeWidth()); } /*! Sets the cap style of the generated outlines to \a style. If a dash pattern is set, each segment of the pattern is subject to the cap \a style. */ void QPainterPathStroker::setCapStyle(Qt::PenCapStyle style) { d_func()->stroker.setCapStyle(style); } /*! Returns the cap style of the generated outlines. */ Qt::PenCapStyle QPainterPathStroker::capStyle() const { return d_func()->stroker.capStyle(); } /*! Sets the join style of the generated outlines to \a style. */ void QPainterPathStroker::setJoinStyle(Qt::PenJoinStyle style) { d_func()->stroker.setJoinStyle(style); } /*! Returns the join style of the generated outlines. */ Qt::PenJoinStyle QPainterPathStroker::joinStyle() const { return d_func()->stroker.joinStyle(); } /*! Sets the miter limit of the generated outlines to \a limit. The miter limit describes how far from each join the miter join can extend. The limit is specified in units of the currently set width. So the pixelwise miter limit will be \c { miterlimit * width}. This value is only used if the join style is Qt::MiterJoin. */ void QPainterPathStroker::setMiterLimit(qreal limit) { d_func()->stroker.setMiterLimit(qt_real_to_fixed(limit)); } /*! Returns the miter limit for the generated outlines. */ qreal QPainterPathStroker::miterLimit() const { return qt_fixed_to_real(d_func()->stroker.miterLimit()); } /*! Specifies the curve flattening \a threshold, controlling the granularity with which the generated outlines' curve is drawn. The default threshold is a well adjusted value (0.25), and normally you should not need to modify it. However, you can make the curve's appearance smoother by decreasing its value. */ void QPainterPathStroker::setCurveThreshold(qreal threshold) { d_func()->stroker.setCurveThreshold(qt_real_to_fixed(threshold)); } /*! Returns the curve flattening threshold for the generated outlines. */ qreal QPainterPathStroker::curveThreshold() const { return qt_fixed_to_real(d_func()->stroker.curveThreshold()); } /*! Sets the dash pattern for the generated outlines to \a style. */ void QPainterPathStroker::setDashPattern(Qt::PenStyle style) { d_func()->dashPattern = QDashStroker::patternForStyle(style); } /*! \overload Sets the dash pattern for the generated outlines to \a dashPattern. This function makes it possible to specify custom dash patterns. Each element in the vector contains the lengths of the dashes and spaces in the stroke, beginning with the first dash in the first element, the first space in the second element, and alternating between dashes and spaces for each following pair of elements. The vector can contain an odd number of elements, in which case the last element will be extended by the length of the first element when the pattern repeats. */ void QPainterPathStroker::setDashPattern(const QVector &dashPattern) { d_func()->dashPattern.clear(); for (int i=0; idashPattern << qt_real_to_fixed(dashPattern.at(i)); } /*! Returns the dash pattern for the generated outlines. */ QVector QPainterPathStroker::dashPattern() const { return d_func()->dashPattern; } /*! Returns the dash offset for the generated outlines. */ qreal QPainterPathStroker::dashOffset() const { return d_func()->dashOffset; } /*! Sets the dash offset for the generated outlines to \a offset. See the documentation for QPen::setDashOffset() for a description of the dash offset. */ void QPainterPathStroker::setDashOffset(qreal offset) { d_func()->dashOffset = offset; } /*! Converts the path into a polygon using the QTransform \a matrix, and returns the polygon. The polygon is created by first converting all subpaths to polygons, then using a rewinding technique to make sure that overlapping subpaths can be filled using the correct fill rule. Note that rewinding inserts addition lines in the polygon so the outline of the fill polygon does not match the outline of the path. \sa toSubpathPolygons(), toFillPolygons(), {QPainterPath#QPainterPath Conversion}{QPainterPath Conversion} */ QPolygonF QPainterPath::toFillPolygon(const QTransform &matrix) const { QList flats = toSubpathPolygons(matrix); QPolygonF polygon; if (flats.isEmpty()) return polygon; QPointF first = flats.first().first(); for (int i=0; i 0) polygon += first; } return polygon; } /*! \overload */ QPolygonF QPainterPath::toFillPolygon(const QMatrix &matrix) const { return toFillPolygon(QTransform(matrix)); } //derivative of the equation static inline qreal slopeAt(qreal t, qreal a, qreal b, qreal c, qreal d) { return 3*t*t*(d - 3*c + 3*b - a) + 6*t*(c - 2*b + a) + 3*(b - a); } /*! Returns the length of the current path. */ qreal QPainterPath::length() const { Q_D(QPainterPath); if (isEmpty()) return 0; qreal len = 0; for (int i=1; ielements.size(); ++i) { const Element &e = d->elements.at(i); switch (e.type) { case MoveToElement: break; case LineToElement: { len += QLineF(d->elements.at(i-1), e).length(); break; } case CurveToElement: { QBezier b = QBezier::fromPoints(d->elements.at(i-1), e, d->elements.at(i+1), d->elements.at(i+2)); len += b.length(); i += 2; break; } default: break; } } return len; } /*! Returns percentage of the whole path at the specified length \a len. Note that similarly to other percent methods, the percentage measurement is not linear with regards to the length, if curves are present in the path. When curves are present the percentage argument is mapped to the t parameter of the Bezier equations. */ qreal QPainterPath::percentAtLength(qreal len) const { Q_D(QPainterPath); if (isEmpty() || len <= 0) return 0; qreal totalLength = length(); if (len > totalLength) return 1; qreal curLen = 0; for (int i=1; ielements.size(); ++i) { const Element &e = d->elements.at(i); switch (e.type) { case MoveToElement: break; case LineToElement: { QLineF line(d->elements.at(i-1), e); qreal llen = line.length(); curLen += llen; if (curLen >= len) { return len/totalLength ; } break; } case CurveToElement: { QBezier b = QBezier::fromPoints(d->elements.at(i-1), e, d->elements.at(i+1), d->elements.at(i+2)); qreal blen = b.length(); qreal prevLen = curLen; curLen += blen; if (curLen >= len) { qreal res = b.tAtLength(len - prevLen); return (res * blen + prevLen)/totalLength; } i += 2; break; } default: break; } } return 0; } static inline QBezier bezierAtT(const QPainterPath &path, qreal t, qreal *startingLength, qreal *bezierLength) { *startingLength = 0; if (t > 1) return QBezier(); qreal curLen = 0; qreal totalLength = path.length(); const int lastElement = path.elementCount() - 1; for (int i=0; i <= lastElement; ++i) { const QPainterPath::Element &e = path.elementAt(i); switch (e.type) { case QPainterPath::MoveToElement: break; case QPainterPath::LineToElement: { QLineF line(path.elementAt(i-1), e); qreal llen = line.length(); curLen += llen; if (i == lastElement || curLen/totalLength >= t) { *bezierLength = llen; QPointF a = path.elementAt(i-1); QPointF delta = e - a; return QBezier::fromPoints(a, a + delta / 3, a + 2 * delta / 3, e); } break; } case QPainterPath::CurveToElement: { QBezier b = QBezier::fromPoints(path.elementAt(i-1), e, path.elementAt(i+1), path.elementAt(i+2)); qreal blen = b.length(); curLen += blen; if (i + 2 == lastElement || curLen/totalLength >= t) { *bezierLength = blen; return b; } i += 2; break; } default: break; } *startingLength = curLen; } return QBezier(); } /*! Returns the point at at the percentage \a t of the current path. The argument \a t has to be between 0 and 1. Note that similarly to other percent methods, the percentage measurement is not linear with regards to the length, if curves are present in the path. When curves are present the percentage argument is mapped to the t parameter of the Bezier equations. */ QPointF QPainterPath::pointAtPercent(qreal t) const { if (t < 0 || t > 1) { qWarning("QPainterPath::pointAtPercent accepts only values between 0 and 1"); return QPointF(); } if (isEmpty()) return QPointF(); qreal totalLength = length(); qreal curLen = 0; qreal bezierLen = 0; QBezier b = bezierAtT(*this, t, &curLen, &bezierLen); qreal realT = (totalLength * t - curLen) / bezierLen; return b.pointAt(qBound(qreal(0), realT, qreal(1))); } /*! Returns the angle of the path tangent at the percentage \a t. The argument \a t has to be between 0 and 1. Positive values for the angles mean counter-clockwise while negative values mean the clockwise direction. Zero degrees is at the 3 o'clock position. Note that similarly to the other percent methods, the percentage measurement is not linear with regards to the length if curves are present in the path. When curves are present the percentage argument is mapped to the t parameter of the Bezier equations. */ qreal QPainterPath::angleAtPercent(qreal t) const { if (t < 0 || t > 1) { qWarning("QPainterPath::angleAtPercent accepts only values between 0 and 1"); return 0; } qreal totalLength = length(); qreal curLen = 0; qreal bezierLen = 0; QBezier bez = bezierAtT(*this, t, &curLen, &bezierLen); qreal realT = (totalLength * t - curLen) / bezierLen; qreal m1 = slopeAt(realT, bez.x1, bez.x2, bez.x3, bez.x4); qreal m2 = slopeAt(realT, bez.y1, bez.y2, bez.y3, bez.y4); return QLineF(0, 0, m1, m2).angle(); } #if defined(Q_WS_WINCE) #pragma warning( disable : 4056 4756 ) #endif /*! Returns the slope of the path at the percentage \a t. The argument \a t has to be between 0 and 1. Note that similarly to other percent methods, the percentage measurement is not linear with regards to the length, if curves are present in the path. When curves are present the percentage argument is mapped to the t parameter of the Bezier equations. */ qreal QPainterPath::slopeAtPercent(qreal t) const { if (t < 0 || t > 1) { qWarning("QPainterPath::slopeAtPercent accepts only values between 0 and 1"); return 0; } qreal totalLength = length(); qreal curLen = 0; qreal bezierLen = 0; QBezier bez = bezierAtT(*this, t, &curLen, &bezierLen); qreal realT = (totalLength * t - curLen) / bezierLen; qreal m1 = slopeAt(realT, bez.x1, bez.x2, bez.x3, bez.x4); qreal m2 = slopeAt(realT, bez.y1, bez.y2, bez.y3, bez.y4); //tangent line qreal slope = 0; #define SIGN(x) ((x < 0)?-1:1) if (m1) slope = m2/m1; else { //windows doesn't define INFINITY :( #ifdef INFINITY slope = INFINITY*SIGN(m2); #else if (sizeof(qreal) == sizeof(double)) { return 1.79769313486231570e+308; } else { return ((qreal)3.40282346638528860e+38); } #endif } return slope; } /*! \since 4.4 Adds the given rectangle \a rect with rounded corners to the path. The \a xRadius and \a yRadius arguments specify the radii of the ellipses defining the corners of the rounded rectangle. When \a mode is Qt::RelativeSize, \a xRadius and \a yRadius are specified in percentage of half the rectangle's width and height respectively, and should be in the range 0.0 to 100.0. \sa addRect() */ void QPainterPath::addRoundedRect(const QRectF &rect, qreal xRadius, qreal yRadius, Qt::SizeMode mode) { QRectF r = rect.normalized(); if (r.isNull()) return; if (mode == Qt::AbsoluteSize) { qreal w = r.width() / 2; qreal h = r.height() / 2; if (w == 0) { xRadius = 0; } else { xRadius = 100 * qMin(xRadius, w) / w; } if (h == 0) { yRadius = 0; } else { yRadius = 100 * qMin(yRadius, h) / h; } } else { if (xRadius > 100) // fix ranges xRadius = 100; if (yRadius > 100) yRadius = 100; } if (xRadius <= 0 || yRadius <= 0) { // add normal rectangle addRect(r); return; } qreal x = r.x(); qreal y = r.y(); qreal w = r.width(); qreal h = r.height(); qreal rxx2 = w*xRadius/100; qreal ryy2 = h*yRadius/100; ensureData(); detach(); bool first = d_func()->elements.size() < 2; arcMoveTo(x, y, rxx2, ryy2, 180); arcTo(x, y, rxx2, ryy2, 180, -90); arcTo(x+w-rxx2, y, rxx2, ryy2, 90, -90); arcTo(x+w-rxx2, y+h-ryy2, rxx2, ryy2, 0, -90); arcTo(x, y+h-ryy2, rxx2, ryy2, 270, -90); closeSubpath(); d_func()->require_moveTo = true; d_func()->convex = first; } /*! \fn void QPainterPath::addRoundedRect(qreal x, qreal y, qreal w, qreal h, qreal xRadius, qreal yRadius, Qt::SizeMode mode = Qt::AbsoluteSize); \since 4.4 \overload Adds the given rectangle \a x, \a y, \a w, \a h with rounded corners to the path. */ /*! \obsolete Adds a rectangle \a r with rounded corners to the path. The \a xRnd and \a yRnd arguments specify how rounded the corners should be. 0 is angled corners, 99 is maximum roundedness. \sa addRoundedRect() */ void QPainterPath::addRoundRect(const QRectF &r, int xRnd, int yRnd) { if(xRnd >= 100) // fix ranges xRnd = 99; if(yRnd >= 100) yRnd = 99; if(xRnd <= 0 || yRnd <= 0) { // add normal rectangle addRect(r); return; } QRectF rect = r.normalized(); if (rect.isNull()) return; qreal x = rect.x(); qreal y = rect.y(); qreal w = rect.width(); qreal h = rect.height(); qreal rxx2 = w*xRnd/100; qreal ryy2 = h*yRnd/100; ensureData(); detach(); bool first = d_func()->elements.size() < 2; arcMoveTo(x, y, rxx2, ryy2, 180); arcTo(x, y, rxx2, ryy2, 180, -90); arcTo(x+w-rxx2, y, rxx2, ryy2, 90, -90); arcTo(x+w-rxx2, y+h-ryy2, rxx2, ryy2, 0, -90); arcTo(x, y+h-ryy2, rxx2, ryy2, 270, -90); closeSubpath(); d_func()->require_moveTo = true; d_func()->convex = first; } /*! \obsolete \fn bool QPainterPath::addRoundRect(const QRectF &rect, int roundness); \since 4.3 \overload Adds a rounded rectangle, \a rect, to the path. The \a roundness argument specifies uniform roundness for the rectangle. Vertical and horizontal roundness factors will be adjusted accordingly to act uniformly around both axes. Use this method if you want a rectangle equally rounded across both the X and Y axis. \sa addRoundedRect() */ /*! \obsolete \fn void QPainterPath::addRoundRect(qreal x, qreal y, qreal w, qreal h, int xRnd, int yRnd); \overload Adds a rectangle with rounded corners to the path. The rectangle is constructed from \a x, \a y, and the width and height \a w and \a h. The \a xRnd and \a yRnd arguments specify how rounded the corners should be. 0 is angled corners, 99 is maximum roundedness. \sa addRoundedRect() */ /*! \obsolete \fn bool QPainterPath::addRoundRect(qreal x, qreal y, qreal width, qreal height, int roundness); \since 4.3 \overload Adds a rounded rectangle to the path, defined by the coordinates \a x and \a y with the specified \a width and \a height. The \a roundness argument specifies uniform roundness for the rectangle. Vertical and horizontal roundness factors will be adjusted accordingly to act uniformly around both axes. Use this method if you want a rectangle equally rounded across both the X and Y axis. \sa addRoundedRect() */ /*! \since 4.3 Returns a path which is the union of this path's fill area and \a p's fill area. Set operations on paths will treat the paths as areas. Non-closed paths will be treated as implicitly closed. Bezier curves may be flattened to line segments due to numerical instability of doing bezier curve intersections. \sa intersected(), subtracted() */ QPainterPath QPainterPath::united(const QPainterPath &p) const { if (isEmpty() || p.isEmpty()) return isEmpty() ? p : *this; QPathClipper clipper(*this, p); return clipper.clip(QPathClipper::BoolOr); } /*! \since 4.3 Returns a path which is the intersection of this path's fill area and \a p's fill area. Bezier curves may be flattened to line segments due to numerical instability of doing bezier curve intersections. */ QPainterPath QPainterPath::intersected(const QPainterPath &p) const { if (isEmpty() || p.isEmpty()) return QPainterPath(); QPathClipper clipper(*this, p); return clipper.clip(QPathClipper::BoolAnd); } /*! \since 4.3 Returns a path which is \a p's fill area subtracted from this path's fill area. Set operations on paths will treat the paths as areas. Non-closed paths will be treated as implicitly closed. Bezier curves may be flattened to line segments due to numerical instability of doing bezier curve intersections. */ QPainterPath QPainterPath::subtracted(const QPainterPath &p) const { if (isEmpty() || p.isEmpty()) return *this; QPathClipper clipper(*this, p); return clipper.clip(QPathClipper::BoolSub); } /*! \since 4.3 \obsolete Use subtracted() instead. \sa subtracted() */ QPainterPath QPainterPath::subtractedInverted(const QPainterPath &p) const { return p.subtracted(*this); } /*! \since 4.4 Returns a simplified version of this path. This implies merging all subpaths that intersect, and returning a path containing no intersecting edges. Consecutive parallel lines will also be merged. The simplified path will always use the default fill rule, Qt::OddEvenFill. Bezier curves may be flattened to line segments due to numerical instability of doing bezier curve intersections. */ QPainterPath QPainterPath::simplified() const { if(isEmpty()) return *this; QPathClipper clipper(*this, QPainterPath()); return clipper.clip(QPathClipper::Simplify); } /*! \since 4.3 Returns true if the current path intersects at any point the given path \a p. Also returns true if the current path contains or is contained by any part of \a p. Set operations on paths will treat the paths as areas. Non-closed paths will be treated as implicitly closed. \sa contains() */ bool QPainterPath::intersects(const QPainterPath &p) const { if (p.elementCount() == 1) return contains(p.elementAt(0)); if (isEmpty() || p.isEmpty()) return false; QPathClipper clipper(*this, p); return clipper.intersect(); } /*! \since 4.3 Returns true if the given path \a p is contained within the current path. Returns false if any edges of the current path and \a p intersect. Set operations on paths will treat the paths as areas. Non-closed paths will be treated as implicitly closed. \sa intersects() */ bool QPainterPath::contains(const QPainterPath &p) const { if (p.elementCount() == 1) return contains(p.elementAt(0)); if (isEmpty() || p.isEmpty()) return false; QPathClipper clipper(*this, p); return clipper.contains(); } void QPainterPath::setDirty(bool dirty) { d_func()->dirtyBounds = dirty; d_func()->dirtyControlBounds = dirty; delete d_func()->pathConverter; d_func()->pathConverter = 0; d_func()->convex = false; } void QPainterPath::computeBoundingRect() const { QPainterPathData *d = d_func(); d->dirtyBounds = false; if (!d_ptr) { d->bounds = QRect(); return; } qreal minx, maxx, miny, maxy; minx = maxx = d->elements.at(0).x; miny = maxy = d->elements.at(0).y; for (int i=1; ielements.size(); ++i) { const Element &e = d->elements.at(i); switch (e.type) { case MoveToElement: case LineToElement: if (e.x > maxx) maxx = e.x; else if (e.x < minx) minx = e.x; if (e.y > maxy) maxy = e.y; else if (e.y < miny) miny = e.y; break; case CurveToElement: { QBezier b = QBezier::fromPoints(d->elements.at(i-1), e, d->elements.at(i+1), d->elements.at(i+2)); QRectF r = qt_painterpath_bezier_extrema(b); qreal right = r.right(); qreal bottom = r.bottom(); if (r.x() < minx) minx = r.x(); if (right > maxx) maxx = right; if (r.y() < miny) miny = r.y(); if (bottom > maxy) maxy = bottom; i += 2; } break; default: break; } } d->bounds = QRectF(minx, miny, maxx - minx, maxy - miny); } void QPainterPath::computeControlPointRect() const { QPainterPathData *d = d_func(); d->dirtyControlBounds = false; if (!d_ptr) { d->controlBounds = QRect(); return; } qreal minx, maxx, miny, maxy; minx = maxx = d->elements.at(0).x; miny = maxy = d->elements.at(0).y; for (int i=1; ielements.size(); ++i) { const Element &e = d->elements.at(i); if (e.x > maxx) maxx = e.x; else if (e.x < minx) minx = e.x; if (e.y > maxy) maxy = e.y; else if (e.y < miny) miny = e.y; } d->controlBounds = QRectF(minx, miny, maxx - minx, maxy - miny); } #ifndef QT_NO_DEBUG_STREAM QDebug operator<<(QDebug s, const QPainterPath &p) { s.nospace() << "QPainterPath: Element count=" << p.elementCount() << endl; const char *types[] = {"MoveTo", "LineTo", "CurveTo", "CurveToData"}; for (int i=0; i " << types[p.elementAt(i).type] << "(x=" << p.elementAt(i).x << ", y=" << p.elementAt(i).y << ')' << endl; } return s; } #endif QT_END_NAMESPACE