/**************************************************************************** ** ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "private/qstroker_p.h" #include "private/qbezier_p.h" #include "private/qmath_p.h" #include "qline.h" #include "qtransform.h" #include <qmath.h> QT_BEGIN_NAMESPACE // #define QPP_STROKE_DEBUG class QSubpathForwardIterator { public: QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path) : m_path(path), m_pos(0) { } inline int position() const { return m_pos; } inline bool hasNext() const { return m_pos < m_path->size(); } inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(m_pos++); } private: const QDataBuffer<QStrokerOps::Element> *m_path; int m_pos; }; class QSubpathBackwardIterator { public: QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path) : m_path(path), m_pos(path->size() - 1) { } inline int position() const { return m_pos; } inline bool hasNext() const { return m_pos >= 0; } inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); QStrokerOps::Element ce = m_path->at(m_pos); // current element if (m_pos == m_path->size() - 1) { --m_pos; ce.type = QPainterPath::MoveToElement; return ce; } const QStrokerOps::Element &pe = m_path->at(m_pos + 1); // previous element switch (pe.type) { case QPainterPath::LineToElement: ce.type = QPainterPath::LineToElement; break; case QPainterPath::CurveToDataElement: // First control point? if (ce.type == QPainterPath::CurveToElement) { ce.type = QPainterPath::CurveToDataElement; } else { // Second control point then ce.type = QPainterPath::CurveToElement; } break; case QPainterPath::CurveToElement: ce.type = QPainterPath::CurveToDataElement; break; default: qWarning("QSubpathReverseIterator::next: Case %d unhandled", ce.type); break; } --m_pos; return ce; } private: const QDataBuffer<QStrokerOps::Element> *m_path; int m_pos; }; class QSubpathFlatIterator { public: QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path) : m_path(path), m_pos(0), m_curve_index(-1) { } inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); } QStrokerOps::Element next() { Q_ASSERT(hasNext()); if (m_curve_index >= 0) { QStrokerOps::Element e = { QPainterPath::LineToElement, qt_real_to_fixed(m_curve.at(m_curve_index).x()), qt_real_to_fixed(m_curve.at(m_curve_index).y()) }; ++m_curve_index; if (m_curve_index >= m_curve.size()) m_curve_index = -1; return e; } QStrokerOps::Element e = m_path->at(m_pos); if (e.isCurveTo()) { Q_ASSERT(m_pos > 0); Q_ASSERT(m_pos < m_path->size()); m_curve = QBezier::fromPoints(QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x), qt_fixed_to_real(m_path->at(m_pos-1).y)), QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x), qt_fixed_to_real(m_path->at(m_pos+1).y)), QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x), qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(); m_curve_index = 1; e.type = QPainterPath::LineToElement; e.x = m_curve.at(0).x(); e.y = m_curve.at(0).y(); m_pos += 2; } Q_ASSERT(e.isLineTo() || e.isMoveTo()); ++m_pos; return e; } private: const QDataBuffer<QStrokerOps::Element> *m_path; int m_pos; QPolygonF m_curve; int m_curve_index; }; template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, bool capFirst, QLineF *startTangent); /******************************************************************************* * QLineF::angle gives us the smalles angle between two lines. Here we * want to identify the line's angle direction on the unit circle. */ static inline qreal adapted_angle_on_x(const QLineF &line) { qreal angle = line.angle(QLineF(0, 0, 1, 0)); if (line.dy() > 0) angle = 360 - angle; return angle; } QStrokerOps::QStrokerOps() : m_customData(0), m_moveTo(0), m_lineTo(0), m_cubicTo(0) { } QStrokerOps::~QStrokerOps() { } /*! Prepares the stroker. Call this function once before starting a stroke by calling moveTo, lineTo or cubicTo. The \a customData is passed back through that callback functions and can be used by the user to for instance maintain state information. */ void QStrokerOps::begin(void *customData) { m_customData = customData; m_elements.reset(); } /*! Finishes the stroke. Call this function once when an entire primitive has been stroked. */ void QStrokerOps::end() { if (m_elements.size() > 1) processCurrentSubpath(); m_customData = 0; } /*! Convenience function that decomposes \a path into begin(), moveTo(), lineTo(), curevTo() and end() calls. The \a customData parameter is used in the callback functions The \a matrix is used to transform the points before input to the stroker. \sa begin() */ void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix) { if (path.isEmpty()) return; begin(customData); int count = path.elementCount(); if (matrix.isIdentity()) { for (int i=0; i<count; ++i) { const QPainterPath::Element &e = path.elementAt(i); switch (e.type) { case QPainterPath::MoveToElement: moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); break; case QPainterPath::LineToElement: lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); break; case QPainterPath::CurveToElement: { const QPainterPath::Element &cp2 = path.elementAt(++i); const QPainterPath::Element &ep = path.elementAt(++i); cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y), qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y), qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y)); } break; default: break; } } } else { for (int i=0; i<count; ++i) { const QPainterPath::Element &e = path.elementAt(i); QPointF pt = QPointF(e.x, e.y) * matrix; switch (e.type) { case QPainterPath::MoveToElement: moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); break; case QPainterPath::LineToElement: lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); break; case QPainterPath::CurveToElement: { QPointF cp2 = ((QPointF) path.elementAt(++i)) * matrix; QPointF ep = ((QPointF) path.elementAt(++i)) * matrix; cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()), qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); } break; default: break; } } } end(); } /*! Convenience function for stroking a polygon of the \a pointCount first points in \a points. If \a implicit_close is set to true a line is implictly drawn between the first and last point in the polygon. Typically true for polygons and false for polylines. The \a matrix is used to transform the points before they enter the stroker. \sa begin() */ void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close, void *data, const QTransform &matrix) { if (!pointCount) return; begin(data); if (matrix.isIdentity()) { moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); for (int i=1; i<pointCount; ++i) lineTo(qt_real_to_fixed(points[i].x()), qt_real_to_fixed(points[i].y())); if (implicit_close) lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); } else { QPointF start = points[0] * matrix; moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); for (int i=1; i<pointCount; ++i) { QPointF pt = points[i] * matrix; lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); } if (implicit_close) lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); } end(); } /*! Convenience function for stroking an ellipse with bounding rect \a rect. The \a matrix is used to transform the coordinates before they enter the stroker. */ void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix) { int count = 0; QPointF pts[12]; QPointF start = qt_curves_for_arc(rect, 0, -360, pts, &count); Q_ASSERT(count == 12); // a perfect circle.. if (!matrix.isIdentity()) { start = start * matrix; for (int i=0; i<12; ++i) { pts[i] = pts[i] * matrix; } } begin(data); moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); for (int i=0; i<12; i+=3) { cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()), qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()), qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y())); } end(); } QStroker::QStroker() : m_capStyle(SquareJoin), m_joinStyle(FlatJoin), m_back1X(0), m_back1Y(0), m_back2X(0), m_back2Y(0) { m_strokeWidth = qt_real_to_fixed(1); m_miterLimit = qt_real_to_fixed(2); m_curveThreshold = qt_real_to_fixed(0.25); } QStroker::~QStroker() { } Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode) { if (mode == FlatJoin) return Qt::FlatCap; else if (mode == SquareJoin) return Qt::SquareCap; else return Qt::RoundCap; } QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style) { if (style == Qt::FlatCap) return FlatJoin; else if (style == Qt::SquareCap) return SquareJoin; else return RoundCap; } Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode) { if (mode == FlatJoin) return Qt::BevelJoin; else if (mode == MiterJoin) return Qt::MiterJoin; else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin; else return Qt::RoundJoin; } QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle) { if (joinStyle == Qt::BevelJoin) return FlatJoin; else if (joinStyle == Qt::MiterJoin) return MiterJoin; else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin; else return RoundJoin; } /*! This function is called to stroke the currently built up subpath. The subpath is cleared when the function completes. */ void QStroker::processCurrentSubpath() { Q_ASSERT(!m_elements.isEmpty()); Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement); Q_ASSERT(m_elements.size() > 1); QSubpathForwardIterator fwit(&m_elements); QSubpathBackwardIterator bwit(&m_elements); QLineF fwStartTangent, bwStartTangent; bool fwclosed = qt_stroke_side(&fwit, this, false, &fwStartTangent); bool bwclosed = qt_stroke_side(&bwit, this, !fwclosed, &bwStartTangent); if (!bwclosed) joinPoints(m_elements.at(0).x, m_elements.at(0).y, fwStartTangent, m_capStyle); } /*! \internal */ void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join) { #ifdef QPP_STROKE_DEBUG printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n", qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2()); #endif // points connected already, don't join #if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32) if (qFuzzyCompare(m_back1X, nextLine.x1()) && qFuzzyCompare(m_back1Y, nextLine.y1())) return; #else if (m_back1X == qt_real_to_fixed(nextLine.x1()) && m_back1Y == qt_real_to_fixed(nextLine.y1())) { return; } #endif if (join == FlatJoin) { QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); QPointF isect; QLineF::IntersectType type = prevLine.intersect(nextLine, &isect); QLineF shortCut(prevLine.p2(), nextLine.p1()); qreal angle = shortCut.angleTo(prevLine); if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { emitLineTo(focal_x, focal_y); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); return; } emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); } else { QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); QPointF isect; QLineF::IntersectType type = prevLine.intersect(nextLine, &isect); if (join == MiterJoin) { qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit); // If we are on the inside, do the short cut... QLineF shortCut(prevLine.p2(), nextLine.p1()); qreal angle = shortCut.angleTo(prevLine); if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { emitLineTo(focal_x, focal_y); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); return; } QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)), isect); if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) { QLineF l1(prevLine); l1.setLength(appliedMiterLimit); l1.translate(prevLine.dx(), prevLine.dy()); QLineF l2(nextLine); l2.setLength(appliedMiterLimit); l2.translate(-l2.dx(), -l2.dy()); emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); } else { emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); } } else if (join == SquareJoin) { qfixed offset = m_strokeWidth / 2; QLineF l1(prevLine); l1.translate(l1.dx(), l1.dy()); l1.setLength(qt_fixed_to_real(offset)); QLineF l2(nextLine.p2(), nextLine.p1()); l2.translate(l2.dx(), l2.dy()); l2.setLength(qt_fixed_to_real(offset)); emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2())); emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); } else if (join == RoundJoin) { qfixed offset = m_strokeWidth / 2; QLineF shortCut(prevLine.p2(), nextLine.p1()); qreal angle = shortCut.angleTo(prevLine); if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { emitLineTo(focal_x, focal_y); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); return; } qreal l1_on_x = adapted_angle_on_x(prevLine); qreal l2_on_x = adapted_angle_on_x(nextLine); qreal sweepLength = qAbs(l2_on_x - l1_on_x); int point_count; QPointF curves[15]; QPointF curve_start = qt_curves_for_arc(QRectF(qt_fixed_to_real(focal_x - offset), qt_fixed_to_real(focal_y - offset), qt_fixed_to_real(offset * 2), qt_fixed_to_real(offset * 2)), l1_on_x + 90, -sweepLength, curves, &point_count); // // line to the beginning of the arc segment, (should not be needed). // emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y())); for (int i=0; i<point_count; i+=3) { emitCubicTo(qt_real_to_fixed(curves[i].x()), qt_real_to_fixed(curves[i].y()), qt_real_to_fixed(curves[i+1].x()), qt_real_to_fixed(curves[i+1].y()), qt_real_to_fixed(curves[i+2].x()), qt_real_to_fixed(curves[i+2].y())); } // line to the end of the arc segment, (should also not be needed). emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); // Same as round join except we know its 180 degrees. Can also optimize this // later based on the addEllipse logic } else if (join == RoundCap) { qfixed offset = m_strokeWidth / 2; // first control line QLineF l1 = prevLine; l1.translate(l1.dx(), l1.dy()); l1.setLength(QT_PATH_KAPPA * offset); // second control line, find through normal between prevLine and focal. QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), prevLine.x2(), prevLine.y2()); l2.translate(-l2.dy(), l2.dx()); l2.setLength(QT_PATH_KAPPA * offset); emitCubicTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()), qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2()), qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); // move so that it matches l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy()); // last line is parallel to l1 so just shift it down. l1.translate(nextLine.x1() - l1.x1(), nextLine.y1() - l1.y1()); emitCubicTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2()), qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()), qt_real_to_fixed(l1.x1()), qt_real_to_fixed(l1.y1())); } else if (join == SvgMiterJoin) { QLineF shortCut(prevLine.p2(), nextLine.p1()); qreal angle = shortCut.angleTo(prevLine); if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { emitLineTo(focal_x, focal_y); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); return; } QLineF miterLine(QPointF(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y)), isect); if (miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) { emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); } else { emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); } } else { Q_ASSERT(!"QStroker::joinPoints(), bad join style..."); } } } /* Strokes a subpath side using the \a it as source. Results are put into \a stroke. The function returns true if the subpath side was closed. If \a capFirst is true, we will use capPoints instead of joinPoints to connect the first segment, other segments will be joined using joinPoints. This is to put capping in order... */ template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, bool capFirst, QLineF *startTangent) { // Used in CurveToElement section below. const int MAX_OFFSET = 16; QBezier offsetCurves[MAX_OFFSET]; Q_ASSERT(it->hasNext()); // The initaial move to QStrokerOps::Element first_element = it->next(); Q_ASSERT(first_element.isMoveTo()); qfixed2d start = first_element; #ifdef QPP_STROKE_DEBUG qDebug(" -> (side) [%.2f, %.2f], startPos=%d", qt_fixed_to_real(start.x), qt_fixed_to_real(start.y)); #endif qfixed2d prev = start; bool first = true; qfixed offset = stroker->strokeWidth() / 2; while (it->hasNext()) { QStrokerOps::Element e = it->next(); // LineToElement if (e.isLineTo()) { #ifdef QPP_STROKE_DEBUG qDebug("\n ---> (side) lineto [%.2f, %.2f]", e.x, e.y); #endif QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); QLineF normal = line.normalVector(); normal.setLength(offset); line.translate(normal.dx(), normal.dy()); // If we are starting a new subpath, move to correct starting point. if (first) { if (capFirst) stroker->joinPoints(prev.x, prev.y, line, stroker->capStyleMode()); else stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1())); *startTangent = line; first = false; } else { stroker->joinPoints(prev.x, prev.y, line, stroker->joinStyleMode()); } // Add the stroke for this line. stroker->emitLineTo(qt_real_to_fixed(line.x2()), qt_real_to_fixed(line.y2())); prev = e; // CurveToElement } else if (e.isCurveTo()) { QStrokerOps::Element cp2 = it->next(); // control point 2 QStrokerOps::Element ep = it->next(); // end point #ifdef QPP_STROKE_DEBUG qDebug("\n ---> (side) cubicTo [%.2f, %.2f]", qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y)); #endif QBezier bezier = QBezier::fromPoints(QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)), QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)), QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y))); int count = bezier.shifted(offsetCurves, MAX_OFFSET, offset, stroker->curveThreshold()); if (count) { // If we are starting a new subpath, move to correct starting point QLineF tangent = bezier.startTangent(); tangent.translate(offsetCurves[0].pt1() - bezier.pt1()); if (first) { QPointF pt = offsetCurves[0].pt1(); if (capFirst) { stroker->joinPoints(prev.x, prev.y, tangent, stroker->capStyleMode()); } else { stroker->emitMoveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); } *startTangent = tangent; first = false; } else { stroker->joinPoints(prev.x, prev.y, tangent, stroker->joinStyleMode()); } // Add these beziers for (int i=0; i<count; ++i) { QPointF cp1 = offsetCurves[i].pt2(); QPointF cp2 = offsetCurves[i].pt3(); QPointF ep = offsetCurves[i].pt4(); stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()), qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); } } prev = ep; } } if (start == prev) { // closed subpath, join first and last point #ifdef QPP_STROKE_DEBUG qDebug("\n ---> (side) closed subpath"); #endif stroker->joinPoints(prev.x, prev.y, *startTangent, stroker->joinStyleMode()); return true; } else { #ifdef QPP_STROKE_DEBUG qDebug("\n ---> (side) open subpath"); #endif return false; } } /*! \internal For a given angle in the range [0 .. 90], finds the corresponding parameter t of the prototype cubic bezier arc segment b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1)); From the bezier equation: b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3 Third degree coefficients: b.pointAt(t).x() = at^3 + bt^2 + ct + d where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1 b.pointAt(t).y() = at^3 + bt^2 + ct + d where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0 Newton's method to find the zero of a function: given a function f(x) and initial guess x_0 x_1 = f(x_0) / f'(x_0) x_2 = f(x_1) / f'(x_1) etc... */ qreal qt_t_for_arc_angle(qreal angle) { if (qFuzzyIsNull(angle)) return 0; if (qFuzzyCompare(angle, qreal(90))) return 1; qreal radians = Q_PI * angle / 180; qreal cosAngle = qCos(radians); qreal sinAngle = qSin(radians); // initial guess qreal tc = angle / 90; // do some iterations of newton's method to approximate cosAngle // finds the zero of the function b.pointAt(tc).x() - cosAngle tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value / (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative // initial guess qreal ts = tc; // do some iterations of newton's method to approximate sinAngle // finds the zero of the function b.pointAt(tc).y() - sinAngle ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) / (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); // use the average of the t that best approximates cosAngle // and the t that best approximates sinAngle qreal t = 0.5 * (tc + ts); #if 0 printf("angle: %f, t: %f\n", angle, t); qreal a, b, c, d; bezierCoefficients(t, a, b, c, d); printf("cosAngle: %.10f, value: %.10f\n", cosAngle, a + b + c * QT_PATH_KAPPA); printf("sinAngle: %.10f, value: %.10f\n", sinAngle, b * QT_PATH_KAPPA + c + d); #endif return t; } void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, QPointF* startPoint, QPointF *endPoint); /*! \internal Creates a number of curves for a given arc definition. The arc is defined an arc along the ellipses that fits into \a rect starting at \a startAngle and an arc length of \a sweepLength. The function has three out parameters. The return value is the starting point of the arc. The \a curves array represents the list of cubicTo elements up to a maximum of \a point_count. There are of course 3 points pr curve. */ QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength, QPointF *curves, int *point_count) { Q_ASSERT(point_count); Q_ASSERT(curves); *point_count = 0; if (qt_is_nan(rect.x()) || qt_is_nan(rect.y()) || qt_is_nan(rect.width()) || qt_is_nan(rect.height()) || qt_is_nan(startAngle) || qt_is_nan(sweepLength)) { qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined"); return QPointF(); } if (rect.isNull()) { return QPointF(); } qreal x = rect.x(); qreal y = rect.y(); qreal w = rect.width(); qreal w2 = rect.width() / 2; qreal w2k = w2 * QT_PATH_KAPPA; qreal h = rect.height(); qreal h2 = rect.height() / 2; qreal h2k = h2 * QT_PATH_KAPPA; QPointF points[16] = { // start point QPointF(x + w, y + h2), // 0 -> 270 degrees QPointF(x + w, y + h2 + h2k), QPointF(x + w2 + w2k, y + h), QPointF(x + w2, y + h), // 270 -> 180 degrees QPointF(x + w2 - w2k, y + h), QPointF(x, y + h2 + h2k), QPointF(x, y + h2), // 180 -> 90 degrees QPointF(x, y + h2 - h2k), QPointF(x + w2 - w2k, y), QPointF(x + w2, y), // 90 -> 0 degrees QPointF(x + w2 + w2k, y), QPointF(x + w, y + h2 - h2k), QPointF(x + w, y + h2) }; if (sweepLength > 360) sweepLength = 360; else if (sweepLength < -360) sweepLength = -360; // Special case fast paths if (startAngle == 0.0) { if (sweepLength == 360.0) { for (int i = 11; i >= 0; --i) curves[(*point_count)++] = points[i]; return points[12]; } else if (sweepLength == -360.0) { for (int i = 1; i <= 12; ++i) curves[(*point_count)++] = points[i]; return points[0]; } } int startSegment = int(qFloor(startAngle / 90)); int endSegment = int(qFloor((startAngle + sweepLength) / 90)); qreal startT = (startAngle - startSegment * 90) / 90; qreal endT = (startAngle + sweepLength - endSegment * 90) / 90; int delta = sweepLength > 0 ? 1 : -1; if (delta < 0) { startT = 1 - startT; endT = 1 - endT; } // avoid empty start segment if (qFuzzyIsNull(startT - qreal(1))) { startT = 0; startSegment += delta; } // avoid empty end segment if (qFuzzyIsNull(endT)) { endT = 1; endSegment -= delta; } startT = qt_t_for_arc_angle(startT * 90); endT = qt_t_for_arc_angle(endT * 90); const bool splitAtStart = !qFuzzyIsNull(startT); const bool splitAtEnd = !qFuzzyIsNull(endT - qreal(1)); const int end = endSegment + delta; // empty arc? if (startSegment == end) { const int quadrant = 3 - ((startSegment % 4) + 4) % 4; const int j = 3 * quadrant; return delta > 0 ? points[j + 3] : points[j]; } QPointF startPoint, endPoint; qt_find_ellipse_coords(rect, startAngle, sweepLength, &startPoint, &endPoint); for (int i = startSegment; i != end; i += delta) { const int quadrant = 3 - ((i % 4) + 4) % 4; const int j = 3 * quadrant; QBezier b; if (delta > 0) b = QBezier::fromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]); else b = QBezier::fromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]); // empty arc? if (startSegment == endSegment && qFuzzyCompare(startT, endT)) return startPoint; if (i == startSegment) { if (i == endSegment && splitAtEnd) b = b.bezierOnInterval(startT, endT); else if (splitAtStart) b = b.bezierOnInterval(startT, 1); } else if (i == endSegment && splitAtEnd) { b = b.bezierOnInterval(0, endT); } // push control points curves[(*point_count)++] = b.pt2(); curves[(*point_count)++] = b.pt3(); curves[(*point_count)++] = b.pt4(); } Q_ASSERT(*point_count > 0); curves[*(point_count)-1] = endPoint; return startPoint; } static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) { ((QStroker *) data)->moveTo(x, y); } static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) { ((QStroker *) data)->lineTo(x, y); } static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) { Q_ASSERT(0); // ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey); } /******************************************************************************* * QDashStroker members */ QDashStroker::QDashStroker(QStroker *stroker) : m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1) { if (m_stroker) { setMoveToHook(qdashstroker_moveTo); setLineToHook(qdashstroker_lineTo); setCubicToHook(qdashstroker_cubicTo); } } QVector<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style) { const qfixed space = 2; const qfixed dot = 1; const qfixed dash = 4; QVector<qfixed> pattern; switch (style) { case Qt::DashLine: pattern << dash << space; break; case Qt::DotLine: pattern << dot << space; break; case Qt::DashDotLine: pattern << dash << space << dot << space; break; case Qt::DashDotDotLine: pattern << dash << space << dot << space << dot << space; break; default: break; } return pattern; } void QDashStroker::processCurrentSubpath() { int dashCount = qMin(m_dashPattern.size(), 32); qfixed dashes[32]; if (m_stroker) { m_customData = m_stroker; m_stroke_width = m_stroker->strokeWidth(); m_miter_limit = m_stroker->miterLimit(); } qreal longestLength = 0; qreal sumLength = 0; for (int i=0; i<dashCount; ++i) { dashes[i] = qMax(m_dashPattern.at(i), qreal(0)) * m_stroke_width; sumLength += dashes[i]; if (dashes[i] > longestLength) longestLength = dashes[i]; } if (qFuzzyIsNull(sumLength)) return; Q_ASSERT(dashCount > 0); dashCount = (dashCount / 2) * 2; // Round down to even number int idash = 0; // Index to current dash qreal pos = 0; // The position on the curve, 0 <= pos <= path.length qreal elen = 0; // element length qreal doffset = m_dashOffset * m_stroke_width; // make sure doffset is in range [0..sumLength) doffset -= qFloor(doffset / sumLength) * sumLength; while (doffset >= dashes[idash]) { doffset -= dashes[idash]; idash = (idash + 1) % dashCount; } qreal estart = 0; // The elements starting position qreal estop = 0; // The element stop position QLineF cline; QPainterPath dashPath; QSubpathFlatIterator it(&m_elements); qfixed2d prev = it.next(); bool clipping = !m_clip_rect.isEmpty(); qfixed2d move_to_pos = prev; qfixed2d line_to_pos; // Pad to avoid clipping the borders of thick pens. qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength); qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding, qt_real_to_fixed(m_clip_rect.top()) - padding }; qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding , qt_real_to_fixed(m_clip_rect.bottom()) + padding }; bool hasMoveTo = false; while (it.hasNext()) { QStrokerOps::Element e = it.next(); Q_ASSERT(e.isLineTo()); cline = QLineF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); elen = cline.length(); estop = estart + elen; bool done = pos >= estop; // Dash away... while (!done) { QPointF p2; int idash_incr = 0; bool has_offset = doffset > 0; qreal dpos = pos + dashes[idash] - doffset - estart; Q_ASSERT(dpos >= 0); if (dpos > elen) { // dash extends this line doffset = dashes[idash] - (dpos - elen); // subtract the part already used pos = estop; // move pos to next path element done = true; p2 = cline.p2(); } else { // Dash is on this line p2 = cline.pointAt(dpos/elen); pos = dpos + estart; done = pos >= estop; idash_incr = 1; doffset = 0; // full segment so no offset on next. } if (idash % 2 == 0) { line_to_pos.x = qt_real_to_fixed(p2.x()); line_to_pos.y = qt_real_to_fixed(p2.y()); // If we have an offset, we're continuing a dash // from a previous element and should only // continue the current dash, without starting a // new subpath. if (!has_offset || !hasMoveTo) { emitMoveTo(move_to_pos.x, move_to_pos.y); hasMoveTo = true; } if (!clipping // if move_to is inside... || (move_to_pos.x > clip_tl.x && move_to_pos.x < clip_br.x && move_to_pos.y > clip_tl.y && move_to_pos.y < clip_br.y) // Or if line_to is inside... || (line_to_pos.x > clip_tl.x && line_to_pos.x < clip_br.x && line_to_pos.y > clip_tl.y && line_to_pos.y < clip_br.y)) { emitLineTo(line_to_pos.x, line_to_pos.y); } } else { move_to_pos.x = qt_real_to_fixed(p2.x()); move_to_pos.y = qt_real_to_fixed(p2.y()); } idash = (idash + idash_incr) % dashCount; } // Shuffle to the next cycle... estart = estop; prev = e; } } QT_END_NAMESPACE