/**************************************************************************** ** ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the plugins of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ // This is an implementation of the 32bit => 16bit Floyd-Steinberg dithering. // The alghorithm used here is not the fastest possible but it's prolly fast enough: // uses look-up tables, integer-only arthmetics and works in one pass on two lines // at a time. It's a high-quality dithering using 1/8 diffusion precission. // Two functions here to look at: // // * convertRGBA32_to_RGB565 // * convertRGBA32_to_RGBA4444 // // Each channel (RGBA) is diffused independently and alpha is dithered too. #include #include #include #include #include // Gets a component (red = 1, green = 2...) from a RGBA data structure. // data is unsigned char. stride is the number of bytes per line. #define GET_RGBA_COMPONENT(data, x, y, stride, c) (data[(y * stride) + (x << 2) + c]) // Writes a new pixel with r, g, b to data in 565 16bit format. Data is a short. #define PUT_565(data, x, y, width, r, g, b) (data[(y * width) + x] = (r << 11) | (g << 5) | b) // Writes a new pixel with r, g, b, a to data in 4444 RGBA 16bit format. Data is a short. #define PUT_4444(data, x, y, width, r, g, b, a) (data[(y * width) + x] = (r << 12) | (g << 8) | (b << 4) | a) // Writes(ads) a new value to the diffusion accumulator. accumulator is a short. // x, y is a position in the accumulation buffer. y can be 0 or 1 -- we operate on two lines at time. #define ACCUMULATE(accumulator, x, y, width, v) if (x < width && x > 0) accumulator[(y * width) + x] += v // Clamps a value to be in 0..255 range. #define CLAMP_256(v) if (v > 255) v = 255; if (v < 0) v = 0; // Converts incoming RGB32 (QImage::Format_RGB32) to RGB565. Returns the newly allocated data. unsigned short* convertRGB32_to_RGB565(const unsigned char *in, int width, int height, int stride) { // Output line stride. Alligned to 4 bytes. int alignedWidth = width; if (alignedWidth % 2 > 0) alignedWidth++; // Will store output unsigned short *out = (unsigned short *) malloc(alignedWidth * height * 2); // Lookup tables for the 8bit => 6bit and 8bit => 5bit conversion unsigned char lookup_8bit_to_5bit[256]; short lookup_8bit_to_5bit_diff[256]; unsigned char lookup_8bit_to_6bit[256]; short lookup_8bit_to_6bit_diff[256]; // Macros for the conversion using the lookup table. #define CONVERT_8BIT_TO_5BIT(v) (lookup_8bit_to_5bit[v]) #define DIFF_8BIT_TO_5BIT(v) (lookup_8bit_to_5bit_diff[v]) #define CONVERT_8BIT_TO_6BIT(v) (lookup_8bit_to_6bit[v]) #define DIFF_8BIT_TO_6BIT(v) (lookup_8bit_to_6bit_diff[v]) int i; int x, y, c; // Pixel we're processing. c is component number (0, 1, 2 for r, b, b) short component[3]; // Stores the new components (r, g, b) for pixel produced during conversion short diff; // The difference between the converted value and the original one. To be accumulated. QVarLengthArray accumulatorData(3 * width * 2); // Data for three acumulators for r, g, b. Each accumulator is two lines. short *accumulator[3]; // Helper for accessing the accumulator on a per-channel basis more easily. accumulator[0] = accumulatorData.data(); accumulator[1] = accumulatorData.data() + width; accumulator[2] = accumulatorData.data() + (width * 2); // Produce the conversion lookup tables. for (i = 0; i < 256; i++) { lookup_8bit_to_5bit[i] = round(i / 8.0); if (lookup_8bit_to_5bit[i] > 31) lookup_8bit_to_5bit[i] -= 1; // Before bitshifts: (i * 8) - (... * 8 * 8) lookup_8bit_to_5bit_diff[i] = (i << 3) - (lookup_8bit_to_5bit[i] << 6); lookup_8bit_to_6bit[i] = round(i / 4.0); if (lookup_8bit_to_6bit[i] > 63) lookup_8bit_to_6bit[i] -= 1; // Before bitshifts: (i * 8) - (... * 4 * 8) lookup_8bit_to_6bit_diff[i] = (i << 3) - (lookup_8bit_to_6bit[i] << 5); } // Clear the accumulators memset(accumulator[0], 0, width * 4); memset(accumulator[1], 0, width * 4); memset(accumulator[2], 0, width * 4); // For each line... for (y = 0; y < height; y++) { // For each accumulator, move the second line (index 1) to replace the first line (index 0). // Clear the second line (index 1) memcpy(accumulator[0], accumulator[0] + width, width * 2); memset(accumulator[0] + width, 0, width * 2); memcpy(accumulator[1], accumulator[1] + width, width * 2); memset(accumulator[1] + width, 0, width * 2); memcpy(accumulator[2], accumulator[2] + width, width * 2); memset(accumulator[2] + width, 0, width * 2); // For each column.... for (x = 0; x < width; x++) { // For each component (r, g, b)... for (c = 0; c < 3; c++) { // Get the 8bit value from the original image component[c] = GET_RGBA_COMPONENT(in, x, y, stride, c); // Add the diffusion for this pixel we stored in the accumulator. // >> 7 because the values in accumulator are stored * 128 component[c] += accumulator[c][x] >> 7; // Make sure we're not over the boundaries. CLAMP_256(component[c]); // For green component we use 6 bits. Otherwise 5 bits. // Store the difference from converting 8bit => 6 bit and the orig pixel. // Convert 8bit => 6(5) bit. if (c == 1) { diff = DIFF_8BIT_TO_6BIT(component[c]); component[c] = CONVERT_8BIT_TO_6BIT(component[c]); } else { diff = DIFF_8BIT_TO_5BIT(component[c]); component[c] = CONVERT_8BIT_TO_5BIT(component[c]); } // Distribute the difference according to the matrix in the // accumulation bufffer. ACCUMULATE(accumulator[c], x + 1, 0, width, diff * 7); ACCUMULATE(accumulator[c], x - 1, 1, width, diff * 3); ACCUMULATE(accumulator[c], x, 1, width, diff * 5); ACCUMULATE(accumulator[c], x + 1, 1, width, diff * 1); } // Write the newly produced pixel PUT_565(out, x, y, alignedWidth, component[2], component[1], component[0]); } } return out; } // Converts incoming RGBA32 (QImage::Format_ARGB32_Premultiplied) to RGB565. Returns the newly allocated data. // This function is similar (yet different) to the _565 variant but it makes sense to duplicate it here for simplicity. // The output has each scan line aligned to 4 bytes (as expected by GL by default). unsigned short* convertARGB32_to_RGBA4444(const unsigned char *in, int width, int height, int stride) { // Output line stride. Alligned to 4 bytes. int alignedWidth = width; if (alignedWidth % 2 > 0) alignedWidth++; // Will store output unsigned short *out = (unsigned short *) malloc(alignedWidth * 2 * height); // Lookup tables for the 8bit => 4bit conversion unsigned char lookup_8bit_to_4bit[256]; short lookup_8bit_to_4bit_diff[256]; // Macros for the conversion using the lookup table. #define CONVERT_8BIT_TO_4BIT(v) (lookup_8bit_to_4bit[v]) #define DIFF_8BIT_TO_4BIT(v) (lookup_8bit_to_4bit_diff[v]) int i; int x, y, c; // Pixel we're processing. c is component number (0, 1, 2, 3 for r, b, b, a) short component[4]; // Stores the new components (r, g, b, a) for pixel produced during conversion short diff; // The difference between the converted value and the original one. To be accumulated. QVarLengthArray accumulatorData(4 * width * 2); // Data for three acumulators for r, g, b. Each accumulator is two lines. short *accumulator[4]; // Helper for accessing the accumulator on a per-channel basis more easily. accumulator[0] = accumulatorData.data(); accumulator[1] = accumulatorData.data() + width; accumulator[2] = accumulatorData.data() + (width * 2); accumulator[3] = accumulatorData.data() + (width * 3); // Produce the conversion lookup tables. for (i = 0; i < 256; i++) { lookup_8bit_to_4bit[i] = round(i / 16.0); if (lookup_8bit_to_4bit[i] > 15) lookup_8bit_to_4bit[i] -= 1; // Before bitshifts: (i * 8) - (... * 16 * 8) lookup_8bit_to_4bit_diff[i] = (i << 3) - (lookup_8bit_to_4bit[i] << 7); } // Clear the accumulators memset(accumulator[0], 0, width * 4); memset(accumulator[1], 0, width * 4); memset(accumulator[2], 0, width * 4); memset(accumulator[3], 0, width * 4); // For each line... for (y = 0; y < height; y++) { // For each component (r, g, b, a)... memcpy(accumulator[0], accumulator[0] + width, width * 2); memset(accumulator[0] + width, 0, width * 2); memcpy(accumulator[1], accumulator[1] + width, width * 2); memset(accumulator[1] + width, 0, width * 2); memcpy(accumulator[2], accumulator[2] + width, width * 2); memset(accumulator[2] + width, 0, width * 2); memcpy(accumulator[3], accumulator[3] + width, width * 2); memset(accumulator[3] + width, 0, width * 2); // For each column.... for (x = 0; x < width; x++) { // For each component (r, g, b, a)... for (c = 0; c < 4; c++) { // Get the 8bit value from the original image component[c] = GET_RGBA_COMPONENT(in, x, y, stride, c); // Add the diffusion for this pixel we stored in the accumulator. // >> 7 because the values in accumulator are stored * 128 component[c] += accumulator[c][x] >> 7; // Make sure we're not over the boundaries. CLAMP_256(component[c]); // Store the difference from converting 8bit => 4bit and the orig pixel. // Convert 8bit => 4bit. diff = DIFF_8BIT_TO_4BIT(component[c]); component[c] = CONVERT_8BIT_TO_4BIT(component[c]); // Distribute the difference according to the matrix in the // accumulation bufffer. ACCUMULATE(accumulator[c], x + 1, 0, width, diff * 7); ACCUMULATE(accumulator[c], x - 1, 1, width, diff * 3); ACCUMULATE(accumulator[c], x, 1, width, diff * 5); ACCUMULATE(accumulator[c], x + 1, 1, width, diff * 1); } // Write the newly produced pixel PUT_4444(out, x, y, alignedWidth, component[0], component[1], component[2], component[3]); } } return out; }