/**************************************************************************** ** ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the plugins of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** No Commercial Usage ** This file contains pre-release code and may not be distributed. ** You may use this file in accordance with the terms and conditions ** contained in the Technology Preview License Agreement accompanying ** this package. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain ** additional rights. These rights are described in the Nokia Qt LGPL ** Exception version 1.1, included in the file LGPL_EXCEPTION.txt in this ** package. ** ** If you have questions regarding the use of this file, please contact ** Nokia at qt-info@nokia.com. ** ** ** ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ /*! \class QtIcoHandler \since 4.4 \brief The QtIcoHandler class provides support for the ICO image format. \internal */ #include "qicohandler.h" #include #include #include #include // These next two structs represent how the icon information is stored // in an ICO file. typedef struct { quint8 bWidth; // Width of the image quint8 bHeight; // Height of the image (times 2) quint8 bColorCount; // Number of colors in image (0 if >=8bpp) [ not ture ] quint8 bReserved; // Reserved quint16 wPlanes; // Color Planes quint16 wBitCount; // Bits per pixel quint32 dwBytesInRes; // how many bytes in this resource? quint32 dwImageOffset; // where in the file is this image } ICONDIRENTRY, *LPICONDIRENTRY; #define ICONDIRENTRY_SIZE 16 typedef struct { quint16 idReserved; // Reserved quint16 idType; // resource type (1 for icons) quint16 idCount; // how many images? ICONDIRENTRY idEntries[1]; // the entries for each image } ICONDIR, *LPICONDIR; #define ICONDIR_SIZE 6 // Exclude the idEntries field typedef struct { // BMP information header quint32 biSize; // size of this struct quint32 biWidth; // pixmap width quint32 biHeight; // pixmap height quint16 biPlanes; // should be 1 quint16 biBitCount; // number of bits per pixel quint32 biCompression; // compression method quint32 biSizeImage; // size of image quint32 biXPelsPerMeter; // horizontal resolution quint32 biYPelsPerMeter; // vertical resolution quint32 biClrUsed; // number of colors used quint32 biClrImportant; // number of important colors } BMP_INFOHDR ,*LPBMP_INFOHDR; #define BMP_INFOHDR_SIZE 40 class ICOReader { public: ICOReader(QIODevice * iodevice); int count(); QImage iconAt(int index); static bool canRead(QIODevice *iodev); static QList read(QIODevice * device); static bool write(QIODevice * device, const QList & images); private: bool readHeader(); bool readIconEntry(int index, ICONDIRENTRY * iconEntry); bool readBMPHeader(ICONDIRENTRY & iconEntry, BMP_INFOHDR * header); void findColorInfo(QImage & image); void readColorTable(QImage & image); void readBMP(QImage & image); void read1BitBMP(QImage & image); void read4BitBMP(QImage & image); void read8BitBMP(QImage & image); void read16_24_32BMP(QImage & image); struct IcoAttrib { int nbits; int ncolors; int h; int w; int depth; } icoAttrib; QIODevice * iod; qint64 startpos; bool headerRead; ICONDIR iconDir; }; // Data readers and writers that takes care of alignment and endian stuff. static bool readIconDirEntry(QIODevice *iodev, ICONDIRENTRY *iconDirEntry) { if (iodev) { uchar tmp[ICONDIRENTRY_SIZE]; if (iodev->read((char*)tmp, ICONDIRENTRY_SIZE) == ICONDIRENTRY_SIZE) { iconDirEntry->bWidth = tmp[0]; iconDirEntry->bHeight = tmp[1]; iconDirEntry->bColorCount = tmp[2]; iconDirEntry->bReserved = tmp[3]; iconDirEntry->wPlanes = qFromLittleEndian(&tmp[4]); iconDirEntry->wBitCount = qFromLittleEndian(&tmp[6]); iconDirEntry->dwBytesInRes = qFromLittleEndian(&tmp[8]); iconDirEntry->dwImageOffset = qFromLittleEndian(&tmp[12]); return true; } } return false; } static bool writeIconDirEntry(QIODevice *iodev, const ICONDIRENTRY &iconEntry) { if (iodev) { uchar tmp[ICONDIRENTRY_SIZE]; tmp[0] = iconEntry.bWidth; tmp[1] = iconEntry.bHeight; tmp[2] = iconEntry.bColorCount; tmp[3] = iconEntry.bReserved; qToLittleEndian(iconEntry.wPlanes, &tmp[4]); qToLittleEndian(iconEntry.wBitCount, &tmp[6]); qToLittleEndian(iconEntry.dwBytesInRes, &tmp[8]); qToLittleEndian(iconEntry.dwImageOffset, &tmp[12]); return (iodev->write((char*)tmp, ICONDIRENTRY_SIZE) == ICONDIRENTRY_SIZE) ? true : false; } return false; } static bool readIconDir(QIODevice *iodev, ICONDIR *iconDir) { if (iodev) { uchar tmp[ICONDIR_SIZE]; if (iodev->read((char*)tmp, ICONDIR_SIZE) == ICONDIR_SIZE) { iconDir->idReserved = qFromLittleEndian(&tmp[0]); iconDir->idType = qFromLittleEndian(&tmp[2]); iconDir->idCount = qFromLittleEndian(&tmp[4]); return true; } } return false; } static bool writeIconDir(QIODevice *iodev, const ICONDIR &iconDir) { if (iodev) { uchar tmp[6]; qToLittleEndian(iconDir.idReserved, tmp); qToLittleEndian(iconDir.idType, &tmp[2]); qToLittleEndian(iconDir.idCount, &tmp[4]); return (iodev->write((char*)tmp, 6) == 6) ? true : false; } return false; } static bool readBMPInfoHeader(QIODevice *iodev, BMP_INFOHDR *pHeader) { if (iodev) { uchar header[BMP_INFOHDR_SIZE]; if (iodev->read((char*)header, BMP_INFOHDR_SIZE) == BMP_INFOHDR_SIZE) { pHeader->biSize = qFromLittleEndian(&header[0]); pHeader->biWidth = qFromLittleEndian(&header[4]); pHeader->biHeight = qFromLittleEndian(&header[8]); pHeader->biPlanes = qFromLittleEndian(&header[12]); pHeader->biBitCount = qFromLittleEndian(&header[14]); pHeader->biCompression = qFromLittleEndian(&header[16]); pHeader->biSizeImage = qFromLittleEndian(&header[20]); pHeader->biXPelsPerMeter = qFromLittleEndian(&header[24]); pHeader->biYPelsPerMeter = qFromLittleEndian(&header[28]); pHeader->biClrUsed = qFromLittleEndian(&header[32]); pHeader->biClrImportant = qFromLittleEndian(&header[36]); return true; } } return false; } static bool writeBMPInfoHeader(QIODevice *iodev, const BMP_INFOHDR &header) { if (iodev) { uchar tmp[BMP_INFOHDR_SIZE]; qToLittleEndian(header.biSize, &tmp[0]); qToLittleEndian(header.biWidth, &tmp[4]); qToLittleEndian(header.biHeight, &tmp[8]); qToLittleEndian(header.biPlanes, &tmp[12]); qToLittleEndian(header.biBitCount, &tmp[14]); qToLittleEndian(header.biCompression, &tmp[16]); qToLittleEndian(header.biSizeImage, &tmp[20]); qToLittleEndian(header.biXPelsPerMeter, &tmp[24]); qToLittleEndian(header.biYPelsPerMeter, &tmp[28]); qToLittleEndian(header.biClrUsed, &tmp[32]); qToLittleEndian(header.biClrImportant, &tmp[36]); return (iodev->write((char*)tmp, BMP_INFOHDR_SIZE) == BMP_INFOHDR_SIZE) ? true : false; } return false; } ICOReader::ICOReader(QIODevice * iodevice) : iod(iodevice) , startpos(0) , headerRead(false) { } int ICOReader::count() { if (readHeader()) return iconDir.idCount; return 0; } bool ICOReader::canRead(QIODevice *iodev) { bool isProbablyICO = false; if (iodev) { qint64 oldPos = iodev->pos(); ICONDIR ikonDir; if (readIconDir(iodev, &ikonDir)) { qint64 readBytes = ICONDIR_SIZE; if (readIconDirEntry(iodev, &ikonDir.idEntries[0])) { readBytes += ICONDIRENTRY_SIZE; // ICO format does not have a magic identifier, so we read 6 different values, which will hopefully be enough to identify the file. if ( ikonDir.idReserved == 0 && ikonDir.idType == 1 && ikonDir.idEntries[0].bReserved == 0 && ikonDir.idEntries[0].wPlanes <= 1 && ikonDir.idEntries[0].wBitCount <= 32 // Bits per pixel && ikonDir.idEntries[0].dwBytesInRes >= 40 // Must be over 40, since sizeof (infoheader) == 40 ) { isProbablyICO = true; } if (iodev->isSequential()) { // Our structs might be padded due to alignment, so we need to fetch each member before we ungetChar() ! quint32 tmp = ikonDir.idEntries[0].dwImageOffset; iodev->ungetChar((tmp >> 24) & 0xff); iodev->ungetChar((tmp >> 16) & 0xff); iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); tmp = ikonDir.idEntries[0].dwBytesInRes; iodev->ungetChar((tmp >> 24) & 0xff); iodev->ungetChar((tmp >> 16) & 0xff); iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); tmp = ikonDir.idEntries[0].wBitCount; iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); tmp = ikonDir.idEntries[0].wPlanes; iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); iodev->ungetChar(ikonDir.idEntries[0].bReserved); iodev->ungetChar(ikonDir.idEntries[0].bColorCount); iodev->ungetChar(ikonDir.idEntries[0].bHeight); iodev->ungetChar(ikonDir.idEntries[0].bWidth); } } if (iodev->isSequential()) { // Our structs might be padded due to alignment, so we need to fetch each member before we ungetChar() ! quint32 tmp = ikonDir.idCount; iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); tmp = ikonDir.idType; iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); tmp = ikonDir.idReserved; iodev->ungetChar((tmp >> 8) & 0xff); iodev->ungetChar(tmp & 0xff); } } if (!iodev->isSequential()) iodev->seek(oldPos); } return isProbablyICO; } bool ICOReader::readHeader() { if (iod && !headerRead) { startpos = iod->pos(); if (readIconDir(iod, &iconDir)) { if (iconDir.idReserved == 0 || iconDir.idType == 1) headerRead = true; } } return headerRead; } bool ICOReader::readIconEntry(int index, ICONDIRENTRY * iconEntry) { if (iod) { if (iod->seek(startpos + ICONDIR_SIZE + (index * ICONDIRENTRY_SIZE))) { return readIconDirEntry(iod, iconEntry); } } return false; } bool ICOReader::readBMPHeader(ICONDIRENTRY & iconEntry, BMP_INFOHDR * header) { memset(&icoAttrib, 0, sizeof(IcoAttrib)); if (iod) { if (iod->seek(startpos + iconEntry.dwImageOffset)) { if (readBMPInfoHeader(iod, header)) { icoAttrib.nbits = header->biBitCount ? header->biBitCount : iconEntry.wBitCount; icoAttrib.h = header->biHeight / 2; // this height is always double the iconEntry height (for the mask) icoAttrib.w = header->biWidth; switch (icoAttrib.nbits) { case 32: case 24: case 16: icoAttrib.depth = 32; break; case 8: case 4: icoAttrib.depth = 8; break; default: icoAttrib.depth = 1; } if ( icoAttrib.depth == 32 ) // there's no colormap icoAttrib.ncolors = 0; else // # colors used icoAttrib.ncolors = header->biClrUsed ? header->biClrUsed : 1 << icoAttrib.nbits; //qDebug() << "Bits:" << icoAttrib.nbits << "Depth:" << icoAttrib.depth << "Ncols:" << icoAttrib.ncolors; return TRUE; } } } return FALSE; } void ICOReader::findColorInfo(QImage & image) { if (icoAttrib.ncolors > 0) { // set color table readColorTable(image); } else if (icoAttrib.nbits == 16) { // don't support RGB values for 15/16 bpp image = QImage(); } } void ICOReader::readColorTable(QImage & image) { if (iod) { image.setNumColors(icoAttrib.ncolors); uchar rgb[4]; for (int i=0; iread((char*)rgb, 4) != 4) { image = QImage(); break; } image.setColor(i, qRgb(rgb[2],rgb[1],rgb[0])); } } else { image = QImage(); } } void ICOReader::readBMP(QImage & image) { if (icoAttrib.nbits == 1) { // 1 bit BMP image read1BitBMP(image); } else if (icoAttrib.nbits == 4) { // 4 bit BMP image read4BitBMP(image); } else if (icoAttrib.nbits == 8) { read8BitBMP(image); } else if (icoAttrib.nbits == 16 || icoAttrib.nbits == 24 || icoAttrib.nbits == 32 ) { // 16,24,32 bit BMP image read16_24_32BMP(image); } } /** * NOTE: A 1 bit BMP is only flipped vertically, and not horizontally like all other color depths! * (This is the same with the bitmask) * */ void ICOReader::read1BitBMP(QImage & image) { if (iod) { int h = image.height(); int bpl = image.bytesPerLine(); while (--h >= 0) { if (iod->read((char*)image.scanLine(h),bpl) != bpl) { image = QImage(); break; } } } else { image = QImage(); } } void ICOReader::read4BitBMP(QImage & image) { if (iod) { int h = icoAttrib.h; int buflen = ((icoAttrib.w+7)/8)*4; uchar *buf = new uchar[buflen]; Q_CHECK_PTR(buf); while (--h >= 0) { if (iod->read((char*)buf,buflen) != buflen) { image = QImage(); break; } register uchar *p = image.scanLine(h); uchar *b = buf; for (int i=0; i> 4; *p++ = *b++ & 0x0f; } if (icoAttrib.w & 1) // the last nibble *p = *b >> 4; } delete [] buf; } else { image = QImage(); } } void ICOReader::read8BitBMP(QImage & image) { if (iod) { int h = icoAttrib.h; int bpl = image.bytesPerLine(); while (--h >= 0) { if (iod->read((char *)image.scanLine(h), bpl) != bpl) { image = QImage(); break; } } } else { image = QImage(); } } void ICOReader::read16_24_32BMP(QImage & image) { if (iod) { int h = icoAttrib.h; register QRgb *p; QRgb *end; uchar *buf = new uchar[image.bytesPerLine()]; int bpl = ((icoAttrib.w*icoAttrib.nbits+31)/32)*4; uchar *b; while (--h >= 0) { p = (QRgb *)image.scanLine(h); end = p + icoAttrib.w; if (iod->read((char *)buf, bpl) != bpl) { image = QImage(); break; } b = buf; while (p < end) { if (icoAttrib.nbits == 24) *p++ = qRgb(*(b+2), *(b+1), *b); else if (icoAttrib.nbits == 32) *p++ = qRgba(*(b+2), *(b+1), *b, *(b+3)); b += icoAttrib.nbits/8; } } delete[] buf; } else { image = QImage(); } } QImage ICOReader::iconAt(int index) { QImage img; if (count() > index) { // forces header to be read ICONDIRENTRY iconEntry; if (readIconEntry(index, &iconEntry)) { BMP_INFOHDR header; if (readBMPHeader(iconEntry, &header)) { QImage::Format format = QImage::Format_ARGB32; if (icoAttrib.nbits == 24) format = QImage::Format_RGB32; else if (icoAttrib.ncolors == 2) format = QImage::Format_Mono; else if (icoAttrib.ncolors > 0) format = QImage::Format_Indexed8; QImage image(icoAttrib.w, icoAttrib.h, format); if (!image.isNull()) { findColorInfo(image); if (!image.isNull()) { readBMP(image); if (!image.isNull()) { QImage mask(image.width(), image.height(), QImage::Format_Mono); if (!mask.isNull()) { mask.setNumColors(2); mask.setColor(0, qRgba(255,255,255,0xff)); mask.setColor(1, qRgba(0 ,0 ,0 ,0xff)); read1BitBMP(mask); if (!mask.isNull()) { img = QImage(image.width(), image.height(), QImage::Format_ARGB32 ); img = image; img.setAlphaChannel(mask); // (Luckily, it seems that setAlphaChannel() does not ruin the alpha values // of partially transparent pixels in those icons that have that) } } } } } } } } return img; } /*! Reads all the icons from the given \a device, and returns them as a list of QImage objects. Each image has an alpha channel that represents the mask from the corresponding icon. \sa write() */ QList ICOReader::read(QIODevice * device) { QList images; ICOReader reader(device); for (int i=0; i & images) { bool retValue = false; if (images.count()) { qint64 origOffset = device->pos(); ICONDIR id; id.idReserved = 0; id.idType = 1; id.idCount = images.count(); ICONDIRENTRY * entries = new ICONDIRENTRY[id.idCount]; BMP_INFOHDR * bmpHeaders = new BMP_INFOHDR[id.idCount]; QByteArray * imageData = new QByteArray[id.idCount]; for (int i=0; i 128 || image.height() > 128) { image = image.scaled(128, 128, Qt::KeepAspectRatio, Qt::SmoothTransformation); } QImage maskImage(image.width(), image.height(), QImage::Format_Mono); image = image.convertToFormat(QImage::Format_ARGB32); if (image.hasAlphaChannel()) { maskImage = image.createAlphaMask(); } else { maskImage.fill(0xff); } maskImage = maskImage.convertToFormat(QImage::Format_Mono); int nbits = 32; int bpl_bmp = ((image.width()*nbits+31)/32)*4; entries[i].bColorCount = 0; entries[i].bReserved = 0; entries[i].wBitCount = nbits; entries[i].bHeight = image.height(); entries[i].bWidth = image.width(); entries[i].dwBytesInRes = BMP_INFOHDR_SIZE + (bpl_bmp * image.height()) + (maskImage.bytesPerLine() * maskImage.height()); entries[i].wPlanes = 1; if (i==0) entries[i].dwImageOffset = origOffset + ICONDIR_SIZE + (id.idCount * ICONDIRENTRY_SIZE); else entries[i].dwImageOffset = entries[i-1].dwImageOffset + entries[i-1].dwBytesInRes; bmpHeaders[i].biBitCount = entries[i].wBitCount; bmpHeaders[i].biClrImportant = 0; bmpHeaders[i].biClrUsed = entries[i].bColorCount; bmpHeaders[i].biCompression = 0; bmpHeaders[i].biHeight = entries[i].bHeight * 2; // 2 is for the mask bmpHeaders[i].biPlanes = entries[i].wPlanes; bmpHeaders[i].biSize = BMP_INFOHDR_SIZE; bmpHeaders[i].biSizeImage = entries[i].dwBytesInRes - BMP_INFOHDR_SIZE; bmpHeaders[i].biWidth = entries[i].bWidth; bmpHeaders[i].biXPelsPerMeter = 0; bmpHeaders[i].biYPelsPerMeter = 0; QBuffer buffer(&imageData[i]); buffer.open(QIODevice::WriteOnly); uchar *buf = new uchar[bpl_bmp]; uchar *b; memset( buf, 0, bpl_bmp ); int y; for (y=image.height()-1; y>=0; y--) { // write the image bits // 32 bits QRgb *p = (QRgb *)image.scanLine(y); QRgb *end = p + image.width(); b = buf; int x = 0; while (p < end) { *b++ = qBlue(*p); *b++ = qGreen(*p); *b++ = qRed(*p); *b++ = qAlpha(*p); if (qAlpha(*p) > 0) // Even mostly transparent pixels must not be masked away maskImage.setPixel(x, y, Qt::color1); // (i.e. createAlphaMask() takes away too much) p++; x++; } buffer.write((char*)buf, bpl_bmp); } delete[] buf; maskImage.invertPixels(); // seems as though it needs this // NOTE! !! The mask is only flipped vertically - not horizontally !! for (y=maskImage.height()-1; y>=0; y--) buffer.write((char*)maskImage.scanLine(y), maskImage.bytesPerLine()); } if (writeIconDir(device, id)) { int i; bool bOK = true; for (i = 0; i < id.idCount && bOK; i++) { bOK = writeIconDirEntry(device, entries[i]); } if (bOK) { for (i=0; iwrite(imageData[i]) == (int) imageData[i].size()); } retValue = bOK; } } delete [] entries; delete [] bmpHeaders; delete [] imageData; } return retValue; } /*! Constructs an instance of QtIcoHandler initialized to use \a device. */ QtIcoHandler::QtIcoHandler(QIODevice *device) { m_currentIconIndex = 0; setDevice(device); m_pICOReader = new ICOReader(device); } /*! Destructor for QtIcoHandler. */ QtIcoHandler::~QtIcoHandler() { delete m_pICOReader; } /*! * Verifies if some values (magic bytes) are set as expected in the header of the file. * If the magic bytes were found, it is assumed that the QtIcoHandler can read the file. * */ bool QtIcoHandler::canRead() const { bool bCanRead = false; QIODevice *device = QImageIOHandler::device(); if (device) { bCanRead = ICOReader::canRead(device); if (bCanRead) setFormat("ico"); } else { qWarning("QtIcoHandler::canRead() called with no device"); } return bCanRead; } /*! This static function is used by the plugin code, and is provided for convenience only. \a device must be an opened device with pointing to the start of the header data of the ICO file. */ bool QtIcoHandler::canRead(QIODevice *device) { Q_ASSERT(device); return ICOReader::canRead(device); } /*! \reimp */ bool QtIcoHandler::read(QImage *image) { bool bSuccess = false; QImage img = m_pICOReader->iconAt(m_currentIconIndex); // Make sure we only write to \a image when we succeed. if (!img.isNull()) { bSuccess = true; *image = img; } return bSuccess; } /*! \reimp */ bool QtIcoHandler::write(const QImage &image) { QIODevice *device = QImageIOHandler::device(); QList imgs; imgs.append(image); return ICOReader::write(device, imgs); } /*! * Return the common identifier of the format. * For ICO format this will return "ico". */ QByteArray QtIcoHandler::name() const { return "ico"; } /*! \reimp */ int QtIcoHandler::imageCount() const { return m_pICOReader->count(); } /*! \reimp */ bool QtIcoHandler::jumpToImage(int imageNumber) { if (imageNumber < imageCount()) { m_currentIconIndex = imageNumber; } return (imageNumber < imageCount()) ? true : false; } /*! \reimp */ bool QtIcoHandler::jumpToNextImage() { return jumpToImage(m_currentIconIndex + 1); }