/**************************************************************************** ** ** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the QtXmlPatterns module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qcommonsequencetypes_p.h" #include "qdynamiccontextstore_p.h" #include "qevaluationcache_p.h" #include "quserfunctioncallsite_p.h" QT_BEGIN_NAMESPACE using namespace QPatternist; UserFunctionCallsite::UserFunctionCallsite(const QXmlName nameP, const FunctionSignature::Arity ar) : CallSite(nameP) , m_arity(ar) , m_expressionSlotOffset(-2) { } Item::Iterator::Ptr UserFunctionCallsite::evaluateSequence(const DynamicContext::Ptr &context) const { return m_body->evaluateSequence(bindVariables(context)); } Item UserFunctionCallsite::evaluateSingleton(const DynamicContext::Ptr &context) const { return m_body->evaluateSingleton(bindVariables(context)); } bool UserFunctionCallsite::evaluateEBV(const DynamicContext::Ptr &context) const { return m_body->evaluateEBV(bindVariables(context)); } void UserFunctionCallsite::evaluateToSequenceReceiver(const DynamicContext::Ptr &context) const { m_body->evaluateToSequenceReceiver(bindVariables(context)); } DynamicContext::Ptr UserFunctionCallsite::bindVariables(const DynamicContext::Ptr &context) const { const DynamicContext::Ptr stackContext(context->createStack()); Q_ASSERT(stackContext); const Expression::List::const_iterator end(m_operands.constEnd()); Expression::List::const_iterator it(m_operands.constBegin()); VariableSlotID slot = m_expressionSlotOffset; for(; it != end; ++it) { stackContext->setExpressionVariable(slot, Expression::Ptr(new DynamicContextStore(*it, context))); ++slot; } return stackContext; } SequenceType::List UserFunctionCallsite::expectedOperandTypes() const { SequenceType::List result; if(m_functionDeclaration) { const FunctionArgument::List args(m_functionDeclaration->signature()->arguments()); const FunctionArgument::List::const_iterator end(args.constEnd()); FunctionArgument::List::const_iterator it(args.constBegin()); for(; it != end; ++it) result.append((*it)->type()); } else result.append(CommonSequenceTypes::ZeroOrMoreItems); return result; } Expression::Ptr UserFunctionCallsite::typeCheck(const StaticContext::Ptr &context, const SequenceType::Ptr &reqType) { /* The parser calls TypeChecker::applyFunctionConversion() on user function * bodies, possibly indirectly, before all function call sites have been * resolved. Hence it's possible that we're called before before the usual * typeCheck() pass, and hence before we have been resolved/checked and * subsequently m_functionDeclaration set. Therefore, encounter for that below. * * UnresolvedVariableReference::typeCheck() has the same dilemma. */ /* Ensure that the return value of the function is properly * converted/does match from where it is called(which is here). */ if(isRecursive() || !m_functionDeclaration) return CallSite::typeCheck(context, reqType); else { /* Update, such that we use a recent version of the body that has typeCheck() * and compress() rewrites included. */ m_body = m_functionDeclaration->body(); /* Note, we can't assign to m_functionDeclaration->body() because UserFunction can apply * to several different callsites. Hence we need our own version. */ m_body = m_body->typeCheck(context, reqType); /* We just act as a pipe for m_body, so we don't have to typecheck ourselves. However, * the arguments must match the function declaration. */ typeCheckOperands(context); return Expression::Ptr(this); } } Expression::Ptr UserFunctionCallsite::compress(const StaticContext::Ptr &context) { if(!isRecursive()) rewrite(m_body, m_body->compress(context), context); return CallSite::compress(context); } Expression::Properties UserFunctionCallsite::properties() const { return DisableElimination; } SequenceType::Ptr UserFunctionCallsite::staticType() const { /* Our return type, is the static type of the function body. We could have also used * m_functionDeclaration->signature()->returnType(), but it doesn't get updated * when function conversion is applied. * We can't use m_body's type if we're recursive, because m_body computes its type * from its children, and we're at least one of the children. Hence, we would * recurse infinitely if we did. * * m_body can be null here if we're called before setSource(). */ if(isRecursive() || !m_body) return CommonSequenceTypes::ZeroOrMoreItems; // TODO use the declaration, it can have a type explicitly. else return m_body->staticType(); } ExpressionVisitorResult::Ptr UserFunctionCallsite::accept(const ExpressionVisitor::Ptr &visitor) const { return visitor->visit(this); } Expression::ID UserFunctionCallsite::id() const { return IDUserFunctionCallsite; } bool UserFunctionCallsite::isSignatureValid(const FunctionSignature::Ptr &sign) const { Q_ASSERT(sign); return sign->name() == name() && sign->isArityValid(m_arity); } bool UserFunctionCallsite::configureRecursion(const CallTargetDescription::Ptr &sign) { Q_ASSERT(sign); setIsRecursive(isSignatureValid(sign)); return isRecursive(); } void UserFunctionCallsite::setSource(const UserFunction::Ptr &userFunction, const VariableSlotID cacheSlotOffset) { m_functionDeclaration = userFunction; m_body = userFunction->body(); m_expressionSlotOffset = userFunction->expressionSlotOffset(); const int len = m_operands.size(); const VariableDeclaration::List varDecls(userFunction->argumentDeclarations()); for(int i = 0; i < len; ++i) { /* We don't want evaluation caches for range variables, it's not necessary since * the item is already cached in DynamicContext::rangeVariable(). */ if(m_operands.at(i)->is(IDRangeVariableReference)) continue; /* Note that we pass in cacheSlotOffset + i here instead of varDecls.at(i)->slot since * we want independent caches for each callsite. */ m_operands[i] = Expression::Ptr(new EvaluationCache(m_operands.at(i), varDecls.at(i).data(), cacheSlotOffset + i)); } } FunctionSignature::Arity UserFunctionCallsite::arity() const { return m_arity; } CallTargetDescription::Ptr UserFunctionCallsite::callTargetDescription() const { return m_functionDeclaration->signature(); } QT_END_NAMESPACE