/**************************************************************************** ** ** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies). ** All rights reserved. ** Contact: Nokia Corporation (qt-info@nokia.com) ** ** This file is part of the test suite of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** GNU Lesser General Public License Usage ** This file may be used under the terms of the GNU Lesser General Public ** License version 2.1 as published by the Free Software Foundation and ** appearing in the file LICENSE.LGPL included in the packaging of this ** file. Please review the following information to ensure the GNU Lesser ** General Public License version 2.1 requirements will be met: ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Nokia gives you certain additional ** rights. These rights are described in the Nokia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU General ** Public License version 3.0 as published by the Free Software Foundation ** and appearing in the file LICENSE.GPL included in the packaging of this ** file. Please review the following information to ensure the GNU General ** Public License version 3.0 requirements will be met: ** http://www.gnu.org/copyleft/gpl.html. ** ** Other Usage ** Alternatively, this file may be used in accordance with the terms and ** conditions contained in a signed written agreement between you and Nokia. ** ** ** ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include #include #include #include #include #include "oldtessellator.h" #include "testtessellator.h" #include "utils.h" #include "simple.h" #include "arc.h" #include "math.h" //TESTED_CLASS= //TESTED_FILES= class tst_QTessellator : public QObject { Q_OBJECT public: tst_QTessellator() { } private slots: void testStandardSet(); void testRandom(); void testArc(); void testRects(); void testConvexRects(); void testConvex(); }; QPointF creatPoint() { qreal x = int(20.0 * (rand() / (RAND_MAX + 1.0))); qreal y = int(20.0 * (rand() / (RAND_MAX + 1.0))); return QPointF(x, y); } bool test(const QPointF *pg, int pgSize, bool winding, tessellate_function tessellate = test_tesselate_polygon, qreal maxDiff = 0.005) { QVector traps; qreal area1 = 0; qreal area2 = 0; old_tesselate_polygon(&traps, pg, pgSize, winding); area1 = compute_area_for_x(traps); traps.clear(); tessellate(&traps, pg, pgSize, winding); area2 = compute_area_for_x(traps); bool result = (qAbs(area2 - area1) < maxDiff); if (!result && area1) result = (qAbs(area1 - area2)/area1 < maxDiff); if (!result) qDebug() << area1 << area2; return result; } void simplifyTestFailure(QVector failure, bool winding) { int i = 1; while (i < failure.size() - 1) { QVector t = failure; t.remove(i); if (test(t.data(), t.size(), winding)) { ++i; continue; } failure = t; i = 1; } for (int x = 0; x < failure.size(); ++x) { fprintf(stderr, "%lf,%lf, ", failure[x].x(), failure[x].y()); } fprintf(stderr, "\n\n"); } void tst_QTessellator::testStandardSet() { QVector sampleSet; sampleSet.append(simpleData()); foreach(FullData data, sampleSet) { for (int i = 0; i < data.size(); ++i) { if (!test(data[i].data(), data[i].size(), false)) { simplifyTestFailure(data[i], false); QCOMPARE(true, false); } if (!test(data[i].data(), data[i].size(), true)) { simplifyTestFailure(data[i], true); QCOMPARE(true, false); } } } } void fillRandomVec(QVector &vec) { int size = vec.size(); --size; for (int i = 0; i < size; ++i) { vec[i] = creatPoint(); } vec[size] = vec[0]; } void tst_QTessellator::testRandom() { int failures = 0; for (int i = 5; i < 12; ++i) { QVector vec(i); #ifdef QT_ARCH_ARM int k = 200; #else int k = 5000; #endif while (--k) { fillRandomVec(vec); if (!test(vec.data(), vec.size(), false)) { simplifyTestFailure(vec, false); ++failures; } if (!test(vec.data(), vec.size(), true)) { simplifyTestFailure(vec, true); ++failures; } } } QVERIFY(failures == 0); } // we need a higher threshold for failure here than in the above tests, as this basically draws // a very thin outline, where the discretization in the new tesselator shows bool test_arc(const QPolygonF &poly, bool winding) { QVector traps; qreal area1 = 0; qreal area2 = 0; old_tesselate_polygon(&traps, poly.data(), poly.size(), winding); area1 = compute_area_for_x(traps); traps.clear(); test_tesselate_polygon(&traps, poly.data(), poly.size(), winding); area2 = compute_area_for_x(traps); bool result = (area2 - area1 < .02); if (!result && area1) result = (qAbs(area1 - area2)/area1 < .02); return result; } void tst_QTessellator::testArc() { FullData arc = arcData(); QMatrix mat; #ifdef QT_ARCH_ARM const int stop = 5; #else const int stop = 1000; #endif for (int i = 0; i < stop; ++i) { mat.rotate(qreal(.01)); mat.scale(qreal(.99), qreal(.99)); QPolygonF poly = arc.at(0); QPolygonF vec = poly * mat; QVERIFY(test_arc(vec, true)); QVERIFY(test_arc(vec, false)); } } static bool isConvex(const QVector &v) { int nPoints = v.size() - 1; qreal lastCross = 0; for (int i = 0; i < nPoints; ++i) { QPointF a = v[i]; QPointF b = v[(i + 1) % nPoints]; QPointF d1 = b - a; for (int j = 0; j < nPoints; ++j) { if (j == i || j == i + 1) continue; QPointF p = v[j]; QPointF d2 = p - a; qreal cross = d1.x() * d2.y() - d1.y() * d2.x(); if (!qFuzzyCompare(cross + 1, 1) && !qFuzzyCompare(cross + 1, 1) && (lastCross > 0) != (cross > 0)) return false; lastCross = cross; } } return true; } static void fillRectVec(QVector &v) { int numRects = v.size() / 5; int first = 0; v[first++] = QPointF(0, 0); v[first++] = QPointF(10, 0); v[first++] = QPointF(10, 10); v[first++] = QPointF(0, 10); v[first++] = QPointF(0, 0); v[first++] = QPointF(0, 0); v[first++] = QPointF(2, 2); v[first++] = QPointF(4, 0); v[first++] = QPointF(2, -2); v[first++] = QPointF(0, 0); v[first++] = QPointF(0, 0); v[first++] = QPointF(4, 4); v[first++] = QPointF(6, 2); v[first++] = QPointF(2, -2); v[first++] = QPointF(0, 0); for (int i = first / 5; i < numRects; ++i) { QPointF a = creatPoint(); QPointF b = creatPoint(); QPointF delta = a - b; QPointF perp(delta.y(), -delta.x()); perp *= ((int)(20.0 * rand() / (RAND_MAX + 1.0))) / 20.0; int j = 5 * i; v[j++] = a + perp; v[j++] = a - perp; v[j++] = b - perp; v[j++] = b + perp; v[j++] = a + perp; } } #ifdef QT_ARCH_ARM const int numRects = 500; #else const int numRects = 5000; #endif void tst_QTessellator::testConvexRects() { return; int failures = 0; QVector vec(numRects * 5); fillRectVec(vec); for (int rect = 0; rect < numRects; ++rect) { QVector v(5); for (int i = 0; i < 5; ++i) v[i] = vec[5 * rect + i]; if (!test(v.data(), v.size(), false, test_tessellate_polygon_convex)) { simplifyTestFailure(v, false); ++failures; } if (!test(v.data(), v.size(), true, test_tessellate_polygon_convex)) { simplifyTestFailure(v, true); ++failures; } } QVERIFY(failures == 0); } void tst_QTessellator::testConvex() { int failures = 0; for (int i = 4; i < 10; ++i) { QVector vec(i); int k = 5000; while (k--) { fillRandomVec(vec); if (!isConvex(vec)) continue; if (!test(vec.data(), vec.size(), false, test_tessellate_polygon_convex)) { simplifyTestFailure(vec, false); ++failures; } if (!test(vec.data(), vec.size(), true, test_tessellate_polygon_convex)) { simplifyTestFailure(vec, true); ++failures; } } } QVERIFY(failures == 0); } void tst_QTessellator::testRects() { int failures = 0; QVector vec(numRects * 5); fillRectVec(vec); for (int rect = 0; rect < numRects; ++rect) { QVector v(5); for (int i = 0; i < 5; ++i) v[i] = vec[5 * rect + i]; if (!test(v.data(), v.size(), false, test_tessellate_polygon_rect, qreal(0.05))) { simplifyTestFailure(v, false); ++failures; } if (!test(v.data(), v.size(), true, test_tessellate_polygon_rect, qreal(0.05))) { simplifyTestFailure(v, true); ++failures; } } QVERIFY(failures == 0); } QTEST_MAIN(tst_QTessellator) #include "tst_tessellator.moc"