1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the documentation of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:FDL$
** GNU Free Documentation License
** Alternatively, this file may be used under the terms of the GNU Free
** Documentation License version 1.3 as published by the Free Software
** Foundation and appearing in the file included in the packaging of
** this file.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms
** and conditions contained in a signed written agreement between you
** and Nokia.
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
/*!
\group statemachine
\title State Machine Classes
*/
/*!
\page statemachine-api.html
\title The State Machine Framework
\brief An overview of the State Machine framework for constructing and executing state graphs.
\ingroup frameworks-technologies
\tableofcontents
The State Machine framework provides classes for creating and executing
state graphs. The concepts and notation are based on those from Harel's
\l{Statecharts: A visual formalism for complex systems}{Statecharts}, which
is also the basis of UML state diagrams. The semantics of state machine
execution are based on \l{State Chart XML: State Machine Notation for
Control Abstraction}{State Chart XML (SCXML)}.
Statecharts provide a graphical way of modeling how a system reacts to
stimuli. This is done by defining the possible \e states that the system can
be in, and how the system can move from one state to another (\e transitions
between states). A key characteristic of event-driven systems (such as Qt
applications) is that behavior often depends not only on the last or current
event, but also the events that preceded it. With statecharts, this
information is easy to express.
The State Machine framework provides an API and execution model that can be
used to effectively embed the elements and semantics of statecharts in Qt
applications. The framework integrates tightly with Qt's meta-object system;
for example, transitions between states can be triggered by signals, and
states can be configured to set properties and invoke methods on QObjects.
Qt's event system is used to drive the state machines.
The state graph in the State Machine framework is hierarchical. States can be nested inside of
other states, and the current configuration of the state machine consists of the set of states
which are currently active. All the states in a valid configuration of the state machine will
have a common ancestor.
\section1 Classes in the State Machine Framework
These classes are provided by qt for creating event-driven state machines.
\annotatedlist statemachine
\section1 A Simple State Machine
To demonstrate the core functionality of the State Machine API, let's look
at a small example: A state machine with three states, \c s1, \c s2 and \c
s3. The state machine is controlled by a single QPushButton; when the button
is clicked, the machine transitions to another state. Initially, the state
machine is in state \c s1. The statechart for this machine is as follows:
\img statemachine-button.png
\omit
\caption This is a caption
\endomit
The following snippet shows the code needed to create such a state machine.
First, we create the state machine and states:
\snippet doc/src/snippets/statemachine/main.cpp 0
Then, we create the transitions by using the QState::addTransition()
function:
\snippet doc/src/snippets/statemachine/main.cpp 1
Next, we add the states to the machine and set the machine's initial state:
\snippet doc/src/snippets/statemachine/main.cpp 2
Finally, we start the state machine:
\snippet doc/src/snippets/statemachine/main.cpp 3
The state machine executes asynchronously, i.e. it becomes part of your
application's event loop.
\section1 Doing Useful Work on State Entry and Exit
The above state machine merely transitions from one state to another, it
doesn't perform any operations. The QState::assignProperty() function can be
used to have a state set a property of a QObject when the state is
entered. In the following snippet, the value that should be assigned to a
QLabel's text property is specified for each state:
\snippet doc/src/snippets/statemachine/main.cpp 4
When any of the states is entered, the label's text will be changed
accordingly.
The QState::entered() signal is emitted when the state is entered, and the
QState::exited() signal is emitted when the state is exited. In the
following snippet, the button's showMaximized() slot will be called when
state \c s3 is entered, and the button's showMinimized() slot will be called
when \c s3 is exited:
\snippet doc/src/snippets/statemachine/main.cpp 5
Custom states can reimplement QAbstractState::onEntry() and
QAbstractState::onExit().
\section1 State Machines That Finish
The state machine defined in the previous section never finishes. In order
for a state machine to be able to finish, it needs to have a top-level \e
final state (QFinalState object). When the state machine enters a top-level
final state, the machine will emit the QStateMachine::finished() signal and
halt.
All you need to do to introduce a final state in the graph is create a
QFinalState object and use it as the target of one or more transitions.
\section1 Sharing Transitions By Grouping States
Assume we wanted the user to be able to quit the application at any time by
clicking a Quit button. In order to achieve this, we need to create a final
state and make it the target of a transition associated with the Quit
button's clicked() signal. We could add a transition from each of \c s1, \c
s2 and \c s3; however, this seems redundant, and one would also have to
remember to add such a transition from every new state that is added in the
future.
We can achieve the same behavior (namely that clicking the Quit button quits
the state machine, regardless of which state the state machine is in) by
grouping states \c s1, \c s2 and \c s3. This is done by creating a new
top-level state and making the three original states children of the new
state. The following diagram shows the new state machine.
\img statemachine-button-nested.png
\omit
\caption This is a caption
\endomit
The three original states have been renamed \c s11, \c s12 and \c s13 to
reflect that they are now children of the new top-level state, \c s1. Child
states implicitly inherit the transitions of their parent state. This means
it is now sufficient to add a single transition from \c s1 to the final
state \c s2. New states added to \c s1 will also automatically inherit this
transition.
All that's needed to group states is to specify the proper parent when the
state is created. You also need to specify which of the child states is the
initial one (i.e. which child state the state machine should enter when the
parent state is the target of a transition).
\snippet doc/src/snippets/statemachine/main2.cpp 0
\snippet doc/src/snippets/statemachine/main2.cpp 1
In this case we want the application to quit when the state machine is
finished, so the machine's finished() signal is connected to the
application's quit() slot.
A child state can override an inherited transition. For example, the
following code adds a transition that effectively causes the Quit button to
be ignored when the state machine is in state \c s12.
\snippet doc/src/snippets/statemachine/main2.cpp 2
A transition can have any state as its target, i.e. the target state does
not have to be on the same level in the state hierarchy as the source state.
\section1 Using History States to Save and Restore the Current State
Imagine that we wanted to add an "interrupt" mechanism to the example
discussed in the previous section; the user should be able to click a button
to have the state machine perform some non-related task, after which the
state machine should resume whatever it was doing before (i.e. return to the
old state, which is one of \c s11, \c s12 and \c s13 in this case).
Such behavior can easily be modeled using \e{history states}. A history
state (QHistoryState object) is a pseudo-state that represents the child
state that the parent state was in the last time the parent state was
exited.
A history state is created as a child of the state for which we wish to
record the current child state; when the state machine detects the presence
of such a state at runtime, it automatically records the current (real)
child state when the parent state is exited. A transition to the history
state is in fact a transition to the child state that the state machine had
previously saved; the state machine automatically "forwards" the transition
to the real child state.
The following diagram shows the state machine after the interrupt mechanism
has been added.
\img statemachine-button-history.png
\omit
\caption This is a caption
\endomit
The following code shows how it can be implemented; in this example we
simply display a message box when \c s3 is entered, then immediately return
to the previous child state of \c s1 via the history state.
\snippet doc/src/snippets/statemachine/main2.cpp 3
\section1 Using Parallel States to Avoid a Combinatorial Explosion of States
Assume that you wanted to model a set of mutually exclusive properties of a
car in a single state machine. Let's say the properties we are interested in
are Clean vs Dirty, and Moving vs Not moving. It would take four mutually
exclusive states and eight transitions to be able to represent and freely
move between all possible combinations.
\img statemachine-nonparallel.png
\omit
\caption This is a caption
\endomit
If we added a third property (say, Red vs Blue), the total number of states
would double, to eight; and if we added a fourth property (say, Enclosed vs
Convertible), the total number of states would double again, to 16.
Using parallel states, the total number of states and transitions grows
linearly as we add more properties, instead of exponentially. Furthermore,
states can be added to or removed from the parallel state without affecting
any of their sibling states.
\img statemachine-parallel.png
\omit
\caption This is a caption
\endomit
To create a parallel state group, pass QState::ParallelStates to the QState
constructor.
\snippet doc/src/snippets/statemachine/main3.cpp 0
When a parallel state group is entered, all its child states will be
simultaneously entered. Transitions within the individual child states
operate normally. However, any of the child states may take a transition which exits the parent
state. When this happens, the parent state and all of its child states are exited.
The parallelism in the State Machine framework follows an interleaved semantics. All parallel
operations will be executed in a single, atomic step of the event processing, so no event can
interrupt the parallel operations. However, events will still be processed sequentially, since
the machine itself is single threaded. As an example: Consider the situation where there are two
transitions that exit the same parallel state group, and their conditions become true
simultaneously. In this case, the event that is processed last of the two will not have any
effect, since the first event will already have caused the machine to exit from the parallel
state.
\section1 Detecting that a Composite State has Finished
A child state can be final (a QFinalState object); when a final child state
is entered, the parent state emits the QState::finished() signal. The
following diagram shows a composite state \c s1 which does some processing
before entering a final state:
\img statemachine-finished.png
\omit
\caption This is a caption
\endomit
When \c s1 's final state is entered, \c s1 will automatically emit
finished(). We use a signal transition to cause this event to trigger a
state change:
\snippet doc/src/snippets/statemachine/main3.cpp 1
Using final states in composite states is useful when you want to hide the
internal details of a composite state; i.e. the only thing the outside world
should be able to do is enter the state, and get a notification when the
state has completed its work. This is a very powerful abstraction and
encapsulation mechanism when building complex (deeply nested) state
machines. (In the above example, you could of course create a transition
directly from \c s1 's \c done state rather than relying on \c s1 's
finished() signal, but with the consequence that implementation details of
\c s1 are exposed and depended on).
For parallel state groups, the QState::finished() signal is emitted when \e
all the child states have entered final states.
\section1 Targetless Transitions
A transition need not have a target state. A transition without a target can
be triggered the same way as any other transition; the difference is that
when a targetless transition is triggered, it doesn't cause any state
changes. This allows you to react to a signal or event when your machine is
in a certain state, without having to leave that state. Example:
\code
QStateMachine machine;
QState *s1 = new QState(&machine);
QPushButton button;
QSignalTransition *trans = new QSignalTransition(&button, SIGNAL(clicked()));
s1->addTransition(trans);
QMessageBox msgBox;
msgBox.setText("The button was clicked; carry on.");
QObject::connect(trans, SIGNAL(triggered()), &msgBox, SLOT(exec()));
machine.setInitialState(s1);
\endcode
The message box will be displayed each time the button is clicked, but the
state machine will remain in its current state (s1). If the target state
were explicitly set to s1, however, s1 would be exited and re-entered each
time (e.g. the QAbstractState::entered() and QAbstractState::exited()
signals would be emitted).
\section1 Events, Transitions and Guards
A QStateMachine runs its own event loop. For signal transitions
(QSignalTransition objects), QStateMachine automatically posts a
QStateMachine::SignalEvent to itself when it intercepts the corresponding
signal; similarly, for QObject event transitions (QEventTransition objects)
a QStateMachine::WrappedEvent is posted.
You can post your own events to the state machine using
QStateMachine::postEvent().
When posting a custom event to the state machine, you typically also have
one or more custom transitions that can be triggered from events of that
type. To create such a transition, you subclass QAbstractTransition and
reimplement QAbstractTransition::eventTest(), where you check if an event
matches your event type (and optionally other criteria, e.g. attributes of
the event object).
Here we define our own custom event type, \c StringEvent, for posting
strings to the state machine:
\snippet doc/src/snippets/statemachine/main4.cpp 0
Next, we define a transition that only triggers when the event's string
matches a particular string (a \e guarded transition):
\snippet doc/src/snippets/statemachine/main4.cpp 1
In the eventTest() reimplementation, we first check if the event type is the
desired one; if so, we cast the event to a StringEvent and perform the
string comparison.
The following is a statechart that uses the custom event and transition:
\img statemachine-customevents.png
\omit
\caption This is a caption
\endomit
Here's what the implementation of the statechart looks like:
\snippet doc/src/snippets/statemachine/main4.cpp 2
Once the machine is started, we can post events to it.
\snippet doc/src/snippets/statemachine/main4.cpp 3
An event that is not handled by any relevant transition will be silently
consumed by the state machine. It can be useful to group states and provide
a default handling of such events; for example, as illustrated in the
following statechart:
\img statemachine-customevents2.png
\omit
\caption This is a caption
\endomit
For deeply nested statecharts, you can add such "fallback" transitions at
the level of granularity that's most appropriate.
\section1 Using Restore Policy To Automatically Restore Properties
In some state machines it can be useful to focus the attention on assigning properties in states,
not on restoring them when the state is no longer active. If you know that a property should
always be restored to its initial value when the machine enters a state that does not explicitly
give the property a value, you can set the global restore policy to
QStateMachine::RestoreProperties.
\code
QStateMachine machine;
machine.setGlobalRestorePolicy(QStateMachine::RestoreProperties);
\endcode
When this restore policy is set, the machine will automatically restore all properties. If it
enters a state where a given property is not set, it will first search the hierarchy of ancestors
to see if the property is defined there. If it is, the property will be restored to the value
defined by the closest ancestor. If not, it will be restored to its initial value (i.e. the
value of the property before any property assignments in states were executed.)
Take the following code:
\snippet doc/src/snippets/statemachine/main5.cpp 0
Lets say the property \c fooBar is 0.0 when the machine starts. When the machine is in state
\c s1, the property will be 1.0, since the state explicitly assigns this value to it. When the
machine is in state \c s2, no value is explicitly defined for the property, so it will implicitly
be restored to 0.0.
If we are using nested states, the parent defines a value for the property which is inherited by
all descendants that do not explicitly assign a value to the property.
\snippet doc/src/snippets/statemachine/main5.cpp 2
Here \c s1 has two children: \c s2 and \c s3. When \c s2 is entered, the property \c fooBar
will have the value 2.0, since this is explicitly defined for the state. When the machine is in
state \c s3, no value is defined for the state, but \c s1 defines the property to be 1.0, so this
is the value that will be assigned to \c fooBar.
\section1 Animating Property Assignments
The State Machine API connects with the Animation API in Qt to allow automatically animating
properties as they are assigned in states.
Say we have the following code:
\snippet doc/src/snippets/statemachine/main5.cpp 3
Here we define two states of a user interface. In \c s1 the \c button is small, and in \c s2
it is bigger. If we click the button to transition from \c s1 to \c s2, the geometry of the button
will be set immediately when a given state has been entered. If we want the transition to be
smooth, however, all we need to do is make a QPropertyAnimation and add this to the transition
object.
\snippet doc/src/snippets/statemachine/main5.cpp 4
Adding an animation for the property in question means that the property assignment will no
longer take immediate effect when the state has been entered. Instead, the animation will start
playing when the state has been entered and smoothly animate the property assignment. Since we
do not set the start value or end value of the animation, these will be set implicitly. The
start value of the animation will be the property's current value when the animation starts, and
the end value will be set based on the property assignments defined for the state.
If the global restore policy of the state machine is set to QStateMachine::RestoreProperties,
it is possible to also add animations for the property restorations.
\section1 Detecting That All Properties Have Been Set In A State
When animations are used to assign properties, a state no longer defines the exact values that a
property will have when the machine is in the given state. While the animation is running, the
property can potentially have any value, depending on the animation.
In some cases, it can be useful to be able to detect when the property has actually been assigned
the value defined by a state.
Say we have the following code:
\snippet doc/src/snippets/statemachine/main5.cpp 5
When \c button is clicked, the machine will transition into state \c s2, which will set the
geometry of the button, and then pop up a message box to alert the user that the geometry has
been changed.
In the normal case, where animations are not used, this will operate as expected. However, if
an animation for the \c geometry of \c button is set on the transition between \c s1 and \c s2,
the animation will be started when \c s2 is entered, but the \c geometry property will not
actually reach its defined value before the animation is finished running. In this case, the
message box will pop up before the geometry of the button has actually been set.
To ensure that the message box does not pop up until the geometry actually reaches its final
value, we can use the state's propertiesAssigned() signal. The propertiesAssigned() signal will be
emitted when the property is assigned its final value, whether this is done immediately or
after the animation has finished playing.
\snippet doc/src/snippets/statemachine/main5.cpp 6
In this example, when \c button is clicked, the machine will enter \c s2. It will remain in state
\c s2 until the \c geometry property has been set to \c QRect(0, 0, 50, 50). Then it will
transition into \c s3. When \c s3 is entered, the message box will pop up. If the transition into
\c s2 has an animation for the \c geometry property, then the machine will stay in \c s2 until the
animation has finished playing. If there is no such animation, it will simply set the property and
immediately enter state \c s3.
Either way, when the machine is in state \c s3, you are guaranteed that the property \c geometry
has been assigned the defined value.
If the global restore policy is set to QStateMachine::RestoreProperties, the state will not emit
the propertiesAssigned() signal until these have been executed as well.
\section1 What Happens If A State Is Exited Before The Animation Has Finished
If a state has property assignments, and the transition into the state has animations for the
properties, the state can potentially be exited before the properties have been assigned to the
values defines by the state. This is true in particular when there are transitions out from the
state that do not depend on the propertiesAssigned signal, as described in the previous section.
The State Machine API guarantees that a property assigned by the state machine either:
\list
\o Has a value explicitly assigned to the property.
\o Is currently being animated into a value explicitly assigned to the property.
\endlist
When a state is exited prior to the animation finishing, the behavior of the state machine depends
on the target state of the transition. If the target state explicitly assigns a value to the
property, no additional action will be taken. The property will be assigned the value defined by
the target state.
If the target state does not assign any value to the property, there are two
options: By default, the property will be assigned the value defined by the state it is leaving
(the value it would have been assigned if the animation had been permitted to finish playing). If
a global restore policy is set, however, this will take precedence, and the property will be
restored as usual.
\section1 Default Animations
As described earlier, you can add animations to transitions to make sure property assignments
in the target state are animated. If you want a specific animation to be used for a given property
regardless of which transition is taken, you can add it as a default animation to the state
machine. This is in particular useful when the properties assigned (or restored) by specific
states is not known when the machine is constructed.
\code
QState *s1 = new QState();
QState *s2 = new QState();
s2->assignProperty(object, "fooBar", 2.0);
s1->addTransition(s2);
QStateMachine machine;
machine.setInitialState(s1);
machine.addDefaultAnimation(new QPropertyAnimation(object, "fooBar"));
\endcode
When the machine is in state \c s2, the machine will play the default animation for the
property \c fooBar since this property is assigned by \c s2.
Note that animations explicitly set on transitions will take precedence over any default
animation for the given property.
*/
|