1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the documentation of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
/*!
\page qtestlib-manual.html
\title QTestLib Manual
\ingroup architecture
\brief An overview of Qt's unit testing framework.
\keyword qtestlib
The QTestLib framework, provided by Nokia, is a tool for unit
testing Qt based applications and libraries. QTestLib provides
all the functionality commonly found in unit testing frameworks as
well as extensions for testing graphical user interfaces.
Table of contents:
\tableofcontents
\section1 QTestLib Features
QTestLib is designed to ease the writing of unit tests for Qt
based applications and libraries:
\table
\header \o Feature \o Details
\row
\o \bold Lightweight
\o QTestLib consists of about 6000 lines of code and 60
exported symbols.
\row
\o \bold Self-contained
\o QTestLib requires only a few symbols from the Qt Core library
for non-gui testing.
\row
\o \bold {Rapid testing}
\o QTestLib needs no special test-runners; no special
registration for tests.
\row
\o \bold {Data-driven testing}
\o A test can be executed multiple times with different test data.
\row
\o \bold {Basic GUI testing}
\o QTestLib offers functionality for mouse and keyboard simulation.
\row
\o \bold {Benchmarking}
\o QTestLib supports benchmarking and provides several measurement back-ends.
\row
\o \bold {IDE friendly}
\o QTestLib outputs messages that can be interpreted by Visual
Studio and KDevelop.
\row
\o \bold Thread-safety
\o The error reporting is thread safe and atomic.
\row
\o \bold Type-safety
\o Extensive use of templates prevent errors introduced by
implicit type casting.
\row
\o \bold {Easily extendable}
\o Custom types can easily be added to the test data and test output.
\endtable
Note: For higher-level GUI and application testing needs, please
see the \l{Third-Party Tools}{Qt testing products provided by
Nokia partners}.
\section1 QTestLib API
All public methods are in the \l QTest namespace. In addition, the
\l QSignalSpy class provides easy introspection for Qt's signals and slots.
\section1 Using QTestLib
\section2 Creating a Test
To create a test, subclass QObject and add one or more private slots to it. Each
private slot is a testfunction in your test. QTest::qExec() can be used to execute
all testfunctions in the test object.
In addition, there are four private slots that are \e not treated as testfunctions.
They will be executed by the testing framework and can be used to initialize and
clean up either the entire test or the current test function.
\list
\o \c{initTestCase()} will be called before the first testfunction is executed.
\o \c{cleanupTestCase()} will be called after the last testfunction was executed.
\o \c{init()} will be called before each testfunction is executed.
\o \c{cleanup()} will be called after every testfunction.
\endlist
If \c{initTestCase()} fails, no testfunction will be executed. If \c{init()} fails,
the following testfunction will not be executed, the test will proceed to the next
testfunction.
Example:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 0
For more examples, refer to the \l{QTestLib Tutorial}.
\section2 Building a Test
If you are using \c qmake as your build tool, just add the
following to your project file:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 1
If you are using other buildtools, make sure that you add the location
of the QTestLib header files to your include path (usually \c{include/QtTest}
under your Qt installation directory). If you are using a release build
of Qt, link your test to the \c QtTest library. For debug builds, use
\c{QtTest_debug}.
See \l {Chapter 1: Writing a Unit Test}{Writing a Unit Test} for a step by
step explanation.
\section2 QTestLib Command Line Arguments
\section3 Syntax
The syntax to execute an autotest takes the following simple form:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 2
Substitute \c testname with the name of your executable. \c
testfunctions can contain names of test functions to be
executed. If no \c testfunctions are passed, all tests are run. If you
append the name of an entry in \c testdata, the test function will be
run only with that test data.
For example:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 3
Runs the test function called \c toUpper with all available test data.
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 4
Runs the \c toUpper test function with all available test data,
and the \c toInt test function with the testdata called \c
zero (if the specified test data doesn't exist, the associated test
will fail).
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 5
Runs the testMyWidget function test, outputs every signal
emission and waits 500 milliseconds after each simulated
mouse/keyboard event.
\section3 Options
The following command line arguments are understood:
\list
\o \c -help \BR
outputs the possible command line arguments and give some useful help.
\o \c -functions \BR
outputs all test functions available in the test.
\o \c -o \e filename \BR
write output to the specified file, rather than to standard output
\o \c -silent \BR
silent output, only shows warnings, failures and minimal status messages
\o \c -v1 \BR
verbose output; outputs information on entering and exiting test functions.
\o \c -v2 \BR
extended verbose output; also outputs each \l QCOMPARE() and \l QVERIFY()
\o \c -vs \BR
outputs every signal that gets emitted
\o \c -xml \BR
outputs XML formatted results instead of plain text
\o \c -lightxml \BR
outputs results as a stream of XML tags
\o \c -eventdelay \e ms \BR
if no delay is specified for keyboard or mouse simulation
(\l QTest::keyClick(),
\l QTest::mouseClick() etc.), the value from this parameter
(in milliseconds) is substituted.
\o \c -keydelay \e ms \BR
like -eventdelay, but only influences keyboard simulation and not mouse
simulation.
\o \c -mousedelay \e ms \BR
like -eventdelay, but only influences mouse simulation and not keyboard
simulation.
\o \c -keyevent-verbose \BR
output more verbose output for keyboard simulation
\o \c -maxwarnings \e number\BR
sets the maximum number of warnings to output. 0 for unlimited, defaults to 2000.
\endlist
\section2 Creating a Benchmark
To create a benchmark, follow the instructions for crating a test and then add a
QBENCHMARK macro to the test function that you want to benchmark.
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 12
The code insde the QBENCHMARK macro will be measured, and possibly also repeated
several times in order to get an accurate measurement. This depends on the selected
measurement back-end. Several back-ends are available an can be selected on the
command line:
\target testlib-benchmarking-measurement
\table
\header \o Name
\o Commmand-line Arguemnt
\o Availability
\row \o Walltime
\o (default)
\o All platforms
\row \o CPU tick counter
\o -tickcounter
\o Windows, Mac OS X, Linux, many UNIX-like systems.
\row \o Valgrind/Callgrind
\o -callgrind
\o Linux (if installed)
\row \o Event Counter
\o -eventcounter
\o All platforms
\endtable
In short, walltime is always available but requires many repetitions to
get a useful result.
Tick counters are usually available and can provide
results with fewer repetitions, but can be susceptible to CPU frequency
scaling issues.
Valgrind provides exact results, but does not take
I/O waits into account, and is only available on a limited number of
platforms.
Event counting is available on all platforms and it provides the number of events
that were received by the event loop before they are sent to their corresponding
targets (this might include non-Qt events).
\note Depending on the device configuration, Tick counters on the
Windows CE platform may not be as fine-grained, compared to other platforms.
Devices that do not support high-resolution timers default to
one-millisecond granularity.
See the chapter 5 in the \l{QTestLib Tutorial} for more benchmarking examples.
\section1 Using QTestLib remotely on Windows CE
\c cetest is a convenience application which helps the user to launch an
application remotely on a Windows CE device or emulator.
It needs to be executed after the unit test has been successfully compiled.
Prior to launching, the following files are copied to the device:
\list
\o all Qt libraries the project links to
\o \l {QtRemote}{QtRemote.dll}
\o the c runtime library specified during installation
\o all files specified in the \c .pro file following the \l DEPLOYMENT rules.
\endlist
\section2 Using \c cetest
\section3 Syntax
The syntax to execute an autotest takes the following simple form:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 6
\section3 Options
\c cetest provides the same options as those for unit-testing on non cross-compiled
platforms. See \l {QTestLib Command Line Arguments} {Command Line Arguments} for
more information.
The following commands are also included:
\list
\o \c -debug \BR
Test version compiled in debug mode.
\o \c -release \BR
Test version compiled in release mode.
\o \c -libpath \e path \BR
Target path to copy Qt libraries to.
\o \c -qt-delete \BR
Delete Qt libraries after execution.
\o \c -project-delete \BR
Delete project files after execution.
\o \c -delete \BR
Delete project and Qt libraries after execution.
\o \c -conf \BR
Specifies a qt.conf file to be deployed to remote directory.
\endlist
\note \c{debug} is the default build option.
\section2 QtRemote
\c QtRemote is a small library which is build after QTestLib. It allows the host
system to create a process on a remote device and waits until its execution has
been finished.
\section2 Requirements
\c cetest uses Microsoft ActiveSync to establish a remote connection between the
host computer and the device. Thus header files and libraries are needed to compile
cetest and QtRemote successfully.
Prior to \l{Installing Qt on Windows CE}{installation} of Qt, you need to set your
\c INCLUDE and \c LIB environment variables properly.
A default installation of Windows Mobile 5 for Pocket PC can be obtained by:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 7
Note that Qt will remember the path, so you do not need to set it again
after switching the environments for cross-compilation.
\section1 3rd Party Code
The CPU tick counters used for benchmarking is licensed under the following
license: (from src/testlib/3rdparty/cycle.h)
\legalese
Copyright (c) 2003, 2006 Matteo Frigo\br
Copyright (c) 2003, 2006 Massachusetts Institute of Technology
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
\endlegalese
*/
/*!
\page qtestlib-tutorial.html
\brief A short introduction to testing with QTestLib.
\contentspage QTestLib Manual
\nextpage {Chapter 1: Writing a Unit Test}{Chapter 1}
\title QTestLib Tutorial
\ingroup howto
This tutorial gives a short introduction to how to use some of the
features of the QTestLib framework. It is divided into four
chapters:
\list 1
\o \l {Chapter 1: Writing a Unit Test}{Writing a Unit Test}
\o \l {Chapter 2: Data Driven Testing}{Data Driven Testing}
\o \l {Chapter 3: Simulating GUI Events}{Simulating GUI Events}
\o \l {Chapter 4: Replaying GUI Events}{Replaying GUI Events}
\o \l {Chapter 5: Writing a Benchmark}{Writing a Benchmark}
\endlist
*/
/*!
\example qtestlib/tutorial1
\contentspage {QTestLib Tutorial}{Contents}
\nextpage {Chapter 2: Data Driven Testing}{Chapter 2}
\title Chapter 1: Writing a Unit Test
In this first chapter we will see how to write a simple unit test
for a class, and how to execute it.
\section1 Writing a Test
Let's assume you want to test the behavior of our QString class.
First, you need a class that contains your test functions. This class
has to inherit from QObject:
\snippet examples/qtestlib/tutorial1/testqstring.cpp 0
Note that you need to include the QTest header, and that the
test functions have to be declared as private slots so the
test framework finds and executes it.
Then you need to implement the test function itself. The
implementation could look like this:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 8
The \l QVERIFY() macro evaluates the expression passed as its
argument. If the expression evaluates to true, the execution of
the test function continues. Otherwise, a message describing the
failure is appended to the test log, and the test function stops
executing.
But if you want a more verbose output to the test log, you should
use the \l QCOMPARE() macro instead:
\snippet examples/qtestlib/tutorial1/testqstring.cpp 1
If the strings are not equal, the contents of both strings is
appended to the test log, making it immediately visible why the
comparison failed.
Finally, to make our test case a stand-alone executable, the
following two lines are needed:
\snippet examples/qtestlib/tutorial1/testqstring.cpp 2
The \l QTEST_MAIN() macro expands to a simple \c main()
method that runs all the test functions. Note that if both the
declaration and the implementation of our test class are in a \c
.cpp file, we also need to include the generated moc file to make
Qt's introspection work.
\section1 Executing a Test
Now that we finished writing our test, we want to execute
it. Assuming that our test was saved as \c testqstring.cpp in an
empty directory: we build the test using qmake to create a project
and generate a makefile.
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 9
\bold {Note:}If you're using windows, replace \c make with \c
nmake or whatever build tool you use.
Running the resulting executable should give you the following
output:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 10
Congratulations! You just wrote and executed your first unit test
using the QTestLib framework.
*/
/*!
\example qtestlib/tutorial2
\previouspage {Chapter 1: Writing a Unit Test}{Chapter 1}
\contentspage {QTestLib Tutorial}{Contents}
\nextpage {Chapter 3: Simulating Gui Events}{Chapter 3}
\title Chapter 2: Data Driven Testing
In this chapter we will demonstrate how to execute a test
multiple times with different test data.
So far, we have hard coded the data we wanted to test into our
test function. If we add more test data, the function might look like
this:
\snippet doc/src/snippets/code/doc_src_qtestlib.qdoc 11
To prevent that the function ends up being cluttered by repetitive
code, QTestLib supports adding test data to a test function. All
we need is to add another private slot to our test class:
\snippet examples/qtestlib/tutorial2/testqstring.cpp 0
\section1 Writing the Data Function
A test function's associated data function carries the same name,
appended by \c{_data}. Our data function looks like this:
\snippet examples/qtestlib/tutorial2/testqstring.cpp 1
First, we define the two elements of our test table using the \l
QTest::addColumn() function: A test string, and the
expected result of applying the QString::toUpper() function to
that string.
Then we add some data to the table using the \l
QTest::newRow() function. Each set of data will become a
separate row in the test table.
\l QTest::newRow() takes one argument: A name that will be
associated with the data set. If the test fails, the name will be
used in the test log, referencing the failed data. Then we
stream the data set into the new table row: First an arbitrary
string, and then the expected result of applying the
QString::toUpper() function to that string.
You can think of the test data as a two-dimensional table. In
our case, it has two columns called \c string and \c result and
three rows. In addition a name as well as an index is associated
with each row:
\table
\header
\o index
\o name
\o string
\o result
\row
\o 0
\o all lower
\o "hello"
\o HELLO
\row
\o 1
\o mixed
\o "Hello"
\o HELLO
\row
\o 2
\o all upper
\o "HELLO"
\o HELLO
\endtable
\section1 Rewriting the Test Function
Our test function can now be rewritten:
\snippet examples/qtestlib/tutorial2/testqstring.cpp 2
The TestQString::toUpper() function will be executed three times,
once for each entry in the test table that we created in the
associated TestQString::toUpper_data() function.
First, we fetch the two elements of the data set using the \l
QFETCH() macro. \l QFETCH() takes two arguments: The data type of
the element and the element name. Then we perform the test using
the \l QCOMPARE() macro.
This approach makes it very easy to add new data to the test
without modifying the test itself.
And again, to make our test case a stand-alone executable,
the following two lines are needed:
\snippet examples/qtestlib/tutorial2/testqstring.cpp 3
As before, the QTEST_MAIN() macro expands to a simple main()
method that runs all the test functions, and since both the
declaration and the implementation of our test class are in a .cpp
file, we also need to include the generated moc file to make Qt's
introspection work.
*/
/*!
\example qtestlib/tutorial3
\previouspage {Chapter 2 Data Driven Testing}{Chapter 2}
\contentspage {QTestLib Tutorial}{Contents}
\nextpage {Chapter 4: Replaying GUI Events}{Chapter 4}
\title Chapter 3: Simulating GUI Events
QTestLib features some mechanisms to test graphical user
interfaces. Instead of simulating native window system events,
QTestLib sends internal Qt events. That means there are no
side-effects on the machine the tests are running on.
In this chapter we will se how to write a simple GUI test.
\section1 Writing a GUI test
This time, let's assume you want to test the behavior of our
QLineEdit class. As before, you will need a class that contains
your test function:
\snippet examples/qtestlib/tutorial3/testgui.cpp 0
The only difference is that you need to include the QtGui class
definitions in addition to the QTest namespace.
\snippet examples/qtestlib/tutorial3/testgui.cpp 1
In the implementation of the test function we first create a
QLineEdit. Then we simulate writing "hello world" in the line edit
using the \l QTest::keyClicks() function.
\note The widget must also be shown in order to correctly test keyboard
shortcuts.
QTest::keyClicks() simulates clicking a sequence of keys on a
widget. Optionally, a keyboard modifier can be specified as well
as a delay (in milliseconds) of the test after each key click. In
a similar way, you can use the QTest::keyClick(),
QTest::keyPress(), QTest::keyRelease(), QTest::mouseClick(),
QTest::mouseDClick(), QTest::mouseMove(), QTest::mousePress()
and QTest::mouseRelease() functions to simulate the associated
GUI events.
Finally, we use the \l QCOMPARE() macro to check if the line edit's
text is as expected.
As before, to make our test case a stand-alone executable, the
following two lines are needed:
\snippet examples/qtestlib/tutorial3/testgui.cpp 2
The QTEST_MAIN() macro expands to a simple main() method that
runs all the test functions, and since both the declaration and
the implementation of our test class are in a .cpp file, we also
need to include the generated moc file to make Qt's introspection
work.
*/
/*!
\example qtestlib/tutorial4
\previouspage {Chapter 3: Simulating GUI Event}{Chapter 3}
\contentspage {QTestLib Tutorial}{Contents}
\nextpage {Chapter 5: Writing a Benchmark}{Chapter 5}
\title Chapter 4: Replaying GUI Events
In this chapter, we will show how to simulate a GUI event,
and how to store a series of GUI events as well as replay them on
a widget.
The approach to storing a series of events and replay them, is
quite similar to the approach explained in \l {Chapter 2:
Data Driven Testing}{chapter 2}; all you need is to add a data
function to your test class:
\snippet examples/qtestlib/tutorial4/testgui.cpp 0
\section1 Writing the Data Function
As before, a test function's associated data function carries the
same name, appended by \c{_data}.
\snippet examples/qtestlib/tutorial4/testgui.cpp 1
First, we define the elements of the table using the
QTest::addColumn() function: A list of GUI events, and the
expected result of applying the list of events on a QWidget. Note
that the type of the first element is \l QTestEventList.
A QTestEventList can be populated with GUI events that can be
stored as test data for later usage, or be replayed on any
QWidget.
In our current data function, we create two \l
{QTestEventList}s. The first list consists of a single click to
the 'a' key. We add the event to the list using the
QTestEventList::addKeyClick() function. Then we use the
QTest::newRow() function to give the data set a name, and
stream the event list and the expected result into the table.
The second list consists of two key clicks: an 'a' with a
following 'backspace'. Again we use the
QTestEventList::addKeyClick() to add the events to the list, and
QTest::newRow() to put the event list and the expected
result into the table with an associated name.
\section1 Rewriting the Test Function
Our test can now be rewritten:
\snippet examples/qtestlib/tutorial4/testgui.cpp 2
The TestGui::testGui() function will be executed two times,
once for each entry in the test data that we created in the
associated TestGui::testGui_data() function.
First, we fetch the two elements of the data set using the \l
QFETCH() macro. \l QFETCH() takes two arguments: The data type of
the element and the element name. Then we create a QLineEdit, and
apply the list of events on that widget using the
QTestEventList::simulate() function.
Finally, we use the QCOMPARE() macro to check if the line edit's
text is as expected.
As before, to make our test case a stand-alone executable,
the following two lines are needed:
\snippet examples/qtestlib/tutorial4/testgui.cpp 3
The QTEST_MAIN() macro expands to a simple main() method that
runs all the test functions, and since both the declaration and
the implementation of our test class are in a .cpp file, we also
need to include the generated moc file to make Qt's introspection
work.
*/
/*!
\example qtestlib/tutorial5
\previouspage {Chapter 4: Replaying GUI Events}{Chapter 4}
\contentspage {QTestLib Tutorial}{Contents}
\title Chapter 5: Writing a Benchmark
In this final chapter we will demonstrate how to write benchmarks
using QTestLib.
\section1 Writing a Benchmark
To create a benchmark we extend a test function with a QBENCHMARK macro.
A benchmark test function will then typically consist of setup code and
a QBENCHMARK macro that contains the code to be measured. This test
function benchmarks QString::localeAwareCompare().
\snippet examples/qtestlib/tutorial5/benchmarking.cpp 0
Setup can be done at the beginning of the function, the clock is not
running at this point. The code inside the QBENCHMARK macro will be
measured, and possibly repeated several times in order to get an
accurate measurement.
Several \l {testlib-benchmarking-measurement}{back-ends} are available
and can be selected on the command line.
\section1 Data Functions
Data functions are useful for creating benchmarks that compare
multiple data inputs, for example locale aware compare against standard
compare.
\snippet examples/qtestlib/tutorial5/benchmarking.cpp 1
The test function then uses the data to determine what to benchmark.
\snippet examples/qtestlib/tutorial5/benchmarking.cpp 2
The "if(useLocaleCompare)" switch is placed outside the QBENCHMARK
macro to avoid measuring its overhead. Each benchmark test function
can have one active QBENCHMARK macro.
\section1 External Tools
Tools for handling and visualizing test data are available as part of
the \l{qtestlib-tools} project on the Qt Labs Web site. These include
a tool for comparing performance data obtained from test runs and a
utility to generate Web-based graphs of performance data.
See the \l{qtestlib-tools Announcement} for more information on these
tools and a simple graphing example.
*/
|