1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
|
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "quuid.h"
#include "qdatastream.h"
#include "qendian.h"
QT_BEGIN_NAMESPACE
#ifndef QT_NO_QUUID_STRING
template <class Char, class Integral>
void _q_toHex(Char *&dst, Integral value)
{
static const char digits[] = "0123456789abcdef";
value = qToBigEndian(value);
const char* p = reinterpret_cast<const char*>(&value);
for (uint i = 0; i < sizeof(Integral); ++i, dst += 2) {
uint j = (p[i] >> 4) & 0xf;
dst[0] = Char(digits[j]);
j = p[i] & 0xf;
dst[1] = Char(digits[j]);
}
}
template <class Char, class Integral>
bool _q_fromHex(const Char *&src, Integral &value)
{
value = 0;
for (uint i = 0; i < sizeof(Integral) * 2; ++i) {
int ch = *src++;
int tmp;
if (ch >= '0' && ch <= '9')
tmp = ch - '0';
else if (ch >= 'a' && ch <= 'f')
tmp = ch - 'a' + 10;
else if (ch >= 'A' && ch <= 'F')
tmp = ch - 'A' + 10;
else
return false;
value = value * 16 + tmp;
}
return true;
}
template <class Char>
void _q_uuidToHex(Char *&dst, const uint &d1, const ushort &d2, const ushort &d3, const uchar (&d4)[8])
{
*dst++ = Char('{');
_q_toHex(dst, d1);
*dst++ = Char('-');
_q_toHex(dst, d2);
*dst++ = Char('-');
_q_toHex(dst, d3);
*dst++ = Char('-');
for (int i = 0; i < 2; i++)
_q_toHex(dst, d4[i]);
*dst++ = Char('-');
for (int i = 2; i < 8; i++)
_q_toHex(dst, d4[i]);
*dst = Char('}');
}
template <class Char>
bool _q_uuidFromHex(const Char *&src, uint &d1, ushort &d2, ushort &d3, uchar (&d4)[8])
{
if (*src == Char('{'))
src++;
if (!_q_fromHex(src, d1)
|| *src++ != Char('-')
|| !_q_fromHex(src, d2)
|| *src++ != Char('-')
|| !_q_fromHex(src, d3)
|| *src++ != Char('-')
|| !_q_fromHex(src, d4[0])
|| !_q_fromHex(src, d4[1])
|| *src++ != Char('-')
|| !_q_fromHex(src, d4[2])
|| !_q_fromHex(src, d4[3])
|| !_q_fromHex(src, d4[4])
|| !_q_fromHex(src, d4[5])
|| !_q_fromHex(src, d4[6])
|| !_q_fromHex(src, d4[7])) {
return false;
}
return true;
}
#endif
/*!
\class QUuid
\brief The QUuid class stores a Universally Unique Identifier (UUID).
\reentrant
Using \e{U}niversally \e{U}nique \e{ID}entifiers (UUID) is a
standard way to uniquely identify entities in a distributed
computing environment. A UUID is a 16-byte (128-bit) number
generated by some algorithm that is meant to guarantee that the
UUID will be unique in the distributed computing environment where
it is used. The acronym GUID is often used instead, \e{G}lobally
\e{U}nique \e{ID}entifiers, but it refers to the same thing.
\target Variant field
Actually, the GUID is one \e{variant} of UUID. Multiple variants
are in use. Each UUID contains a bit field that specifies which
type (variant) of UUID it is. Call variant() to discover which
type of UUID an instance of QUuid contains. It extracts the three
most signifcant bits of byte 8 of the 16 bytes. In QUuid, byte 8
is \c{QUuid::data4[0]}. If you create instances of QUuid using the
constructor that accepts all the numeric values as parameters, use
the following table to set the three most significant bits of
parameter \c{b1}, which becomes \c{QUuid::data4[0]} and contains
the variant field in its three most significant bits. In the
table, 'x' means \e {don't care}.
\table
\header
\o msb0
\o msb1
\o msb2
\o Variant
\row
\o 0
\o x
\o x
\o NCS (Network Computing System)
\row
\o 1
\o 0
\o x
\o DCE (Distributed Computing Environment)
\row
\o 1
\o 1
\o 0
\o Microsoft (GUID)
\row
\o 1
\o 1
\o 1
\o Reserved for future expansion
\endtable
\target Version field
If variant() returns QUuid::DCE, the UUID also contains a
\e{version} field in the four most significant bits of
\c{QUuid::data3}, and you can call version() to discover which
version your QUuid contains. If you create instances of QUuid
using the constructor that accepts all the numeric values as
parameters, use the following table to set the four most
significant bits of parameter \c{w2}, which becomes
\c{QUuid::data3} and contains the version field in its four most
significant bits.
\table
\header
\o msb0
\o msb1
\o msb2
\o msb3
\o Version
\row
\o 0
\o 0
\o 0
\o 1
\o Time
\row
\o 0
\o 0
\o 1
\o 0
\o Embedded POSIX
\row
\o 0
\o 0
\o 1
\o 1
\o Name
\row
\o 0
\o 1
\o 0
\o 0
\o Random
\endtable
The field layouts for the DCE versions listed in the table above
are specified in the \l{http://www.ietf.org/rfc/rfc4122.txt}
{Network Working Group UUID Specification}.
Most platforms provide a tool for generating new UUIDs, e.g. \c
uuidgen and \c guidgen. You can also use createUuid(). UUIDs
generated by createUuid() are of the random type. Their
QUuid::Version bits are set to QUuid::Random, and their
QUuid::Variant bits are set to QUuid::DCE. The rest of the UUID is
composed of random numbers. Theoretically, this means there is a
small chance that a UUID generated by createUuid() will not be
unique. But it is
\l{http://en.wikipedia.org/wiki/Universally_Unique_Identifier#Random_UUID_probability_of_duplicates}
{a \e{very} small chance}.
UUIDs can be constructed from numeric values or from strings, or
using the static createUuid() function. They can be converted to a
string with toString(). UUIDs have a variant() and a version(),
and null UUIDs return true from isNull().
*/
/*!
\fn QUuid::QUuid(const GUID &guid)
Casts a Windows \a guid to a Qt QUuid.
\warning This function is only for Windows platforms.
*/
/*!
\fn QUuid &QUuid::operator=(const GUID &guid)
Assigns a Windows \a guid to a Qt QUuid.
\warning This function is only for Windows platforms.
*/
/*!
\fn QUuid::operator GUID() const
Returns a Windows GUID from a QUuid.
\warning This function is only for Windows platforms.
*/
/*!
\fn QUuid::QUuid()
Creates the null UUID. toString() will output the null UUID
as "{00000000-0000-0000-0000-000000000000}".
*/
/*!
\fn QUuid::QUuid(uint l, ushort w1, ushort w2, uchar b1, uchar b2, uchar b3, uchar b4, uchar b5, uchar b6, uchar b7, uchar b8)
Creates a UUID with the value specified by the parameters, \a l,
\a w1, \a w2, \a b1, \a b2, \a b3, \a b4, \a b5, \a b6, \a b7, \a
b8.
Example:
\snippet doc/src/snippets/code/src_corelib_plugin_quuid.cpp 0
*/
#ifndef QT_NO_QUUID_STRING
/*!
Creates a QUuid object from the string \a text, which must be
formatted as five hex fields separated by '-', e.g.,
"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" where 'x' is a hex
digit. The curly braces shown here are optional, but it is normal to
include them. If the conversion fails, a null UUID is created. See
toString() for an explanation of how the five hex fields map to the
public data members in QUuid.
\sa toString(), QUuid()
*/
QUuid::QUuid(const QString &text)
{
if (text.length() < 36) {
*this = QUuid();
return;
}
const ushort *data = reinterpret_cast<const ushort *>(text.unicode());
if (*data == '{' && text.length() < 37) {
*this = QUuid();
return;
}
if (!_q_uuidFromHex(data, data1, data2, data3, data4)) {
*this = QUuid();
return;
}
}
/*!
\internal
*/
QUuid::QUuid(const char *text)
{
if (!text) {
*this = QUuid();
return;
}
if (!_q_uuidFromHex(text, data1, data2, data3, data4)) {
*this = QUuid();
return;
}
}
/*!
Creates a QUuid object from the QByteArray \a text, which must be
formatted as five hex fields separated by '-', e.g.,
"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" where 'x' is a hex
digit. The curly braces shown here are optional, but it is normal to
include them. If the conversion fails, a null UUID is created. See
toByteArray() for an explanation of how the five hex fields map to the
public data members in QUuid.
\since 4.8
\sa toByteArray(), QUuid()
*/
QUuid::QUuid(const QByteArray &text)
{
if (text.length() < 36) {
*this = QUuid();
return;
}
const char *data = text.constData();
if (*data == '{' && text.length() < 37) {
*this = QUuid();
return;
}
if (!_q_uuidFromHex(data, data1, data2, data3, data4)) {
*this = QUuid();
return;
}
}
#endif
/*!
\since 4.8
Creates a QUuid object from the binary representation of the UUID given
by \a bytes, as specified by RFC 4122 section 4.1.2. See toRfc4122() for a
further explanation of the order of bytes required.
The byte array accepted is \e not a human readable format.
If the conversion fails, a null UUID is created.
\sa toRfc4122(), QUuid()
*/
QUuid QUuid::fromRfc4122(const QByteArray &bytes)
{
if (bytes.isEmpty() || bytes.length() != 16)
return QUuid();
uint d1;
ushort d2, d3;
uchar d4[8];
const uchar *data = reinterpret_cast<const uchar *>(bytes.constData());
d1 = qFromBigEndian<quint32>(data);
data += sizeof(quint32);
d2 = qFromBigEndian<quint16>(data);
data += sizeof(quint16);
d3 = qFromBigEndian<quint16>(data);
data += sizeof(quint16);
for (int i = 0; i < 8; ++i) {
d4[i] = *(data);
data++;
}
return QUuid(d1, d2, d3, d4[0], d4[1], d4[2], d4[3], d4[4], d4[5], d4[6], d4[7]);
}
/*!
\fn bool QUuid::operator==(const QUuid &other) const
Returns true if this QUuid and the \a other QUuid are identical;
otherwise returns false.
*/
/*!
\fn bool QUuid::operator!=(const QUuid &other) const
Returns true if this QUuid and the \a other QUuid are different;
otherwise returns false.
*/
#ifndef QT_NO_QUUID_STRING
/*!
\fn QUuid::operator QString() const
Returns the string representation of the uuid.
\sa toString()
*/
/*!
Returns the string representation of this QUuid. The string is
formatted as five hex fields separated by '-' and enclosed in
curly braces, i.e., "{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" where
'x' is a hex digit. From left to right, the five hex fields are
obtained from the four public data members in QUuid as follows:
\table
\header
\o Field #
\o Source
\row
\o 1
\o data1
\row
\o 2
\o data2
\row
\o 3
\o data3
\row
\o 4
\o data4[0] .. data4[1]
\row
\o 5
\o data4[2] .. data4[7]
\endtable
*/
QString QUuid::toString() const
{
QString result(38, Qt::Uninitialized);
ushort *data = (ushort *)result.unicode();
_q_uuidToHex(data, data1, data2, data3, data4);
return result;
}
/*!
Returns the binary representation of this QUuid. The byte array is
formatted as five hex fields separated by '-' and enclosed in
curly braces, i.e., "{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" where
'x' is a hex digit. From left to right, the five hex fields are
obtained from the four public data members in QUuid as follows:
\table
\header
\o Field #
\o Source
\row
\o 1
\o data1
\row
\o 2
\o data2
\row
\o 3
\o data3
\row
\o 4
\o data4[0] .. data4[1]
\row
\o 5
\o data4[2] .. data4[7]
\endtable
\since 4.8
*/
QByteArray QUuid::toByteArray() const
{
QByteArray result(38, Qt::Uninitialized);
char *data = result.data();
_q_uuidToHex(data, data1, data2, data3, data4);
return result;
}
#endif
/*!
Returns the binary representation of this QUuid. The byte array is in big
endian format, and formatted according to RFC 4122, section 4.1.2 -
"Layout and byte order".
The order is as follows:
\table
\header
\o Field #
\o Source
\row
\o 1
\o data1
\row
\o 2
\o data2
\row
\o 3
\o data3
\row
\o 4
\o data4[0] .. data4[7]
\endtable
\since 4.8
*/
QByteArray QUuid::toRfc4122() const
{
// we know how many bytes a UUID has, I hope :)
QByteArray bytes(16, Qt::Uninitialized);
uchar *data = reinterpret_cast<uchar*>(bytes.data());
qToBigEndian(data1, data);
data += sizeof(quint32);
qToBigEndian(data2, data);
data += sizeof(quint16);
qToBigEndian(data3, data);
data += sizeof(quint16);
for (int i = 0; i < 8; ++i) {
*(data) = data4[i];
data++;
}
return bytes;
}
#ifndef QT_NO_DATASTREAM
/*!
\relates QUuid
Writes the UUID \a id to the data stream \a s.
*/
QDataStream &operator<<(QDataStream &s, const QUuid &id)
{
QByteArray bytes;
if (s.byteOrder() == QDataStream::BigEndian) {
bytes = id.toRfc4122();
} else {
// we know how many bytes a UUID has, I hope :)
bytes = QByteArray(16, Qt::Uninitialized);
uchar *data = reinterpret_cast<uchar*>(bytes.data());
qToLittleEndian(id.data1, data);
data += sizeof(quint32);
qToLittleEndian(id.data2, data);
data += sizeof(quint16);
qToLittleEndian(id.data3, data);
data += sizeof(quint16);
for (int i = 0; i < 8; ++i) {
*(data) = id.data4[i];
data++;
}
}
if (s.writeRawData(bytes.data(), 16) != 16) {
s.setStatus(QDataStream::WriteFailed);
}
return s;
}
/*!
\relates QUuid
Reads a UUID from the stream \a s into \a id.
*/
QDataStream &operator>>(QDataStream &s, QUuid &id)
{
QByteArray bytes(16, Qt::Uninitialized);
if (s.readRawData(bytes.data(), 16) != 16) {
s.setStatus(QDataStream::ReadPastEnd);
return s;
}
if (s.byteOrder() == QDataStream::BigEndian) {
id = QUuid::fromRfc4122(bytes);
} else {
const uchar *data = reinterpret_cast<const uchar *>(bytes.constData());
id.data1 = qFromLittleEndian<quint32>(data);
data += sizeof(quint32);
id.data2 = qFromLittleEndian<quint16>(data);
data += sizeof(quint16);
id.data3 = qFromLittleEndian<quint16>(data);
data += sizeof(quint16);
for (int i = 0; i < 8; ++i) {
id.data4[i] = *(data);
data++;
}
}
return s;
}
#endif // QT_NO_DATASTREAM
/*!
Returns true if this is the null UUID
{00000000-0000-0000-0000-000000000000}; otherwise returns false.
*/
bool QUuid::isNull() const
{
return data4[0] == 0 && data4[1] == 0 && data4[2] == 0 && data4[3] == 0 &&
data4[4] == 0 && data4[5] == 0 && data4[6] == 0 && data4[7] == 0 &&
data1 == 0 && data2 == 0 && data3 == 0;
}
/*!
\enum QUuid::Variant
This enum defines the values used in the \l{Variant field}
{variant field} of the UUID. The value in the variant field
determines the layout of the 128-bit value.
\value VarUnknown Variant is unknown
\value NCS Reserved for NCS (Network Computing System) backward compatibility
\value DCE Distributed Computing Environment, the scheme used by QUuid
\value Microsoft Reserved for Microsoft backward compatibility (GUID)
\value Reserved Reserved for future definition
*/
/*!
\enum QUuid::Version
This enum defines the values used in the \l{Version field}
{version field} of the UUID. The version field is meaningful
only if the value in the \l{Variant field} {variant field}
is QUuid::DCE.
\value VerUnknown Version is unknown
\value Time Time-based, by using timestamp, clock sequence, and
MAC network card address (if available) for the node sections
\value EmbeddedPOSIX DCE Security version, with embedded POSIX UUIDs
\value Name Name-based, by using values from a name for all sections
\value Random Random-based, by using random numbers for all sections
*/
/*!
\fn QUuid::Variant QUuid::variant() const
Returns the value in the \l{Variant field} {variant field} of the
UUID. If the return value is QUuid::DCE, call version() to see
which layout it uses. The null UUID is considered to be of an
unknown variant.
\sa version()
*/
QUuid::Variant QUuid::variant() const
{
if (isNull())
return VarUnknown;
// Check the 3 MSB of data4[0]
if ((data4[0] & 0x80) == 0x00) return NCS;
else if ((data4[0] & 0xC0) == 0x80) return DCE;
else if ((data4[0] & 0xE0) == 0xC0) return Microsoft;
else if ((data4[0] & 0xE0) == 0xE0) return Reserved;
return VarUnknown;
}
/*!
\fn QUuid::Version QUuid::version() const
Returns the \l{Version field} {version field} of the UUID, if the
UUID's \l{Variant field} {variant field} is QUuid::DCE. Otherwise
it returns QUuid::VerUnknown.
\sa variant()
*/
QUuid::Version QUuid::version() const
{
// Check the 4 MSB of data3
Version ver = (Version)(data3>>12);
if (isNull()
|| (variant() != DCE)
|| ver < Time
|| ver > Random)
return VerUnknown;
return ver;
}
/*!
\fn bool QUuid::operator<(const QUuid &other) const
Returns true if this QUuid has the same \l{Variant field}
{variant field} as the \a other QUuid and is lexicographically
\e{before} the \a other QUuid. If the \a other QUuid has a
different variant field, the return value is determined by
comparing the two \l{QUuid::Variant} {variants}.
\sa variant()
*/
#define ISLESS(f1, f2) if (f1!=f2) return (f1<f2);
bool QUuid::operator<(const QUuid &other) const
{
if (variant() != other.variant())
return variant() < other.variant();
ISLESS(data1, other.data1);
ISLESS(data2, other.data2);
ISLESS(data3, other.data3);
for (int n = 0; n < 8; n++) {
ISLESS(data4[n], other.data4[n]);
}
return false;
}
/*!
\fn bool QUuid::operator>(const QUuid &other) const
Returns true if this QUuid has the same \l{Variant field}
{variant field} as the \a other QUuid and is lexicographically
\e{after} the \a other QUuid. If the \a other QUuid has a
different variant field, the return value is determined by
comparing the two \l{QUuid::Variant} {variants}.
\sa variant()
*/
#define ISMORE(f1, f2) if (f1!=f2) return (f1>f2);
bool QUuid::operator>(const QUuid &other) const
{
if (variant() != other.variant())
return variant() > other.variant();
ISMORE(data1, other.data1);
ISMORE(data2, other.data2);
ISMORE(data3, other.data3);
for (int n = 0; n < 8; n++) {
ISMORE(data4[n], other.data4[n]);
}
return false;
}
/*!
\fn QUuid QUuid::createUuid()
On any platform other than Windows, this function returns a new
UUID with variant QUuid::DCE and version QUuid::Random. If
the /dev/urandom device exists, then the numbers used to construct
the UUID will be of cryptographic quality, which will make the UUID
unique. Otherwise, the numbers of the UUID will be obtained from
the local pseudo-random number generator (qrand(), which is seeded
by qsrand()) which is usually not of cryptograhic quality, which
means that the UUID can't be guaranteed to be unique.
On a Windows platform, a GUID is generated, which almost certainly
\e{will} be unique, on this or any other system, networked or not.
\sa variant(), version()
*/
#if defined(Q_OS_WIN32) && ! defined(Q_CC_MWERKS)
QT_BEGIN_INCLUDE_NAMESPACE
#include <objbase.h> // For CoCreateGuid
QT_END_INCLUDE_NAMESPACE
QUuid QUuid::createUuid()
{
GUID guid;
CoCreateGuid(&guid);
QUuid result = guid;
return result;
}
#else // !Q_OS_WIN32
QT_BEGIN_INCLUDE_NAMESPACE
#include "qdatetime.h"
#include "qfile.h"
#include "qthreadstorage.h"
#include <stdlib.h> // for RAND_MAX
QT_END_INCLUDE_NAMESPACE
#if !defined(QT_BOOTSTRAPPED) && defined(Q_OS_UNIX)
Q_GLOBAL_STATIC(QThreadStorage<QFile *>, devUrandomStorage);
#endif
QUuid QUuid::createUuid()
{
QUuid result;
uint *data = &(result.data1);
#if defined(Q_OS_UNIX)
QFile *devUrandom;
# if !defined(QT_BOOTSTRAPPED)
devUrandom = devUrandomStorage()->localData();
if (!devUrandom) {
devUrandom = new QFile(QLatin1String("/dev/urandom"));
devUrandom->open(QIODevice::ReadOnly | QIODevice::Unbuffered);
devUrandomStorage()->setLocalData(devUrandom);
}
# else
QFile file(QLatin1String("/dev/urandom"));
devUrandom = &file;
devUrandom->open(QIODevice::ReadOnly | QIODevice::Unbuffered);
# endif
enum { AmountToRead = 4 * sizeof(uint) };
if (devUrandom->isOpen()
&& devUrandom->read((char *) data, AmountToRead) == AmountToRead) {
// we got what we wanted, nothing more to do
;
} else
#endif
{
static const int intbits = sizeof(int)*8;
static int randbits = 0;
if (!randbits) {
int r = 0;
int max = RAND_MAX;
do { ++r; } while ((max=max>>1));
randbits = r;
}
// Seed the PRNG once per thread with a combination of current time, a
// stack address and a serial counter (since thread stack addresses are
// re-used).
#ifndef QT_BOOTSTRAPPED
static QThreadStorage<int *> uuidseed;
if (!uuidseed.hasLocalData())
{
int *pseed = new int;
static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(2);
qsrand(*pseed = QDateTime::currentDateTime().toTime_t()
+ quintptr(&pseed)
+ serial.fetchAndAddRelaxed(1));
uuidseed.setLocalData(pseed);
}
#else
static bool seeded = false;
if (!seeded)
qsrand(QDateTime::currentDateTime().toTime_t()
+ quintptr(&seeded));
#endif
int chunks = 16 / sizeof(uint);
while (chunks--) {
uint randNumber = 0;
for (int filled = 0; filled < intbits; filled += randbits)
randNumber |= qrand()<<filled;
#if defined(Q_OS_SYMBIAN)
// Symbian does not have /dev/urandom, so entropy is low.
// Add more entropy from the kernel tick count (1ms resolution).
// big multipler used to splatter the tick count bits over the whole 32 bits
randNumber ^= User::NTickCount() * 0x3b9aca07;
#endif
*(data+chunks) = randNumber;
}
}
result.data4[0] = (result.data4[0] & 0x3F) | 0x80; // UV_DCE
result.data3 = (result.data3 & 0x0FFF) | 0x4000; // UV_Random
return result;
}
#endif // !Q_OS_WIN32
/*!
\fn bool QUuid::operator==(const GUID &guid) const
Returns true if this UUID is equal to the Windows GUID \a guid;
otherwise returns false.
*/
/*!
\fn bool QUuid::operator!=(const GUID &guid) const
Returns true if this UUID is not equal to the Windows GUID \a
guid; otherwise returns false.
*/
QT_END_NAMESPACE
|