1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
|
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QtGui/qwidget.h>
#include <QtGui/qapplication.h>
#include <QtCore/qlinkedlist.h>
#include <QtCore/qstack.h>
#ifdef QT_DEBUG
#include <QtCore/qfile.h>
#endif
#include "qgraphicsanchorlayout_p.h"
#ifndef QT_NO_GRAPHICSVIEW
QT_BEGIN_NAMESPACE
QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version)
: QObjectPrivate(version), layoutPrivate(0), data(0),
sizePolicy(QSizePolicy::Fixed)
{
}
QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate()
{
// ###
layoutPrivate->restoreSimplifiedGraph(QGraphicsAnchorLayoutPrivate::Orientation(data->orientation));
layoutPrivate->removeAnchor(data->from, data->to);
}
void QGraphicsAnchorPrivate::setSizePolicy(QSizePolicy::Policy policy)
{
if (sizePolicy != policy) {
sizePolicy = policy;
layoutPrivate->q_func()->invalidate();
}
}
void QGraphicsAnchorPrivate::setSpacing(qreal value)
{
if (data) {
layoutPrivate->setAnchorSize(data, &value);
} else {
qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
}
}
void QGraphicsAnchorPrivate::unsetSpacing()
{
if (data) {
layoutPrivate->setAnchorSize(data, 0);
} else {
qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
}
}
qreal QGraphicsAnchorPrivate::spacing() const
{
qreal size = 0;
if (data) {
layoutPrivate->anchorSize(data, 0, &size, 0);
} else {
qWarning("QGraphicsAnchor::setSpacing: The anchor does not exist.");
}
return size;
}
static void internalSizeHints(QSizePolicy::Policy policy,
qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint,
qreal *minSize, qreal *prefSize,
qreal *maxSize)
{
// minSize, prefSize and maxSize are initialized
// with item's preferred Size: this is QSizePolicy::Fixed.
//
// Then we check each flag to find the resultant QSizePolicy,
// according to the following table:
//
// constant value
// QSizePolicy::Fixed 0
// QSizePolicy::Minimum GrowFlag
// QSizePolicy::Maximum ShrinkFlag
// QSizePolicy::Preferred GrowFlag | ShrinkFlag
// QSizePolicy::Ignored GrowFlag | ShrinkFlag | IgnoreFlag
if (policy & QSizePolicy::ShrinkFlag)
*minSize = minSizeHint;
else
*minSize = prefSizeHint;
if (policy & QSizePolicy::GrowFlag)
*maxSize = maxSizeHint;
else
*maxSize = prefSizeHint;
// Note that these two initializations are affected by the previous flags
if (policy & QSizePolicy::IgnoreFlag)
*prefSize = *minSize;
else
*prefSize = prefSizeHint;
}
bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
{
QSizePolicy::Policy policy;
qreal minSizeHint;
qreal prefSizeHint;
qreal maxSizeHint;
// It is an internal anchor
if (item) {
if (isLayoutAnchor) {
minSize = 0;
prefSize = 0;
maxSize = QWIDGETSIZE_MAX;
if (isCenterAnchor)
maxSize /= 2;
return true;
} else {
if (orientation == QGraphicsAnchorLayoutPrivate::Horizontal) {
policy = item->sizePolicy().horizontalPolicy();
minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).width();
prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).width();
maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).width();
} else {
policy = item->sizePolicy().verticalPolicy();
minSizeHint = item->effectiveSizeHint(Qt::MinimumSize).height();
prefSizeHint = item->effectiveSizeHint(Qt::PreferredSize).height();
maxSizeHint = item->effectiveSizeHint(Qt::MaximumSize).height();
}
if (isCenterAnchor) {
minSizeHint /= 2;
prefSizeHint /= 2;
maxSizeHint /= 2;
}
}
} else {
Q_ASSERT(graphicsAnchor);
policy = graphicsAnchor->sizePolicy();
minSizeHint = 0;
if (hasSize) {
// One can only configure the preferred size of a normal anchor. Their minimum and
// maximum "size hints" are always 0 and QWIDGETSIZE_MAX, correspondingly. However,
// their effective size hints might be narrowed down due to their size policies.
prefSizeHint = prefSize;
} else {
const Qt::Orientation orient = Qt::Orientation(QGraphicsAnchorLayoutPrivate::edgeOrientation(from->m_edge) + 1);
qreal s = styleInfo->defaultSpacing(orient);
if (s < 0) {
QSizePolicy::ControlType controlTypeFrom = from->m_item->sizePolicy().controlType();
QSizePolicy::ControlType controlTypeTo = to->m_item->sizePolicy().controlType();
s = styleInfo->perItemSpacing(controlTypeFrom, controlTypeTo, orient);
// ### Currently we do not support negative anchors inside the graph.
// To avoid those being created by a negative style spacing, we must
// make this test.
if (s < 0)
s = 0;
}
prefSizeHint = s;
}
maxSizeHint = QWIDGETSIZE_MAX;
}
internalSizeHints(policy, minSizeHint, prefSizeHint, maxSizeHint,
&minSize, &prefSize, &maxSize);
// Set the anchor effective sizes to preferred.
//
// Note: The idea here is that all items should remain at their
// preferred size unless where that's impossible. In cases where
// the item is subject to restrictions (anchored to the layout
// edges, for instance), the simplex solver will be run to
// recalculate and override the values we set here.
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
sizeAtMaximum = prefSize;
return true;
}
void ParallelAnchorData::updateChildrenSizes()
{
firstEdge->sizeAtMinimum = sizeAtMinimum;
firstEdge->sizeAtPreferred = sizeAtPreferred;
firstEdge->sizeAtMaximum = sizeAtMaximum;
const bool secondFwd = (secondEdge->from == from);
if (secondFwd) {
secondEdge->sizeAtMinimum = sizeAtMinimum;
secondEdge->sizeAtPreferred = sizeAtPreferred;
secondEdge->sizeAtMaximum = sizeAtMaximum;
} else {
secondEdge->sizeAtMinimum = -sizeAtMinimum;
secondEdge->sizeAtPreferred = -sizeAtPreferred;
secondEdge->sizeAtMaximum = -sizeAtMaximum;
}
firstEdge->updateChildrenSizes();
secondEdge->updateChildrenSizes();
}
bool ParallelAnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
{
return refreshSizeHints_helper(styleInfo);
}
bool ParallelAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleInfo,
bool refreshChildren)
{
if (refreshChildren && (!firstEdge->refreshSizeHints(styleInfo)
|| !secondEdge->refreshSizeHints(styleInfo))) {
return false;
}
// Account for parallel anchors where the second edge is backwards.
// We rely on the fact that a forward anchor of sizes min, pref, max is equivalent
// to a backwards anchor of size (-max, -pref, -min)
const bool secondFwd = (secondEdge->from == from);
const qreal secondMin = secondFwd ? secondEdge->minSize : -secondEdge->maxSize;
const qreal secondPref = secondFwd ? secondEdge->prefSize : -secondEdge->prefSize;
const qreal secondMax = secondFwd ? secondEdge->maxSize : -secondEdge->minSize;
minSize = qMax(firstEdge->minSize, secondMin);
maxSize = qMin(firstEdge->maxSize, secondMax);
// This condition means that the maximum size of one anchor being simplified is smaller than
// the minimum size of the other anchor. The consequence is that there won't be a valid size
// for this parallel setup.
if (minSize > maxSize) {
return false;
}
// The equivalent preferred Size of a parallel anchor is calculated as to
// reduce the deviation from the original preferred sizes _and_ to avoid shrinking
// items below their preferred sizes, unless strictly needed.
// ### This logic only holds if all anchors in the layout are "well-behaved" in the
// following terms:
//
// - There are no negative-sized anchors
// - All sequential anchors are composed of children in the same direction as the
// sequential anchor itself
//
// With these assumptions we can grow a child knowing that no hidden items will
// have to shrink as the result of that.
// If any of these does not hold, we have a situation where the ParallelAnchor
// does not have enough information to calculate its equivalent prefSize.
prefSize = qMax(firstEdge->prefSize, secondPref);
prefSize = qMin(prefSize, maxSize);
// See comment in AnchorData::refreshSizeHints() about sizeAt* values
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
sizeAtMaximum = prefSize;
return true;
}
/*!
\internal
returns the factor in the interval [-1, 1].
-1 is at Minimum
0 is at Preferred
1 is at Maximum
*/
static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal value, qreal min,
qreal pref, qreal max)
{
QGraphicsAnchorLayoutPrivate::Interval interval;
qreal lower;
qreal upper;
if (value < pref) {
interval = QGraphicsAnchorLayoutPrivate::MinToPreferred;
lower = min;
upper = pref;
} else {
interval = QGraphicsAnchorLayoutPrivate::PreferredToMax;
lower = pref;
upper = max;
}
qreal progress;
if (upper == lower) {
progress = 0;
} else {
progress = (value - lower) / (upper - lower);
}
return qMakePair(interval, progress);
}
static qreal interpolate(const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> &factor,
qreal min, qreal pref,
qreal max)
{
qreal lower;
qreal upper;
switch (factor.first) {
case QGraphicsAnchorLayoutPrivate::MinToPreferred:
lower = min;
upper = pref;
break;
case QGraphicsAnchorLayoutPrivate::PreferredToMax:
lower = pref;
upper = max;
break;
}
return lower + factor.second * (upper - lower);
}
void SequentialAnchorData::updateChildrenSizes()
{
// ### REMOVE ME
// ### check whether we are guarantee to get those or we need to warn stuff at this
// point.
Q_ASSERT(sizeAtMinimum > minSize || qAbs(sizeAtMinimum - minSize) < 0.00000001);
Q_ASSERT(sizeAtPreferred > minSize || qAbs(sizeAtPreferred - minSize) < 0.00000001);
Q_ASSERT(sizeAtMaximum > minSize || qAbs(sizeAtMaximum - minSize) < 0.00000001);
// These may be false if this anchor was in parallel with the layout stucture
// Q_ASSERT(sizeAtMinimum < maxSize || qAbs(sizeAtMinimum - maxSize) < 0.00000001);
// Q_ASSERT(sizeAtPreferred < maxSize || qAbs(sizeAtPreferred - maxSize) < 0.00000001);
// Q_ASSERT(sizeAtMaximum < maxSize || qAbs(sizeAtMaximum - maxSize) < 0.00000001);
// Band here refers if the value is in the Minimum To Preferred
// band (the lower band) or the Preferred To Maximum (the upper band).
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> minFactor =
getFactor(sizeAtMinimum, minSize, prefSize, maxSize);
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> prefFactor =
getFactor(sizeAtPreferred, minSize, prefSize, maxSize);
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> maxFactor =
getFactor(sizeAtMaximum, minSize, prefSize, maxSize);
for (int i = 0; i < m_edges.count(); ++i) {
AnchorData *e = m_edges.at(i);
e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->prefSize, e->maxSize);
e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->prefSize, e->maxSize);
e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->prefSize, e->maxSize);
e->updateChildrenSizes();
}
}
bool SequentialAnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
{
return refreshSizeHints_helper(styleInfo);
}
bool SequentialAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleInfo,
bool refreshChildren)
{
minSize = 0;
prefSize = 0;
maxSize = 0;
for (int i = 0; i < m_edges.count(); ++i) {
AnchorData *edge = m_edges.at(i);
// If it's the case refresh children information first
if (refreshChildren && !edge->refreshSizeHints(styleInfo))
return false;
minSize += edge->minSize;
prefSize += edge->prefSize;
maxSize += edge->maxSize;
}
// See comment in AnchorData::refreshSizeHints() about sizeAt* values
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
sizeAtMaximum = prefSize;
return true;
}
#ifdef QT_DEBUG
void AnchorData::dump(int indent) {
if (type == Parallel) {
qDebug("%*s type: parallel:", indent, "");
ParallelAnchorData *p = static_cast<ParallelAnchorData *>(this);
p->firstEdge->dump(indent+2);
p->secondEdge->dump(indent+2);
} else if (type == Sequential) {
SequentialAnchorData *s = static_cast<SequentialAnchorData *>(this);
int kids = s->m_edges.count();
qDebug("%*s type: sequential(%d):", indent, "", kids);
for (int i = 0; i < kids; ++i) {
s->m_edges.at(i)->dump(indent+2);
}
} else {
qDebug("%*s type: Normal:", indent, "");
}
}
#endif
QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const
{
// Calculate
QSet<AnchorData *> cPositives;
QSet<AnchorData *> cNegatives;
QSet<AnchorData *> intersection;
cPositives = positives + path.negatives;
cNegatives = negatives + path.positives;
intersection = cPositives & cNegatives;
cPositives -= intersection;
cNegatives -= intersection;
// Fill
QSimplexConstraint *c = new QSimplexConstraint;
QSet<AnchorData *>::iterator i;
for (i = cPositives.begin(); i != cPositives.end(); ++i)
c->variables.insert(*i, 1.0);
for (i = cNegatives.begin(); i != cNegatives.end(); ++i)
c->variables.insert(*i, -1.0);
return c;
}
#ifdef QT_DEBUG
QString GraphPath::toString() const
{
QString string(QLatin1String("Path: "));
foreach(AnchorData *edge, positives)
string += QString::fromAscii(" (+++) %1").arg(edge->toString());
foreach(AnchorData *edge, negatives)
string += QString::fromAscii(" (---) %1").arg(edge->toString());
return string;
}
#endif
QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate()
: calculateGraphCacheDirty(true), styleInfoDirty(true)
{
for (int i = 0; i < NOrientations; ++i) {
for (int j = 0; j < 3; ++j) {
sizeHints[i][j] = -1;
}
interpolationProgress[i] = -1;
spacings[i] = -1;
graphSimplified[i] = false;
graphHasConflicts[i] = false;
layoutFirstVertex[i] = 0;
layoutCentralVertex[i] = 0;
layoutLastVertex[i] = 0;
}
}
Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge)
{
switch (edge) {
case Qt::AnchorLeft:
edge = Qt::AnchorRight;
break;
case Qt::AnchorRight:
edge = Qt::AnchorLeft;
break;
case Qt::AnchorTop:
edge = Qt::AnchorBottom;
break;
case Qt::AnchorBottom:
edge = Qt::AnchorTop;
break;
default:
break;
}
return edge;
}
/*!
* \internal
*
* helper function in order to avoid overflowing anchor sizes
* the returned size will never be larger than FLT_MAX
*
*/
inline static qreal checkAdd(qreal a, qreal b)
{
if (FLT_MAX - b < a)
return FLT_MAX;
return a + b;
}
/*!
\internal
Adds \a newAnchor to the graph.
Returns the newAnchor itself if it could be added without further changes to the graph. If a
new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor
had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise
true.
Note that in the case a new parallel anchor is created, it might also take over some constraints
from its children anchors.
*/
AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible)
{
Orientation orientation = Orientation(newAnchor->orientation);
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
*feasible = true;
// If already exists one anchor where newAnchor is supposed to be, we create a parallel
// anchor.
if (AnchorData *oldAnchor = g.takeEdge(newAnchor->from, newAnchor->to)) {
ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor);
// The parallel anchor will "replace" its children anchors in
// every center constraint that they appear.
// ### If the dependent (center) anchors had reference(s) to their constraints, we
// could avoid traversing all the itemCenterConstraints.
QList<QSimplexConstraint *> &constraints = itemCenterConstraints[orientation];
AnchorData *children[2] = { oldAnchor, newAnchor };
QList<QSimplexConstraint *> *childrenConstraints[2] = { ¶llel->m_firstConstraints,
¶llel->m_secondConstraints };
for (int i = 0; i < 2; ++i) {
AnchorData *child = children[i];
QList<QSimplexConstraint *> *childConstraints = childrenConstraints[i];
if (!child->isCenterAnchor)
continue;
parallel->isCenterAnchor = true;
for (int i = 0; i < constraints.count(); ++i) {
QSimplexConstraint *c = constraints[i];
if (c->variables.contains(child)) {
childConstraints->append(c);
qreal v = c->variables.take(child);
c->variables.insert(parallel, v);
}
}
}
// At this point we can identify that the parallel anchor is not feasible, e.g. one
// anchor minimum size is bigger than the other anchor maximum size.
*feasible = parallel->refreshSizeHints_helper(0, false);
newAnchor = parallel;
}
g.createEdge(newAnchor->from, newAnchor->to, newAnchor);
return newAnchor;
}
/*!
\internal
Takes the sequence of vertices described by (\a before, \a vertices, \a after) and removes
all anchors connected to the vertices in \a vertices, returning one simplified anchor between
\a before and \a after.
Note that this function doesn't add the created anchor to the graph. This should be done by
the caller.
*/
static AnchorData *createSequence(Graph<AnchorVertex, AnchorData> *graph,
AnchorVertex *before,
const QVector<AnchorVertex*> &vertices,
AnchorVertex *after)
{
AnchorData *data = graph->edgeData(before, vertices.first());
Q_ASSERT(data);
const bool forward = (before == data->from);
QVector<AnchorVertex *> orderedVertices;
if (forward) {
orderedVertices = vertices;
} else {
qSwap(before, after);
for (int i = vertices.count() - 1; i >= 0; --i)
orderedVertices.append(vertices.at(i));
}
#if defined(QT_DEBUG) && 0
QString strVertices;
for (int i = 0; i < orderedVertices.count(); ++i) {
strVertices += QString::fromAscii("%1 - ").arg(orderedVertices.at(i)->toString());
}
QString strPath = QString::fromAscii("%1 - %2%3").arg(before->toString(), strVertices, after->toString());
qDebug("simplifying [%s] to [%s - %s]", qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString()));
#endif
AnchorVertex *prev = before;
QVector<AnchorData *> edges;
for (int i = 0; i <= orderedVertices.count(); ++i) {
AnchorVertex *next = (i < orderedVertices.count()) ? orderedVertices.at(i) : after;
AnchorData *ad = graph->takeEdge(prev, next);
Q_ASSERT(ad);
edges.append(ad);
prev = next;
}
SequentialAnchorData *sequence = new SequentialAnchorData(orderedVertices, edges);
sequence->from = before;
sequence->to = after;
sequence->refreshSizeHints_helper(0, false);
return sequence;
}
/*!
\internal
The purpose of this function is to simplify the graph.
Simplification serves two purposes:
1. Reduce the number of edges in the graph, (thus the number of variables to the equation
solver is reduced, and the solver performs better).
2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential
anchors)
It is essential that it must be possible to restore simplified anchors back to their "original"
form. This is done by restoreSimplifiedAnchor().
There are two types of simplification that can be done:
1. Sequential simplification
Sequential simplification means that all sequences of anchors will be merged into one single
anchor. Only anhcors that points in the same direction will be merged.
2. Parallel simplification
If a simplified sequential anchor is about to be inserted between two vertices in the graph
and there already exist an anchor between those two vertices, a parallel anchor will be
created that serves as a placeholder for the sequential anchor and the anchor that was
already between the two vertices.
The process of simplification can be described as:
1. Simplify all sequences of anchors into one anchor.
If no further simplification was done, go to (3)
- If there already exist an anchor where the sequential anchor is supposed to be inserted,
take that anchor out of the graph
- Then create a parallel anchor that holds the sequential anchor and the anchor just taken
out of the graph.
2. Go to (1)
3. Done
When creating the parallel anchors, the algorithm might identify unfeasible situations. In this
case the simplification process stops and returns false. Otherwise returns true.
*/
bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation)
{
static bool noSimplification = !qgetenv("QT_ANCHORLAYOUT_NO_SIMPLIFICATION").isEmpty();
if (noSimplification || items.isEmpty())
return true;
if (graphSimplified[orientation])
return true;
#if 0
qDebug("Simplifying Graph for %s",
orientation == Horizontal ? "Horizontal" : "Vertical");
#endif
// Vertex simplification
if (!simplifyVertices(orientation)) {
restoreVertices(orientation);
return false;
}
// Anchor simplification
bool dirty;
bool feasible = true;
do {
dirty = simplifyGraphIteration(orientation, &feasible);
} while (dirty && feasible);
// Note that if we are not feasible, we fallback and make sure that the graph is fully restored
if (!feasible) {
graphSimplified[orientation] = true;
restoreSimplifiedGraph(orientation);
restoreVertices(orientation);
return false;
}
graphSimplified[orientation] = true;
return true;
}
static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV)
{
AnchorVertex *other;
if (data->from == oldV) {
data->from = newV;
other = data->to;
} else {
data->to = newV;
other = data->from;
}
return other;
}
bool QGraphicsAnchorLayoutPrivate::replaceVertex(Orientation orientation, AnchorVertex *oldV,
AnchorVertex *newV, const QList<AnchorData *> &edges)
{
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
bool feasible = true;
for (int i = 0; i < edges.count(); ++i) {
AnchorData *ad = edges[i];
AnchorVertex *otherV = replaceVertex_helper(ad, oldV, newV);
#if defined(QT_DEBUG)
ad->name = QString::fromAscii("%1 --to--> %2").arg(ad->from->toString()).arg(ad->to->toString());
#endif
bool newFeasible;
AnchorData *newAnchor = addAnchorMaybeParallel(ad, &newFeasible);
feasible &= newFeasible;
if (newAnchor != ad) {
// A parallel was created, we mark that in the list of anchors created by vertex
// simplification. This is needed because we want to restore them in a separate step
// from the restoration of anchor simplification.
anchorsFromSimplifiedVertices[orientation].append(newAnchor);
}
g.takeEdge(oldV, otherV);
}
return feasible;
}
/*!
\internal
*/
bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Orientation orientation)
{
Q_Q(QGraphicsAnchorLayout);
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
// We'll walk through vertices
QStack<AnchorVertex *> stack;
stack.push(layoutFirstVertex[orientation]);
QSet<AnchorVertex *> visited;
while (!stack.isEmpty()) {
AnchorVertex *v = stack.pop();
visited.insert(v);
// Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of
// them. Since once a merge is made, we might add new adjacents, and we don't want to
// pass two times through one adjacent. The 'index' is used to track our position.
QList<AnchorVertex *> adjacents = g.adjacentVertices(v);
int index = 0;
while (index < adjacents.count()) {
AnchorVertex *next = adjacents.at(index);
index++;
AnchorData *data = g.edgeData(v, next);
const bool bothLayoutVertices = v->m_item == q && next->m_item == q;
const bool zeroSized = !data->minSize && !data->maxSize;
if (!bothLayoutVertices && zeroSized) {
// Create a new vertex pair, note that we keep a list of those vertices so we can
// easily process them when restoring the graph.
AnchorVertexPair *newV = new AnchorVertexPair(v, next, data);
simplifiedVertices[orientation].append(newV);
// Collect the anchors of both vertices, the new vertex pair will take their place
// in those anchors
const QList<AnchorVertex *> &vAdjacents = g.adjacentVertices(v);
const QList<AnchorVertex *> &nextAdjacents = g.adjacentVertices(next);
for (int i = 0; i < vAdjacents.count(); ++i) {
AnchorVertex *adjacent = vAdjacents.at(i);
if (adjacent != next) {
AnchorData *ad = g.edgeData(v, adjacent);
newV->m_firstAnchors.append(ad);
}
}
for (int i = 0; i < nextAdjacents.count(); ++i) {
AnchorVertex *adjacent = nextAdjacents.at(i);
if (adjacent != v) {
AnchorData *ad = g.edgeData(next, adjacent);
newV->m_secondAnchors.append(ad);
// We'll also add new vertices to the adjacent list of the new 'v', to be
// created as a vertex pair and replace the current one.
if (!adjacents.contains(adjacent))
adjacents.append(adjacent);
}
}
// ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors?
// Make newV take the place of v and next
bool feasible = replaceVertex(orientation, v, newV, newV->m_firstAnchors);
feasible &= replaceVertex(orientation, next, newV, newV->m_secondAnchors);
// Update the layout vertex information if one of the vertices is a layout vertex.
AnchorVertex *layoutVertex = 0;
if (v->m_item == q)
layoutVertex = v;
else if (next->m_item == q)
layoutVertex = next;
if (layoutVertex) {
// Layout vertices always have m_item == q...
newV->m_item = q;
changeLayoutVertex(orientation, layoutVertex, newV);
}
g.takeEdge(v, next);
// If a non-feasibility is found, we leave early and cancel the simplification
if (!feasible)
return false;
v = newV;
visited.insert(newV);
} else if (!visited.contains(next) && !stack.contains(next)) {
// If the adjacent is not fit for merge and it wasn't visited by the outermost
// loop, we add it to the stack.
stack.push(next);
}
}
}
return true;
}
/*!
\internal
One iteration of the simplification algorithm. Returns true if another iteration is needed.
The algorithm walks the graph in depth-first order, and only collects vertices that has two
edges connected to it. If the vertex does not have two edges or if it is a layout edge, it
will take all the previously collected vertices and try to create a simplified sequential
anchor representing all the previously collected vertices. Once the simplified anchor is
inserted, the collected list is cleared in order to find the next sequence to simplify.
Note that there are some catches to this that are not covered by the above explanation, see
the function comments for more details.
*/
bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutPrivate::Orientation orientation,
bool *feasible)
{
Q_Q(QGraphicsAnchorLayout);
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
QSet<AnchorVertex *> visited;
QStack<QPair<AnchorVertex *, AnchorVertex *> > stack;
stack.push(qMakePair(static_cast<AnchorVertex *>(0), layoutFirstVertex[orientation]));
QVector<AnchorVertex*> candidates;
bool candidatesForward = true;
// Walk depth-first, in the stack we store start of the candidate sequence (beforeSequence)
// and the vertex to be visited.
while (!stack.isEmpty()) {
QPair<AnchorVertex *, AnchorVertex *> pair = stack.pop();
AnchorVertex *beforeSequence = pair.first;
AnchorVertex *v = pair.second;
// The basic idea is to determine whether we found an end of sequence,
// if that's the case, we stop adding vertices to the candidate list
// and do a simplification step.
//
// A vertex can trigger an end of sequence if
// (a) it is a layout vertex, we don't simplify away the layout vertices;
// (b) it does not have exactly 2 adjacents;
// (c) it will change the direction of the sequence;
// (d) its next adjacent is already visited (a cycle in the graph);
// (e) the next anchor is a center anchor.
const QList<AnchorVertex *> &adjacents = g.adjacentVertices(v);
const bool isLayoutVertex = v->m_item == q;
AnchorVertex *afterSequence = v;
bool endOfSequence = false;
//
// Identify the end cases.
//
// Identifies cases (a) and (b)
endOfSequence = isLayoutVertex || adjacents.count() != 2;
if (!endOfSequence) {
// If this is the first vertice, determine what is the direction to use for this
// sequence.
if (candidates.isEmpty()) {
const AnchorData *data = g.edgeData(beforeSequence, v);
Q_ASSERT(data);
candidatesForward = (beforeSequence == data->from);
}
// This is a tricky part. We peek at the next vertex to find out whether
//
// - the edge from this vertex to the next vertex has the same direction;
// - we already visited the next vertex;
// - the next anchor is a center.
//
// Those are needed to identify the remaining end of sequence cases. Note that unlike
// (a) and (b), we preempt the end of sequence by looking into the next vertex.
// Peek at the next vertex
AnchorVertex *after;
if (candidates.isEmpty())
after = (beforeSequence == adjacents.last() ? adjacents.first() : adjacents.last());
else
after = (candidates.last() == adjacents.last() ? adjacents.first() : adjacents.last());
// ### At this point we assumed that candidates will not contain 'after', this may not hold
// when simplifying FLOATing anchors.
Q_ASSERT(!candidates.contains(after));
const AnchorData *data = g.edgeData(v, after);
Q_ASSERT(data);
const bool willChangeDirection = (candidatesForward != (v == data->from));
const bool cycleFound = visited.contains(after);
// Now cases (c), (d) and (e)...
endOfSequence = willChangeDirection || cycleFound || data->isCenterAnchor;
if (endOfSequence) {
if (!willChangeDirection) {
// If the direction will not change, we can add the current vertex to the
// candidates list and we know that 'after' can be used as afterSequence.
candidates.append(v);
afterSequence = after;
}
} else {
// If it's not an end of sequence, then the vertex didn't trigger neither of the
// previously four cases, so it can be added to the candidates list.
candidates.append(v);
}
}
//
// Add next non-visited vertices to the stack.
//
for (int i = 0; i < adjacents.count(); ++i) {
AnchorVertex *next = adjacents.at(i);
if (visited.contains(next))
continue;
// If current vertex is an end of sequence, and it'll reset the candidates list. So
// the next vertices will build candidates lists with the current vertex as 'before'
// vertex. If it's not an end of sequence, we keep the original 'before' vertex,
// since we are keeping the candidates list.
if (endOfSequence)
stack.push(qMakePair(v, next));
else
stack.push(qMakePair(beforeSequence, next));
}
visited.insert(v);
if (!endOfSequence || candidates.isEmpty())
continue;
//
// Create a sequence for (beforeSequence, candidates, afterSequence).
//
// One restriction we have is to not simplify half of an anchor and let the other half
// unsimplified. So we remove center edges before and after the sequence.
const AnchorData *firstAnchor = g.edgeData(beforeSequence, candidates.first());
if (firstAnchor->isCenterAnchor) {
beforeSequence = candidates.first();
candidates.remove(0);
// If there's not candidates to be simplified, leave.
if (candidates.isEmpty())
continue;
}
const AnchorData *lastAnchor = g.edgeData(candidates.last(), afterSequence);
if (lastAnchor->isCenterAnchor) {
afterSequence = candidates.last();
candidates.remove(candidates.count() - 1);
if (candidates.isEmpty())
continue;
}
//
// Add the sequence to the graph.
//
AnchorData *sequence = createSequence(&g, beforeSequence, candidates, afterSequence);
// If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll
// create a parallel anchor between the new sequence and the old anchor.
bool newFeasible;
AnchorData *newAnchor = addAnchorMaybeParallel(sequence, &newFeasible);
if (!newFeasible) {
*feasible = false;
return false;
}
// When a new parallel anchor is create in the graph, we finish the iteration and return
// true to indicate a new iteration is needed. This happens because a parallel anchor
// changes the number of adjacents one vertex has, possibly opening up oportunities for
// building candidate lists (when adjacents == 2).
if (newAnchor != sequence)
return true;
// If there was no parallel simplification, we'll keep walking the graph. So we clear the
// candidates list to start again.
candidates.clear();
}
return false;
}
void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge)
{
#if 0
static const char *anchortypes[] = {"Normal",
"Sequential",
"Parallel"};
qDebug("Restoring %s edge.", anchortypes[int(edge->type)]);
#endif
Graph<AnchorVertex, AnchorData> &g = graph[edge->orientation];
if (edge->type == AnchorData::Normal) {
g.createEdge(edge->from, edge->to, edge);
} else if (edge->type == AnchorData::Sequential) {
SequentialAnchorData *sequence = static_cast<SequentialAnchorData *>(edge);
for (int i = 0; i < sequence->m_edges.count(); ++i) {
AnchorData *data = sequence->m_edges.at(i);
restoreSimplifiedAnchor(data);
}
delete sequence;
} else if (edge->type == AnchorData::Parallel) {
// Skip parallel anchors that were created by vertex simplification, they will be processed
// later, when restoring vertex simplification.
// ### we could improve this check bit having a bit inside 'edge'
if (anchorsFromSimplifiedVertices[edge->orientation].contains(edge))
return;
ParallelAnchorData* parallel = static_cast<ParallelAnchorData*>(edge);
restoreSimplifiedConstraints(parallel);
// ### Because of the way parallel anchors are created in the anchor simplification
// algorithm, we know that one of these will be a sequence, so it'll be safe if the other
// anchor create an edge between the same vertices as the parallel.
Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential
|| parallel->secondEdge->type == AnchorData::Sequential);
restoreSimplifiedAnchor(parallel->firstEdge);
restoreSimplifiedAnchor(parallel->secondEdge);
delete parallel;
}
}
void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel)
{
if (!parallel->isCenterAnchor)
return;
for (int i = 0; i < parallel->m_firstConstraints.count(); ++i) {
QSimplexConstraint *c = parallel->m_firstConstraints.at(i);
qreal v = c->variables[parallel];
c->variables.remove(parallel);
c->variables.insert(parallel->firstEdge, v);
}
for (int i = 0; i < parallel->m_secondConstraints.count(); ++i) {
QSimplexConstraint *c = parallel->m_secondConstraints.at(i);
qreal v = c->variables[parallel];
c->variables.remove(parallel);
c->variables.insert(parallel->secondEdge, v);
}
}
void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientation)
{
if (!graphSimplified[orientation])
return;
graphSimplified[orientation] = false;
#if 0
qDebug("Restoring Simplified Graph for %s",
orientation == Horizontal ? "Horizontal" : "Vertical");
#endif
// Restore anchor simplification
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
QList<QPair<AnchorVertex*, AnchorVertex*> > connections = g.connections();
for (int i = 0; i < connections.count(); ++i) {
AnchorVertex *v1 = connections.at(i).first;
AnchorVertex *v2 = connections.at(i).second;
AnchorData *edge = g.edgeData(v1, v2);
// We restore only sequential anchors and parallels that were not created by
// vertex simplification.
if (edge->type == AnchorData::Sequential
|| (edge->type == AnchorData::Parallel &&
!anchorsFromSimplifiedVertices[orientation].contains(edge))) {
g.takeEdge(v1, v2);
restoreSimplifiedAnchor(edge);
}
}
restoreVertices(orientation);
}
void QGraphicsAnchorLayoutPrivate::restoreVertices(Orientation orientation)
{
Q_Q(QGraphicsAnchorLayout);
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
QList<AnchorVertexPair *> &toRestore = simplifiedVertices[orientation];
// We will restore the vertices in the inverse order of creation, this way we ensure that
// the vertex being restored was not wrapped by another simplification.
for (int i = toRestore.count() - 1; i >= 0; --i) {
AnchorVertexPair *pair = toRestore.at(i);
QList<AnchorVertex *> adjacents = g.adjacentVertices(pair);
// Restore the removed edge, this will also restore both vertices 'first' and 'second' to
// the graph structure.
AnchorVertex *first = pair->m_first;
AnchorVertex *second = pair->m_second;
g.createEdge(first, second, pair->m_removedAnchor);
// Restore the anchors for the first child vertex
for (int j = 0; j < pair->m_firstAnchors.count(); ++j) {
AnchorData *ad = pair->m_firstAnchors.at(j);
Q_ASSERT(ad->from == pair || ad->to == pair);
replaceVertex_helper(ad, pair, first);
g.createEdge(ad->from, ad->to, ad);
}
// Restore the anchors for the second child vertex
for (int j = 0; j < pair->m_secondAnchors.count(); ++j) {
AnchorData *ad = pair->m_secondAnchors.at(j);
Q_ASSERT(ad->from == pair || ad->to == pair);
replaceVertex_helper(ad, pair, second);
g.createEdge(ad->from, ad->to, ad);
}
for (int j = 0; j < adjacents.count(); ++j) {
g.takeEdge(pair, adjacents.at(j));
}
// The pair simplified a layout vertex, so place back the correct vertex in the variable
// that track layout vertices
if (pair->m_item == q) {
AnchorVertex *layoutVertex = first->m_item == q ? first : second;
Q_ASSERT(layoutVertex->m_item == q);
changeLayoutVertex(orientation, pair, layoutVertex);
}
delete pair;
}
toRestore.clear();
// The restoration process for vertex simplification also restored the effect of the
// parallel anchors created during vertex simplification, so we just need to restore
// the constraints in case of parallels that contain center anchors. For the same
// reason as above, order matters here.
QList<AnchorData *> ¶llelAnchors = anchorsFromSimplifiedVertices[orientation];
for (int i = parallelAnchors.count() - 1; i >= 0; --i) {
ParallelAnchorData *parallel = static_cast<ParallelAnchorData *>(parallelAnchors.at(i));
restoreSimplifiedConstraints(parallel);
delete parallel;
}
parallelAnchors.clear();
}
QGraphicsAnchorLayoutPrivate::Orientation
QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge)
{
return edge > Qt::AnchorRight ? Vertical : Horizontal;
}
/*!
\internal
Create internal anchors to connect the layout edges (Left to Right and
Top to Bottom).
These anchors doesn't have size restrictions, that will be enforced by
other anchors and items in the layout.
*/
void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
{
Q_Q(QGraphicsAnchorLayout);
QGraphicsLayoutItem *layout = q;
// Horizontal
AnchorData *data = new AnchorData;
addAnchor_helper(layout, Qt::AnchorLeft, layout,
Qt::AnchorRight, data);
data->maxSize = QWIDGETSIZE_MAX;
data->skipInPreferred = 1;
// Save a reference to layout vertices
layoutFirstVertex[Horizontal] = internalVertex(layout, Qt::AnchorLeft);
layoutCentralVertex[Horizontal] = 0;
layoutLastVertex[Horizontal] = internalVertex(layout, Qt::AnchorRight);
// Vertical
data = new AnchorData;
addAnchor_helper(layout, Qt::AnchorTop, layout,
Qt::AnchorBottom, data);
data->maxSize = QWIDGETSIZE_MAX;
data->skipInPreferred = 1;
// Save a reference to layout vertices
layoutFirstVertex[Vertical] = internalVertex(layout, Qt::AnchorTop);
layoutCentralVertex[Vertical] = 0;
layoutLastVertex[Vertical] = internalVertex(layout, Qt::AnchorBottom);
}
void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges()
{
Q_Q(QGraphicsAnchorLayout);
Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter));
Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter));
removeAnchor_helper(internalVertex(q, Qt::AnchorLeft),
internalVertex(q, Qt::AnchorRight));
removeAnchor_helper(internalVertex(q, Qt::AnchorTop),
internalVertex(q, Qt::AnchorBottom));
}
void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item)
{
Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]);
items.append(item);
// Create horizontal and vertical internal anchors for the item and
// refresh its size hint / policy values.
AnchorData *data = new AnchorData;
addAnchor_helper(item, Qt::AnchorLeft, item, Qt::AnchorRight, data);
data->refreshSizeHints(0); // 0 = effectiveSpacing, will not be used
data = new AnchorData;
addAnchor_helper(item, Qt::AnchorTop, item, Qt::AnchorBottom, data);
data->refreshSizeHints(0); // 0 = effectiveSpacing, will not be used
}
/*!
\internal
By default, each item in the layout is represented internally as
a single anchor in each direction. For instance, from Left to Right.
However, to support anchorage of items to the center of items, we
must split this internal anchor into two half-anchors. From Left
to Center and then from Center to Right, with the restriction that
these anchors must have the same time at all times.
*/
void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge)
{
Q_Q(QGraphicsAnchorLayout);
Orientation orientation;
switch (centerEdge) {
case Qt::AnchorHorizontalCenter:
orientation = Horizontal;
break;
case Qt::AnchorVerticalCenter:
orientation = Vertical;
break;
default:
// Don't create center edges unless needed
return;
}
Q_ASSERT(!graphSimplified[orientation]);
// Check if vertex already exists
if (internalVertex(item, centerEdge))
return;
// Orientation code
Qt::AnchorPoint firstEdge;
Qt::AnchorPoint lastEdge;
if (orientation == Horizontal) {
firstEdge = Qt::AnchorLeft;
lastEdge = Qt::AnchorRight;
} else {
firstEdge = Qt::AnchorTop;
lastEdge = Qt::AnchorBottom;
}
AnchorVertex *first = internalVertex(item, firstEdge);
AnchorVertex *last = internalVertex(item, lastEdge);
Q_ASSERT(first && last);
// Create new anchors
QSimplexConstraint *c = new QSimplexConstraint;
AnchorData *data = new AnchorData;
c->variables.insert(data, 1.0);
addAnchor_helper(item, firstEdge, item, centerEdge, data);
data->isCenterAnchor = true;
data->dependency = AnchorData::Master;
data->refreshSizeHints(0);
data = new AnchorData;
c->variables.insert(data, -1.0);
addAnchor_helper(item, centerEdge, item, lastEdge, data);
data->isCenterAnchor = true;
data->dependency = AnchorData::Slave;
data->refreshSizeHints(0);
itemCenterConstraints[orientation].append(c);
// Remove old one
removeAnchor_helper(first, last);
if (item == q) {
layoutCentralVertex[orientation] = internalVertex(q, centerEdge);
}
}
void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge,
bool substitute)
{
Q_Q(QGraphicsAnchorLayout);
Orientation orientation;
switch (centerEdge) {
case Qt::AnchorHorizontalCenter:
orientation = Horizontal;
break;
case Qt::AnchorVerticalCenter:
orientation = Vertical;
break;
default:
// Don't remove edges that not the center ones
return;
}
Q_ASSERT(!graphSimplified[orientation]);
// Orientation code
Qt::AnchorPoint firstEdge;
Qt::AnchorPoint lastEdge;
if (orientation == Horizontal) {
firstEdge = Qt::AnchorLeft;
lastEdge = Qt::AnchorRight;
} else {
firstEdge = Qt::AnchorTop;
lastEdge = Qt::AnchorBottom;
}
AnchorVertex *center = internalVertex(item, centerEdge);
if (!center)
return;
AnchorVertex *first = internalVertex(item, firstEdge);
Q_ASSERT(first);
Q_ASSERT(center);
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
AnchorData *oldData = g.edgeData(first, center);
// Remove center constraint
for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) {
if (itemCenterConstraints[orientation].at(i)->variables.contains(oldData)) {
delete itemCenterConstraints[orientation].takeAt(i);
break;
}
}
if (substitute) {
// Create the new anchor that should substitute the left-center-right anchors.
AnchorData *data = new AnchorData;
addAnchor_helper(item, firstEdge, item, lastEdge, data);
data->refreshSizeHints(0);
// Remove old anchors
removeAnchor_helper(first, center);
removeAnchor_helper(center, internalVertex(item, lastEdge));
} else {
// this is only called from removeAnchors()
// first, remove all non-internal anchors
QList<AnchorVertex*> adjacents = g.adjacentVertices(center);
for (int i = 0; i < adjacents.count(); ++i) {
AnchorVertex *v = adjacents.at(i);
if (v->m_item != item) {
removeAnchor_helper(center, internalVertex(v->m_item, v->m_edge));
}
}
// when all non-internal anchors is removed it will automatically merge the
// center anchor into a left-right (or top-bottom) anchor. We must also delete that.
// by this time, the center vertex is deleted and merged into a non-centered internal anchor
removeAnchor_helper(first, internalVertex(item, lastEdge));
}
if (item == q) {
layoutCentralVertex[orientation] = 0;
}
}
void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item,
Orientation orientation)
{
Q_ASSERT(!graphSimplified[orientation]);
// Remove the item center constraints associated to this item
// ### This is a temporary solution. We should probably use a better
// data structure to hold items and/or their associated constraints
// so that we can remove those easily
AnchorVertex *first = internalVertex(item, orientation == Horizontal ?
Qt::AnchorLeft :
Qt::AnchorTop);
AnchorVertex *center = internalVertex(item, orientation == Horizontal ?
Qt::AnchorHorizontalCenter :
Qt::AnchorVerticalCenter);
// Skip if no center constraints exist
if (!center)
return;
Q_ASSERT(first);
AnchorData *internalAnchor = graph[orientation].edgeData(first, center);
// Look for our anchor in all item center constraints, then remove it
for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) {
if (itemCenterConstraints[orientation].at(i)->variables.contains(internalAnchor)) {
delete itemCenterConstraints[orientation].takeAt(i);
break;
}
}
}
/*!
* \internal
*
* Helper function that is called from the anchor functions in the public API.
* If \a spacing is 0, it will pick up the spacing defined by the style.
*/
QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem,
Qt::AnchorPoint firstEdge,
QGraphicsLayoutItem *secondItem,
Qt::AnchorPoint secondEdge,
qreal *spacing)
{
Q_Q(QGraphicsAnchorLayout);
if ((firstItem == 0) || (secondItem == 0)) {
qWarning("QGraphicsAnchorLayout::addAnchor(): "
"Cannot anchor NULL items");
return 0;
}
if (firstItem == secondItem) {
qWarning("QGraphicsAnchorLayout::addAnchor(): "
"Cannot anchor the item to itself");
return 0;
}
if (edgeOrientation(secondEdge) != edgeOrientation(firstEdge)) {
qWarning("QGraphicsAnchorLayout::addAnchor(): "
"Cannot anchor edges of different orientations");
return 0;
}
// Guarantee that the graph is no simplified when adding this anchor,
// anchor manipulation always happen in the full graph
restoreSimplifiedGraph(edgeOrientation(firstEdge));
// In QGraphicsAnchorLayout, items are represented in its internal
// graph as four anchors that connect:
// - Left -> HCenter
// - HCenter-> Right
// - Top -> VCenter
// - VCenter -> Bottom
// Ensure that the internal anchors have been created for both items.
if (firstItem != q && !items.contains(firstItem)) {
restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal);
createItemEdges(firstItem);
addChildLayoutItem(firstItem);
}
if (secondItem != q && !items.contains(secondItem)) {
restoreSimplifiedGraph(edgeOrientation(firstEdge) == Horizontal ? Vertical : Horizontal);
createItemEdges(secondItem);
addChildLayoutItem(secondItem);
}
// Create center edges if needed
createCenterAnchors(firstItem, firstEdge);
createCenterAnchors(secondItem, secondEdge);
// Use heuristics to find out what the user meant with this anchor.
correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge);
AnchorData *data = new AnchorData;
if (!spacing) {
// If firstItem or secondItem is the layout itself, the spacing will default to 0.
// Otherwise, the following matrix is used (questionmark means that the spacing
// is queried from the style):
// from
// to Left HCenter Right
// Left 0 0 ?
// HCenter 0 0 0
// Right ? 0 0
if (firstItem == q
|| secondItem == q
|| pickEdge(firstEdge, Horizontal) == Qt::AnchorHorizontalCenter
|| oppositeEdge(firstEdge) != secondEdge) {
data->setPreferredSize(0);
} else {
data->unsetSize();
}
addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data);
} else if (*spacing >= 0) {
data->setPreferredSize(*spacing);
addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data);
} else {
data->setPreferredSize(-*spacing);
addAnchor_helper(secondItem, secondEdge, firstItem, firstEdge, data);
}
return acquireGraphicsAnchor(data);
}
void QGraphicsAnchorLayoutPrivate::addAnchor_helper(QGraphicsLayoutItem *firstItem,
Qt::AnchorPoint firstEdge,
QGraphicsLayoutItem *secondItem,
Qt::AnchorPoint secondEdge,
AnchorData *data)
{
Q_Q(QGraphicsAnchorLayout);
const Orientation orientation = edgeOrientation(firstEdge);
// Guarantee that the graph is no simplified when adding this anchor,
// anchor manipulation always happen in the full graph
restoreSimplifiedGraph(orientation);
// Is the Vertex (firstItem, firstEdge) already represented in our
// internal structure?
AnchorVertex *v1 = addInternalVertex(firstItem, firstEdge);
AnchorVertex *v2 = addInternalVertex(secondItem, secondEdge);
// Remove previous anchor
// ### Could we update the existing edgeData rather than creating a new one?
if (graph[orientation].edgeData(v1, v2)) {
removeAnchor_helper(v1, v2);
}
// If its an internal anchor, set the associated item
if (firstItem == secondItem)
data->item = firstItem;
data->orientation = orientation;
// Create a bi-directional edge in the sense it can be transversed both
// from v1 or v2. "data" however is shared between the two references
// so we still know that the anchor direction is from 1 to 2.
data->from = v1;
data->to = v2;
#ifdef QT_DEBUG
data->name = QString::fromAscii("%1 --to--> %2").arg(v1->toString()).arg(v2->toString());
#endif
// ### bit to track internal anchors, since inside AnchorData methods
// we don't have access to the 'q' pointer.
data->isLayoutAnchor = (data->item == q);
graph[orientation].createEdge(v1, v2, data);
}
QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::getAnchor(QGraphicsLayoutItem *firstItem,
Qt::AnchorPoint firstEdge,
QGraphicsLayoutItem *secondItem,
Qt::AnchorPoint secondEdge)
{
Orientation orient = edgeOrientation(firstEdge);
restoreSimplifiedGraph(orient);
AnchorVertex *v1 = internalVertex(firstItem, firstEdge);
AnchorVertex *v2 = internalVertex(secondItem, secondEdge);
QGraphicsAnchor *graphicsAnchor = 0;
AnchorData *data = graph[orient].edgeData(v1, v2);
if (data)
graphicsAnchor = acquireGraphicsAnchor(data);
return graphicsAnchor;
}
/*!
* \internal
*
* Implements the high level "removeAnchor" feature. Called by
* the QAnchorData destructor.
*/
void QGraphicsAnchorLayoutPrivate::removeAnchor(AnchorVertex *firstVertex,
AnchorVertex *secondVertex)
{
Q_Q(QGraphicsAnchorLayout);
// Actually delete the anchor
removeAnchor_helper(firstVertex, secondVertex);
QGraphicsLayoutItem *firstItem = firstVertex->m_item;
QGraphicsLayoutItem *secondItem = secondVertex->m_item;
// Checking if the item stays in the layout or not
bool keepFirstItem = false;
bool keepSecondItem = false;
QPair<AnchorVertex *, int> v;
int refcount = -1;
if (firstItem != q) {
for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
v = m_vertexList.value(qMakePair(firstItem, static_cast<Qt::AnchorPoint>(i)));
if (v.first) {
if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
refcount = 2;
else
refcount = 1;
if (v.second > refcount) {
keepFirstItem = true;
break;
}
}
}
} else
keepFirstItem = true;
if (secondItem != q) {
for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) {
v = m_vertexList.value(qMakePair(secondItem, static_cast<Qt::AnchorPoint>(i)));
if (v.first) {
if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter)
refcount = 2;
else
refcount = 1;
if (v.second > refcount) {
keepSecondItem = true;
break;
}
}
}
} else
keepSecondItem = true;
if (!keepFirstItem)
q->removeAt(items.indexOf(firstItem));
if (!keepSecondItem)
q->removeAt(items.indexOf(secondItem));
// Removing anchors invalidates the layout
q->invalidate();
}
/*
\internal
Implements the low level "removeAnchor" feature. Called by
private methods.
*/
void QGraphicsAnchorLayoutPrivate::removeAnchor_helper(AnchorVertex *v1, AnchorVertex *v2)
{
Q_ASSERT(v1 && v2);
// Guarantee that the graph is no simplified when removing this anchor,
// anchor manipulation always happen in the full graph
Orientation o = edgeOrientation(v1->m_edge);
restoreSimplifiedGraph(o);
// Remove edge from graph
graph[o].removeEdge(v1, v2);
// Decrease vertices reference count (may trigger a deletion)
removeInternalVertex(v1->m_item, v1->m_edge);
removeInternalVertex(v2->m_item, v2->m_edge);
}
/*!
\internal
Only called from outside. (calls invalidate())
*/
void QGraphicsAnchorLayoutPrivate::setAnchorSize(AnchorData *data, const qreal *anchorSize)
{
Q_Q(QGraphicsAnchorLayout);
// ### we can avoid restoration if we really want to, but we would have to
// search recursively through all composite anchors
Q_ASSERT(data);
restoreSimplifiedGraph(edgeOrientation(data->from->m_edge));
QGraphicsLayoutItem *firstItem = data->from->m_item;
QGraphicsLayoutItem *secondItem = data->to->m_item;
Qt::AnchorPoint firstEdge = data->from->m_edge;
Qt::AnchorPoint secondEdge = data->to->m_edge;
// Use heuristics to find out what the user meant with this anchor.
correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge);
if (data->from->m_item != firstItem)
qSwap(data->from, data->to);
if (anchorSize) {
// ### The current implementation makes "setAnchorSize" behavior
// dependent on the argument order for cases where we have
// no heuristic. Ie. two widgets, same anchor point.
// We cannot have negative sizes inside the graph. This would cause
// the simplex solver to fail because all simplex variables are
// positive by definition.
// "negative spacing" is handled by inverting the standard item order.
if (*anchorSize >= 0) {
data->setPreferredSize(*anchorSize);
} else {
data->setPreferredSize(-*anchorSize);
qSwap(data->from, data->to);
}
} else {
data->unsetSize();
}
q->invalidate();
}
void QGraphicsAnchorLayoutPrivate::anchorSize(const AnchorData *data,
qreal *minSize,
qreal *prefSize,
qreal *maxSize) const
{
Q_ASSERT(minSize || prefSize || maxSize);
Q_ASSERT(data);
QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate *>(this);
that->restoreSimplifiedGraph(Orientation(data->orientation));
if (minSize)
*minSize = data->minSize;
if (prefSize)
*prefSize = data->prefSize;
if (maxSize)
*maxSize = data->maxSize;
}
AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item,
Qt::AnchorPoint edge)
{
QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
if (!v.first) {
Q_ASSERT(v.second == 0);
v.first = new AnchorVertex(item, edge);
}
v.second++;
m_vertexList.insert(pair, v);
return v.first;
}
/**
* \internal
*
* returns the AnchorVertex that was dereferenced, also when it was removed.
* returns 0 if it did not exist.
*/
void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item,
Qt::AnchorPoint edge)
{
QPair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge);
QPair<AnchorVertex *, int> v = m_vertexList.value(pair);
if (!v.first) {
qWarning("This item with this edge is not in the graph");
return;
}
v.second--;
if (v.second == 0) {
// Remove reference and delete vertex
m_vertexList.remove(pair);
delete v.first;
} else {
// Update reference count
m_vertexList.insert(pair, v);
if ((v.second == 2) &&
((edge == Qt::AnchorHorizontalCenter) ||
(edge == Qt::AnchorVerticalCenter))) {
removeCenterAnchors(item, edge, true);
}
}
}
void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge)
{
if (AnchorVertex *v = internalVertex(item, edge)) {
Graph<AnchorVertex, AnchorData> &g = graph[edgeOrientation(edge)];
const QList<AnchorVertex *> allVertices = graph[edgeOrientation(edge)].adjacentVertices(v);
AnchorVertex *v2;
foreach (v2, allVertices) {
g.removeEdge(v, v2);
removeInternalVertex(item, edge);
removeInternalVertex(v2->m_item, v2->m_edge);
}
}
}
void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item)
{
Q_ASSERT(!graphSimplified[Horizontal] && !graphSimplified[Vertical]);
// remove the center anchor first!!
removeCenterAnchors(item, Qt::AnchorHorizontalCenter, false);
removeVertex(item, Qt::AnchorLeft);
removeVertex(item, Qt::AnchorRight);
removeCenterAnchors(item, Qt::AnchorVerticalCenter, false);
removeVertex(item, Qt::AnchorTop);
removeVertex(item, Qt::AnchorBottom);
}
/*!
\internal
Use heuristics to determine the correct orientation of a given anchor.
After API discussions, we decided we would like expressions like
anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left).
The problem with this is that anchors could become ambiguous, for
instance, what does the anchor A, B of size X mean?
"pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ?
To keep the API user friendly and at the same time, keep our algorithm
deterministic, we use an heuristic to determine a direction for each
added anchor and then keep it. The heuristic is based on the fact
that people usually avoid overlapping items, therefore:
"A, RIGHT to B, LEFT" means that B is to the LEFT of A.
"B, LEFT to A, RIGHT" is corrected to the above anchor.
Special correction is also applied when one of the items is the
layout. We handle Layout Left as if it was another items's Right
and Layout Right as another item's Left.
*/
void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem,
Qt::AnchorPoint &firstEdge,
QGraphicsLayoutItem *&secondItem,
Qt::AnchorPoint &secondEdge)
{
Q_Q(QGraphicsAnchorLayout);
if ((firstItem != q) && (secondItem != q)) {
// If connection is between widgets (not the layout itself)
// Ensure that "right-edges" sit to the left of "left-edges".
if (firstEdge < secondEdge) {
qSwap(firstItem, secondItem);
qSwap(firstEdge, secondEdge);
}
} else if (firstItem == q) {
// If connection involves the right or bottom of a layout, ensure
// the layout is the second item.
if ((firstEdge == Qt::AnchorRight) || (firstEdge == Qt::AnchorBottom)) {
qSwap(firstItem, secondItem);
qSwap(firstEdge, secondEdge);
}
} else if ((secondEdge != Qt::AnchorRight) && (secondEdge != Qt::AnchorBottom)) {
// If connection involves the left, center or top of layout, ensure
// the layout is the first item.
qSwap(firstItem, secondItem);
qSwap(firstEdge, secondEdge);
}
}
QLayoutStyleInfo &QGraphicsAnchorLayoutPrivate::styleInfo() const
{
if (styleInfoDirty) {
Q_Q(const QGraphicsAnchorLayout);
//### Fix this if QGV ever gets support for Metal style or different Aqua sizes.
QWidget *wid = 0;
QGraphicsLayoutItem *parent = q->parentLayoutItem();
while (parent && parent->isLayout()) {
parent = parent->parentLayoutItem();
}
QGraphicsWidget *w = 0;
if (parent) {
QGraphicsItem *parentItem = parent->graphicsItem();
if (parentItem && parentItem->isWidget())
w = static_cast<QGraphicsWidget*>(parentItem);
}
QStyle *style = w ? w->style() : QApplication::style();
cachedStyleInfo = QLayoutStyleInfo(style, wid);
cachedStyleInfo.setDefaultSpacing(Qt::Horizontal, spacings[0]);
cachedStyleInfo.setDefaultSpacing(Qt::Vertical, spacings[1]);
styleInfoDirty = false;
}
return cachedStyleInfo;
}
/*!
\internal
Called on activation. Uses Linear Programming to define minimum, preferred
and maximum sizes for the layout. Also calculates the sizes that each item
should assume when the layout is in one of such situations.
*/
void QGraphicsAnchorLayoutPrivate::calculateGraphs()
{
if (!calculateGraphCacheDirty)
return;
#if defined(QT_DEBUG) && 0
static int count = 0;
count++;
dumpGraph(QString::fromAscii("%1-before").arg(count));
#endif
calculateGraphs(Horizontal);
calculateGraphs(Vertical);
#if defined(QT_DEBUG) && 0
dumpGraph(QString::fromAscii("%1-after").arg(count));
#endif
calculateGraphCacheDirty = false;
}
// ### Maybe getGraphParts could return the variables when traversing, at least
// for trunk...
QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
{
QSet<AnchorData *> variableSet;
for (int i = 0; i < constraints.count(); ++i) {
const QSimplexConstraint *c = constraints.at(i);
foreach (QSimplexVariable *var, c->variables.keys()) {
variableSet += static_cast<AnchorData *>(var);
}
}
return variableSet.toList();
}
/*!
\internal
Calculate graphs is the method that puts together all the helper routines
so that the AnchorLayout can calculate the sizes of each item.
In a nutshell it should do:
1) Refresh anchor nominal sizes, that is, the size that each anchor would
have if no other restrictions applied. This is done by quering the
layout style and the sizeHints of the items belonging to the layout.
2) Simplify the graph by grouping together parallel and sequential anchors
into "group anchors". These have equivalent minimum, preferred and maximum
sizeHints as the anchors they replace.
3) Check if we got to a trivial case. In some cases, the whole graph can be
simplified into a single anchor. If so, use this information. If not,
then call the Simplex solver to calculate the anchors sizes.
4) Once the root anchors had its sizes calculated, propagate that to the
anchors they represent.
*/
void QGraphicsAnchorLayoutPrivate::calculateGraphs(
QGraphicsAnchorLayoutPrivate::Orientation orientation)
{
#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
lastCalculationUsedSimplex[orientation] = false;
#endif
// ### This is necessary because now we do vertex simplification, we still don't know
// differentiate between invalidate()s that doesn't need resimplification and those which
// need. For example, when size hint of an item changes, this may cause an anchor to reach 0 or to
// leave 0 and get a size. In both cases we need resimplify.
//
// ### one possible solution would be tracking all the 0-sized anchors, if this set change, we need
// resimplify.
restoreSimplifiedGraph(orientation);
// Reset the nominal sizes of each anchor based on the current item sizes. This function
// works with both simplified and non-simplified graphs, so it'll work when the
// simplification is going to be reused.
if (!refreshAllSizeHints(orientation)) {
qWarning("QGraphicsAnchorLayout: anchor setup is not feasible.");
graphHasConflicts[orientation] = true;
return;
}
// Simplify the graph
if (!simplifyGraph(orientation)) {
qWarning("QGraphicsAnchorLayout: anchor setup is not feasible.");
graphHasConflicts[orientation] = true;
return;
}
// Traverse all graph edges and store the possible paths to each vertex
findPaths(orientation);
// From the paths calculated above, extract the constraints that the current
// anchor setup impose, to our Linear Programming problem.
constraintsFromPaths(orientation);
// Split the constraints and anchors into groups that should be fed to the
// simplex solver independently. Currently we find two groups:
//
// 1) The "trunk", that is, the set of anchors (items) that are connected
// to the two opposite sides of our layout, and thus need to stretch in
// order to fit in the current layout size.
//
// 2) The floating or semi-floating anchors (items) that are those which
// are connected to only one (or none) of the layout sides, thus are not
// influenced by the layout size.
QList<QList<QSimplexConstraint *> > parts = getGraphParts(orientation);
// Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes
// of the "trunk" set of constraints and variables.
// ### does trunk always exist? empty = trunk is the layout left->center->right
QList<QSimplexConstraint *> trunkConstraints = parts.at(0);
QList<AnchorData *> trunkVariables = getVariables(trunkConstraints);
// For minimum and maximum, use the path between the two layout sides as the
// objective function.
AnchorVertex *v = layoutLastVertex[orientation];
GraphPath trunkPath = graphPaths[orientation].value(v);
bool feasible = calculateTrunk(orientation, trunkPath, trunkConstraints, trunkVariables);
// For the other parts that not the trunk, solve only for the preferred size
// that is the size they will remain at, since they are not stretched by the
// layout.
// Skipping the first (trunk)
for (int i = 1; i < parts.count(); ++i) {
if (!feasible)
break;
QList<QSimplexConstraint *> partConstraints = parts.at(i);
QList<AnchorData *> partVariables = getVariables(partConstraints);
Q_ASSERT(!partVariables.isEmpty());
feasible &= calculateNonTrunk(partConstraints, partVariables);
}
// Propagate the new sizes down the simplified graph, ie. tell the
// group anchors to set their children anchors sizes.
updateAnchorSizes(orientation);
graphHasConflicts[orientation] = !feasible;
// Clean up our data structures. They are not needed anymore since
// distribution uses just interpolation.
qDeleteAll(constraints[orientation]);
constraints[orientation].clear();
graphPaths[orientation].clear(); // ###
}
/*!
\internal
Calculate the sizes for all anchors which are part of the trunk. This works
on top of a (possibly) simplified graph.
*/
bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const GraphPath &path,
const QList<QSimplexConstraint *> &constraints,
const QList<AnchorData *> &variables)
{
bool feasible = true;
bool needsSimplex = !constraints.isEmpty();
#if 0
qDebug("Simplex %s for trunk of %s", needsSimplex ? "used" : "NOT used",
orientation == Horizontal ? "Horizontal" : "Vertical");
#endif
if (needsSimplex) {
QList<QSimplexConstraint *> sizeHintConstraints = constraintsFromSizeHints(variables);
QList<QSimplexConstraint *> allConstraints = constraints + sizeHintConstraints;
// Solve min and max size hints
qreal min, max;
feasible = solveMinMax(allConstraints, path, &min, &max);
if (feasible) {
solvePreferred(allConstraints, variables);
// Calculate and set the preferred size for the layout,
// from the edge sizes that were calculated above.
qreal pref(0.0);
foreach (const AnchorData *ad, path.positives) {
pref += ad->sizeAtPreferred;
}
foreach (const AnchorData *ad, path.negatives) {
pref -= ad->sizeAtPreferred;
}
sizeHints[orientation][Qt::MinimumSize] = min;
sizeHints[orientation][Qt::PreferredSize] = pref;
sizeHints[orientation][Qt::MaximumSize] = max;
}
qDeleteAll(sizeHintConstraints);
} else {
// No Simplex is necessary because the path was simplified all the way to a single
// anchor.
Q_ASSERT(path.positives.count() == 1);
Q_ASSERT(path.negatives.count() == 0);
AnchorData *ad = path.positives.toList()[0];
ad->sizeAtMinimum = ad->minSize;
ad->sizeAtPreferred = ad->prefSize;
ad->sizeAtMaximum = ad->maxSize;
sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum;
sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred;
sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum;
}
#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
lastCalculationUsedSimplex[orientation] = needsSimplex;
#endif
return feasible;
}
/*!
\internal
*/
bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList<QSimplexConstraint *> &constraints,
const QList<AnchorData *> &variables)
{
QList<QSimplexConstraint *> sizeHintConstraints = constraintsFromSizeHints(variables);
bool feasible = solvePreferred(constraints + sizeHintConstraints, variables);
if (feasible) {
// Propagate size at preferred to other sizes. Semi-floats always will be
// in their sizeAtPreferred.
for (int j = 0; j < variables.count(); ++j) {
AnchorData *ad = variables.at(j);
Q_ASSERT(ad);
ad->sizeAtMinimum = ad->sizeAtPreferred;
ad->sizeAtMaximum = ad->sizeAtPreferred;
}
}
qDeleteAll(sizeHintConstraints);
return feasible;
}
/*!
\internal
Traverse the graph refreshing the size hints. Complex anchors will call the
refresh method of their children anchors. Simple anchors, if are internal
anchors, will query the associated item for their size hints.
Returns false if some unfeasibility was found in the graph regarding the
complex anchors.
*/
bool QGraphicsAnchorLayoutPrivate::refreshAllSizeHints(Orientation orientation)
{
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
QList<QPair<AnchorVertex *, AnchorVertex *> > vertices = g.connections();
QLayoutStyleInfo styleInf = styleInfo();
for (int i = 0; i < vertices.count(); ++i) {
AnchorData *data = g.edgeData(vertices.at(i).first, vertices.at(i).second);;
Q_ASSERT(data->from && data->to);
// During the traversal we check the feasibility of the complex anchors.
if (!data->refreshSizeHints(&styleInf))
return false;
}
return true;
}
/*!
\internal
This method walks the graph using a breadth-first search to find paths
between the root vertex and each vertex on the graph. The edges
directions in each path are considered and they are stored as a
positive edge (left-to-right) or negative edge (right-to-left).
The list of paths is used later to generate a list of constraints.
*/
void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation)
{
QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
QSet<AnchorData *> visited;
AnchorVertex *root = layoutFirstVertex[orientation];
graphPaths[orientation].insert(root, GraphPath());
foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
queue.enqueue(qMakePair(root, v));
}
while(!queue.isEmpty()) {
QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
if (visited.contains(edge))
continue;
visited.insert(edge);
GraphPath current = graphPaths[orientation].value(pair.first);
if (edge->from == pair.first)
current.positives.insert(edge);
else
current.negatives.insert(edge);
graphPaths[orientation].insert(pair.second, current);
foreach (AnchorVertex *v,
graph[orientation].adjacentVertices(pair.second)) {
queue.enqueue(qMakePair(pair.second, v));
}
}
// We will walk through every reachable items (non-float) store them in a temporary set.
// We them create a set of all items and subtract the non-floating items from the set in
// order to get the floating items. The floating items is then stored in m_floatItems
identifyFloatItems(visited, orientation);
}
/*!
\internal
Each vertex on the graph that has more than one path to it
represents a contra int to the sizes of the items in these paths.
This method walks the list of paths to each vertex, generate
the constraints and store them in a list so they can be used later
by the Simplex solver.
*/
void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation)
{
foreach (AnchorVertex *vertex, graphPaths[orientation].uniqueKeys())
{
int valueCount = graphPaths[orientation].count(vertex);
if (valueCount == 1)
continue;
QList<GraphPath> pathsToVertex = graphPaths[orientation].values(vertex);
for (int i = 1; i < valueCount; ++i) {
constraints[orientation] += \
pathsToVertex[0].constraint(pathsToVertex.at(i));
}
}
}
/*!
\internal
*/
void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Orientation orientation)
{
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
const QList<QPair<AnchorVertex *, AnchorVertex *> > &vertices = g.connections();
for (int i = 0; i < vertices.count(); ++i) {
AnchorData *ad = g.edgeData(vertices.at(i).first, vertices.at(i).second);
ad->updateChildrenSizes();
}
}
/*!
\internal
Create LP constraints for each anchor based on its minimum and maximum
sizes, as specified in its size hints
*/
QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints(
const QList<AnchorData *> &anchors)
{
if (anchors.isEmpty())
return QList<QSimplexConstraint *>();
// Look for the layout edge. That can be either the first half in case the
// layout is split in two, or the whole layout anchor.
Orientation orient = Orientation(anchors.first()->orientation);
AnchorData *layoutEdge = 0;
if (layoutCentralVertex[orient]) {
layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutCentralVertex[orient]);
} else {
layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutLastVertex[orient]);
// If maxSize is less then "infinite", that means there are other anchors
// grouped together with this one. We can't ignore its maximum value so we
// set back the variable to NULL to prevent the continue condition from being
// satisfied in the loop below.
if (layoutEdge->maxSize < QWIDGETSIZE_MAX)
layoutEdge = 0;
}
// For each variable, create constraints based on size hints
QList<QSimplexConstraint *> anchorConstraints;
bool unboundedProblem = true;
for (int i = 0; i < anchors.size(); ++i) {
AnchorData *ad = anchors.at(i);
// Anchors that have their size directly linked to another one don't need constraints
// For exammple, the second half of an item has exactly the same size as the first half
// thus constraining the latter is enough.
if (ad->dependency == AnchorData::Slave)
continue;
if ((ad->minSize == ad->maxSize) || qFuzzyCompare(ad->minSize, ad->maxSize)) {
QSimplexConstraint *c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
c->constant = ad->minSize;
c->ratio = QSimplexConstraint::Equal;
anchorConstraints += c;
unboundedProblem = false;
} else {
QSimplexConstraint *c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
c->constant = ad->minSize;
c->ratio = QSimplexConstraint::MoreOrEqual;
anchorConstraints += c;
// We avoid adding restrictions to the layout internal anchors. That's
// to prevent unnecessary fair distribution from happening due to this
// artificial restriction.
if (ad == layoutEdge)
continue;
c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
c->constant = ad->maxSize;
c->ratio = QSimplexConstraint::LessOrEqual;
anchorConstraints += c;
unboundedProblem = false;
}
}
// If no upper boundary restriction was added, add one to avoid unbounded problem
if (unboundedProblem) {
QSimplexConstraint *c = new QSimplexConstraint;
c->variables.insert(layoutEdge, 1.0);
c->constant = QWIDGETSIZE_MAX;
c->ratio = QSimplexConstraint::LessOrEqual;
anchorConstraints += c;
}
return anchorConstraints;
}
/*!
\internal
*/
QList< QList<QSimplexConstraint *> >
QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation)
{
Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]);
AnchorData *edgeL1 = 0;
AnchorData *edgeL2 = 0;
// The layout may have a single anchor between Left and Right or two half anchors
// passing through the center
if (layoutCentralVertex[orientation]) {
edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutCentralVertex[orientation]);
edgeL2 = graph[orientation].edgeData(layoutCentralVertex[orientation], layoutLastVertex[orientation]);
} else {
edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutLastVertex[orientation]);
}
QLinkedList<QSimplexConstraint *> remainingConstraints;
for (int i = 0; i < constraints[orientation].count(); ++i) {
remainingConstraints += constraints[orientation].at(i);
}
for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) {
remainingConstraints += itemCenterConstraints[orientation].at(i);
}
QList<QSimplexConstraint *> trunkConstraints;
QSet<QSimplexVariable *> trunkVariables;
trunkVariables += edgeL1;
if (edgeL2)
trunkVariables += edgeL2;
bool dirty;
do {
dirty = false;
QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
while (it != remainingConstraints.end()) {
QSimplexConstraint *c = *it;
bool match = false;
// Check if this constraint have some overlap with current
// trunk variables...
foreach (QSimplexVariable *ad, trunkVariables) {
if (c->variables.contains(ad)) {
match = true;
break;
}
}
// If so, we add it to trunk, and erase it from the
// remaining constraints.
if (match) {
trunkConstraints += c;
trunkVariables += QSet<QSimplexVariable *>::fromList(c->variables.keys());
it = remainingConstraints.erase(it);
dirty = true;
} else {
// Note that we don't erase the constraint if it's not
// a match, since in a next iteration of a do-while we
// can pass on it again and it will be a match.
//
// For example: if trunk share a variable with
// remainingConstraints[1] and it shares with
// remainingConstraints[0], we need a second iteration
// of the do-while loop to match both.
++it;
}
}
} while (dirty);
QList< QList<QSimplexConstraint *> > result;
result += trunkConstraints;
if (!remainingConstraints.isEmpty()) {
QList<QSimplexConstraint *> nonTrunkConstraints;
QLinkedList<QSimplexConstraint *>::iterator it = remainingConstraints.begin();
while (it != remainingConstraints.end()) {
nonTrunkConstraints += *it;
++it;
}
result += nonTrunkConstraints;
}
return result;
}
/*!
\internal
Use all visited Anchors on findPaths() so we can identify non-float Items.
*/
void QGraphicsAnchorLayoutPrivate::identifyFloatItems(const QSet<AnchorData *> &visited, Orientation orientation)
{
QSet<QGraphicsLayoutItem *> nonFloating;
foreach (const AnchorData *ad, visited)
identifyNonFloatItems_helper(ad, &nonFloating);
QSet<QGraphicsLayoutItem *> allItems;
foreach (QGraphicsLayoutItem *item, items)
allItems.insert(item);
m_floatItems[orientation] = allItems - nonFloating;
}
/*!
\internal
Given an anchor, if it is an internal anchor and Normal we must mark it's item as non-float.
If the anchor is Sequential or Parallel, we must iterate on its children recursively until we reach
internal anchors (items).
*/
void QGraphicsAnchorLayoutPrivate::identifyNonFloatItems_helper(const AnchorData *ad, QSet<QGraphicsLayoutItem *> *nonFloatingItemsIdentifiedSoFar)
{
Q_Q(QGraphicsAnchorLayout);
switch(ad->type) {
case AnchorData::Normal:
if (ad->item && ad->item != q)
nonFloatingItemsIdentifiedSoFar->insert(ad->item);
break;
case AnchorData::Sequential:
foreach (const AnchorData *d, static_cast<const SequentialAnchorData *>(ad)->m_edges)
identifyNonFloatItems_helper(d, nonFloatingItemsIdentifiedSoFar);
break;
case AnchorData::Parallel:
identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->firstEdge, nonFloatingItemsIdentifiedSoFar);
identifyNonFloatItems_helper(static_cast<const ParallelAnchorData *>(ad)->secondEdge, nonFloatingItemsIdentifiedSoFar);
break;
}
}
/*!
\internal
Use the current vertices distance to calculate and set the geometry of
each item.
*/
void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom)
{
Q_Q(QGraphicsAnchorLayout);
AnchorVertex *firstH, *secondH, *firstV, *secondV;
qreal top;
qreal left;
qreal right;
q->getContentsMargins(&left, &top, &right, 0);
const Qt::LayoutDirection visualDir = visualDirection();
if (visualDir == Qt::RightToLeft)
qSwap(left, right);
left += geom.left();
top += geom.top();
right = geom.right() - right;
foreach (QGraphicsLayoutItem *item, items) {
QRectF newGeom;
QSizeF itemPreferredSize = item->effectiveSizeHint(Qt::PreferredSize);
if (m_floatItems[Horizontal].contains(item)) {
newGeom.setLeft(0);
newGeom.setRight(itemPreferredSize.width());
} else {
firstH = internalVertex(item, Qt::AnchorLeft);
secondH = internalVertex(item, Qt::AnchorRight);
if (visualDir == Qt::LeftToRight) {
newGeom.setLeft(left + firstH->distance);
newGeom.setRight(left + secondH->distance);
} else {
newGeom.setLeft(right - secondH->distance);
newGeom.setRight(right - firstH->distance);
}
}
if (m_floatItems[Vertical].contains(item)) {
newGeom.setTop(0);
newGeom.setBottom(itemPreferredSize.height());
} else {
firstV = internalVertex(item, Qt::AnchorTop);
secondV = internalVertex(item, Qt::AnchorBottom);
newGeom.setTop(top + firstV->distance);
newGeom.setBottom(top + secondV->distance);
}
item->setGeometry(newGeom);
}
}
/*!
\internal
Fill the distance in the vertex and in the sub-vertices if its a combined vertex.
*/
static void setVertexDistance(AnchorVertex *v, qreal distance)
{
v->distance = distance;
if (v->m_type == AnchorVertex::Pair) {
AnchorVertexPair *pair = static_cast<AnchorVertexPair *>(v);
setVertexDistance(pair->m_first, distance);
setVertexDistance(pair->m_second, distance);
}
}
/*!
\internal
Calculate the position of each vertex based on the paths to each of
them as well as the current edges sizes.
*/
void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
QGraphicsAnchorLayoutPrivate::Orientation orientation)
{
QQueue<QPair<AnchorVertex *, AnchorVertex *> > queue;
QSet<AnchorVertex *> visited;
// Get root vertex
AnchorVertex *root = layoutFirstVertex[orientation];
setVertexDistance(root, 0);
visited.insert(root);
// Add initial edges to the queue
foreach (AnchorVertex *v, graph[orientation].adjacentVertices(root)) {
queue.enqueue(qMakePair(root, v));
}
// Do initial calculation required by "interpolateEdge()"
setupEdgesInterpolation(orientation);
// Traverse the graph and calculate vertex positions, we need to
// visit all pairs since each of them could have a sequential
// anchor inside, which hides more vertices.
while (!queue.isEmpty()) {
QPair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue();
AnchorData *edge = graph[orientation].edgeData(pair.first, pair.second);
// Both vertices were interpolated, and the anchor itself can't have other
// anchors inside (it's not a complex anchor).
if (edge->type == AnchorData::Normal && visited.contains(pair.second))
continue;
visited.insert(pair.second);
interpolateEdge(pair.first, edge);
QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(pair.second);
for (int i = 0; i < adjacents.count(); ++i) {
if (!visited.contains(adjacents.at(i)))
queue.enqueue(qMakePair(pair.second, adjacents.at(i)));
}
}
}
/*!
\internal
Calculate interpolation parameters based on current Layout Size.
Must be called once before calling "interpolateEdgeSize()" for
the edges.
*/
void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
Orientation orientation)
{
Q_Q(QGraphicsAnchorLayout);
qreal current;
current = (orientation == Horizontal) ? q->contentsRect().width() : q->contentsRect().height();
QPair<Interval, qreal> result;
result = getFactor(current,
sizeHints[orientation][Qt::MinimumSize],
sizeHints[orientation][Qt::PreferredSize],
sizeHints[orientation][Qt::MaximumSize]);
interpolationInterval[orientation] = result.first;
interpolationProgress[orientation] = result.second;
}
/*!
\internal
Calculate the current Edge size based on the current Layout size and the
size the edge is supposed to have when the layout is at its:
- minimum size,
- preferred size,
- maximum size.
These three key values are calculated in advance using linear
programming (more expensive) or the simplification algorithm, then
subsequential resizes of the parent layout require a simple
interpolation.
If the edge is sequential or parallel, it's possible to have more
vertices to be initalized, so it calls specialized functions that
will recurse back to interpolateEdge().
*/
void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge)
{
const Orientation orientation = Orientation(edge->orientation);
const QPair<Interval, qreal> factor(interpolationInterval[orientation],
interpolationProgress[orientation]);
qreal edgeDistance = interpolate(factor, edge->sizeAtMinimum, edge->sizeAtPreferred,
edge->sizeAtMaximum);
Q_ASSERT(edge->from == base || edge->to == base);
// Calculate the distance for the vertex opposite to the base
if (edge->from == base) {
setVertexDistance(edge->to, base->distance + edgeDistance);
} else {
setVertexDistance(edge->from, base->distance - edgeDistance);
}
// Process child anchors
if (edge->type == AnchorData::Sequential)
interpolateSequentialEdges(static_cast<SequentialAnchorData *>(edge));
else if (edge->type == AnchorData::Parallel)
interpolateParallelEdges(static_cast<ParallelAnchorData *>(edge));
}
void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(ParallelAnchorData *data)
{
// In parallels the boundary vertices are already calculate, we
// just need to look for sequential groups inside, because only
// them may have new vertices associated.
// First edge
if (data->firstEdge->type == AnchorData::Sequential)
interpolateSequentialEdges(static_cast<SequentialAnchorData *>(data->firstEdge));
else if (data->firstEdge->type == AnchorData::Parallel)
interpolateParallelEdges(static_cast<ParallelAnchorData *>(data->firstEdge));
// Second edge
if (data->secondEdge->type == AnchorData::Sequential)
interpolateSequentialEdges(static_cast<SequentialAnchorData *>(data->secondEdge));
else if (data->secondEdge->type == AnchorData::Parallel)
interpolateParallelEdges(static_cast<ParallelAnchorData *>(data->secondEdge));
}
void QGraphicsAnchorLayoutPrivate::interpolateSequentialEdges(SequentialAnchorData *data)
{
// This method is supposed to handle any sequential anchor, even out-of-order
// ones. However, in the current QGAL implementation we should get only the
// well behaved ones.
Q_ASSERT(data->m_edges.first()->from == data->from);
Q_ASSERT(data->m_edges.last()->to == data->to);
// At this point, the two outter vertices already have their distance
// calculated.
// We use the first as the base to calculate the internal ones
AnchorVertex *prev = data->from;
for (int i = 0; i < data->m_edges.count() - 1; ++i) {
AnchorData *edge = data->m_edges.at(i);
interpolateEdge(prev, edge);
// Use the recently calculated vertex as the base for the next one
const bool edgeIsForward = (edge->from == prev);
prev = edgeIsForward ? edge->to : edge->from;
}
// Treat the last specially, since we already calculated it's end
// vertex, so it's only interesting if it's a complex one
if (data->m_edges.last()->type != AnchorData::Normal)
interpolateEdge(prev, data->m_edges.last());
}
bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *> &constraints,
GraphPath path, qreal *min, qreal *max)
{
QSimplex simplex;
bool feasible = simplex.setConstraints(constraints);
if (feasible) {
// Obtain the objective constraint
QSimplexConstraint objective;
QSet<AnchorData *>::const_iterator iter;
for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter)
objective.variables.insert(*iter, 1.0);
for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter)
objective.variables.insert(*iter, -1.0);
simplex.setObjective(&objective);
// Calculate minimum values
*min = simplex.solveMin();
// Save sizeAtMinimum results
QList<AnchorData *> variables = getVariables(constraints);
for (int i = 0; i < variables.size(); ++i) {
AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
ad->sizeAtMinimum = ad->result;
Q_ASSERT(ad->sizeAtMinimum >= ad->minSize ||
qAbs(ad->sizeAtMinimum - ad->minSize) < 0.00000001);
}
// Calculate maximum values
*max = simplex.solveMax();
// Save sizeAtMaximum results
for (int i = 0; i < variables.size(); ++i) {
AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
ad->sizeAtMaximum = ad->result;
// Q_ASSERT(ad->sizeAtMaximum <= ad->maxSize ||
// qAbs(ad->sizeAtMaximum - ad->maxSize) < 0.00000001);
}
}
return feasible;
}
bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint *> &constraints,
const QList<AnchorData *> &variables)
{
QList<QSimplexConstraint *> preferredConstraints;
QList<QSimplexVariable *> preferredVariables;
QSimplexConstraint objective;
// Fill the objective coefficients for this variable. In the
// end the objective function will be
//
// z = n * (A_shrink + B_shrink + ...) + (A_grower + B_grower + ...)
//
// where n is the number of variables that have
// slacks. Note that here we use the number of variables
// as coefficient, this is to mark the "shrinker slack
// variable" less likely to get value than the "grower
// slack variable".
// This will fill the values for the structural constraints
// and we now fill the values for the slack constraints (one per variable),
// which have this form (the constant A_pref was set when creating the slacks):
//
// A + A_shrinker - A_grower = A_pref
//
for (int i = 0; i < variables.size(); ++i) {
AnchorData *ad = variables.at(i);
if (ad->skipInPreferred)
continue;
QSimplexVariable *grower = new QSimplexVariable;
QSimplexVariable *shrinker = new QSimplexVariable;
QSimplexConstraint *c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
c->variables.insert(shrinker, 1.0);
c->variables.insert(grower, -1.0);
c->constant = ad->prefSize;
preferredConstraints += c;
preferredVariables += grower;
preferredVariables += shrinker;
objective.variables.insert(grower, 1.0);
objective.variables.insert(shrinker, variables.size());
}
QSimplex *simplex = new QSimplex;
bool feasible = simplex->setConstraints(constraints + preferredConstraints);
if (feasible) {
simplex->setObjective(&objective);
// Calculate minimum values
simplex->solveMin();
// Save sizeAtPreferred results
for (int i = 0; i < variables.size(); ++i) {
AnchorData *ad = variables.at(i);
ad->sizeAtPreferred = ad->result;
}
// Make sure we delete the simplex solver -before- we delete the
// constraints used by it.
delete simplex;
}
// Delete constraints and variables we created.
qDeleteAll(preferredConstraints);
qDeleteAll(preferredVariables);
return feasible;
}
/*!
\internal
Returns true if there are no arrangement that satisfies all constraints.
Otherwise returns false.
\sa addAnchor()
*/
bool QGraphicsAnchorLayoutPrivate::hasConflicts() const
{
QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate*>(this);
that->calculateGraphs();
bool floatConflict = !m_floatItems[0].isEmpty() || !m_floatItems[1].isEmpty();
return graphHasConflicts[0] || graphHasConflicts[1] || floatConflict;
}
#ifdef QT_DEBUG
void QGraphicsAnchorLayoutPrivate::dumpGraph(const QString &name)
{
QFile file(QString::fromAscii("anchorlayout.%1.dot").arg(name));
if (!file.open(QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate))
qWarning("Could not write to %s", file.fileName().toLocal8Bit().constData());
QString str = QString::fromAscii("digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}");
QString dotContents = graph[0].serializeToDot();
dotContents += graph[1].serializeToDot();
file.write(str.arg(dotContents).toLocal8Bit());
file.close();
}
#endif
QT_END_NAMESPACE
#endif //QT_NO_GRAPHICSVIEW
|