1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
|
/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qimage.h"
#include "qdatastream.h"
#include "qbuffer.h"
#include "qmap.h"
#include "qmatrix.h"
#include "qtransform.h"
#include "qimagereader.h"
#include "qimagewriter.h"
#include "qstringlist.h"
#include "qvariant.h"
#include "qimagepixmapcleanuphooks_p.h"
#include <ctype.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <private/qdrawhelper_p.h>
#include <private/qmemrotate_p.h>
#include <private/qpixmapdata_p.h>
#include <private/qimagescale_p.h>
#include <private/qsimd_p.h>
#include <qhash.h>
#include <private/qpaintengine_raster_p.h>
#include <private/qimage_p.h>
#include <private/qfont_p.h>
QT_BEGIN_NAMESPACE
static inline bool checkPixelSize(const QImage::Format format)
{
switch (format) {
case QImage::Format_ARGB8565_Premultiplied:
return (sizeof(qargb8565) == 3);
case QImage::Format_RGB666:
return (sizeof(qrgb666) == 3);
case QImage::Format_ARGB6666_Premultiplied:
return (sizeof(qargb6666) == 3);
case QImage::Format_RGB555:
return (sizeof(qrgb555) == 2);
case QImage::Format_ARGB8555_Premultiplied:
return (sizeof(qargb8555) == 3);
case QImage::Format_RGB888:
return (sizeof(qrgb888) == 3);
case QImage::Format_RGB444:
return (sizeof(qrgb444) == 2);
case QImage::Format_ARGB4444_Premultiplied:
return (sizeof(qargb4444) == 2);
default:
return true;
}
}
#if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001)
#pragma message disable narrowptr
#endif
#define QIMAGE_SANITYCHECK_MEMORY(image) \
if ((image).isNull()) { \
qWarning("QImage: out of memory, returning null image"); \
return QImage(); \
}
static QImage rotated90(const QImage &src);
static QImage rotated180(const QImage &src);
static QImage rotated270(const QImage &src);
// ### Qt 5: remove
Q_GUI_EXPORT qint64 qt_image_id(const QImage &image)
{
return image.cacheKey();
}
const QVector<QRgb> *qt_image_colortable(const QImage &image)
{
return &image.d->colortable;
}
QBasicAtomicInt qimage_serial_number = Q_BASIC_ATOMIC_INITIALIZER(1);
QImageData::QImageData()
: ref(0), width(0), height(0), depth(0), nbytes(0), data(0),
#ifdef QT3_SUPPORT
jumptable(0),
#endif
format(QImage::Format_ARGB32), bytes_per_line(0),
ser_no(qimage_serial_number.fetchAndAddRelaxed(1)),
detach_no(0),
dpmx(qt_defaultDpiX() * 100 / qreal(2.54)),
dpmy(qt_defaultDpiY() * 100 / qreal(2.54)),
offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false),
is_cached(false), paintEngine(0)
{
}
/*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)
\internal
Creates a new image data.
Returns 0 if invalid parameters are give or anything else failed.
*/
QImageData * QImageData::create(const QSize &size, QImage::Format format, int numColors)
{
if (!size.isValid() || numColors < 0 || format == QImage::Format_Invalid)
return 0; // invalid parameter(s)
if (!checkPixelSize(format)) {
qWarning("QImageData::create(): Invalid pixel size for format %i",
format);
return 0;
}
uint width = size.width();
uint height = size.height();
uint depth = qt_depthForFormat(format);
switch (format) {
case QImage::Format_Mono:
case QImage::Format_MonoLSB:
numColors = 2;
break;
case QImage::Format_Indexed8:
numColors = qBound(0, numColors, 256);
break;
default:
numColors = 0;
break;
}
const int bytes_per_line = ((width * depth + 31) >> 5) << 2; // bytes per scanline (must be multiple of 4)
// sanity check for potential overflows
if (INT_MAX/depth < width
|| bytes_per_line <= 0
|| height <= 0
|| INT_MAX/uint(bytes_per_line) < height
|| INT_MAX/sizeof(uchar *) < uint(height))
return 0;
QScopedPointer<QImageData> d(new QImageData);
d->colortable.resize(numColors);
if (depth == 1) {
d->colortable[0] = QColor(Qt::black).rgba();
d->colortable[1] = QColor(Qt::white).rgba();
} else {
for (int i = 0; i < numColors; ++i)
d->colortable[i] = 0;
}
d->width = width;
d->height = height;
d->depth = depth;
d->format = format;
d->has_alpha_clut = false;
d->is_cached = false;
d->bytes_per_line = bytes_per_line;
d->nbytes = d->bytes_per_line*height;
d->data = (uchar *)malloc(d->nbytes);
if (!d->data) {
return 0;
}
d->ref.ref();
return d.take();
}
QImageData::~QImageData()
{
if (is_cached)
QImagePixmapCleanupHooks::executeImageHooks((((qint64) ser_no) << 32) | ((qint64) detach_no));
delete paintEngine;
if (data && own_data)
free(data);
#ifdef QT3_SUPPORT
if (jumptable)
free(jumptable);
jumptable = 0;
#endif
data = 0;
}
bool QImageData::checkForAlphaPixels() const
{
bool has_alpha_pixels = false;
switch (format) {
case QImage::Format_Mono:
case QImage::Format_MonoLSB:
case QImage::Format_Indexed8:
has_alpha_pixels = has_alpha_clut;
break;
case QImage::Format_ARGB32:
case QImage::Format_ARGB32_Premultiplied: {
uchar *bits = data;
for (int y=0; y<height && !has_alpha_pixels; ++y) {
for (int x=0; x<width; ++x)
has_alpha_pixels |= (((uint *)bits)[x] & 0xff000000) != 0xff000000;
bits += bytes_per_line;
}
} break;
case QImage::Format_ARGB8555_Premultiplied:
case QImage::Format_ARGB8565_Premultiplied: {
uchar *bits = data;
uchar *end_bits = data + bytes_per_line;
for (int y=0; y<height && !has_alpha_pixels; ++y) {
while (bits < end_bits) {
has_alpha_pixels |= bits[0] != 0;
bits += 3;
}
bits = end_bits;
end_bits += bytes_per_line;
}
} break;
case QImage::Format_ARGB6666_Premultiplied: {
uchar *bits = data;
uchar *end_bits = data + bytes_per_line;
for (int y=0; y<height && !has_alpha_pixels; ++y) {
while (bits < end_bits) {
has_alpha_pixels |= (bits[0] & 0xfc) != 0;
bits += 3;
}
bits = end_bits;
end_bits += bytes_per_line;
}
} break;
case QImage::Format_ARGB4444_Premultiplied: {
uchar *bits = data;
uchar *end_bits = data + bytes_per_line;
for (int y=0; y<height && !has_alpha_pixels; ++y) {
while (bits < end_bits) {
has_alpha_pixels |= (bits[0] & 0xf0) != 0;
bits += 2;
}
bits = end_bits;
end_bits += bytes_per_line;
}
} break;
default:
break;
}
return has_alpha_pixels;
}
/*!
\class QImage
\ingroup painting
\ingroup shared
\reentrant
\brief The QImage class provides a hardware-independent image
representation that allows direct access to the pixel data, and
can be used as a paint device.
Qt provides four classes for handling image data: QImage, QPixmap,
QBitmap and QPicture. QImage is designed and optimized for I/O,
and for direct pixel access and manipulation, while QPixmap is
designed and optimized for showing images on screen. QBitmap is
only a convenience class that inherits QPixmap, ensuring a
depth of 1. Finally, the QPicture class is a paint device that
records and replays QPainter commands.
Because QImage is a QPaintDevice subclass, QPainter can be used to
draw directly onto images. When using QPainter on a QImage, the
painting can be performed in another thread than the current GUI
thread.
The QImage class supports several image formats described by the
\l Format enum. These include monochrome, 8-bit, 32-bit and
alpha-blended images which are available in all versions of Qt
4.x.
QImage provides a collection of functions that can be used to
obtain a variety of information about the image. There are also
several functions that enables transformation of the image.
QImage objects can be passed around by value since the QImage
class uses \l{Implicit Data Sharing}{implicit data
sharing}. QImage objects can also be streamed and compared.
\note If you would like to load QImage objects in a static build of Qt,
refer to the \l{How To Create Qt Plugins#Static Plugins}{Plugin HowTo}.
\warning Painting on a QImage with the format
QImage::Format_Indexed8 is not supported.
\tableofcontents
\section1 Reading and Writing Image Files
QImage provides several ways of loading an image file: The file
can be loaded when constructing the QImage object, or by using the
load() or loadFromData() functions later on. QImage also provides
the static fromData() function, constructing a QImage from the
given data. When loading an image, the file name can either refer
to an actual file on disk or to one of the application's embedded
resources. See \l{The Qt Resource System} overview for details
on how to embed images and other resource files in the
application's executable.
Simply call the save() function to save a QImage object.
The complete list of supported file formats are available through
the QImageReader::supportedImageFormats() and
QImageWriter::supportedImageFormats() functions. New file formats
can be added as plugins. By default, Qt supports the following
formats:
\table
\header \o Format \o Description \o Qt's support
\row \o BMP \o Windows Bitmap \o Read/write
\row \o GIF \o Graphic Interchange Format (optional) \o Read
\row \o JPG \o Joint Photographic Experts Group \o Read/write
\row \o JPEG \o Joint Photographic Experts Group \o Read/write
\row \o PNG \o Portable Network Graphics \o Read/write
\row \o PBM \o Portable Bitmap \o Read
\row \o PGM \o Portable Graymap \o Read
\row \o PPM \o Portable Pixmap \o Read/write
\row \o TIFF \o Tagged Image File Format \o Read/write
\row \o XBM \o X11 Bitmap \o Read/write
\row \o XPM \o X11 Pixmap \o Read/write
\endtable
\section1 Image Information
QImage provides a collection of functions that can be used to
obtain a variety of information about the image:
\table
\header
\o \o Available Functions
\row
\o Geometry
\o
The size(), width(), height(), dotsPerMeterX(), and
dotsPerMeterY() functions provide information about the image size
and aspect ratio.
The rect() function returns the image's enclosing rectangle. The
valid() function tells if a given pair of coordinates is within
this rectangle. The offset() function returns the number of pixels
by which the image is intended to be offset by when positioned
relative to other images, which also can be manipulated using the
setOffset() function.
\row
\o Colors
\o
The color of a pixel can be retrieved by passing its coordinates
to the pixel() function. The pixel() function returns the color
as a QRgb value indepedent of the image's format.
In case of monochrome and 8-bit images, the colorCount() and
colorTable() functions provide information about the color
components used to store the image data: The colorTable() function
returns the image's entire color table. To obtain a single entry,
use the pixelIndex() function to retrieve the pixel index for a
given pair of coordinates, then use the color() function to
retrieve the color. Note that if you create an 8-bit image
manually, you have to set a valid color table on the image as
well.
The hasAlphaChannel() function tells if the image's format
respects the alpha channel, or not. The allGray() and
isGrayscale() functions tell whether an image's colors are all
shades of gray.
See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation}
and \l {QImage#Image Transformations}{Image Transformations}
sections.
\row
\o Text
\o
The text() function returns the image text associated with the
given text key. An image's text keys can be retrieved using the
textKeys() function. Use the setText() function to alter an
image's text.
\row
\o Low-level information
\o
The depth() function returns the depth of the image. The supported
depths are 1 (monochrome), 8, 16, 24 and 32 bits. The
bitPlaneCount() function tells how many of those bits that are
used. For more information see the
\l {QImage#Image Formats}{Image Formats} section.
The format(), bytesPerLine(), and byteCount() functions provide
low-level information about the data stored in the image.
The cacheKey() function returns a number that uniquely
identifies the contents of this QImage object.
\endtable
\section1 Pixel Manipulation
The functions used to manipulate an image's pixels depend on the
image format. The reason is that monochrome and 8-bit images are
index-based and use a color lookup table, while 32-bit images
store ARGB values directly. For more information on image formats,
see the \l {Image Formats} section.
In case of a 32-bit image, the setPixel() function can be used to
alter the color of the pixel at the given coordinates to any other
color specified as an ARGB quadruplet. To make a suitable QRgb
value, use the qRgb() (adding a default alpha component to the
given RGB values, i.e. creating an opaque color) or qRgba()
function. For example:
\table
\header
\o {2,1}32-bit
\row
\o \inlineimage qimage-32bit_scaled.png
\o
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 0
\endtable
In case of a 8-bit and monchrome images, the pixel value is only
an index from the image's color table. So the setPixel() function
can only be used to alter the color of the pixel at the given
coordinates to a predefined color from the image's color table,
i.e. it can only change the pixel's index value. To alter or add a
color to an image's color table, use the setColor() function.
An entry in the color table is an ARGB quadruplet encoded as an
QRgb value. Use the qRgb() and qRgba() functions to make a
suitable QRgb value for use with the setColor() function. For
example:
\table
\header
\o {2,1} 8-bit
\row
\o \inlineimage qimage-8bit_scaled.png
\o
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 1
\endtable
QImage also provide the scanLine() function which returns a
pointer to the pixel data at the scanline with the given index,
and the bits() function which returns a pointer to the first pixel
data (this is equivalent to \c scanLine(0)).
\section1 Image Formats
Each pixel stored in a QImage is represented by an integer. The
size of the integer varies depending on the format. QImage
supports several image formats described by the \l Format
enum.
Monochrome images are stored using 1-bit indexes into a color table
with at most two colors. There are two different types of
monochrome images: big endian (MSB first) or little endian (LSB
first) bit order.
8-bit images are stored using 8-bit indexes into a color table,
i.e. they have a single byte per pixel. The color table is a
QVector<QRgb>, and the QRgb typedef is equivalent to an unsigned
int containing an ARGB quadruplet on the format 0xAARRGGBB.
32-bit images have no color table; instead, each pixel contains an
QRgb value. There are three different types of 32-bit images
storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB
values respectively. In the premultiplied format the red, green,
and blue channels are multiplied by the alpha component divided by
255.
An image's format can be retrieved using the format()
function. Use the convertToFormat() functions to convert an image
into another format. The allGray() and isGrayscale() functions
tell whether a color image can safely be converted to a grayscale
image.
\section1 Image Transformations
QImage supports a number of functions for creating a new image
that is a transformed version of the original: The
createAlphaMask() function builds and returns a 1-bpp mask from
the alpha buffer in this image, and the createHeuristicMask()
function creates and returns a 1-bpp heuristic mask for this
image. The latter function works by selecting a color from one of
the corners, then chipping away pixels of that color starting at
all the edges.
The mirrored() function returns a mirror of the image in the
desired direction, the scaled() returns a copy of the image scaled
to a rectangle of the desired measures, and the rgbSwapped() function
constructs a BGR image from a RGB image.
The scaledToWidth() and scaledToHeight() functions return scaled
copies of the image.
The transformed() function returns a copy of the image that is
transformed with the given transformation matrix and
transformation mode: Internally, the transformation matrix is
adjusted to compensate for unwanted translation,
i.e. transformed() returns the smallest image containing all
transformed points of the original image. The static trueMatrix()
function returns the actual matrix used for transforming the
image.
There are also functions for changing attributes of an image
in-place:
\table
\header \o Function \o Description
\row
\o setDotsPerMeterX()
\o Defines the aspect ratio by setting the number of pixels that fit
horizontally in a physical meter.
\row
\o setDotsPerMeterY()
\o Defines the aspect ratio by setting the number of pixels that fit
vertically in a physical meter.
\row
\o fill()
\o Fills the entire image with the given pixel value.
\row
\o invertPixels()
\o Inverts all pixel values in the image using the given InvertMode value.
\row
\o setColorTable()
\o Sets the color table used to translate color indexes. Only
monochrome and 8-bit formats.
\row
\o setColorCount()
\o Resizes the color table. Only monochrome and 8-bit formats.
\endtable
\section1 Legal Information
For smooth scaling, the transformed() functions use code based on
smooth scaling algorithm by Daniel M. Duley.
\legalese
Copyright (C) 2004, 2005 Daniel M. Duley
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\endlegalese
\sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, {Image Composition Example},
{Image Viewer Example}, {Scribble Example}, {Pixelator Example}
*/
/*!
\enum QImage::Endian
\compat
This enum type is used to describe the endianness of the CPU and
graphics hardware. It is provided here for compatibility with earlier versions of Qt.
Use the \l Format enum instead. The \l Format enum specify the
endianess for monchrome formats, but for other formats the
endianess is not relevant.
\value IgnoreEndian Endianness does not matter. Useful for some
operations that are independent of endianness.
\value BigEndian Most significant bit first or network byte order, as on SPARC, PowerPC, and Motorola CPUs.
\value LittleEndian Least significant bit first or little endian byte order, as on Intel x86.
*/
/*!
\enum QImage::InvertMode
This enum type is used to describe how pixel values should be
inverted in the invertPixels() function.
\value InvertRgb Invert only the RGB values and leave the alpha
channel unchanged.
\value InvertRgba Invert all channels, including the alpha channel.
\sa invertPixels()
*/
/*!
\enum QImage::Format
The following image formats are available in Qt. Values greater
than QImage::Format_RGB16 were added in Qt 4.4. See the notes
after the table.
\value Format_Invalid The image is invalid.
\value Format_Mono The image is stored using 1-bit per pixel. Bytes are
packed with the most significant bit (MSB) first.
\value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are
packed with the less significant bit (LSB) first.
\value Format_Indexed8 The image is stored using 8-bit indexes
into a colormap.
\value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB).
\value Format_ARGB32 The image is stored using a 32-bit ARGB
format (0xAARRGGBB).
\value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit
ARGB format (0xAARRGGBB), i.e. the red,
green, and blue channels are multiplied
by the alpha component divided by 255. (If RR, GG, or BB
has a higher value than the alpha channel, the results are
undefined.) Certain operations (such as image composition
using alpha blending) are faster using premultiplied ARGB32
than with plain ARGB32.
\value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5).
\value Format_ARGB8565_Premultiplied The image is stored using a
premultiplied 24-bit ARGB format (8-5-6-5).
\value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6).
The unused most significant bits is always zero.
\value Format_ARGB6666_Premultiplied The image is stored using a
premultiplied 24-bit ARGB format (6-6-6-6).
\value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5).
The unused most significant bit is always zero.
\value Format_ARGB8555_Premultiplied The image is stored using a
premultiplied 24-bit ARGB format (8-5-5-5).
\value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8).
\value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4).
The unused bits are always zero.
\value Format_ARGB4444_Premultiplied The image is stored using a
premultiplied 16-bit ARGB format (4-4-4-4).
\note Drawing into a QImage with QImage::Format_Indexed8 is not
supported.
\note Do not render into ARGB32 images using QPainter. Using
QImage::Format_ARGB32_Premultiplied is significantly faster.
\sa format(), convertToFormat()
*/
/*****************************************************************************
QImage member functions
*****************************************************************************/
// table to flip bits
static const uchar bitflip[256] = {
/*
open OUT, "| fmt";
for $i (0..255) {
print OUT (($i >> 7) & 0x01) | (($i >> 5) & 0x02) |
(($i >> 3) & 0x04) | (($i >> 1) & 0x08) |
(($i << 7) & 0x80) | (($i << 5) & 0x40) |
(($i << 3) & 0x20) | (($i << 1) & 0x10), ", ";
}
close OUT;
*/
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244,
12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242,
10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246,
14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254,
1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
};
const uchar *qt_get_bitflip_array() // called from QPixmap code
{
return bitflip;
}
#if defined(QT3_SUPPORT)
static QImage::Format formatFor(int depth, QImage::Endian bitOrder)
{
QImage::Format format;
if (depth == 1) {
format = bitOrder == QImage::BigEndian ? QImage::Format_Mono : QImage::Format_MonoLSB;
} else if (depth == 8) {
format = QImage::Format_Indexed8;
} else if (depth == 32) {
format = QImage::Format_RGB32;
} else if (depth == 24) {
format = QImage::Format_RGB888;
} else if (depth == 16) {
format = QImage::Format_RGB16;
} else {
qWarning("QImage: Depth %d not supported", depth);
format = QImage::Format_Invalid;
}
return format;
}
#endif
/*!
Constructs a null image.
\sa isNull()
*/
QImage::QImage()
: QPaintDevice()
{
d = 0;
}
/*!
Constructs an image with the given \a width, \a height and \a
format.
A \l{isNull()}{null} image will be returned if memory cannot be allocated.
\warning This will create a QImage with uninitialized data. Call
fill() to fill the image with an appropriate pixel value before
drawing onto it with QPainter.
*/
QImage::QImage(int width, int height, Format format)
: QPaintDevice()
{
d = QImageData::create(QSize(width, height), format, 0);
}
/*!
Constructs an image with the given \a size and \a format.
A \l{isNull()}{null} image is returned if memory cannot be allocated.
\warning This will create a QImage with uninitialized data. Call
fill() to fill the image with an appropriate pixel value before
drawing onto it with QPainter.
*/
QImage::QImage(const QSize &size, Format format)
: QPaintDevice()
{
d = QImageData::create(size, format, 0);
}
QImageData *QImageData::create(uchar *data, int width, int height, int bpl, QImage::Format format, bool readOnly)
{
QImageData *d = 0;
if (format == QImage::Format_Invalid)
return d;
if (!checkPixelSize(format)) {
qWarning("QImageData::create(): Invalid pixel size for format %i",
format);
return 0;
}
const int depth = qt_depthForFormat(format);
const int calc_bytes_per_line = ((width * depth + 31)/32) * 4;
const int min_bytes_per_line = (width * depth + 7)/8;
if (bpl <= 0)
bpl = calc_bytes_per_line;
if (width <= 0 || height <= 0 || !data
|| INT_MAX/sizeof(uchar *) < uint(height)
|| INT_MAX/uint(depth) < uint(width)
|| bpl <= 0
|| height <= 0
|| bpl < min_bytes_per_line
|| INT_MAX/uint(bpl) < uint(height))
return d; // invalid parameter(s)
d = new QImageData;
d->ref.ref();
d->own_data = false;
d->ro_data = readOnly;
d->data = data;
d->width = width;
d->height = height;
d->depth = depth;
d->format = format;
d->bytes_per_line = bpl;
d->nbytes = d->bytes_per_line * height;
return d;
}
/*!
Constructs an image with the given \a width, \a height and \a
format, that uses an existing memory buffer, \a data. The \a width
and \a height must be specified in pixels, \a data must be 32-bit aligned,
and each scanline of data in the image must also be 32-bit aligned.
The buffer must remain valid throughout the life of the
QImage. The image does not delete the buffer at destruction.
If \a format is an indexed color format, the image color table is
initially empty and must be sufficiently expanded with
setColorCount() or setColorTable() before the image is used.
*/
QImage::QImage(uchar* data, int width, int height, Format format)
: QPaintDevice()
{
d = QImageData::create(data, width, height, 0, format, false);
}
/*!
Constructs an image with the given \a width, \a height and \a
format, that uses an existing read-only memory buffer, \a
data. The \a width and \a height must be specified in pixels, \a
data must be 32-bit aligned, and each scanline of data in the
image must also be 32-bit aligned.
The buffer must remain valid throughout the life of the QImage and
all copies that have not been modified or otherwise detached from
the original buffer. The image does not delete the buffer at
destruction.
If \a format is an indexed color format, the image color table is
initially empty and must be sufficiently expanded with
setColorCount() or setColorTable() before the image is used.
Unlike the similar QImage constructor that takes a non-const data buffer,
this version will never alter the contents of the buffer. For example,
calling QImage::bits() will return a deep copy of the image, rather than
the buffer passed to the constructor. This allows for the efficiency of
constructing a QImage from raw data, without the possibility of the raw
data being changed.
*/
QImage::QImage(const uchar* data, int width, int height, Format format)
: QPaintDevice()
{
d = QImageData::create(const_cast<uchar*>(data), width, height, 0, format, true);
}
/*!
Constructs an image with the given \a width, \a height and \a
format, that uses an existing memory buffer, \a data. The \a width
and \a height must be specified in pixels. \a bytesPerLine
specifies the number of bytes per line (stride).
The buffer must remain valid throughout the life of the
QImage. The image does not delete the buffer at destruction.
If \a format is an indexed color format, the image color table is
initially empty and must be sufficiently expanded with
setColorCount() or setColorTable() before the image is used.
*/
QImage::QImage(uchar *data, int width, int height, int bytesPerLine, Format format)
:QPaintDevice()
{
d = QImageData::create(data, width, height, bytesPerLine, format, false);
}
/*!
Constructs an image with the given \a width, \a height and \a
format, that uses an existing memory buffer, \a data. The \a width
and \a height must be specified in pixels. \a bytesPerLine
specifies the number of bytes per line (stride).
The buffer must remain valid throughout the life of the
QImage. The image does not delete the buffer at destruction.
If \a format is an indexed color format, the image color table is
initially empty and must be sufficiently expanded with
setColorCount() or setColorTable() before the image is used.
Unlike the similar QImage constructor that takes a non-const data buffer,
this version will never alter the contents of the buffer. For example,
calling QImage::bits() will return a deep copy of the image, rather than
the buffer passed to the constructor. This allows for the efficiency of
constructing a QImage from raw data, without the possibility of the raw
data being changed.
*/
QImage::QImage(const uchar *data, int width, int height, int bytesPerLine, Format format)
:QPaintDevice()
{
d = QImageData::create(const_cast<uchar*>(data), width, height, bytesPerLine, format, true);
}
/*!
Constructs an image and tries to load the image from the file with
the given \a fileName.
The loader attempts to read the image using the specified \a
format. If the \a format is not specified (which is the default),
the loader probes the file for a header to guess the file format.
If the loading of the image failed, this object is a null image.
The file name can either refer to an actual file on disk or to one
of the application's embedded resources. See the
\l{resources.html}{Resource System} overview for details on how to
embed images and other resource files in the application's
executable.
\sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
*/
QImage::QImage(const QString &fileName, const char *format)
: QPaintDevice()
{
d = 0;
load(fileName, format);
}
/*!
Constructs an image and tries to load the image from the file with
the given \a fileName.
The loader attempts to read the image using the specified \a
format. If the \a format is not specified (which is the default),
the loader probes the file for a header to guess the file format.
If the loading of the image failed, this object is a null image.
The file name can either refer to an actual file on disk or to one
of the application's embedded resources. See the
\l{resources.html}{Resource System} overview for details on how to
embed images and other resource files in the application's
executable.
You can disable this constructor by defining \c
QT_NO_CAST_FROM_ASCII when you compile your applications. This can
be useful, for example, if you want to ensure that all
user-visible strings go through QObject::tr().
\sa QString::fromAscii(), isNull(), {QImage#Reading and Writing
Image Files}{Reading and Writing Image Files}
*/
#ifndef QT_NO_CAST_FROM_ASCII
QImage::QImage(const char *fileName, const char *format)
: QPaintDevice()
{
// ### Qt 5: if you remove the QImage(const QByteArray &) QT3_SUPPORT
// constructor, remove this constructor as well. The constructor here
// exists so that QImage("foo.png") compiles without ambiguity.
d = 0;
load(QString::fromAscii(fileName), format);
}
#endif
#ifndef QT_NO_IMAGEFORMAT_XPM
extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image);
/*!
Constructs an image from the given \a xpm image.
Make sure that the image is a valid XPM image. Errors are silently
ignored.
Note that it's possible to squeeze the XPM variable a little bit
by using an unusual declaration:
\snippet doc/src/snippets/code/src_gui_image_qimage.cpp 2
The extra \c const makes the entire definition read-only, which is
slightly more efficient (e.g., when the code is in a shared
library) and able to be stored in ROM with the application.
*/
QImage::QImage(const char * const xpm[])
: QPaintDevice()
{
d = 0;
if (!xpm)
return;
if (!qt_read_xpm_image_or_array(0, xpm, *this))
// Issue: Warning because the constructor may be ambigious
qWarning("QImage::QImage(), XPM is not supported");
}
#endif // QT_NO_IMAGEFORMAT_XPM
/*!
\fn QImage::QImage(const QByteArray &data)
Use the static fromData() function instead.
\oldcode
QByteArray data;
...
QImage image(data);
\newcode
QByteArray data;
...
QImage image = QImage::fromData(data);
\endcode
*/
/*!
Constructs a shallow copy of the given \a image.
For more information about shallow copies, see the \l {Implicit
Data Sharing} documentation.
\sa copy()
*/
QImage::QImage(const QImage &image)
: QPaintDevice()
{
if (image.paintingActive()) {
d = 0;
operator=(image.copy());
} else {
d = image.d;
if (d)
d->ref.ref();
}
}
#ifdef QT3_SUPPORT
/*!
\fn QImage::QImage(int width, int height, int depth, int numColors, Endian bitOrder)
Constructs an image with the given \a width, \a height, \a depth,
\a numColors colors and \a bitOrder.
Use the constructor that accepts a width, a height and a format
(i.e. specifying the depth and bit order), in combination with the
setColorCount() function, instead.
\oldcode
QImage image(width, height, depth, numColors);
\newcode
QImage image(width, height, format);
// For 8 bit images the default number of colors is 256. If
// another number of colors is required it can be specified
// using the setColorCount() function.
image.setColorCount(numColors);
\endcode
*/
QImage::QImage(int w, int h, int depth, int colorCount, Endian bitOrder)
: QPaintDevice()
{
d = QImageData::create(QSize(w, h), formatFor(depth, bitOrder), colorCount);
}
/*!
Constructs an image with the given \a size, \a depth, \a numColors
and \a bitOrder.
Use the constructor that accepts a size and a format
(i.e. specifying the depth and bit order), in combination with the
setColorCount() function, instead.
\oldcode
QSize mySize(width, height);
QImage image(mySize, depth, numColors);
\newcode
QSize mySize(width, height);
QImage image(mySize, format);
// For 8 bit images the default number of colors is 256. If
// another number of colors is required it can be specified
// using the setColorCount() function.
image.setColorCount(numColors);
\endcode
*/
QImage::QImage(const QSize& size, int depth, int numColors, Endian bitOrder)
: QPaintDevice()
{
d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
}
/*!
\fn QImage::QImage(uchar* data, int width, int height, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
Constructs an image with the given \a width, \a height, depth, \a
colortable, \a numColors and \a bitOrder, that uses an existing
memory buffer, \a data.
Use the constructor that accepts a uchar pointer, a width, a
height and a format (i.e. specifying the depth and bit order), in
combination with the setColorTable() function, instead.
\oldcode
uchar *myData;
QRgb *myColorTable;
QImage image(myData, width, height, depth,
myColorTable, numColors, IgnoreEndian);
\newcode
uchar *myData;
QVector<QRgb> myColorTable;
QImage image(myData, width, height, format);
image.setColorTable(myColorTable);
\endcode
*/
QImage::QImage(uchar* data, int w, int h, int depth, const QRgb* colortable, int numColors, Endian bitOrder)
: QPaintDevice()
{
d = 0;
Format f = formatFor(depth, bitOrder);
if (f == Format_Invalid)
return;
const int bytes_per_line = ((w*depth+31)/32)*4; // bytes per scanline
if (w <= 0 || h <= 0 || numColors < 0 || !data
|| INT_MAX/sizeof(uchar *) < uint(h)
|| INT_MAX/uint(depth) < uint(w)
|| bytes_per_line <= 0
|| INT_MAX/uint(bytes_per_line) < uint(h))
return; // invalid parameter(s)
d = new QImageData;
d->ref.ref();
d->own_data = false;
d->data = data;
d->width = w;
d->height = h;
d->depth = depth;
d->format = f;
if (depth == 32)
numColors = 0;
d->bytes_per_line = bytes_per_line;
d->nbytes = d->bytes_per_line * h;
if (colortable) {
d->colortable.resize(numColors);
for (int i = 0; i < numColors; ++i)
d->colortable[i] = colortable[i];
} else if (numColors) {
setColorCount(numColors);
}
}
#ifdef Q_WS_QWS
/*!
\fn QImage::QImage(uchar* data, int width, int height, int depth, int bytesPerLine, const QRgb* colortable, int numColors, Endian bitOrder)
Constructs an image with the given \a width, \a height, \a depth,
\a bytesPerLine, \a colortable, \a numColors and \a bitOrder, that
uses an existing memory buffer, \a data. The image does not delete
the buffer at destruction.
\warning This constructor is only available in Qt for Embedded Linux.
The data has to be 32-bit aligned, and each scanline of data in the image
must also be 32-bit aligned, so it's no longer possible to specify a custom
\a bytesPerLine value.
*/
QImage::QImage(uchar* data, int w, int h, int depth, int bpl, const QRgb* colortable, int numColors, Endian bitOrder)
: QPaintDevice()
{
d = 0;
Format f = formatFor(depth, bitOrder);
if (f == Format_Invalid)
return;
if (!data || w <= 0 || h <= 0 || depth <= 0 || numColors < 0
|| INT_MAX/sizeof(uchar *) < uint(h)
|| INT_MAX/uint(depth) < uint(w)
|| bpl <= 0
|| INT_MAX/uint(bpl) < uint(h))
return; // invalid parameter(s)
d = new QImageData;
d->ref.ref();
d->own_data = false;
d->data = data;
d->width = w;
d->height = h;
d->depth = depth;
d->format = f;
if (depth == 32)
numColors = 0;
d->bytes_per_line = bpl;
d->nbytes = d->bytes_per_line * h;
if (colortable) {
d->colortable.resize(numColors);
for (int i = 0; i < numColors; ++i)
d->colortable[i] = colortable[i];
} else if (numColors) {
setColorCount(numColors);
}
}
#endif // Q_WS_QWS
#endif // QT3_SUPPORT
/*!
Destroys the image and cleans up.
*/
QImage::~QImage()
{
if (d && !d->ref.deref())
delete d;
}
/*!
Assigns a shallow copy of the given \a image to this image and
returns a reference to this image.
For more information about shallow copies, see the \l {Implicit
Data Sharing} documentation.
\sa copy(), QImage()
*/
QImage &QImage::operator=(const QImage &image)
{
if (image.paintingActive()) {
operator=(image.copy());
} else {
if (image.d)
image.d->ref.ref();
if (d && !d->ref.deref())
delete d;
d = image.d;
}
return *this;
}
/*!
\fn void QImage::swap(QImage &other)
\since 4.8
Swaps image \a other with this image. This operation is very
fast and never fails.
*/
/*!
\internal
*/
int QImage::devType() const
{
return QInternal::Image;
}
/*!
Returns the image as a QVariant.
*/
QImage::operator QVariant() const
{
return QVariant(QVariant::Image, this);
}
/*!
\internal
If multiple images share common data, this image makes a copy of
the data and detaches itself from the sharing mechanism, making
sure that this image is the only one referring to the data.
Nothing is done if there is just a single reference.
\sa copy(), isDetached(), {Implicit Data Sharing}
*/
void QImage::detach()
{
if (d) {
if (d->is_cached && d->ref == 1)
QImagePixmapCleanupHooks::executeImageHooks(cacheKey());
if (d->ref != 1 || d->ro_data)
*this = copy();
if (d)
++d->detach_no;
}
}
/*!
\fn QImage QImage::copy(int x, int y, int width, int height) const
\overload
The returned image is copied from the position (\a x, \a y) in
this image, and will always have the given \a width and \a height.
In areas beyond this image, pixels are set to 0.
*/
/*!
\fn QImage QImage::copy(const QRect& rectangle) const
Returns a sub-area of the image as a new image.
The returned image is copied from the position (\a
{rectangle}.x(), \a{rectangle}.y()) in this image, and will always
have the size of the given \a rectangle.
In areas beyond this image, pixels are set to 0. For 32-bit RGB
images, this means black; for 32-bit ARGB images, this means
transparent black; for 8-bit images, this means the color with
index 0 in the color table which can be anything; for 1-bit
images, this means Qt::color0.
If the given \a rectangle is a null rectangle the entire image is
copied.
\sa QImage()
*/
QImage QImage::copy(const QRect& r) const
{
if (!d)
return QImage();
if (r.isNull()) {
QImage image(d->width, d->height, d->format);
if (image.isNull())
return image;
// Qt for Embedded Linux can create images with non-default bpl
// make sure we don't crash.
if (image.d->nbytes != d->nbytes) {
int bpl = image.bytesPerLine();
for (int i = 0; i < height(); i++)
memcpy(image.scanLine(i), scanLine(i), bpl);
} else
memcpy(image.bits(), bits(), d->nbytes);
image.d->colortable = d->colortable;
image.d->dpmx = d->dpmx;
image.d->dpmy = d->dpmy;
image.d->offset = d->offset;
image.d->has_alpha_clut = d->has_alpha_clut;
#ifndef QT_NO_IMAGE_TEXT
image.d->text = d->text;
#endif
return image;
}
int x = r.x();
int y = r.y();
int w = r.width();
int h = r.height();
int dx = 0;
int dy = 0;
if (w <= 0 || h <= 0)
return QImage();
QImage image(w, h, d->format);
if (image.isNull())
return image;
if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) {
// bitBlt will not cover entire image - clear it.
image.fill(0);
if (x < 0) {
dx = -x;
x = 0;
}
if (y < 0) {
dy = -y;
y = 0;
}
}
image.d->colortable = d->colortable;
int pixels_to_copy = qMax(w - dx, 0);
if (x > d->width)
pixels_to_copy = 0;
else if (pixels_to_copy > d->width - x)
pixels_to_copy = d->width - x;
int lines_to_copy = qMax(h - dy, 0);
if (y > d->height)
lines_to_copy = 0;
else if (lines_to_copy > d->height - y)
lines_to_copy = d->height - y;
bool byteAligned = true;
if (d->format == Format_Mono || d->format == Format_MonoLSB)
byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7);
if (byteAligned) {
const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line;
uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line;
const int bytes_to_copy = (pixels_to_copy * d->depth) >> 3;
for (int i = 0; i < lines_to_copy; ++i) {
memcpy(dest, src, bytes_to_copy);
src += d->bytes_per_line;
dest += image.d->bytes_per_line;
}
} else if (d->format == Format_Mono) {
const uchar *src = d->data + y * d->bytes_per_line;
uchar *dest = image.d->data + dy * image.d->bytes_per_line;
for (int i = 0; i < lines_to_copy; ++i) {
for (int j = 0; j < pixels_to_copy; ++j) {
if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7)))
dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7));
else
dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7));
}
src += d->bytes_per_line;
dest += image.d->bytes_per_line;
}
} else { // Format_MonoLSB
Q_ASSERT(d->format == Format_MonoLSB);
const uchar *src = d->data + y * d->bytes_per_line;
uchar *dest = image.d->data + dy * image.d->bytes_per_line;
for (int i = 0; i < lines_to_copy; ++i) {
for (int j = 0; j < pixels_to_copy; ++j) {
if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7)))
dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7));
else
dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7));
}
src += d->bytes_per_line;
dest += image.d->bytes_per_line;
}
}
image.d->dpmx = dotsPerMeterX();
image.d->dpmy = dotsPerMeterY();
image.d->offset = offset();
image.d->has_alpha_clut = d->has_alpha_clut;
#ifndef QT_NO_IMAGE_TEXT
image.d->text = d->text;
#endif
return image;
}
/*!
\fn bool QImage::isNull() const
Returns true if it is a null image, otherwise returns false.
A null image has all parameters set to zero and no allocated data.
*/
bool QImage::isNull() const
{
return !d;
}
/*!
\fn int QImage::width() const
Returns the width of the image.
\sa {QImage#Image Information}{Image Information}
*/
int QImage::width() const
{
return d ? d->width : 0;
}
/*!
\fn int QImage::height() const
Returns the height of the image.
\sa {QImage#Image Information}{Image Information}
*/
int QImage::height() const
{
return d ? d->height : 0;
}
/*!
\fn QSize QImage::size() const
Returns the size of the image, i.e. its width() and height().
\sa {QImage#Image Information}{Image Information}
*/
QSize QImage::size() const
{
return d ? QSize(d->width, d->height) : QSize(0, 0);
}
/*!
\fn QRect QImage::rect() const
Returns the enclosing rectangle (0, 0, width(), height()) of the
image.
\sa {QImage#Image Information}{Image Information}
*/
QRect QImage::rect() const
{
return d ? QRect(0, 0, d->width, d->height) : QRect();
}
/*!
Returns the depth of the image.
The image depth is the number of bits used to store a single
pixel, also called bits per pixel (bpp).
The supported depths are 1, 8, 16, 24 and 32.
\sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats},
{QImage#Image Information}{Image Information}
*/
int QImage::depth() const
{
return d ? d->depth : 0;
}
/*!
\obsolete
\fn int QImage::numColors() const
Returns the size of the color table for the image.
\sa setColorCount()
*/
int QImage::numColors() const
{
return d ? d->colortable.size() : 0;
}
/*!
\since 4.6
\fn int QImage::colorCount() const
Returns the size of the color table for the image.
Notice that colorCount() returns 0 for 32-bpp images because these
images do not use color tables, but instead encode pixel values as
ARGB quadruplets.
\sa setColorCount(), {QImage#Image Information}{Image Information}
*/
int QImage::colorCount() const
{
return d ? d->colortable.size() : 0;
}
#ifdef QT3_SUPPORT
/*!
\fn QImage::Endian QImage::bitOrder() const
Returns the bit order for the image. If it is a 1-bpp image, this
function returns either QImage::BigEndian or
QImage::LittleEndian. Otherwise, this function returns
QImage::IgnoreEndian.
Use the format() function instead for the monochrome formats. For
non-monochrome formats the bit order is irrelevant.
*/
/*!
Returns a pointer to the scanline pointer table. This is the
beginning of the data block for the image.
Returns 0 in case of an error.
Use the bits() or scanLine() function instead.
*/
uchar **QImage::jumpTable()
{
if (!d)
return 0;
detach();
// in case detach() ran out of memory..
if (!d)
return 0;
if (!d->jumptable) {
d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
if (!d->jumptable)
return 0;
uchar *data = d->data;
int height = d->height;
uchar **p = d->jumptable;
while (height--) {
*p++ = data;
data += d->bytes_per_line;
}
}
return d->jumptable;
}
/*!
\overload
*/
const uchar * const *QImage::jumpTable() const
{
if (!d)
return 0;
if (!d->jumptable) {
d->jumptable = (uchar **)malloc(d->height*sizeof(uchar *));
if (!d->jumptable)
return 0;
uchar *data = d->data;
int height = d->height;
uchar **p = d->jumptable;
while (height--) {
*p++ = data;
data += d->bytes_per_line;
}
}
return d->jumptable;
}
#endif
/*!
Sets the color table used to translate color indexes to QRgb
values, to the specified \a colors.
When the image is used, the color table must be large enough to
have entries for all the pixel/index values present in the image,
otherwise the results are undefined.
\sa colorTable(), setColor(), {QImage#Image Transformations}{Image
Transformations}
*/
void QImage::setColorTable(const QVector<QRgb> colors)
{
if (!d)
return;
detach();
// In case detach() ran out of memory
if (!d)
return;
d->colortable = colors;
d->has_alpha_clut = false;
for (int i = 0; i < d->colortable.size(); ++i) {
if (qAlpha(d->colortable.at(i)) != 255) {
d->has_alpha_clut = true;
break;
}
}
}
/*!
Returns a list of the colors contained in the image's color table,
or an empty list if the image does not have a color table
\sa setColorTable(), colorCount(), color()
*/
QVector<QRgb> QImage::colorTable() const
{
return d ? d->colortable : QVector<QRgb>();
}
/*!
\obsolete
Returns the number of bytes occupied by the image data.
\sa byteCount()
*/
int QImage::numBytes() const
{
return d ? d->nbytes : 0;
}
/*!
\since 4.6
Returns the number of bytes occupied by the image data.
\sa bytesPerLine(), bits(), {QImage#Image Information}{Image
Information}
*/
int QImage::byteCount() const
{
return d ? d->nbytes : 0;
}
/*!
Returns the number of bytes per image scanline.
This is equivalent to byteCount() / height().
\sa scanLine()
*/
int QImage::bytesPerLine() const
{
return (d && d->height) ? d->nbytes / d->height : 0;
}
/*!
Returns the color in the color table at index \a i. The first
color is at index 0.
The colors in an image's color table are specified as ARGB
quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and
qBlue() functions to get the color value components.
\sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel
Manipulation}
*/
QRgb QImage::color(int i) const
{
Q_ASSERT(i < colorCount());
return d ? d->colortable.at(i) : QRgb(uint(-1));
}
/*!
\fn void QImage::setColor(int index, QRgb colorValue)
Sets the color at the given \a index in the color table, to the
given to \a colorValue. The color value is an ARGB quadruplet.
If \a index is outside the current size of the color table, it is
expanded with setColorCount().
\sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel
Manipulation}
*/
void QImage::setColor(int i, QRgb c)
{
if (!d)
return;
if (i < 0 || d->depth > 8 || i >= 1<<d->depth) {
qWarning("QImage::setColor: Index out of bound %d", i);
return;
}
detach();
// In case detach() run out of memory
if (!d)
return;
if (i >= d->colortable.size())
setColorCount(i+1);
d->colortable[i] = c;
d->has_alpha_clut |= (qAlpha(c) != 255);
}
/*!
Returns a pointer to the pixel data at the scanline with index \a
i. The first scanline is at index 0.
The scanline data is aligned on a 32-bit boundary.
\warning If you are accessing 32-bpp image data, cast the returned
pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to
read/write the pixel value. You cannot use the \c{uchar*} pointer
directly, because the pixel format depends on the byte order on
the underlying platform. Use qRed(), qGreen(), qBlue(), and
qAlpha() to access the pixels.
\sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel
Manipulation}, constScanLine()
*/
uchar *QImage::scanLine(int i)
{
if (!d)
return 0;
detach();
// In case detach() ran out of memory
if (!d)
return 0;
return d->data + i * d->bytes_per_line;
}
/*!
\overload
*/
const uchar *QImage::scanLine(int i) const
{
if (!d)
return 0;
Q_ASSERT(i >= 0 && i < height());
return d->data + i * d->bytes_per_line;
}
/*!
Returns a pointer to the pixel data at the scanline with index \a
i. The first scanline is at index 0.
The scanline data is aligned on a 32-bit boundary.
Note that QImage uses \l{Implicit Data Sharing} {implicit data
sharing}, but this function does \e not perform a deep copy of the
shared pixel data, because the returned data is const.
\sa scanLine(), constBits()
\since 4.7
*/
const uchar *QImage::constScanLine(int i) const
{
if (!d)
return 0;
Q_ASSERT(i >= 0 && i < height());
return d->data + i * d->bytes_per_line;
}
/*!
Returns a pointer to the first pixel data. This is equivalent to
scanLine(0).
Note that QImage uses \l{Implicit Data Sharing} {implicit data
sharing}. This function performs a deep copy of the shared pixel
data, thus ensuring that this QImage is the only one using the
current return value.
\sa scanLine(), byteCount(), constBits()
*/
uchar *QImage::bits()
{
if (!d)
return 0;
detach();
// In case detach ran out of memory...
if (!d)
return 0;
return d->data;
}
/*!
\overload
Note that QImage uses \l{Implicit Data Sharing} {implicit data
sharing}, but this function does \e not perform a deep copy of the
shared pixel data, because the returned data is const.
*/
const uchar *QImage::bits() const
{
return d ? d->data : 0;
}
/*!
Returns a pointer to the first pixel data.
Note that QImage uses \l{Implicit Data Sharing} {implicit data
sharing}, but this function does \e not perform a deep copy of the
shared pixel data, because the returned data is const.
\sa bits(), constScanLine()
\since 4.7
*/
const uchar *QImage::constBits() const
{
return d ? d->data : 0;
}
/*!
\fn void QImage::reset()
Resets all image parameters and deallocates the image data.
Assign a null image instead.
\oldcode
QImage image;
image.reset();
\newcode
QImage image;
image = QImage();
\endcode
*/
/*!
\fn void QImage::fill(uint pixelValue)
Fills the entire image with the given \a pixelValue.
If the depth of this image is 1, only the lowest bit is used. If
you say fill(0), fill(2), etc., the image is filled with 0s. If
you say fill(1), fill(3), etc., the image is filled with 1s. If
the depth is 8, the lowest 8 bits are used and if the depth is 16
the lowest 16 bits are used.
Note: QImage::pixel() returns the color of the pixel at the given
coordinates while QColor::pixel() returns the pixel value of the
underlying window system (essentially an index value), so normally
you will want to use QImage::pixel() to use a color from an
existing image or QColor::rgb() to use a specific color.
\sa depth(), {QImage#Image Transformations}{Image Transformations}
*/
void QImage::fill(uint pixel)
{
if (!d)
return;
detach();
// In case detach() ran out of memory
if (!d)
return;
if (d->depth == 1 || d->depth == 8) {
int w = d->width;
if (d->depth == 1) {
if (pixel & 1)
pixel = 0xffffffff;
else
pixel = 0;
w = (w + 7) / 8;
} else {
pixel &= 0xff;
}
qt_rectfill<quint8>(d->data, pixel, 0, 0,
w, d->height, d->bytes_per_line);
return;
} else if (d->depth == 16) {
qt_rectfill<quint16>(reinterpret_cast<quint16*>(d->data), pixel,
0, 0, d->width, d->height, d->bytes_per_line);
return;
} else if (d->depth == 24) {
qt_rectfill<quint24>(reinterpret_cast<quint24*>(d->data), pixel,
0, 0, d->width, d->height, d->bytes_per_line);
return;
}
if (d->format == Format_RGB32)
pixel |= 0xff000000;
qt_rectfill<uint>(reinterpret_cast<uint*>(d->data), pixel,
0, 0, d->width, d->height, d->bytes_per_line);
}
/*!
\fn void QImage::fill(Qt::GlobalColor color)
\overload
\since 4.8
*/
void QImage::fill(Qt::GlobalColor color)
{
fill(QColor(color));
}
/*!
\fn void QImage::fill(Qt::GlobalColor color)
\overload
Fills the entire image with the given \a color.
If the depth of the image is 1, the image will be filled with 1 if
\a color equals Qt::color1; it will otherwise be filled with 0.
If the depth of the image is 8, the image will be filled with the
index corresponding the \a color in the color table if present; it
will otherwise be filled with 0.
\since 4.8
*/
void QImage::fill(const QColor &color)
{
if (!d)
return;
detach();
// In case we run out of memory
if (!d)
return;
if (d->depth == 32) {
uint pixel = color.rgba();
if (d->format == QImage::Format_ARGB32_Premultiplied)
pixel = PREMUL(pixel);
fill((uint) pixel);
} else if (d->depth == 16 && d->format == QImage::Format_RGB16) {
qrgb565 p(color.rgba());
fill((uint) p.rawValue());
} else if (d->depth == 1) {
if (color == Qt::color1)
fill((uint) 1);
else
fill((uint) 0);
} else if (d->depth == 8) {
uint pixel = 0;
for (int i=0; i<d->colortable.size(); ++i) {
if (color.rgba() == d->colortable.at(i)) {
pixel = i;
break;
}
}
fill(pixel);
} else {
QPainter p(this);
p.setCompositionMode(QPainter::CompositionMode_Source);
p.fillRect(rect(), color);
}
}
/*!
Inverts all pixel values in the image.
The given invert \a mode only have a meaning when the image's
depth is 32. The default \a mode is InvertRgb, which leaves the
alpha channel unchanged. If the \a mode is InvertRgba, the alpha
bits are also inverted.
Inverting an 8-bit image means to replace all pixels using color
index \e i with a pixel using color index 255 minus \e i. The same
is the case for a 1-bit image. Note that the color table is \e not
changed.
\sa {QImage#Image Transformations}{Image Transformations}
*/
void QImage::invertPixels(InvertMode mode)
{
if (!d)
return;
detach();
// In case detach() ran out of memory
if (!d)
return;
if (depth() != 32) {
// number of used bytes pr line
int bpl = (d->width * d->depth + 7) / 8;
int pad = d->bytes_per_line - bpl;
uchar *sl = d->data;
for (int y=0; y<d->height; ++y) {
for (int x=0; x<bpl; ++x)
*sl++ ^= 0xff;
sl += pad;
}
} else {
quint32 *p = (quint32*)d->data;
quint32 *end = (quint32*)(d->data + d->nbytes);
uint xorbits = (mode == InvertRgba) ? 0xffffffff : 0x00ffffff;
while (p < end)
*p++ ^= xorbits;
}
}
/*!
\fn void QImage::invertPixels(bool invertAlpha)
Use the invertPixels() function that takes a QImage::InvertMode
parameter instead.
*/
/*! \fn QImage::Endian QImage::systemByteOrder()
Determines the host computer byte order. Returns
QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
This function is no longer relevant for QImage. Use QSysInfo
instead.
*/
// Windows defines these
#if defined(write)
# undef write
#endif
#if defined(close)
# undef close
#endif
#if defined(read)
# undef read
#endif
/*!
\obsolete
Resizes the color table to contain \a numColors entries.
\sa setColorCount()
*/
void QImage::setNumColors(int numColors)
{
setColorCount(numColors);
}
/*!
\since 4.6
Resizes the color table to contain \a colorCount entries.
If the color table is expanded, all the extra colors will be set to
transparent (i.e qRgba(0, 0, 0, 0)).
When the image is used, the color table must be large enough to
have entries for all the pixel/index values present in the image,
otherwise the results are undefined.
\sa colorCount(), colorTable(), setColor(), {QImage#Image
Transformations}{Image Transformations}
*/
void QImage::setColorCount(int colorCount)
{
if (!d) {
qWarning("QImage::setColorCount: null image");
return;
}
detach();
// In case detach() ran out of memory
if (!d)
return;
if (colorCount == d->colortable.size())
return;
if (colorCount <= 0) { // use no color table
d->colortable = QVector<QRgb>();
return;
}
int nc = d->colortable.size();
d->colortable.resize(colorCount);
for (int i = nc; i < colorCount; ++i)
d->colortable[i] = 0;
}
/*!
Returns the format of the image.
\sa {QImage#Image Formats}{Image Formats}
*/
QImage::Format QImage::format() const
{
return d ? d->format : Format_Invalid;
}
#ifdef QT3_SUPPORT
/*!
Returns true if alpha buffer mode is enabled; otherwise returns
false.
Use the hasAlphaChannel() function instead.
*/
bool QImage::hasAlphaBuffer() const
{
if (!d)
return false;
switch (d->format) {
case Format_ARGB32:
case Format_ARGB32_Premultiplied:
case Format_ARGB8565_Premultiplied:
case Format_ARGB8555_Premultiplied:
case Format_ARGB6666_Premultiplied:
case Format_ARGB4444_Premultiplied:
return true;
default:
return false;
}
}
/*!
Enables alpha buffer mode if \a enable is true, otherwise disables
it. The alpha buffer is used to set a mask when a QImage is
translated to a QPixmap.
If a monochrome or indexed 8-bit image has alpha channels in their
color tables they will automatically detect that they have an
alpha channel, so this function is not required. To force alpha
channels on 32-bit images, use the convertToFormat() function.
*/
void QImage::setAlphaBuffer(bool enable)
{
if (!d
|| d->format == Format_Mono
|| d->format == Format_MonoLSB
|| d->format == Format_Indexed8)
return;
if (enable && (d->format == Format_ARGB32 ||
d->format == Format_ARGB32_Premultiplied ||
d->format == Format_ARGB8565_Premultiplied ||
d->format == Format_ARGB6666_Premultiplied ||
d->format == Format_ARGB8555_Premultiplied ||
d->format == Format_ARGB4444_Premultiplied))
{
return;
}
if (!enable && (d->format == Format_RGB32 ||
d->format == Format_RGB555 ||
d->format == Format_RGB666 ||
d->format == Format_RGB888 ||
d->format == Format_RGB444))
{
return;
}
detach();
d->format = (enable ? Format_ARGB32 : Format_RGB32);
}
/*!
\fn bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
Sets the image \a width, \a height, \a depth, its number of colors
(in \a numColors), and bit order. Returns true if successful, or
false if the parameters are incorrect or if memory cannot be
allocated.
The \a width and \a height is limited to 32767. \a depth must be
1, 8, or 32. If \a depth is 1, \a bitOrder must be set to
either QImage::LittleEndian or QImage::BigEndian. For other depths
\a bitOrder must be QImage::IgnoreEndian.
This function allocates a color table and a buffer for the image
data. The image data is not initialized. The image buffer is
allocated as a single block that consists of a table of scanLine()
pointers (jumpTable()) and the image data (bits()).
Use a QImage constructor instead.
*/
bool QImage::create(int width, int height, int depth, int numColors, Endian bitOrder)
{
if (d && !d->ref.deref())
delete d;
d = QImageData::create(QSize(width, height), formatFor(depth, bitOrder), numColors);
return true;
}
/*!
\fn bool QImage::create(const QSize& size, int depth, int numColors, Endian bitOrder)
\overload
The width and height are specified in the \a size argument.
Use a QImage constructor instead.
*/
bool QImage::create(const QSize& size, int depth, int numColors, QImage::Endian bitOrder)
{
if (d && !d->ref.deref())
delete d;
d = QImageData::create(size, formatFor(depth, bitOrder), numColors);
return true;
}
#endif // QT3_SUPPORT
/*****************************************************************************
Internal routines for converting image depth.
*****************************************************************************/
typedef void (*Image_Converter)(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);
typedef bool (*InPlace_Image_Converter)(QImageData *data, Qt::ImageConversionFlags);
static void convert_ARGB_to_ARGB_PM(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_ARGB32);
Q_ASSERT(dest->format == QImage::Format_ARGB32_Premultiplied);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
const int src_pad = (src->bytes_per_line >> 2) - src->width;
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
const QRgb *src_data = (QRgb *) src->data;
QRgb *dest_data = (QRgb *) dest->data;
for (int i = 0; i < src->height; ++i) {
const QRgb *end = src_data + src->width;
while (src_data < end) {
*dest_data = PREMUL(*src_data);
++src_data;
++dest_data;
}
src_data += src_pad;
dest_data += dest_pad;
}
}
static bool convert_ARGB_to_ARGB_PM_inplace(QImageData *data, Qt::ImageConversionFlags)
{
Q_ASSERT(data->format == QImage::Format_ARGB32);
const int pad = (data->bytes_per_line >> 2) - data->width;
QRgb *rgb_data = (QRgb *) data->data;
for (int i = 0; i < data->height; ++i) {
const QRgb *end = rgb_data + data->width;
while (rgb_data < end) {
*rgb_data = PREMUL(*rgb_data);
++rgb_data;
}
rgb_data += pad;
}
data->format = QImage::Format_ARGB32_Premultiplied;
return true;
}
static bool convert_indexed8_to_ARGB_PM_inplace(QImageData *data, Qt::ImageConversionFlags)
{
Q_ASSERT(data->format == QImage::Format_Indexed8);
const int depth = 32;
const int dst_bytes_per_line = ((data->width * depth + 31) >> 5) << 2;
const int nbytes = dst_bytes_per_line * data->height;
uchar *const newData = (uchar *)realloc(data->data, nbytes);
if (!newData)
return false;
data->data = newData;
// start converting from the end because the end image is bigger than the source
uchar *src_data = newData + data->nbytes; // end of src
quint32 *dest_data = (quint32 *) (newData + nbytes); // end of dest > end of src
const int width = data->width;
const int src_pad = data->bytes_per_line - width;
const int dest_pad = (dst_bytes_per_line >> 2) - width;
if (data->colortable.size() == 0) {
data->colortable.resize(256);
for (int i = 0; i < 256; ++i)
data->colortable[i] = qRgb(i, i, i);
} else {
for (int i = 0; i < data->colortable.size(); ++i)
data->colortable[i] = PREMUL(data->colortable.at(i));
// Fill the rest of the table in case src_data > colortable.size()
const int oldSize = data->colortable.size();
const QRgb lastColor = data->colortable.at(oldSize - 1);
data->colortable.insert(oldSize, 256 - oldSize, lastColor);
}
for (int i = 0; i < data->height; ++i) {
src_data -= src_pad;
dest_data -= dest_pad;
for (int pixI = 0; pixI < width; ++pixI) {
--src_data;
--dest_data;
*dest_data = data->colortable.at(*src_data);
}
}
data->colortable = QVector<QRgb>();
data->format = QImage::Format_ARGB32_Premultiplied;
data->bytes_per_line = dst_bytes_per_line;
data->depth = depth;
data->nbytes = nbytes;
return true;
}
static bool convert_indexed8_to_RGB_inplace(QImageData *data, Qt::ImageConversionFlags)
{
Q_ASSERT(data->format == QImage::Format_Indexed8);
const int depth = 32;
const int dst_bytes_per_line = ((data->width * depth + 31) >> 5) << 2;
const int nbytes = dst_bytes_per_line * data->height;
uchar *const newData = (uchar *)realloc(data->data, nbytes);
if (!newData)
return false;
data->data = newData;
// start converting from the end because the end image is bigger than the source
uchar *src_data = newData + data->nbytes;
quint32 *dest_data = (quint32 *) (newData + nbytes);
const int width = data->width;
const int src_pad = data->bytes_per_line - width;
const int dest_pad = (dst_bytes_per_line >> 2) - width;
if (data->colortable.size() == 0) {
data->colortable.resize(256);
for (int i = 0; i < 256; ++i)
data->colortable[i] = qRgb(i, i, i);
} else {
// Fill the rest of the table in case src_data > colortable.size()
const int oldSize = data->colortable.size();
const QRgb lastColor = data->colortable.at(oldSize - 1);
data->colortable.insert(oldSize, 256 - oldSize, lastColor);
}
for (int i = 0; i < data->height; ++i) {
src_data -= src_pad;
dest_data -= dest_pad;
for (int pixI = 0; pixI < width; ++pixI) {
--src_data;
--dest_data;
*dest_data = (quint32) data->colortable.at(*src_data);
}
}
data->colortable = QVector<QRgb>();
data->format = QImage::Format_RGB32;
data->bytes_per_line = dst_bytes_per_line;
data->depth = depth;
data->nbytes = nbytes;
return true;
}
static bool convert_indexed8_to_RGB16_inplace(QImageData *data, Qt::ImageConversionFlags)
{
Q_ASSERT(data->format == QImage::Format_Indexed8);
const int depth = 16;
const int dst_bytes_per_line = ((data->width * depth + 31) >> 5) << 2;
const int nbytes = dst_bytes_per_line * data->height;
uchar *const newData = (uchar *)realloc(data->data, nbytes);
if (!newData)
return false;
data->data = newData;
// start converting from the end because the end image is bigger than the source
uchar *src_data = newData + data->nbytes;
quint16 *dest_data = (quint16 *) (newData + nbytes);
const int width = data->width;
const int src_pad = data->bytes_per_line - width;
const int dest_pad = (dst_bytes_per_line >> 1) - width;
quint16 colorTableRGB16[256];
if (data->colortable.isEmpty()) {
for (int i = 0; i < 256; ++i)
colorTableRGB16[i] = qt_colorConvert<quint16, quint32>(qRgb(i, i, i), 0);
} else {
// 1) convert the existing colors to RGB16
const int tableSize = data->colortable.size();
for (int i = 0; i < tableSize; ++i)
colorTableRGB16[i] = qt_colorConvert<quint16, quint32>(data->colortable.at(i), 0);
data->colortable = QVector<QRgb>();
// 2) fill the rest of the table in case src_data > colortable.size()
const quint16 lastColor = colorTableRGB16[tableSize - 1];
for (int i = tableSize; i < 256; ++i)
colorTableRGB16[i] = lastColor;
}
for (int i = 0; i < data->height; ++i) {
src_data -= src_pad;
dest_data -= dest_pad;
for (int pixI = 0; pixI < width; ++pixI) {
--src_data;
--dest_data;
*dest_data = colorTableRGB16[*src_data];
}
}
data->format = QImage::Format_RGB16;
data->bytes_per_line = dst_bytes_per_line;
data->depth = depth;
data->nbytes = nbytes;
return true;
}
static bool convert_RGB_to_RGB16_inplace(QImageData *data, Qt::ImageConversionFlags)
{
Q_ASSERT(data->format == QImage::Format_RGB32);
const int depth = 16;
const int dst_bytes_per_line = ((data->width * depth + 31) >> 5) << 2;
const int src_bytes_per_line = data->bytes_per_line;
quint32 *src_data = (quint32 *) data->data;
quint16 *dst_data = (quint16 *) data->data;
for (int i = 0; i < data->height; ++i) {
qt_memconvert(dst_data, src_data, data->width);
src_data = (quint32 *) (((char*)src_data) + src_bytes_per_line);
dst_data = (quint16 *) (((char*)dst_data) + dst_bytes_per_line);
}
data->format = QImage::Format_RGB16;
data->bytes_per_line = dst_bytes_per_line;
data->depth = depth;
data->nbytes = dst_bytes_per_line * data->height;
uchar *const newData = (uchar *)realloc(data->data, data->nbytes);
if (newData) {
data->data = newData;
return true;
} else {
return false;
}
}
static void convert_ARGB_PM_to_ARGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
Q_ASSERT(dest->format == QImage::Format_ARGB32);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
const int src_pad = (src->bytes_per_line >> 2) - src->width;
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
const QRgb *src_data = (QRgb *) src->data;
QRgb *dest_data = (QRgb *) dest->data;
for (int i = 0; i < src->height; ++i) {
const QRgb *end = src_data + src->width;
while (src_data < end) {
*dest_data = INV_PREMUL(*src_data);
++src_data;
++dest_data;
}
src_data += src_pad;
dest_data += dest_pad;
}
}
static void convert_ARGB_PM_to_RGB(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_ARGB32_Premultiplied);
Q_ASSERT(dest->format == QImage::Format_RGB32);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
const int src_pad = (src->bytes_per_line >> 2) - src->width;
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
const QRgb *src_data = (QRgb *) src->data;
QRgb *dest_data = (QRgb *) dest->data;
for (int i = 0; i < src->height; ++i) {
const QRgb *end = src_data + src->width;
while (src_data < end) {
*dest_data = 0xff000000 | INV_PREMUL(*src_data);
++src_data;
++dest_data;
}
src_data += src_pad;
dest_data += dest_pad;
}
}
static void swap_bit_order(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
Q_ASSERT(dest->format == QImage::Format_Mono || dest->format == QImage::Format_MonoLSB);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
Q_ASSERT(src->nbytes == dest->nbytes);
Q_ASSERT(src->bytes_per_line == dest->bytes_per_line);
dest->colortable = src->colortable;
const uchar *src_data = src->data;
const uchar *end = src->data + src->nbytes;
uchar *dest_data = dest->data;
while (src_data < end) {
*dest_data = bitflip[*src_data];
++src_data;
++dest_data;
}
}
static void mask_alpha_converter(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
const int src_pad = (src->bytes_per_line >> 2) - src->width;
const int dest_pad = (dest->bytes_per_line >> 2) - dest->width;
const uint *src_data = (const uint *)src->data;
uint *dest_data = (uint *)dest->data;
for (int i = 0; i < src->height; ++i) {
const uint *end = src_data + src->width;
while (src_data < end) {
*dest_data = *src_data | 0xff000000;
++src_data;
++dest_data;
}
src_data += src_pad;
dest_data += dest_pad;
}
}
static QVector<QRgb> fix_color_table(const QVector<QRgb> &ctbl, QImage::Format format)
{
QVector<QRgb> colorTable = ctbl;
if (format == QImage::Format_RGB32) {
// check if the color table has alpha
for (int i = 0; i < colorTable.size(); ++i)
if (qAlpha(colorTable.at(i) != 0xff))
colorTable[i] = colorTable.at(i) | 0xff000000;
} else if (format == QImage::Format_ARGB32_Premultiplied) {
// check if the color table has alpha
for (int i = 0; i < colorTable.size(); ++i)
colorTable[i] = PREMUL(colorTable.at(i));
}
return colorTable;
}
//
// dither_to_1: Uses selected dithering algorithm.
//
static void dither_to_Mono(QImageData *dst, const QImageData *src,
Qt::ImageConversionFlags flags, bool fromalpha)
{
Q_ASSERT(src->width == dst->width);
Q_ASSERT(src->height == dst->height);
Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB);
dst->colortable.clear();
dst->colortable.append(0xffffffff);
dst->colortable.append(0xff000000);
enum { Threshold, Ordered, Diffuse } dithermode;
if (fromalpha) {
if ((flags & Qt::AlphaDither_Mask) == Qt::DiffuseAlphaDither)
dithermode = Diffuse;
else if ((flags & Qt::AlphaDither_Mask) == Qt::OrderedAlphaDither)
dithermode = Ordered;
else
dithermode = Threshold;
} else {
if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither)
dithermode = Threshold;
else if ((flags & Qt::Dither_Mask) == Qt::OrderedDither)
dithermode = Ordered;
else
dithermode = Diffuse;
}
int w = src->width;
int h = src->height;
int d = src->depth;
uchar gray[256]; // gray map for 8 bit images
bool use_gray = (d == 8);
if (use_gray) { // make gray map
if (fromalpha) {
// Alpha 0x00 -> 0 pixels (white)
// Alpha 0xFF -> 1 pixels (black)
for (int i = 0; i < src->colortable.size(); i++)
gray[i] = (255 - (src->colortable.at(i) >> 24));
} else {
// Pixel 0x00 -> 1 pixels (black)
// Pixel 0xFF -> 0 pixels (white)
for (int i = 0; i < src->colortable.size(); i++)
gray[i] = qGray(src->colortable.at(i));
}
}
uchar *dst_data = dst->data;
int dst_bpl = dst->bytes_per_line;
const uchar *src_data = src->data;
int src_bpl = src->bytes_per_line;
switch (dithermode) {
case Diffuse: {
QScopedArrayPointer<int> lineBuffer(new int[w * 2]);
int *line1 = lineBuffer.data();
int *line2 = lineBuffer.data() + w;
int bmwidth = (w+7)/8;
int *b1, *b2;
int wbytes = w * (d/8);
register const uchar *p = src->data;
const uchar *end = p + wbytes;
b2 = line2;
if (use_gray) { // 8 bit image
while (p < end)
*b2++ = gray[*p++];
} else { // 32 bit image
if (fromalpha) {
while (p < end) {
*b2++ = 255 - (*(uint*)p >> 24);
p += 4;
}
} else {
while (p < end) {
*b2++ = qGray(*(uint*)p);
p += 4;
}
}
}
for (int y=0; y<h; y++) { // for each scan line...
int *tmp = line1; line1 = line2; line2 = tmp;
bool not_last_line = y < h - 1;
if (not_last_line) { // calc. grayvals for next line
p = src->data + (y+1)*src->bytes_per_line;
end = p + wbytes;
b2 = line2;
if (use_gray) { // 8 bit image
while (p < end)
*b2++ = gray[*p++];
} else { // 24 bit image
if (fromalpha) {
while (p < end) {
*b2++ = 255 - (*(uint*)p >> 24);
p += 4;
}
} else {
while (p < end) {
*b2++ = qGray(*(uint*)p);
p += 4;
}
}
}
}
int err;
uchar *p = dst->data + y*dst->bytes_per_line;
memset(p, 0, bmwidth);
b1 = line1;
b2 = line2;
int bit = 7;
for (int x=1; x<=w; x++) {
if (*b1 < 128) { // black pixel
err = *b1++;
*p |= 1 << bit;
} else { // white pixel
err = *b1++ - 255;
}
if (bit == 0) {
p++;
bit = 7;
} else {
bit--;
}
if (x < w)
*b1 += (err*7)>>4; // spread error to right pixel
if (not_last_line) {
b2[0] += (err*5)>>4; // pixel below
if (x > 1)
b2[-1] += (err*3)>>4; // pixel below left
if (x < w)
b2[1] += err>>4; // pixel below right
}
b2++;
}
}
} break;
case Ordered: {
memset(dst->data, 0, dst->nbytes);
if (d == 32) {
for (int i=0; i<h; i++) {
const uint *p = (const uint *)src_data;
const uint *end = p + w;
uchar *m = dst_data;
int bit = 7;
int j = 0;
if (fromalpha) {
while (p < end) {
if ((*p++ >> 24) >= qt_bayer_matrix[j++&15][i&15])
*m |= 1 << bit;
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
} else {
while (p < end) {
if ((uint)qGray(*p++) < qt_bayer_matrix[j++&15][i&15])
*m |= 1 << bit;
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
}
dst_data += dst_bpl;
src_data += src_bpl;
}
} else
/* (d == 8) */ {
for (int i=0; i<h; i++) {
const uchar *p = src_data;
const uchar *end = p + w;
uchar *m = dst_data;
int bit = 7;
int j = 0;
while (p < end) {
if ((uint)gray[*p++] < qt_bayer_matrix[j++&15][i&15])
*m |= 1 << bit;
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
dst_data += dst_bpl;
src_data += src_bpl;
}
}
} break;
default: { // Threshold:
memset(dst->data, 0, dst->nbytes);
if (d == 32) {
for (int i=0; i<h; i++) {
const uint *p = (const uint *)src_data;
const uint *end = p + w;
uchar *m = dst_data;
int bit = 7;
if (fromalpha) {
while (p < end) {
if ((*p++ >> 24) >= 128)
*m |= 1 << bit; // Set mask "on"
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
} else {
while (p < end) {
if (qGray(*p++) < 128)
*m |= 1 << bit; // Set pixel "black"
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
}
dst_data += dst_bpl;
src_data += src_bpl;
}
} else
if (d == 8) {
for (int i=0; i<h; i++) {
const uchar *p = src_data;
const uchar *end = p + w;
uchar *m = dst_data;
int bit = 7;
while (p < end) {
if (gray[*p++] < 128)
*m |= 1 << bit; // Set mask "on"/ pixel "black"
if (bit == 0) {
m++;
bit = 7;
} else {
bit--;
}
}
dst_data += dst_bpl;
src_data += src_bpl;
}
}
}
}
if (dst->format == QImage::Format_MonoLSB) {
// need to swap bit order
uchar *sl = dst->data;
int bpl = (dst->width + 7) * dst->depth / 8;
int pad = dst->bytes_per_line - bpl;
for (int y=0; y<dst->height; ++y) {
for (int x=0; x<bpl; ++x) {
*sl = bitflip[*sl];
++sl;
}
sl += pad;
}
}
}
static void convert_X_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
{
dither_to_Mono(dst, src, flags, false);
}
static void convert_ARGB_PM_to_Mono(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
{
QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));
convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);
dither_to_Mono(dst, tmp.data(), flags, false);
}
//
// convert_32_to_8: Converts a 32 bits depth (true color) to an 8 bit
// image with a colormap. If the 32 bit image has more than 256 colors,
// we convert the red,green and blue bytes into a single byte encoded
// as 6 shades of each of red, green and blue.
//
// if dithering is needed, only 1 color at most is available for alpha.
//
struct QRgbMap {
inline QRgbMap() : used(0) { }
uchar pix;
uchar used;
QRgb rgb;
};
static void convert_RGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
{
Q_ASSERT(src->format == QImage::Format_RGB32 || src->format == QImage::Format_ARGB32);
Q_ASSERT(dst->format == QImage::Format_Indexed8);
Q_ASSERT(src->width == dst->width);
Q_ASSERT(src->height == dst->height);
bool do_quant = (flags & Qt::DitherMode_Mask) == Qt::PreferDither
|| src->format == QImage::Format_ARGB32;
uint alpha_mask = src->format == QImage::Format_RGB32 ? 0xff000000 : 0;
const int tablesize = 997; // prime
QRgbMap table[tablesize];
int pix=0;
if (!dst->colortable.isEmpty()) {
QVector<QRgb> ctbl = dst->colortable;
dst->colortable.resize(256);
// Preload palette into table.
// Almost same code as pixel insertion below
for (int i = 0; i < dst->colortable.size(); ++i) {
// Find in table...
QRgb p = ctbl.at(i) | alpha_mask;
int hash = p % tablesize;
for (;;) {
if (table[hash].used) {
if (table[hash].rgb == p) {
// Found previous insertion - use it
break;
} else {
// Keep searching...
if (++hash == tablesize) hash = 0;
}
} else {
// Cannot be in table
Q_ASSERT (pix != 256); // too many colors
// Insert into table at this unused position
dst->colortable[pix] = p;
table[hash].pix = pix++;
table[hash].rgb = p;
table[hash].used = 1;
break;
}
}
}
}
if ((flags & Qt::DitherMode_Mask) != Qt::PreferDither) {
dst->colortable.resize(256);
const uchar *src_data = src->data;
uchar *dest_data = dst->data;
for (int y = 0; y < src->height; y++) { // check if <= 256 colors
const QRgb *s = (const QRgb *)src_data;
uchar *b = dest_data;
for (int x = 0; x < src->width; ++x) {
QRgb p = s[x] | alpha_mask;
int hash = p % tablesize;
for (;;) {
if (table[hash].used) {
if (table[hash].rgb == (p)) {
// Found previous insertion - use it
break;
} else {
// Keep searching...
if (++hash == tablesize) hash = 0;
}
} else {
// Cannot be in table
if (pix == 256) { // too many colors
do_quant = true;
// Break right out
x = src->width;
y = src->height;
} else {
// Insert into table at this unused position
dst->colortable[pix] = p;
table[hash].pix = pix++;
table[hash].rgb = p;
table[hash].used = 1;
}
break;
}
}
*b++ = table[hash].pix; // May occur once incorrectly
}
src_data += src->bytes_per_line;
dest_data += dst->bytes_per_line;
}
}
int numColors = do_quant ? 256 : pix;
dst->colortable.resize(numColors);
if (do_quant) { // quantization needed
#define MAX_R 5
#define MAX_G 5
#define MAX_B 5
#define INDEXOF(r,g,b) (((r)*(MAX_G+1)+(g))*(MAX_B+1)+(b))
for (int rc=0; rc<=MAX_R; rc++) // build 6x6x6 color cube
for (int gc=0; gc<=MAX_G; gc++)
for (int bc=0; bc<=MAX_B; bc++)
dst->colortable[INDEXOF(rc,gc,bc)] = 0xff000000 | qRgb(rc*255/MAX_R, gc*255/MAX_G, bc*255/MAX_B);
const uchar *src_data = src->data;
uchar *dest_data = dst->data;
if ((flags & Qt::Dither_Mask) == Qt::ThresholdDither) {
for (int y = 0; y < src->height; y++) {
const QRgb *p = (const QRgb *)src_data;
const QRgb *end = p + src->width;
uchar *b = dest_data;
while (p < end) {
#define DITHER(p,m) ((uchar) ((p * (m) + 127) / 255))
*b++ =
INDEXOF(
DITHER(qRed(*p), MAX_R),
DITHER(qGreen(*p), MAX_G),
DITHER(qBlue(*p), MAX_B)
);
#undef DITHER
p++;
}
src_data += src->bytes_per_line;
dest_data += dst->bytes_per_line;
}
} else if ((flags & Qt::Dither_Mask) == Qt::DiffuseDither) {
int* line1[3];
int* line2[3];
int* pv[3];
QScopedArrayPointer<int> lineBuffer(new int[src->width * 9]);
line1[0] = lineBuffer.data();
line2[0] = lineBuffer.data() + src->width;
line1[1] = lineBuffer.data() + src->width * 2;
line2[1] = lineBuffer.data() + src->width * 3;
line1[2] = lineBuffer.data() + src->width * 4;
line2[2] = lineBuffer.data() + src->width * 5;
pv[0] = lineBuffer.data() + src->width * 6;
pv[1] = lineBuffer.data() + src->width * 7;
pv[2] = lineBuffer.data() + src->width * 8;
int endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian);
for (int y = 0; y < src->height; y++) {
const uchar* q = src_data;
const uchar* q2 = y < src->height - 1 ? q + src->bytes_per_line : src->data;
uchar *b = dest_data;
for (int chan = 0; chan < 3; chan++) {
int *l1 = (y&1) ? line2[chan] : line1[chan];
int *l2 = (y&1) ? line1[chan] : line2[chan];
if (y == 0) {
for (int i = 0; i < src->width; i++)
l1[i] = q[i*4+chan+endian];
}
if (y+1 < src->height) {
for (int i = 0; i < src->width; i++)
l2[i] = q2[i*4+chan+endian];
}
// Bi-directional error diffusion
if (y&1) {
for (int x = 0; x < src->width; x++) {
int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
int err = l1[x] - pix * 255 / 5;
pv[chan][x] = pix;
// Spread the error around...
if (x + 1< src->width) {
l1[x+1] += (err*7)>>4;
l2[x+1] += err>>4;
}
l2[x]+=(err*5)>>4;
if (x>1)
l2[x-1]+=(err*3)>>4;
}
} else {
for (int x = src->width; x-- > 0;) {
int pix = qMax(qMin(5, (l1[x] * 5 + 128)/ 255), 0);
int err = l1[x] - pix * 255 / 5;
pv[chan][x] = pix;
// Spread the error around...
if (x > 0) {
l1[x-1] += (err*7)>>4;
l2[x-1] += err>>4;
}
l2[x]+=(err*5)>>4;
if (x + 1 < src->width)
l2[x+1]+=(err*3)>>4;
}
}
}
if (endian) {
for (int x = 0; x < src->width; x++) {
*b++ = INDEXOF(pv[0][x],pv[1][x],pv[2][x]);
}
} else {
for (int x = 0; x < src->width; x++) {
*b++ = INDEXOF(pv[2][x],pv[1][x],pv[0][x]);
}
}
src_data += src->bytes_per_line;
dest_data += dst->bytes_per_line;
}
} else { // OrderedDither
for (int y = 0; y < src->height; y++) {
const QRgb *p = (const QRgb *)src_data;
const QRgb *end = p + src->width;
uchar *b = dest_data;
int x = 0;
while (p < end) {
uint d = qt_bayer_matrix[y & 15][x & 15] << 8;
#define DITHER(p, d, m) ((uchar) ((((256 * (m) + (m) + 1)) * (p) + (d)) >> 16))
*b++ =
INDEXOF(
DITHER(qRed(*p), d, MAX_R),
DITHER(qGreen(*p), d, MAX_G),
DITHER(qBlue(*p), d, MAX_B)
);
#undef DITHER
p++;
x++;
}
src_data += src->bytes_per_line;
dest_data += dst->bytes_per_line;
}
}
if (src->format != QImage::Format_RGB32
&& src->format != QImage::Format_RGB16) {
const int trans = 216;
Q_ASSERT(dst->colortable.size() > trans);
dst->colortable[trans] = 0;
QScopedPointer<QImageData> mask(QImageData::create(QSize(src->width, src->height), QImage::Format_Mono));
dither_to_Mono(mask.data(), src, flags, true);
uchar *dst_data = dst->data;
const uchar *mask_data = mask->data;
for (int y = 0; y < src->height; y++) {
for (int x = 0; x < src->width ; x++) {
if (!(mask_data[x>>3] & (0x80 >> (x & 7))))
dst_data[x] = trans;
}
mask_data += mask->bytes_per_line;
dst_data += dst->bytes_per_line;
}
dst->has_alpha_clut = true;
}
#undef MAX_R
#undef MAX_G
#undef MAX_B
#undef INDEXOF
}
}
static void convert_ARGB_PM_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
{
QScopedPointer<QImageData> tmp(QImageData::create(QSize(src->width, src->height), QImage::Format_ARGB32));
convert_ARGB_PM_to_ARGB(tmp.data(), src, flags);
convert_RGB_to_Indexed8(dst, tmp.data(), flags);
}
static void convert_ARGB_to_Indexed8(QImageData *dst, const QImageData *src, Qt::ImageConversionFlags flags)
{
convert_RGB_to_Indexed8(dst, src, flags);
}
static void convert_Indexed8_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_Indexed8);
Q_ASSERT(dest->format == QImage::Format_RGB32
|| dest->format == QImage::Format_ARGB32
|| dest->format == QImage::Format_ARGB32_Premultiplied);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
if (colorTable.size() == 0) {
colorTable.resize(256);
for (int i=0; i<256; ++i)
colorTable[i] = qRgb(i, i, i);
}
int w = src->width;
const uchar *src_data = src->data;
uchar *dest_data = dest->data;
int tableSize = colorTable.size() - 1;
for (int y = 0; y < src->height; y++) {
uint *p = (uint *)dest_data;
const uchar *b = src_data;
uint *end = p + w;
while (p < end)
*p++ = colorTable.at(qMin<int>(tableSize, *b++));
src_data += src->bytes_per_line;
dest_data += dest->bytes_per_line;
}
}
static void convert_Mono_to_X32(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
Q_ASSERT(dest->format == QImage::Format_RGB32
|| dest->format == QImage::Format_ARGB32
|| dest->format == QImage::Format_ARGB32_Premultiplied);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
QVector<QRgb> colorTable = fix_color_table(src->colortable, dest->format);
// Default to black / white colors
if (colorTable.size() < 2) {
if (colorTable.size() == 0)
colorTable << 0xff000000;
colorTable << 0xffffffff;
}
const uchar *src_data = src->data;
uchar *dest_data = dest->data;
if (src->format == QImage::Format_Mono) {
for (int y = 0; y < dest->height; y++) {
register uint *p = (uint *)dest_data;
for (int x = 0; x < dest->width; x++)
*p++ = colorTable.at((src_data[x>>3] >> (7 - (x & 7))) & 1);
src_data += src->bytes_per_line;
dest_data += dest->bytes_per_line;
}
} else {
for (int y = 0; y < dest->height; y++) {
register uint *p = (uint *)dest_data;
for (int x = 0; x < dest->width; x++)
*p++ = colorTable.at((src_data[x>>3] >> (x & 7)) & 1);
src_data += src->bytes_per_line;
dest_data += dest->bytes_per_line;
}
}
}
static void convert_Mono_to_Indexed8(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags)
{
Q_ASSERT(src->format == QImage::Format_Mono || src->format == QImage::Format_MonoLSB);
Q_ASSERT(dest->format == QImage::Format_Indexed8);
Q_ASSERT(src->width == dest->width);
Q_ASSERT(src->height == dest->height);
QVector<QRgb> ctbl = src->colortable;
if (ctbl.size() > 2) {
ctbl.resize(2);
} else if (ctbl.size() < 2) {
if (ctbl.size() == 0)
ctbl << 0xff000000;
ctbl << 0xffffffff;
}
dest->colortable = ctbl;
dest->has_alpha_clut = src->has_alpha_clut;
const uchar *src_data = src->data;
uchar *dest_data = dest->data;
if (src->format == QImage::Format_Mono) {
for (int y = 0; y < dest->height; y++) {
register uchar *p = dest_data;
for (int x = 0; x < dest->width; x++)
*p++ = (src_data[x>>3] >> (7 - (x & 7))) & 1;
src_data += src->bytes_per_line;
dest_data += dest->bytes_per_line;
}
} else {
for (int y = 0; y < dest->height; y++) {
register uchar *p = dest_data;
for (int x = 0; x < dest->width; x++)
*p++ = (src_data[x>>3] >> (x & 7)) & 1;
src_data += src->bytes_per_line;
dest_data += dest->bytes_per_line;
}
}
}
#define CONVERT_DECL(DST, SRC) \
static void convert_##SRC##_to_##DST(QImageData *dest, \
const QImageData *src, \
Qt::ImageConversionFlags) \
{ \
qt_rectconvert<DST, SRC>(reinterpret_cast<DST*>(dest->data), \
reinterpret_cast<const SRC*>(src->data), \
0, 0, src->width, src->height, \
dest->bytes_per_line, src->bytes_per_line); \
}
CONVERT_DECL(quint32, quint16)
CONVERT_DECL(quint16, quint32)
CONVERT_DECL(quint32, qargb8565)
CONVERT_DECL(qargb8565, quint32)
CONVERT_DECL(quint32, qrgb555)
CONVERT_DECL(qrgb666, quint32)
CONVERT_DECL(quint32, qrgb666)
CONVERT_DECL(qargb6666, quint32)
CONVERT_DECL(quint32, qargb6666)
CONVERT_DECL(qrgb555, quint32)
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
CONVERT_DECL(quint16, qrgb555)
CONVERT_DECL(qrgb555, quint16)
#endif
CONVERT_DECL(quint32, qrgb888)
CONVERT_DECL(qrgb888, quint32)
CONVERT_DECL(quint32, qargb8555)
CONVERT_DECL(qargb8555, quint32)
CONVERT_DECL(quint32, qrgb444)
CONVERT_DECL(qrgb444, quint32)
CONVERT_DECL(quint32, qargb4444)
CONVERT_DECL(qargb4444, quint32)
#undef CONVERT_DECL
#define CONVERT_PTR(DST, SRC) convert_##SRC##_to_##DST
/*
Format_Invalid,
Format_Mono,
Format_MonoLSB,
Format_Indexed8,
Format_RGB32,
Format_ARGB32,
Format_ARGB32_Premultiplied,
Format_RGB16,
Format_ARGB8565_Premultiplied,
Format_RGB666,
Format_ARGB6666_Premultiplied,
Format_RGB555,
Format_ARGB8555_Premultiplied,
Format_RGB888
Format_RGB444
Format_ARGB4444_Premultiplied
*/
// first index source, second dest
static Image_Converter converter_map[QImage::NImageFormats][QImage::NImageFormats] =
{
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
},
{
0,
0,
swap_bit_order,
convert_Mono_to_Indexed8,
convert_Mono_to_X32,
convert_Mono_to_X32,
convert_Mono_to_X32,
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_Mono
{
0,
swap_bit_order,
0,
convert_Mono_to_Indexed8,
convert_Mono_to_X32,
convert_Mono_to_X32,
convert_Mono_to_X32,
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_MonoLSB
{
0,
convert_X_to_Mono,
convert_X_to_Mono,
0,
convert_Indexed8_to_X32,
convert_Indexed8_to_X32,
convert_Indexed8_to_X32,
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_Indexed8
{
0,
convert_X_to_Mono,
convert_X_to_Mono,
convert_RGB_to_Indexed8,
0,
mask_alpha_converter,
mask_alpha_converter,
CONVERT_PTR(quint16, quint32),
CONVERT_PTR(qargb8565, quint32),
CONVERT_PTR(qrgb666, quint32),
CONVERT_PTR(qargb6666, quint32),
CONVERT_PTR(qrgb555, quint32),
CONVERT_PTR(qargb8555, quint32),
CONVERT_PTR(qrgb888, quint32),
CONVERT_PTR(qrgb444, quint32),
CONVERT_PTR(qargb4444, quint32)
}, // Format_RGB32
{
0,
convert_X_to_Mono,
convert_X_to_Mono,
convert_ARGB_to_Indexed8,
mask_alpha_converter,
0,
convert_ARGB_to_ARGB_PM,
CONVERT_PTR(quint16, quint32),
CONVERT_PTR(qargb8565, quint32),
CONVERT_PTR(qrgb666, quint32),
CONVERT_PTR(qargb6666, quint32),
CONVERT_PTR(qrgb555, quint32),
CONVERT_PTR(qargb8555, quint32),
CONVERT_PTR(qrgb888, quint32),
CONVERT_PTR(qrgb444, quint32),
CONVERT_PTR(qargb4444, quint32)
}, // Format_ARGB32
{
0,
convert_ARGB_PM_to_Mono,
convert_ARGB_PM_to_Mono,
convert_ARGB_PM_to_Indexed8,
convert_ARGB_PM_to_RGB,
convert_ARGB_PM_to_ARGB,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_ARGB32_Premultiplied
{
0,
0,
0,
0,
CONVERT_PTR(quint32, quint16),
CONVERT_PTR(quint32, quint16),
CONVERT_PTR(quint32, quint16),
0,
0,
0,
0,
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
CONVERT_PTR(qrgb555, quint16),
#else
0,
#endif
0,
0,
0,
0
}, // Format_RGB16
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qargb8565),
CONVERT_PTR(quint32, qargb8565),
CONVERT_PTR(quint32, qargb8565),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_ARGB8565_Premultiplied
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qrgb666),
CONVERT_PTR(quint32, qrgb666),
CONVERT_PTR(quint32, qrgb666),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_RGB666
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qargb6666),
CONVERT_PTR(quint32, qargb6666),
CONVERT_PTR(quint32, qargb6666),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_ARGB6666_Premultiplied
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qrgb555),
CONVERT_PTR(quint32, qrgb555),
CONVERT_PTR(quint32, qrgb555),
#if !defined(Q_WS_QWS) || (defined(QT_QWS_DEPTH_15) && defined(QT_QWS_DEPTH_16))
CONVERT_PTR(quint16, qrgb555),
#else
0,
#endif
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_RGB555
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qargb8555),
CONVERT_PTR(quint32, qargb8555),
CONVERT_PTR(quint32, qargb8555),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_ARGB8555_Premultiplied
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qrgb888),
CONVERT_PTR(quint32, qrgb888),
CONVERT_PTR(quint32, qrgb888),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_RGB888
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qrgb444),
CONVERT_PTR(quint32, qrgb444),
CONVERT_PTR(quint32, qrgb444),
0,
0,
0,
0,
0,
0,
0,
0,
0
}, // Format_RGB444
{
0,
0,
0,
0,
CONVERT_PTR(quint32, qargb4444),
CONVERT_PTR(quint32, qargb4444),
CONVERT_PTR(quint32, qargb4444),
0,
0,
0,
0,
0,
0,
0,
0,
0
} // Format_ARGB4444_Premultiplied
};
static InPlace_Image_Converter inplace_converter_map[QImage::NImageFormats][QImage::NImageFormats] =
{
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
},
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_Mono
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_MonoLSB
{
0,
0,
0,
0,
0,
convert_indexed8_to_RGB_inplace,
convert_indexed8_to_ARGB_PM_inplace,
convert_indexed8_to_RGB16_inplace,
0,
0,
0,
0,
0,
0,
0,
0,
}, // Format_Indexed8
{
0,
0,
0,
0,
0,
0,
0,
convert_RGB_to_RGB16_inplace,
0,
0,
0,
0,
0,
0,
0,
0,
}, // Format_ARGB32
{
0,
0,
0,
0,
0,
0,
convert_ARGB_to_ARGB_PM_inplace,
0,
0,
0,
0,
0,
0,
0,
0,
0,
}, // Format_ARGB32
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_ARGB32_Premultiplied
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_RGB16
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_ARGB8565_Premultiplied
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_RGB666
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_ARGB6666_Premultiplied
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_RGB555
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_ARGB8555_Premultiplied
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_RGB888
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}, // Format_RGB444
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
} // Format_ARGB4444_Premultiplied
};
void qInitImageConversions()
{
const uint features = qDetectCPUFeatures();
Q_UNUSED(features);
#ifdef QT_HAVE_SSE2
if (features & SSE2) {
extern bool convert_ARGB_to_ARGB_PM_inplace_sse2(QImageData *data, Qt::ImageConversionFlags);
inplace_converter_map[QImage::Format_ARGB32][QImage::Format_ARGB32_Premultiplied] = convert_ARGB_to_ARGB_PM_inplace_sse2;
}
#endif
#ifdef QT_HAVE_SSSE3
if (features & SSSE3) {
extern void convert_RGB888_to_RGB32_ssse3(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);
converter_map[QImage::Format_RGB888][QImage::Format_RGB32] = convert_RGB888_to_RGB32_ssse3;
converter_map[QImage::Format_RGB888][QImage::Format_ARGB32] = convert_RGB888_to_RGB32_ssse3;
converter_map[QImage::Format_RGB888][QImage::Format_ARGB32_Premultiplied] = convert_RGB888_to_RGB32_ssse3;
}
#endif
#ifdef QT_HAVE_NEON
if (features & NEON) {
extern void convert_RGB888_to_RGB32_neon(QImageData *dest, const QImageData *src, Qt::ImageConversionFlags);
converter_map[QImage::Format_RGB888][QImage::Format_RGB32] = convert_RGB888_to_RGB32_neon;
converter_map[QImage::Format_RGB888][QImage::Format_ARGB32] = convert_RGB888_to_RGB32_neon;
converter_map[QImage::Format_RGB888][QImage::Format_ARGB32_Premultiplied] = convert_RGB888_to_RGB32_neon;
}
#endif
}
void qGamma_correct_back_to_linear_cs(QImage *image)
{
extern uchar qt_pow_rgb_gamma[256];
// gamma correct the pixels back to linear color space...
int h = image->height();
int w = image->width();
for (int y=0; y<h; ++y) {
uint *pixels = (uint *) image->scanLine(y);
for (int x=0; x<w; ++x) {
uint p = pixels[x];
uint r = qt_pow_rgb_gamma[qRed(p)];
uint g = qt_pow_rgb_gamma[qGreen(p)];
uint b = qt_pow_rgb_gamma[qBlue(p)];
pixels[x] = (r << 16) | (g << 8) | b | 0xff000000;
}
}
}
/*!
Returns a copy of the image in the given \a format.
The specified image conversion \a flags control how the image data
is handled during the conversion process.
\sa {QImage#Image Format}{Image Format}
*/
QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const
{
if (!d || d->format == format)
return *this;
if (format == Format_Invalid || d->format == Format_Invalid)
return QImage();
const Image_Converter *converterPtr = &converter_map[d->format][format];
Image_Converter converter = *converterPtr;
if (converter) {
QImage image(d->width, d->height, format);
QIMAGE_SANITYCHECK_MEMORY(image);
image.setDotsPerMeterY(dotsPerMeterY());
image.setDotsPerMeterX(dotsPerMeterX());
#if !defined(QT_NO_IMAGE_TEXT)
image.d->text = d->text;
#endif // !QT_NO_IMAGE_TEXT
converter(image.d, d, flags);
return image;
}
Q_ASSERT(format != QImage::Format_ARGB32);
Q_ASSERT(d->format != QImage::Format_ARGB32);
QImage image = convertToFormat(Format_ARGB32, flags);
return image.convertToFormat(format, flags);
}
static inline int pixel_distance(QRgb p1, QRgb p2) {
int r1 = qRed(p1);
int g1 = qGreen(p1);
int b1 = qBlue(p1);
int a1 = qAlpha(p1);
int r2 = qRed(p2);
int g2 = qGreen(p2);
int b2 = qBlue(p2);
int a2 = qAlpha(p2);
return abs(r1 - r2) + abs(g1 - g2) + abs(b1 - b2) + abs(a1 - a2);
}
static inline int closestMatch(QRgb pixel, const QVector<QRgb> &clut) {
int idx = 0;
int current_distance = INT_MAX;
for (int i=0; i<clut.size(); ++i) {
int dist = pixel_distance(pixel, clut.at(i));
if (dist < current_distance) {
current_distance = dist;
idx = i;
}
}
return idx;
}
static QImage convertWithPalette(const QImage &src, QImage::Format format,
const QVector<QRgb> &clut) {
QImage dest(src.size(), format);
dest.setColorTable(clut);
#if !defined(QT_NO_IMAGE_TEXT)
QString textsKeys = src.text();
QStringList textKeyList = textsKeys.split(QLatin1Char('\n'), QString::SkipEmptyParts);
foreach (const QString &textKey, textKeyList) {
QStringList textKeySplitted = textKey.split(QLatin1String(": "));
dest.setText(textKeySplitted[0], textKeySplitted[1]);
}
#endif // !QT_NO_IMAGE_TEXT
int h = src.height();
int w = src.width();
QHash<QRgb, int> cache;
if (format == QImage::Format_Indexed8) {
for (int y=0; y<h; ++y) {
QRgb *src_pixels = (QRgb *) src.scanLine(y);
uchar *dest_pixels = (uchar *) dest.scanLine(y);
for (int x=0; x<w; ++x) {
int src_pixel = src_pixels[x];
int value = cache.value(src_pixel, -1);
if (value == -1) {
value = closestMatch(src_pixel, clut);
cache.insert(src_pixel, value);
}
dest_pixels[x] = (uchar) value;
}
}
} else {
QVector<QRgb> table = clut;
table.resize(2);
for (int y=0; y<h; ++y) {
QRgb *src_pixels = (QRgb *) src.scanLine(y);
for (int x=0; x<w; ++x) {
int src_pixel = src_pixels[x];
int value = cache.value(src_pixel, -1);
if (value == -1) {
value = closestMatch(src_pixel, table);
cache.insert(src_pixel, value);
}
dest.setPixel(x, y, value);
}
}
}
return dest;
}
/*!
\overload
Returns a copy of the image converted to the given \a format,
using the specified \a colorTable.
Conversion from 32 bit to 8 bit indexed is a slow operation and
will use a straightforward nearest color approach, with no
dithering.
*/
QImage QImage::convertToFormat(Format format, const QVector<QRgb> &colorTable, Qt::ImageConversionFlags flags) const
{
if (d->format == format)
return *this;
if (format <= QImage::Format_Indexed8 && depth() == 32) {
return convertWithPalette(*this, format, colorTable);
}
const Image_Converter *converterPtr = &converter_map[d->format][format];
Image_Converter converter = *converterPtr;
if (!converter)
return QImage();
QImage image(d->width, d->height, format);
QIMAGE_SANITYCHECK_MEMORY(image);
#if !defined(QT_NO_IMAGE_TEXT)
image.d->text = d->text;
#endif // !QT_NO_IMAGE_TEXT
converter(image.d, d, flags);
return image;
}
#ifdef QT3_SUPPORT
/*!
Converts the depth (bpp) of the image to the given \a depth and
returns the converted image. The original image is not changed.
Returns this image if \a depth is equal to the image depth, or a
null image if this image cannot be converted. The \a depth
argument must be 1, 8 or 32. If the image needs to be modified to
fit in a lower-resolution result (e.g. converting from 32-bit to
8-bit), use the \a flags to specify how you'd prefer this to
happen.
Use the convertToFormat() function instead.
*/
QImage QImage::convertDepth(int depth, Qt::ImageConversionFlags flags) const
{
if (!d || d->depth == depth)
return *this;
Format format = formatFor (depth, QImage::LittleEndian);
return convertToFormat(format, flags);
}
#endif
/*!
\fn bool QImage::valid(const QPoint &pos) const
Returns true if \a pos is a valid coordinate pair within the
image; otherwise returns false.
\sa rect(), QRect::contains()
*/
/*!
\overload
Returns true if QPoint(\a x, \a y) is a valid coordinate pair
within the image; otherwise returns false.
*/
bool QImage::valid(int x, int y) const
{
return d
&& x >= 0 && x < d->width
&& y >= 0 && y < d->height;
}
/*!
\fn int QImage::pixelIndex(const QPoint &position) const
Returns the pixel index at the given \a position.
If \a position is not valid, or if the image is not a paletted
image (depth() > 8), the results are undefined.
\sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation}
*/
/*!
\overload
Returns the pixel index at (\a x, \a y).
*/
int QImage::pixelIndex(int x, int y) const
{
if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
qWarning("QImage::pixelIndex: coordinate (%d,%d) out of range", x, y);
return -12345;
}
const uchar * s = scanLine(y);
switch(d->format) {
case Format_Mono:
return (*(s + (x >> 3)) >> (7- (x & 7))) & 1;
case Format_MonoLSB:
return (*(s + (x >> 3)) >> (x & 7)) & 1;
case Format_Indexed8:
return (int)s[x];
default:
qWarning("QImage::pixelIndex: Not applicable for %d-bpp images (no palette)", d->depth);
}
return 0;
}
/*!
\fn QRgb QImage::pixel(const QPoint &position) const
Returns the color of the pixel at the given \a position.
If the \a position is not valid, the results are undefined.
\warning This function is expensive when used for massive pixel
manipulations.
\sa setPixel(), valid(), {QImage#Pixel Manipulation}{Pixel
Manipulation}
*/
/*!
\overload
Returns the color of the pixel at coordinates (\a x, \a y).
*/
QRgb QImage::pixel(int x, int y) const
{
if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) {
qWarning("QImage::pixel: coordinate (%d,%d) out of range", x, y);
return 12345;
}
const uchar * s = scanLine(y);
switch(d->format) {
case Format_Mono:
return d->colortable.at((*(s + (x >> 3)) >> (7- (x & 7))) & 1);
case Format_MonoLSB:
return d->colortable.at((*(s + (x >> 3)) >> (x & 7)) & 1);
case Format_Indexed8:
return d->colortable.at((int)s[x]);
case Format_ARGB8565_Premultiplied:
return qt_colorConvert<quint32, qargb8565>(reinterpret_cast<const qargb8565*>(s)[x], 0);
case Format_RGB666:
return qt_colorConvert<quint32, qrgb666>(reinterpret_cast<const qrgb666*>(s)[x], 0);
case Format_ARGB6666_Premultiplied:
return qt_colorConvert<quint32, qargb6666>(reinterpret_cast<const qargb6666*>(s)[x], 0);
case Format_RGB555:
return qt_colorConvert<quint32, qrgb555>(reinterpret_cast<const qrgb555*>(s)[x], 0);
case Format_ARGB8555_Premultiplied:
return qt_colorConvert<quint32, qargb8555>(reinterpret_cast<const qargb8555*>(s)[x], 0);
case Format_RGB888:
return qt_colorConvert<quint32, qrgb888>(reinterpret_cast<const qrgb888*>(s)[x], 0);
case Format_RGB444:
return qt_colorConvert<quint32, qrgb444>(reinterpret_cast<const qrgb444*>(s)[x], 0);
case Format_ARGB4444_Premultiplied:
return qt_colorConvert<quint32, qargb4444>(reinterpret_cast<const qargb4444*>(s)[x], 0);
case Format_RGB16:
return qt_colorConvert<quint32, quint16>(reinterpret_cast<const quint16*>(s)[x], 0);
default:
return ((QRgb*)s)[x];
}
}
/*!
\fn void QImage::setPixel(const QPoint &position, uint index_or_rgb)
Sets the pixel index or color at the given \a position to \a
index_or_rgb.
If the image's format is either monochrome or 8-bit, the given \a
index_or_rgb value must be an index in the image's color table,
otherwise the parameter must be a QRgb value.
If \a position is not a valid coordinate pair in the image, or if
\a index_or_rgb >= colorCount() in the case of monochrome and
8-bit images, the result is undefined.
\warning This function is expensive due to the call of the internal
\c{detach()} function called within; if performance is a concern, we
recommend the use of \l{QImage::}{scanLine()} to access pixel data
directly.
\sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation}
*/
/*!
\overload
Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb.
*/
void QImage::setPixel(int x, int y, uint index_or_rgb)
{
if (!d || x < 0 || x >= width() || y < 0 || y >= height()) {
qWarning("QImage::setPixel: coordinate (%d,%d) out of range", x, y);
return;
}
// detach is called from within scanLine
uchar * s = scanLine(y);
const quint32p p = quint32p::fromRawData(index_or_rgb);
switch(d->format) {
case Format_Mono:
case Format_MonoLSB:
if (index_or_rgb > 1) {
qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
} else if (format() == Format_MonoLSB) {
if (index_or_rgb==0)
*(s + (x >> 3)) &= ~(1 << (x & 7));
else
*(s + (x >> 3)) |= (1 << (x & 7));
} else {
if (index_or_rgb==0)
*(s + (x >> 3)) &= ~(1 << (7-(x & 7)));
else
*(s + (x >> 3)) |= (1 << (7-(x & 7)));
}
break;
case Format_Indexed8:
if (index_or_rgb >= (uint)d->colortable.size()) {
qWarning("QImage::setPixel: Index %d out of range", index_or_rgb);
return;
}
s[x] = index_or_rgb;
break;
case Format_RGB32:
//make sure alpha is 255, we depend on it in qdrawhelper for cases
// when image is set as a texture pattern on a qbrush
((uint *)s)[x] = uint(255 << 24) | index_or_rgb;
break;
case Format_ARGB32:
case Format_ARGB32_Premultiplied:
((uint *)s)[x] = index_or_rgb;
break;
case Format_RGB16:
((quint16 *)s)[x] = qt_colorConvert<quint16, quint32p>(p, 0);
break;
case Format_ARGB8565_Premultiplied:
((qargb8565*)s)[x] = qt_colorConvert<qargb8565, quint32p>(p, 0);
break;
case Format_RGB666:
((qrgb666*)s)[x] = qt_colorConvert<qrgb666, quint32p>(p, 0);
break;
case Format_ARGB6666_Premultiplied:
((qargb6666*)s)[x] = qt_colorConvert<qargb6666, quint32p>(p, 0);
break;
case Format_RGB555:
((qrgb555*)s)[x] = qt_colorConvert<qrgb555, quint32p>(p, 0);
break;
case Format_ARGB8555_Premultiplied:
((qargb8555*)s)[x] = qt_colorConvert<qargb8555, quint32p>(p, 0);
break;
case Format_RGB888:
((qrgb888*)s)[x] = qt_colorConvert<qrgb888, quint32p>(p, 0);
break;
case Format_RGB444:
((qrgb444*)s)[x] = qt_colorConvert<qrgb444, quint32p>(p, 0);
break;
case Format_ARGB4444_Premultiplied:
((qargb4444*)s)[x] = qt_colorConvert<qargb4444, quint32p>(p, 0);
break;
case Format_Invalid:
case NImageFormats:
Q_ASSERT(false);
}
}
#ifdef QT3_SUPPORT
/*!
Converts the bit order of the image to the given \a bitOrder and
returns the converted image. The original image is not changed.
Returns this image if the given \a bitOrder is equal to the image
current bit order, or a null image if this image cannot be
converted.
Use convertToFormat() instead.
*/
QImage QImage::convertBitOrder(Endian bitOrder) const
{
if (!d || isNull() || d->depth != 1 || !(bitOrder == BigEndian || bitOrder == LittleEndian))
return QImage();
if ((d->format == Format_Mono && bitOrder == BigEndian)
|| (d->format == Format_MonoLSB && bitOrder == LittleEndian))
return *this;
QImage image(d->width, d->height, d->format == Format_Mono ? Format_MonoLSB : Format_Mono);
const uchar *data = d->data;
const uchar *end = data + d->nbytes;
uchar *ndata = image.d->data;
while (data < end)
*ndata++ = bitflip[*data++];
image.setDotsPerMeterX(dotsPerMeterX());
image.setDotsPerMeterY(dotsPerMeterY());
image.d->colortable = d->colortable;
return image;
}
#endif
/*!
Returns true if all the colors in the image are shades of gray
(i.e. their red, green and blue components are equal); otherwise
false.
Note that this function is slow for images without color table.
\sa isGrayscale()
*/
bool QImage::allGray() const
{
if (!d)
return true;
if (d->depth == 32) {
int p = width()*height();
const QRgb* b = (const QRgb*)bits();
while (p--)
if (!qIsGray(*b++))
return false;
} else if (d->depth == 16) {
int p = width()*height();
const ushort* b = (const ushort *)bits();
while (p--)
if (!qIsGray(qt_colorConvert<quint32, quint16>(*b++, 0)))
return false;
} else if (d->format == QImage::Format_RGB888) {
int p = width()*height();
const qrgb888* b = (const qrgb888 *)bits();
while (p--)
if (!qIsGray(qt_colorConvert<quint32, qrgb888>(*b++, 0)))
return false;
} else {
if (d->colortable.isEmpty())
return true;
for (int i = 0; i < colorCount(); i++)
if (!qIsGray(d->colortable.at(i)))
return false;
}
return true;
}
/*!
For 32-bit images, this function is equivalent to allGray().
For 8-bpp images, this function returns true if color(i) is
QRgb(i, i, i) for all indexes of the color table; otherwise
returns false.
\sa allGray(), {QImage#Image Formats}{Image Formats}
*/
bool QImage::isGrayscale() const
{
if (!d)
return false;
switch (depth()) {
case 32:
case 24:
case 16:
return allGray();
case 8: {
for (int i = 0; i < colorCount(); i++)
if (d->colortable.at(i) != qRgb(i,i,i))
return false;
return true;
}
}
return false;
}
/*!
\fn QImage QImage::smoothScale(int width, int height, Qt::AspectRatioMode mode) const
Use scaled() instead.
\oldcode
QImage image;
image.smoothScale(width, height, mode);
\newcode
QImage image;
image.scaled(width, height, mode, Qt::SmoothTransformation);
\endcode
*/
/*!
\fn QImage QImage::smoothScale(const QSize &size, Qt::AspectRatioMode mode) const
\overload
Use scaled() instead.
\oldcode
QImage image;
image.smoothScale(size, mode);
\newcode
QImage image;
image.scaled(size, mode, Qt::SmoothTransformation);
\endcode
*/
/*!
\fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode,
Qt::TransformationMode transformMode) const
\overload
Returns a copy of the image scaled to a rectangle with the given
\a width and \a height according to the given \a aspectRatioMode
and \a transformMode.
If either the \a width or the \a height is zero or negative, this
function returns a null image.
*/
/*!
\fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode,
Qt::TransformationMode transformMode) const
Returns a copy of the image scaled to a rectangle defined by the
given \a size according to the given \a aspectRatioMode and \a
transformMode.
\image qimage-scaling.png
\list
\i If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image
is scaled to \a size.
\i If \a aspectRatioMode is Qt::KeepAspectRatio, the image is
scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio.
\i If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding,
the image is scaled to a rectangle as small as possible
outside \a size, preserving the aspect ratio.
\endlist
If the given \a size is empty, this function returns a null image.
\sa isNull(), {QImage#Image Transformations}{Image
Transformations}
*/
QImage QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const
{
if (!d) {
qWarning("QImage::scaled: Image is a null image");
return QImage();
}
if (s.isEmpty())
return QImage();
QSize newSize = size();
newSize.scale(s, aspectMode);
newSize.rwidth() = qMax(newSize.width(), 1);
newSize.rheight() = qMax(newSize.height(), 1);
if (newSize == size())
return *this;
QTransform wm = QTransform::fromScale((qreal)newSize.width() / width(), (qreal)newSize.height() / height());
QImage img = transformed(wm, mode);
return img;
}
/*!
\fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const
Returns a scaled copy of the image. The returned image is scaled
to the given \a width using the specified transformation \a
mode.
This function automatically calculates the height of the image so
that its aspect ratio is preserved.
If the given \a width is 0 or negative, a null image is returned.
\sa {QImage#Image Transformations}{Image Transformations}
*/
QImage QImage::scaledToWidth(int w, Qt::TransformationMode mode) const
{
if (!d) {
qWarning("QImage::scaleWidth: Image is a null image");
return QImage();
}
if (w <= 0)
return QImage();
qreal factor = (qreal) w / width();
QTransform wm = QTransform::fromScale(factor, factor);
return transformed(wm, mode);
}
/*!
\fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const
Returns a scaled copy of the image. The returned image is scaled
to the given \a height using the specified transformation \a
mode.
This function automatically calculates the width of the image so that
the ratio of the image is preserved.
If the given \a height is 0 or negative, a null image is returned.
\sa {QImage#Image Transformations}{Image Transformations}
*/
QImage QImage::scaledToHeight(int h, Qt::TransformationMode mode) const
{
if (!d) {
qWarning("QImage::scaleHeight: Image is a null image");
return QImage();
}
if (h <= 0)
return QImage();
qreal factor = (qreal) h / height();
QTransform wm = QTransform::fromScale(factor, factor);
return transformed(wm, mode);
}
/*!
\fn QMatrix QImage::trueMatrix(const QMatrix &matrix, int width, int height)
Returns the actual matrix used for transforming an image with the
given \a width, \a height and \a matrix.
When transforming an image using the transformed() function, the
transformation matrix is internally adjusted to compensate for
unwanted translation, i.e. transformed() returns the smallest
image containing all transformed points of the original image.
This function returns the modified matrix, which maps points
correctly from the original image into the new image.
\sa transformed(), {QImage#Image Transformations}{Image
Transformations}
*/
QMatrix QImage::trueMatrix(const QMatrix &matrix, int w, int h)
{
return trueMatrix(QTransform(matrix), w, h).toAffine();
}
/*!
Returns a copy of the image that is transformed using the given
transformation \a matrix and transformation \a mode.
The transformation \a matrix is internally adjusted to compensate
for unwanted translation; i.e. the image produced is the smallest
image that contains all the transformed points of the original
image. Use the trueMatrix() function to retrieve the actual matrix
used for transforming an image.
\sa trueMatrix(), {QImage#Image Transformations}{Image
Transformations}
*/
QImage QImage::transformed(const QMatrix &matrix, Qt::TransformationMode mode) const
{
return transformed(QTransform(matrix), mode);
}
/*!
Builds and returns a 1-bpp mask from the alpha buffer in this
image. Returns a null image if the image's format is
QImage::Format_RGB32.
The \a flags argument is a bitwise-OR of the
Qt::ImageConversionFlags, and controls the conversion
process. Passing 0 for flags sets all the default options.
The returned image has little-endian bit order (i.e. the image's
format is QImage::Format_MonoLSB), which you can convert to
big-endian (QImage::Format_Mono) using the convertToFormat()
function.
\sa createHeuristicMask(), {QImage#Image Transformations}{Image
Transformations}
*/
QImage QImage::createAlphaMask(Qt::ImageConversionFlags flags) const
{
if (!d || d->format == QImage::Format_RGB32)
return QImage();
if (d->depth == 1) {
// A monochrome pixmap, with alpha channels on those two colors.
// Pretty unlikely, so use less efficient solution.
return convertToFormat(Format_Indexed8, flags).createAlphaMask(flags);
}
QImage mask(d->width, d->height, Format_MonoLSB);
if (!mask.isNull())
dither_to_Mono(mask.d, d, flags, true);
return mask;
}
#ifndef QT_NO_IMAGE_HEURISTIC_MASK
/*!
Creates and returns a 1-bpp heuristic mask for this image.
The function works by selecting a color from one of the corners,
then chipping away pixels of that color starting at all the edges.
The four corners vote for which color is to be masked away. In
case of a draw (this generally means that this function is not
applicable to the image), the result is arbitrary.
The returned image has little-endian bit order (i.e. the image's
format is QImage::Format_MonoLSB), which you can convert to
big-endian (QImage::Format_Mono) using the convertToFormat()
function.
If \a clipTight is true (the default) the mask is just large
enough to cover the pixels; otherwise, the mask is larger than the
data pixels.
Note that this function disregards the alpha buffer.
\sa createAlphaMask(), {QImage#Image Transformations}{Image
Transformations}
*/
QImage QImage::createHeuristicMask(bool clipTight) const
{
if (!d)
return QImage();
if (d->depth != 32) {
QImage img32 = convertToFormat(Format_RGB32);
return img32.createHeuristicMask(clipTight);
}
#define PIX(x,y) (*((QRgb*)scanLine(y)+x) & 0x00ffffff)
int w = width();
int h = height();
QImage m(w, h, Format_MonoLSB);
QIMAGE_SANITYCHECK_MEMORY(m);
m.setColorCount(2);
m.setColor(0, QColor(Qt::color0).rgba());
m.setColor(1, QColor(Qt::color1).rgba());
m.fill(0xff);
QRgb background = PIX(0,0);
if (background != PIX(w-1,0) &&
background != PIX(0,h-1) &&
background != PIX(w-1,h-1)) {
background = PIX(w-1,0);
if (background != PIX(w-1,h-1) &&
background != PIX(0,h-1) &&
PIX(0,h-1) == PIX(w-1,h-1)) {
background = PIX(w-1,h-1);
}
}
int x,y;
bool done = false;
uchar *ypp, *ypc, *ypn;
while(!done) {
done = true;
ypn = m.scanLine(0);
ypc = 0;
for (y = 0; y < h; y++) {
ypp = ypc;
ypc = ypn;
ypn = (y == h-1) ? 0 : m.scanLine(y+1);
QRgb *p = (QRgb *)scanLine(y);
for (x = 0; x < w; x++) {
// slowness here - it's possible to do six of these tests
// together in one go. oh well.
if ((x == 0 || y == 0 || x == w-1 || y == h-1 ||
!(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) ||
!(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) ||
!(*(ypp + (x >> 3)) & (1 << (x & 7))) ||
!(*(ypn + (x >> 3)) & (1 << (x & 7)))) &&
( (*(ypc + (x >> 3)) & (1 << (x & 7)))) &&
((*p & 0x00ffffff) == background)) {
done = false;
*(ypc + (x >> 3)) &= ~(1 << (x & 7));
}
p++;
}
}
}
if (!clipTight) {
ypn = m.scanLine(0);
ypc = 0;
for (y = 0; y < h; y++) {
ypp = ypc;
ypc = ypn;
ypn = (y == h-1) ? 0 : m.scanLine(y+1);
QRgb *p = (QRgb *)scanLine(y);
for (x = 0; x < w; x++) {
if ((*p & 0x00ffffff) != background) {
if (x > 0)
*(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7));
if (x < w-1)
*(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7));
if (y > 0)
*(ypp + (x >> 3)) |= (1 << (x & 7));
if (y < h-1)
*(ypn + (x >> 3)) |= (1 << (x & 7));
}
p++;
}
}
}
#undef PIX
return m;
}
#endif //QT_NO_IMAGE_HEURISTIC_MASK
/*!
Creates and returns a mask for this image based on the given \a
color value. If the \a mode is MaskInColor (the default value),
all pixels matching \a color will be opaque pixels in the mask. If
\a mode is MaskOutColor, all pixels matching the given color will
be transparent.
\sa createAlphaMask(), createHeuristicMask()
*/
QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const
{
if (!d)
return QImage();
QImage maskImage(size(), QImage::Format_MonoLSB);
QIMAGE_SANITYCHECK_MEMORY(maskImage);
maskImage.fill(0);
uchar *s = maskImage.bits();
if (depth() == 32) {
for (int h = 0; h < d->height; h++) {
const uint *sl = (uint *) scanLine(h);
for (int w = 0; w < d->width; w++) {
if (sl[w] == color)
*(s + (w >> 3)) |= (1 << (w & 7));
}
s += maskImage.bytesPerLine();
}
} else {
for (int h = 0; h < d->height; h++) {
for (int w = 0; w < d->width; w++) {
if ((uint) pixel(w, h) == color)
*(s + (w >> 3)) |= (1 << (w & 7));
}
s += maskImage.bytesPerLine();
}
}
if (mode == Qt::MaskOutColor)
maskImage.invertPixels();
return maskImage;
}
/*
This code is contributed by Philipp Lang,
GeneriCom Software Germany (www.generi.com)
under the terms of the QPL, Version 1.0
*/
/*!
\fn QImage QImage::mirror(bool horizontal, bool vertical) const
Use mirrored() instead.
*/
/*!
Returns a mirror of the image, mirrored in the horizontal and/or
the vertical direction depending on whether \a horizontal and \a
vertical are set to true or false.
Note that the original image is not changed.
\sa {QImage#Image Transformations}{Image Transformations}
*/
QImage QImage::mirrored(bool horizontal, bool vertical) const
{
if (!d)
return QImage();
if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical))
return *this;
int w = d->width;
int h = d->height;
// Create result image, copy colormap
QImage result(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(result);
// check if we ran out of of memory..
if (!result.d)
return QImage();
result.d->colortable = d->colortable;
result.d->has_alpha_clut = d->has_alpha_clut;
if (depth() == 1)
w = (w+7)/8;
int dxi = horizontal ? -1 : 1;
int dxs = horizontal ? w-1 : 0;
int dyi = vertical ? -1 : 1;
int dy = vertical ? h-1: 0;
// 1 bit, 8 bit
if (d->depth == 1 || d->depth == 8) {
for (int sy = 0; sy < h; sy++, dy += dyi) {
quint8* ssl = (quint8*)(d->data + sy*d->bytes_per_line);
quint8* dsl = (quint8*)(result.d->data + dy*result.d->bytes_per_line);
int dx = dxs;
for (int sx = 0; sx < w; sx++, dx += dxi)
dsl[dx] = ssl[sx];
}
}
// 16 bit
else if (d->depth == 16) {
for (int sy = 0; sy < h; sy++, dy += dyi) {
quint16* ssl = (quint16*)(d->data + sy*d->bytes_per_line);
quint16* dsl = (quint16*)(result.d->data + dy*result.d->bytes_per_line);
int dx = dxs;
for (int sx = 0; sx < w; sx++, dx += dxi)
dsl[dx] = ssl[sx];
}
}
// 24 bit
else if (d->depth == 24) {
for (int sy = 0; sy < h; sy++, dy += dyi) {
quint24* ssl = (quint24*)(d->data + sy*d->bytes_per_line);
quint24* dsl = (quint24*)(result.d->data + dy*result.d->bytes_per_line);
int dx = dxs;
for (int sx = 0; sx < w; sx++, dx += dxi)
dsl[dx] = ssl[sx];
}
}
// 32 bit
else if (d->depth == 32) {
for (int sy = 0; sy < h; sy++, dy += dyi) {
quint32* ssl = (quint32*)(d->data + sy*d->bytes_per_line);
quint32* dsl = (quint32*)(result.d->data + dy*result.d->bytes_per_line);
int dx = dxs;
for (int sx = 0; sx < w; sx++, dx += dxi)
dsl[dx] = ssl[sx];
}
}
// special handling of 1 bit images for horizontal mirroring
if (horizontal && d->depth == 1) {
int shift = width() % 8;
for (int y = h-1; y >= 0; y--) {
quint8* a0 = (quint8*)(result.d->data + y*d->bytes_per_line);
// Swap bytes
quint8* a = a0+dxs;
while (a >= a0) {
*a = bitflip[*a];
a--;
}
// Shift bits if unaligned
if (shift != 0) {
a = a0+dxs;
quint8 c = 0;
if (format() == Format_MonoLSB) {
while (a >= a0) {
quint8 nc = *a << shift;
*a = (*a >> (8-shift)) | c;
--a;
c = nc;
}
} else {
while (a >= a0) {
quint8 nc = *a >> shift;
*a = (*a << (8-shift)) | c;
--a;
c = nc;
}
}
}
}
}
return result;
}
/*!
\fn QImage QImage::swapRGB() const
Use rgbSwapped() instead.
\omit
Returns a QImage in which the values of the red and blue
components of all pixels have been swapped, effectively converting
an RGB image to an BGR image. The original QImage is not changed.
\endomit
*/
/*!
Returns a QImage in which the values of the red and blue
components of all pixels have been swapped, effectively converting
an RGB image to an BGR image.
The original QImage is not changed.
\sa {QImage#Image Transformations}{Image Transformations}
*/
QImage QImage::rgbSwapped() const
{
if (isNull())
return *this;
QImage res;
switch (d->format) {
case Format_Invalid:
case NImageFormats:
Q_ASSERT(false);
break;
case Format_Mono:
case Format_MonoLSB:
case Format_Indexed8:
res = copy();
for (int i = 0; i < res.d->colortable.size(); i++) {
QRgb c = res.d->colortable.at(i);
res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00));
}
break;
case Format_RGB32:
case Format_ARGB32:
case Format_ARGB32_Premultiplied:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
uint *q = (uint*)res.scanLine(i);
uint *p = (uint*)constScanLine(i);
uint *end = p + d->width;
while (p < end) {
*q = ((*p << 16) & 0xff0000) | ((*p >> 16) & 0xff) | (*p & 0xff00ff00);
p++;
q++;
}
}
break;
case Format_RGB16:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
ushort *q = (ushort*)res.scanLine(i);
const ushort *p = (const ushort*)constScanLine(i);
const ushort *end = p + d->width;
while (p < end) {
*q = ((*p << 11) & 0xf800) | ((*p >> 11) & 0x1f) | (*p & 0x07e0);
p++;
q++;
}
}
break;
case Format_ARGB8565_Premultiplied:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
const quint8 *p = constScanLine(i);
quint8 *q = res.scanLine(i);
const quint8 *end = p + d->width * sizeof(qargb8565);
while (p < end) {
q[0] = p[0];
q[1] = (p[1] & 0xe0) | (p[2] >> 3);
q[2] = (p[2] & 0x07) | (p[1] << 3);
p += sizeof(qargb8565);
q += sizeof(qargb8565);
}
}
break;
case Format_RGB666:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
qrgb666 *q = reinterpret_cast<qrgb666*>(res.scanLine(i));
const qrgb666 *p = reinterpret_cast<const qrgb666*>(constScanLine(i));
const qrgb666 *end = p + d->width;
while (p < end) {
const QRgb rgb = quint32(*p++);
*q++ = qRgb(qBlue(rgb), qGreen(rgb), qRed(rgb));
}
}
break;
case Format_ARGB6666_Premultiplied:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
const quint8 *p = constScanLine(i);
const quint8 *end = p + d->width * sizeof(qargb6666);
quint8 *q = res.scanLine(i);
while (p < end) {
q[0] = (p[1] >> 4) | ((p[2] & 0x3) << 4) | (p[0] & 0xc0);
q[1] = (p[1] & 0xf) | (p[0] << 4);
q[2] = (p[2] & 0xfc) | ((p[0] >> 4) & 0x3);
p += sizeof(qargb6666);
q += sizeof(qargb6666);
}
}
break;
case Format_RGB555:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
quint16 *q = (quint16*)res.scanLine(i);
const quint16 *p = (const quint16*)constScanLine(i);
const quint16 *end = p + d->width;
while (p < end) {
*q = ((*p << 10) & 0x7c00) | ((*p >> 10) & 0x1f) | (*p & 0x3e0);
p++;
q++;
}
}
break;
case Format_ARGB8555_Premultiplied:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
const quint8 *p = constScanLine(i);
quint8 *q = res.scanLine(i);
const quint8 *end = p + d->width * sizeof(qargb8555);
while (p < end) {
q[0] = p[0];
q[1] = (p[1] & 0xe0) | (p[2] >> 2);
q[2] = (p[2] & 0x03) | ((p[1] << 2) & 0x7f);
p += sizeof(qargb8555);
q += sizeof(qargb8555);
}
}
break;
case Format_RGB888:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
quint8 *q = res.scanLine(i);
const quint8 *p = constScanLine(i);
const quint8 *end = p + d->width * sizeof(qrgb888);
while (p < end) {
q[0] = p[2];
q[1] = p[1];
q[2] = p[0];
q += sizeof(qrgb888);
p += sizeof(qrgb888);
}
}
break;
case Format_RGB444:
case Format_ARGB4444_Premultiplied:
res = QImage(d->width, d->height, d->format);
QIMAGE_SANITYCHECK_MEMORY(res);
for (int i = 0; i < d->height; i++) {
quint16 *q = reinterpret_cast<quint16*>(res.scanLine(i));
const quint16 *p = reinterpret_cast<const quint16*>(constScanLine(i));
const quint16 *end = p + d->width;
while (p < end) {
*q = (*p & 0xf0f0) | ((*p & 0x0f) << 8) | ((*p & 0xf00) >> 8);
p++;
q++;
}
}
break;
}
return res;
}
/*!
Loads an image from the file with the given \a fileName. Returns true if
the image was successfully loaded; otherwise returns false.
The loader attempts to read the image using the specified \a format, e.g.,
PNG or JPG. If \a format is not specified (which is the default), the
loader probes the file for a header to guess the file format.
The file name can either refer to an actual file on disk or to one
of the application's embedded resources. See the
\l{resources.html}{Resource System} overview for details on how to
embed images and other resource files in the application's
executable.
\sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
*/
bool QImage::load(const QString &fileName, const char* format)
{
if (fileName.isEmpty())
return false;
QImage image = QImageReader(fileName, format).read();
if (!image.isNull()) {
operator=(image);
return true;
}
return false;
}
/*!
\overload
This function reads a QImage from the given \a device. This can,
for example, be used to load an image directly into a QByteArray.
*/
bool QImage::load(QIODevice* device, const char* format)
{
QImage image = QImageReader(device, format).read();
if(!image.isNull()) {
operator=(image);
return true;
}
return false;
}
/*!
\fn bool QImage::loadFromData(const uchar *data, int len, const char *format)
Loads an image from the first \a len bytes of the given binary \a
data. Returns true if the image was successfully loaded; otherwise
returns false.
The loader attempts to read the image using the specified \a format, e.g.,
PNG or JPG. If \a format is not specified (which is the default), the
loader probes the file for a header to guess the file format.
\sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
*/
bool QImage::loadFromData(const uchar *data, int len, const char *format)
{
QImage image = fromData(data, len, format);
if (!image.isNull()) {
operator=(image);
return true;
}
return false;
}
/*!
\fn bool QImage::loadFromData(const QByteArray &data, const char *format)
\overload
Loads an image from the given QByteArray \a data.
*/
/*!
\fn QImage QImage::fromData(const uchar *data, int size, const char *format)
Constructs a QImage from the first \a size bytes of the given
binary \a data. The loader attempts to read the image using the
specified \a format. If \a format is not specified (which is the default),
the loader probes the file for a header to guess the file format.
binary \a data. The loader attempts to read the image, either using the
optional image \a format specified or by determining the image format from
the data.
If \a format is not specified (which is the default), the loader probes the
file for a header to determine the file format. If \a format is specified,
it must be one of the values returned by QImageReader::supportedImageFormats().
If the loading of the image fails, the image returned will be a null image.
\sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files}
*/
QImage QImage::fromData(const uchar *data, int size, const char *format)
{
QByteArray a = QByteArray::fromRawData(reinterpret_cast<const char *>(data), size);
QBuffer b;
b.setData(a);
b.open(QIODevice::ReadOnly);
return QImageReader(&b, format).read();
}
/*!
\fn QImage QImage::fromData(const QByteArray &data, const char *format)
\overload
Loads an image from the given QByteArray \a data.
*/
/*!
Saves the image to the file with the given \a fileName, using the
given image file \a format and \a quality factor. If \a format is
0, QImage will attempt to guess the format by looking at \a fileName's
suffix.
The \a quality factor must be in the range 0 to 100 or -1. Specify
0 to obtain small compressed files, 100 for large uncompressed
files, and -1 (the default) to use the default settings.
Returns true if the image was successfully saved; otherwise
returns false.
\sa {QImage#Reading and Writing Image Files}{Reading and Writing
Image Files}
*/
bool QImage::save(const QString &fileName, const char *format, int quality) const
{
if (isNull())
return false;
QImageWriter writer(fileName, format);
return d->doImageIO(this, &writer, quality);
}
/*!
\overload
This function writes a QImage to the given \a device.
This can, for example, be used to save an image directly into a
QByteArray:
\snippet doc/src/snippets/image/image.cpp 0
*/
bool QImage::save(QIODevice* device, const char* format, int quality) const
{
if (isNull())
return false; // nothing to save
QImageWriter writer(device, format);
return d->doImageIO(this, &writer, quality);
}
/* \internal
*/
bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const
{
if (quality > 100 || quality < -1)
qWarning("QPixmap::save: Quality out of range [-1, 100]");
if (quality >= 0)
writer->setQuality(qMin(quality,100));
return writer->write(*image);
}
/*****************************************************************************
QImage stream functions
*****************************************************************************/
#if !defined(QT_NO_DATASTREAM)
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QImage &image)
\relates QImage
Writes the given \a image to the given \a stream as a PNG image,
or as a BMP image if the stream's version is 1. Note that writing
the stream to a file will not produce a valid image file.
\sa QImage::save(), {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &s, const QImage &image)
{
if (s.version() >= 5) {
if (image.isNull()) {
s << (qint32) 0; // null image marker
return s;
} else {
s << (qint32) 1;
// continue ...
}
}
QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png");
writer.write(image);
return s;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QImage &image)
\relates QImage
Reads an image from the given \a stream and stores it in the given
\a image.
\sa QImage::load(), {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &s, QImage &image)
{
if (s.version() >= 5) {
qint32 nullMarker;
s >> nullMarker;
if (!nullMarker) {
image = QImage(); // null image
return s;
}
}
image = QImageReader(s.device(), 0).read();
return s;
}
#endif // QT_NO_DATASTREAM
#ifdef QT3_SUPPORT
/*!
\fn QImage QImage::convertDepthWithPalette(int depth, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
Returns an image with the given \a depth, using the \a
palette_count colors pointed to by \a palette. If \a depth is 1 or
8, the returned image will have its color table ordered in the
same way as \a palette.
If the image needs to be modified to fit in a lower-resolution
result (e.g. converting from 32-bit to 8-bit), use the \a flags to
specify how you'd prefer this to happen.
Note: currently no closest-color search is made. If colors are
found that are not in the palette, the palette may not be used at
all. This result should not be considered valid because it may
change in future implementations.
Currently inefficient for non-32-bit images.
Use the convertToFormat() function in combination with the
setColorTable() function instead.
*/
QImage QImage::convertDepthWithPalette(int d, QRgb* palette, int palette_count, Qt::ImageConversionFlags flags) const
{
Format f = formatFor(d, QImage::LittleEndian);
QVector<QRgb> colortable;
for (int i = 0; i < palette_count; ++i)
colortable.append(palette[i]);
return convertToFormat(f, colortable, flags);
}
/*!
\relates QImage
Copies a block of pixels from \a src to \a dst. The pixels
copied from source (src) are converted according to
\a flags if it is incompatible with the destination
(\a dst).
\a sx, \a sy is the top-left pixel in \a src, \a dx, \a dy is the
top-left position in \a dst and \a sw, \a sh is the size of the
copied block. The copying is clipped if areas outside \a src or \a
dst are specified. If \a sw is -1, it is adjusted to
src->width(). Similarly, if \a sh is -1, it is adjusted to
src->height().
Currently inefficient for non 32-bit images.
Use copy() or QPainter::drawImage() instead.
*/
void bitBlt(QImage *dst, int dx, int dy, const QImage *src, int sx, int sy, int sw, int sh,
Qt::ImageConversionFlags flags)
{
if (dst->isNull() || src->isNull())
return;
QPainter p(dst);
p.drawImage(QPoint(dx, dy), *src, QRect(sx, sy, sw, sh), flags);
}
#endif
/*!
\fn bool QImage::operator==(const QImage & image) const
Returns true if this image and the given \a image have the same
contents; otherwise returns false.
The comparison can be slow, unless there is some obvious
difference (e.g. different size or format), in which case the
function will return quickly.
\sa operator=()
*/
bool QImage::operator==(const QImage & i) const
{
// same object, or shared?
if (i.d == d)
return true;
if (!i.d || !d)
return false;
// obviously different stuff?
if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format)
return false;
if (d->format != Format_RGB32) {
if (d->format >= Format_ARGB32) { // all bits defined
const int n = d->width * d->depth / 8;
if (n == d->bytes_per_line && n == i.d->bytes_per_line) {
if (memcmp(bits(), i.bits(), d->nbytes))
return false;
} else {
for (int y = 0; y < d->height; ++y) {
if (memcmp(scanLine(y), i.scanLine(y), n))
return false;
}
}
} else {
const int w = width();
const int h = height();
const QVector<QRgb> &colortable = d->colortable;
const QVector<QRgb> &icolortable = i.d->colortable;
for (int y=0; y<h; ++y) {
for (int x=0; x<w; ++x) {
if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)])
return false;
}
}
}
} else {
//alpha channel undefined, so we must mask it out
for(int l = 0; l < d->height; l++) {
int w = d->width;
const uint *p1 = reinterpret_cast<const uint*>(scanLine(l));
const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(l));
while (w--) {
if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff))
return false;
}
}
}
return true;
}
/*!
\fn bool QImage::operator!=(const QImage & image) const
Returns true if this image and the given \a image have different
contents; otherwise returns false.
The comparison can be slow, unless there is some obvious
difference, such as different widths, in which case the function
will return quickly.
\sa operator=()
*/
bool QImage::operator!=(const QImage & i) const
{
return !(*this == i);
}
/*!
Returns the number of pixels that fit horizontally in a physical
meter. Together with dotsPerMeterY(), this number defines the
intended scale and aspect ratio of the image.
\sa setDotsPerMeterX(), {QImage#Image Information}{Image
Information}
*/
int QImage::dotsPerMeterX() const
{
return d ? qRound(d->dpmx) : 0;
}
/*!
Returns the number of pixels that fit vertically in a physical
meter. Together with dotsPerMeterX(), this number defines the
intended scale and aspect ratio of the image.
\sa setDotsPerMeterY(), {QImage#Image Information}{Image
Information}
*/
int QImage::dotsPerMeterY() const
{
return d ? qRound(d->dpmy) : 0;
}
/*!
Sets the number of pixels that fit horizontally in a physical
meter, to \a x.
Together with dotsPerMeterY(), this number defines the intended
scale and aspect ratio of the image, and determines the scale
at which QPainter will draw graphics on the image. It does not
change the scale or aspect ratio of the image when it is rendered
on other paint devices.
\sa dotsPerMeterX(), {QImage#Image Information}{Image Information}
*/
void QImage::setDotsPerMeterX(int x)
{
if (!d || !x)
return;
detach();
if (d)
d->dpmx = x;
}
/*!
Sets the number of pixels that fit vertically in a physical meter,
to \a y.
Together with dotsPerMeterX(), this number defines the intended
scale and aspect ratio of the image, and determines the scale
at which QPainter will draw graphics on the image. It does not
change the scale or aspect ratio of the image when it is rendered
on other paint devices.
\sa dotsPerMeterY(), {QImage#Image Information}{Image Information}
*/
void QImage::setDotsPerMeterY(int y)
{
if (!d || !y)
return;
detach();
if (d)
d->dpmy = y;
}
/*!
\fn QPoint QImage::offset() const
Returns the number of pixels by which the image is intended to be
offset by when positioning relative to other images.
\sa setOffset(), {QImage#Image Information}{Image Information}
*/
QPoint QImage::offset() const
{
return d ? d->offset : QPoint();
}
/*!
\fn void QImage::setOffset(const QPoint& offset)
Sets the number of pixels by which the image is intended to be
offset by when positioning relative to other images, to \a offset.
\sa offset(), {QImage#Image Information}{Image Information}
*/
void QImage::setOffset(const QPoint& p)
{
if (!d)
return;
detach();
if (d)
d->offset = p;
}
#ifndef QT_NO_IMAGE_TEXT
/*!
Returns the text keys for this image.
You can use these keys with text() to list the image text for a
certain key.
\sa text()
*/
QStringList QImage::textKeys() const
{
return d ? QStringList(d->text.keys()) : QStringList();
}
/*!
Returns the image text associated with the given \a key. If the
specified \a key is an empty string, the whole image text is
returned, with each key-text pair separated by a newline.
\sa setText(), textKeys()
*/
QString QImage::text(const QString &key) const
{
if (!d)
return QString();
if (!key.isEmpty())
return d->text.value(key);
QString tmp;
foreach (const QString &key, d->text.keys()) {
if (!tmp.isEmpty())
tmp += QLatin1String("\n\n");
tmp += key + QLatin1String(": ") + d->text.value(key).simplified();
}
return tmp;
}
/*!
\fn void QImage::setText(const QString &key, const QString &text)
Sets the image text to the given \a text and associate it with the
given \a key.
If you just want to store a single text block (i.e., a "comment"
or just a description), you can either pass an empty key, or use a
generic key like "Description".
The image text is embedded into the image data when you
call save() or QImageWriter::write().
Not all image formats support embedded text. You can find out
if a specific image or format supports embedding text
by using QImageWriter::supportsOption(). We give an example:
\snippet doc/src/snippets/image/supportedformat.cpp 0
You can use QImageWriter::supportedImageFormats() to find out
which image formats are available to you.
\sa text(), textKeys()
*/
void QImage::setText(const QString &key, const QString &value)
{
if (!d)
return;
detach();
if (d)
d->text.insert(key, value);
}
/*!
\fn QString QImage::text(const char* key, const char* language) const
\obsolete
Returns the text recorded for the given \a key in the given \a
language, or in a default language if \a language is 0.
Use text() instead.
The language the text is recorded in is no longer relevant since
the text is always set using QString and UTF-8 representation.
*/
QString QImage::text(const char* key, const char* lang) const
{
if (!d)
return QString();
QString k = QString::fromAscii(key);
if (lang && *lang)
k += QLatin1Char('/') + QString::fromAscii(lang);
return d->text.value(k);
}
/*!
\fn QString QImage::text(const QImageTextKeyLang& keywordAndLanguage) const
\overload
\obsolete
Returns the text recorded for the given \a keywordAndLanguage.
Use text() instead.
The language the text is recorded in is no longer relevant since
the text is always set using QString and UTF-8 representation.
*/
QString QImage::text(const QImageTextKeyLang& kl) const
{
if (!d)
return QString();
QString k = QString::fromAscii(kl.key);
if (!kl.lang.isEmpty())
k += QLatin1Char('/') + QString::fromAscii(kl.lang);
return d->text.value(k);
}
/*!
\obsolete
Returns the language identifiers for which some texts are
recorded. Note that if you want to iterate over the list, you
should iterate over a copy.
The language the text is recorded in is no longer relevant since
the text is always set using QString and UTF-8 representation.
*/
QStringList QImage::textLanguages() const
{
if (!d)
return QStringList();
QStringList keys = textKeys();
QStringList languages;
for (int i = 0; i < keys.size(); ++i) {
int index = keys.at(i).indexOf(QLatin1Char('/'));
if (index > 0)
languages += keys.at(i).mid(index+1);
}
return languages;
}
/*!
\obsolete
Returns a list of QImageTextKeyLang objects that enumerate all the
texts key/language pairs set for this image.
Use textKeys() instead.
The language the text is recorded in is no longer relevant since
the text is always set using QString and UTF-8 representation.
*/
QList<QImageTextKeyLang> QImage::textList() const
{
QList<QImageTextKeyLang> imageTextKeys;
if (!d)
return imageTextKeys;
QStringList keys = textKeys();
for (int i = 0; i < keys.size(); ++i) {
int index = keys.at(i).indexOf(QLatin1Char('/'));
if (index > 0) {
QImageTextKeyLang tkl;
tkl.key = keys.at(i).left(index).toAscii();
tkl.lang = keys.at(i).mid(index+1).toAscii();
imageTextKeys += tkl;
}
}
return imageTextKeys;
}
/*!
\fn void QImage::setText(const char* key, const char* language, const QString& text)
\obsolete
Sets the image text to the given \a text and associate it with the
given \a key. The text is recorded in the specified \a language,
or in a default language if \a language is 0.
Use setText() instead.
The language the text is recorded in is no longer relevant since
the text is always set using QString and UTF-8 representation.
\omit
Records string \a for the keyword \a key. The \a key should be
a portable keyword recognizable by other software - some suggested
values can be found in
\l{http://www.libpng.org/pub/png/spec/1.2/png-1.2-pdg.html#C.Anc-text}
{the PNG specification}. \a s can be any text. \a lang should
specify the language code (see
\l{http://www.rfc-editor.org/rfc/rfc1766.txt}{RFC 1766}) or 0.
\endomit
*/
void QImage::setText(const char* key, const char* lang, const QString& s)
{
if (!d)
return;
detach();
// In case detach() ran out of memory
if (!d)
return;
QString k = QString::fromAscii(key);
if (lang && *lang)
k += QLatin1Char('/') + QString::fromAscii(lang);
d->text.insert(k, s);
}
#endif // QT_NO_IMAGE_TEXT
/*
Sets the image bits to the \a pixmap contents and returns a
reference to the image.
If the image shares data with other images, it will first
dereference the shared data.
Makes a call to QPixmap::convertToImage().
*/
/*! \fn QImage::Endian QImage::systemBitOrder()
Determines the bit order of the display hardware. Returns
QImage::LittleEndian (LSB first) or QImage::BigEndian (MSB first).
This function is no longer relevant for QImage. Use QSysInfo
instead.
*/
/*!
\internal
Used by QPainter to retrieve a paint engine for the image.
*/
QPaintEngine *QImage::paintEngine() const
{
if (!d)
return 0;
if (!d->paintEngine) {
d->paintEngine = new QRasterPaintEngine(const_cast<QImage *>(this));
}
return d->paintEngine;
}
/*!
\internal
Returns the size for the specified \a metric on the device.
*/
int QImage::metric(PaintDeviceMetric metric) const
{
if (!d)
return 0;
switch (metric) {
case PdmWidth:
return d->width;
break;
case PdmHeight:
return d->height;
break;
case PdmWidthMM:
return qRound(d->width * 1000 / d->dpmx);
break;
case PdmHeightMM:
return qRound(d->height * 1000 / d->dpmy);
break;
case PdmNumColors:
return d->colortable.size();
break;
case PdmDepth:
return d->depth;
break;
case PdmDpiX:
return qRound(d->dpmx * 0.0254);
break;
case PdmDpiY:
return qRound(d->dpmy * 0.0254);
break;
case PdmPhysicalDpiX:
return qRound(d->dpmx * 0.0254);
break;
case PdmPhysicalDpiY:
return qRound(d->dpmy * 0.0254);
break;
default:
qWarning("QImage::metric(): Unhandled metric type %d", metric);
break;
}
return 0;
}
/*****************************************************************************
QPixmap (and QImage) helper functions
*****************************************************************************/
/*
This internal function contains the common (i.e. platform independent) code
to do a transformation of pixel data. It is used by QPixmap::transform() and by
QImage::transform().
\a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and
\a xoffset is an offset to the matrix.
\a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a
depth specifies the colordepth of the data.
\a dptr is a pointer to the destination data, \a dbpl specifies the bits per
line for the destination data, \a p_inc is the offset that we advance for
every scanline and \a dHeight is the height of the destination image.
\a sprt is the pointer to the source data, \a sbpl specifies the bits per
line of the source data, \a sWidth and \a sHeight are the width and height of
the source data.
*/
#undef IWX_MSB
#define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \
if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
(1 << (7-((trigx>>12)&7)))) \
*dptr |= b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
#undef IWX_LSB
#define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \
if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
(1 << ((trigx>>12)&7))) \
*dptr |= b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
#undef IWX_PIX
#define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \
if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \
(1 << (7-((trigx>>12)&7)))) == 0) \
*dptr &= ~b; \
} \
trigx += m11; \
trigy += m12;
// END OF MACRO
bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth,
uchar *dptr, int dbpl, int p_inc, int dHeight,
const uchar *sptr, int sbpl, int sWidth, int sHeight)
{
int m11 = int(trueMat.m11()*4096.0);
int m12 = int(trueMat.m12()*4096.0);
int m21 = int(trueMat.m21()*4096.0);
int m22 = int(trueMat.m22()*4096.0);
int dx = qRound(trueMat.dx()*4096.0);
int dy = qRound(trueMat.dy()*4096.0);
int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2;
int m22ydy = dy + (m12 + m22) / 2;
uint trigx;
uint trigy;
uint maxws = sWidth<<12;
uint maxhs = sHeight<<12;
for (int y=0; y<dHeight; y++) { // for each target scanline
trigx = m21ydx;
trigy = m22ydy;
uchar *maxp = dptr + dbpl;
if (depth != 1) {
switch (depth) {
case 8: // 8 bpp transform
while (dptr < maxp) {
if (trigx < maxws && trigy < maxhs)
*dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12));
trigx += m11;
trigy += m12;
dptr++;
}
break;
case 16: // 16 bpp transform
while (dptr < maxp) {
if (trigx < maxws && trigy < maxhs)
*((ushort*)dptr) = *((ushort *)(sptr+sbpl*(trigy>>12) +
((trigx>>12)<<1)));
trigx += m11;
trigy += m12;
dptr++;
dptr++;
}
break;
case 24: // 24 bpp transform
while (dptr < maxp) {
if (trigx < maxws && trigy < maxhs) {
const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3);
dptr[0] = p2[0];
dptr[1] = p2[1];
dptr[2] = p2[2];
}
trigx += m11;
trigy += m12;
dptr += 3;
}
break;
case 32: // 32 bpp transform
while (dptr < maxp) {
if (trigx < maxws && trigy < maxhs)
*((uint*)dptr) = *((uint *)(sptr+sbpl*(trigy>>12) +
((trigx>>12)<<2)));
trigx += m11;
trigy += m12;
dptr += 4;
}
break;
default: {
return false;
}
}
} else {
switch (type) {
case QT_XFORM_TYPE_MSBFIRST:
while (dptr < maxp) {
IWX_MSB(128);
IWX_MSB(64);
IWX_MSB(32);
IWX_MSB(16);
IWX_MSB(8);
IWX_MSB(4);
IWX_MSB(2);
IWX_MSB(1);
dptr++;
}
break;
case QT_XFORM_TYPE_LSBFIRST:
while (dptr < maxp) {
IWX_LSB(1);
IWX_LSB(2);
IWX_LSB(4);
IWX_LSB(8);
IWX_LSB(16);
IWX_LSB(32);
IWX_LSB(64);
IWX_LSB(128);
dptr++;
}
break;
# if defined(Q_WS_WIN)
case QT_XFORM_TYPE_WINDOWSPIXMAP:
while (dptr < maxp) {
IWX_PIX(128);
IWX_PIX(64);
IWX_PIX(32);
IWX_PIX(16);
IWX_PIX(8);
IWX_PIX(4);
IWX_PIX(2);
IWX_PIX(1);
dptr++;
}
break;
# endif
}
}
m21ydx += m21;
m22ydy += m22;
dptr += p_inc;
}
return true;
}
#undef IWX_MSB
#undef IWX_LSB
#undef IWX_PIX
/*!
\fn QImage QImage::xForm(const QMatrix &matrix) const
Use transformed() instead.
\oldcode
QImage image;
...
image.xForm(matrix);
\newcode
QImage image;
...
image.transformed(matrix);
\endcode
*/
/*! \obsolete
Returns a number that identifies the contents of this
QImage object. Distinct QImage objects can only have the same
serial number if they refer to the same contents (but they don't
have to).
Use cacheKey() instead.
\warning The serial number doesn't necessarily change when the
image is altered. This means that it may be dangerous to use
it as a cache key.
\sa operator==()
*/
int QImage::serialNumber() const
{
if (!d)
return 0;
else
return d->ser_no;
}
/*!
Returns a number that identifies the contents of this QImage
object. Distinct QImage objects can only have the same key if they
refer to the same contents.
The key will change when the image is altered.
*/
qint64 QImage::cacheKey() const
{
if (!d)
return 0;
else
return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no);
}
/*!
\internal
Returns true if the image is detached; otherwise returns false.
\sa detach(), {Implicit Data Sharing}
*/
bool QImage::isDetached() const
{
return d && d->ref == 1;
}
/*!
\obsolete
Sets the alpha channel of this image to the given \a alphaChannel.
If \a alphaChannel is an 8 bit grayscale image, the intensity values are
written into this buffer directly. Otherwise, \a alphaChannel is converted
to 32 bit and the intensity of the RGB pixel values is used.
Note that the image will be converted to the Format_ARGB32_Premultiplied
format if the function succeeds.
Use one of the composition modes in QPainter::CompositionMode instead.
\warning This function is expensive.
\sa alphaChannel(), {QImage#Image Transformations}{Image
Transformations}, {QImage#Image Formats}{Image Formats}
*/
void QImage::setAlphaChannel(const QImage &alphaChannel)
{
if (!d)
return;
int w = d->width;
int h = d->height;
if (w != alphaChannel.d->width || h != alphaChannel.d->height) {
qWarning("QImage::setAlphaChannel: "
"Alpha channel must have same dimensions as the target image");
return;
}
if (d->paintEngine && d->paintEngine->isActive()) {
qWarning("QImage::setAlphaChannel: "
"Unable to set alpha channel while image is being painted on");
return;
}
if (d->format == QImage::Format_ARGB32_Premultiplied)
detach();
else
*this = convertToFormat(QImage::Format_ARGB32_Premultiplied);
if (isNull())
return;
// Slight optimization since alphachannels are returned as 8-bit grays.
if (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale()) {
const uchar *src_data = alphaChannel.d->data;
const uchar *dest_data = d->data;
for (int y=0; y<h; ++y) {
const uchar *src = src_data;
QRgb *dest = (QRgb *)dest_data;
for (int x=0; x<w; ++x) {
int alpha = *src;
int destAlpha = qt_div_255(alpha * qAlpha(*dest));
*dest = ((destAlpha << 24)
| (qt_div_255(qRed(*dest) * alpha) << 16)
| (qt_div_255(qGreen(*dest) * alpha) << 8)
| (qt_div_255(qBlue(*dest) * alpha)));
++dest;
++src;
}
src_data += alphaChannel.d->bytes_per_line;
dest_data += d->bytes_per_line;
}
} else {
const QImage sourceImage = alphaChannel.convertToFormat(QImage::Format_RGB32);
const uchar *src_data = sourceImage.d->data;
const uchar *dest_data = d->data;
for (int y=0; y<h; ++y) {
const QRgb *src = (const QRgb *) src_data;
QRgb *dest = (QRgb *) dest_data;
for (int x=0; x<w; ++x) {
int alpha = qGray(*src);
int destAlpha = qt_div_255(alpha * qAlpha(*dest));
*dest = ((destAlpha << 24)
| (qt_div_255(qRed(*dest) * alpha) << 16)
| (qt_div_255(qGreen(*dest) * alpha) << 8)
| (qt_div_255(qBlue(*dest) * alpha)));
++dest;
++src;
}
src_data += sourceImage.d->bytes_per_line;
dest_data += d->bytes_per_line;
}
}
}
/*!
\obsolete
Returns the alpha channel of the image as a new grayscale QImage in which
each pixel's red, green, and blue values are given the alpha value of the
original image. The color depth of the returned image is 8-bit.
You can see an example of use of this function in QPixmap's
\l{QPixmap::}{alphaChannel()}, which works in the same way as
this function on QPixmaps.
Most usecases for this function can be replaced with QPainter and
using composition modes.
\warning This is an expensive function.
\sa setAlphaChannel(), hasAlphaChannel(),
{QPixmap#Pixmap Information}{Pixmap},
{QImage#Image Transformations}{Image Transformations}
*/
QImage QImage::alphaChannel() const
{
if (!d)
return QImage();
int w = d->width;
int h = d->height;
QImage image(w, h, Format_Indexed8);
image.setColorCount(256);
// set up gray scale table.
for (int i=0; i<256; ++i)
image.setColor(i, qRgb(i, i, i));
if (!hasAlphaChannel()) {
image.fill(255);
return image;
}
if (d->format == Format_Indexed8) {
const uchar *src_data = d->data;
uchar *dest_data = image.d->data;
for (int y=0; y<h; ++y) {
const uchar *src = src_data;
uchar *dest = dest_data;
for (int x=0; x<w; ++x) {
*dest = qAlpha(d->colortable.at(*src));
++dest;
++src;
}
src_data += d->bytes_per_line;
dest_data += image.d->bytes_per_line;
}
} else {
QImage alpha32 = *this;
if (d->format != Format_ARGB32 && d->format != Format_ARGB32_Premultiplied)
alpha32 = convertToFormat(Format_ARGB32);
const uchar *src_data = alpha32.d->data;
uchar *dest_data = image.d->data;
for (int y=0; y<h; ++y) {
const QRgb *src = (const QRgb *) src_data;
uchar *dest = dest_data;
for (int x=0; x<w; ++x) {
*dest = qAlpha(*src);
++dest;
++src;
}
src_data += alpha32.d->bytes_per_line;
dest_data += image.d->bytes_per_line;
}
}
return image;
}
/*!
Returns true if the image has a format that respects the alpha
channel, otherwise returns false.
\sa {QImage#Image Information}{Image Information}
*/
bool QImage::hasAlphaChannel() const
{
return d && (d->format == Format_ARGB32_Premultiplied
|| d->format == Format_ARGB32
|| d->format == Format_ARGB8565_Premultiplied
|| d->format == Format_ARGB8555_Premultiplied
|| d->format == Format_ARGB6666_Premultiplied
|| d->format == Format_ARGB4444_Premultiplied
|| (d->has_alpha_clut && (d->format == Format_Indexed8
|| d->format == Format_Mono
|| d->format == Format_MonoLSB)));
}
/*!
\since 4.7
Returns the number of bit planes in the image.
The number of bit planes is the number of bits of color and
transparency information for each pixel. This is different from
(i.e. smaller than) the depth when the image format contains
unused bits.
\sa depth(), format(), {QImage#Image Formats}{Image Formats}
*/
int QImage::bitPlaneCount() const
{
if (!d)
return 0;
int bpc = 0;
switch (d->format) {
case QImage::Format_Invalid:
break;
case QImage::Format_RGB32:
bpc = 24;
break;
case QImage::Format_RGB666:
bpc = 18;
break;
case QImage::Format_RGB555:
bpc = 15;
break;
case QImage::Format_ARGB8555_Premultiplied:
bpc = 23;
break;
case QImage::Format_RGB444:
bpc = 12;
break;
default:
bpc = qt_depthForFormat(d->format);
break;
}
return bpc;
}
#ifdef QT3_SUPPORT
#if defined(Q_WS_X11)
QT_BEGIN_INCLUDE_NAMESPACE
#include <private/qt_x11_p.h>
QT_END_INCLUDE_NAMESPACE
#endif
QImage::Endian QImage::systemBitOrder()
{
#if defined(Q_WS_X11)
return BitmapBitOrder(X11->display) == MSBFirst ? BigEndian : LittleEndian;
#else
return BigEndian;
#endif
}
#endif
/*!
\fn QImage QImage::copy(const QRect &rect, Qt::ImageConversionFlags flags) const
\compat
Use copy() instead.
*/
/*!
\fn QImage QImage::copy(int x, int y, int w, int h, Qt::ImageConversionFlags flags) const
\compat
Use copy() instead.
*/
/*!
\fn QImage QImage::scaleWidth(int w) const
\compat
Use scaledToWidth() instead.
*/
/*!
\fn QImage QImage::scaleHeight(int h) const
\compat
Use scaledToHeight() instead.
*/
static QImage smoothScaled(const QImage &source, int w, int h) {
QImage src = source;
if (src.format() == QImage::Format_ARGB32)
src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
else if (src.depth() < 32) {
if (src.hasAlphaChannel())
src = src.convertToFormat(QImage::Format_ARGB32_Premultiplied);
else
src = src.convertToFormat(QImage::Format_RGB32);
}
return qSmoothScaleImage(src, w, h);
}
static QImage rotated90(const QImage &image) {
QImage out(image.height(), image.width(), image.format());
if (image.colorCount() > 0)
out.setColorTable(image.colorTable());
int w = image.width();
int h = image.height();
switch (image.format()) {
case QImage::Format_RGB32:
case QImage::Format_ARGB32:
case QImage::Format_ARGB32_Premultiplied:
qt_memrotate270(reinterpret_cast<const quint32*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint32*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_RGB666:
case QImage::Format_ARGB6666_Premultiplied:
case QImage::Format_ARGB8565_Premultiplied:
case QImage::Format_ARGB8555_Premultiplied:
case QImage::Format_RGB888:
qt_memrotate270(reinterpret_cast<const quint24*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint24*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_RGB555:
case QImage::Format_RGB16:
case QImage::Format_ARGB4444_Premultiplied:
qt_memrotate270(reinterpret_cast<const quint16*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint16*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_Indexed8:
qt_memrotate270(reinterpret_cast<const quint8*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint8*>(out.bits()),
out.bytesPerLine());
break;
default:
for (int y=0; y<h; ++y) {
if (image.colorCount())
for (int x=0; x<w; ++x)
out.setPixel(h-y-1, x, image.pixelIndex(x, y));
else
for (int x=0; x<w; ++x)
out.setPixel(h-y-1, x, image.pixel(x, y));
}
break;
}
return out;
}
static QImage rotated180(const QImage &image) {
return image.mirrored(true, true);
}
static QImage rotated270(const QImage &image) {
QImage out(image.height(), image.width(), image.format());
if (image.colorCount() > 0)
out.setColorTable(image.colorTable());
int w = image.width();
int h = image.height();
switch (image.format()) {
case QImage::Format_RGB32:
case QImage::Format_ARGB32:
case QImage::Format_ARGB32_Premultiplied:
qt_memrotate90(reinterpret_cast<const quint32*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint32*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_RGB666:
case QImage::Format_ARGB6666_Premultiplied:
case QImage::Format_ARGB8565_Premultiplied:
case QImage::Format_ARGB8555_Premultiplied:
case QImage::Format_RGB888:
qt_memrotate90(reinterpret_cast<const quint24*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint24*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_RGB555:
case QImage::Format_RGB16:
case QImage::Format_ARGB4444_Premultiplied:
qt_memrotate90(reinterpret_cast<const quint16*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint16*>(out.bits()),
out.bytesPerLine());
break;
case QImage::Format_Indexed8:
qt_memrotate90(reinterpret_cast<const quint8*>(image.bits()),
w, h, image.bytesPerLine(),
reinterpret_cast<quint8*>(out.bits()),
out.bytesPerLine());
break;
default:
for (int y=0; y<h; ++y) {
if (image.colorCount())
for (int x=0; x<w; ++x)
out.setPixel(y, w-x-1, image.pixelIndex(x, y));
else
for (int x=0; x<w; ++x)
out.setPixel(y, w-x-1, image.pixel(x, y));
}
break;
}
return out;
}
/*!
Returns a copy of the image that is transformed using the given
transformation \a matrix and transformation \a mode.
The transformation \a matrix is internally adjusted to compensate
for unwanted translation; i.e. the image produced is the smallest
image that contains all the transformed points of the original
image. Use the trueMatrix() function to retrieve the actual matrix
used for transforming an image.
Unlike the other overload, this function can be used to perform perspective
transformations on images.
\sa trueMatrix(), {QImage#Image Transformations}{Image
Transformations}
*/
QImage QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const
{
if (!d)
return QImage();
// source image data
int ws = width();
int hs = height();
// target image data
int wd;
int hd;
// compute size of target image
QTransform mat = trueMatrix(matrix, ws, hs);
bool complex_xform = false;
bool scale_xform = false;
if (mat.type() <= QTransform::TxScale) {
if (mat.type() == QTransform::TxNone) // identity matrix
return *this;
else if (mat.m11() == -1. && mat.m22() == -1.)
return rotated180(*this);
if (mode == Qt::FastTransformation) {
hd = qRound(qAbs(mat.m22()) * hs);
wd = qRound(qAbs(mat.m11()) * ws);
} else {
hd = int(qAbs(mat.m22()) * hs + 0.9999);
wd = int(qAbs(mat.m11()) * ws + 0.9999);
}
scale_xform = true;
} else {
if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) {
if (mat.m12() == 1. && mat.m21() == -1.)
return rotated90(*this);
else if (mat.m12() == -1. && mat.m21() == 1.)
return rotated270(*this);
}
QPolygonF a(QRectF(0, 0, ws, hs));
a = mat.map(a);
QRect r = a.boundingRect().toAlignedRect();
wd = r.width();
hd = r.height();
complex_xform = true;
}
if (wd == 0 || hd == 0)
return QImage();
// Make use of the optimized algorithm when we're scaling
if (scale_xform && mode == Qt::SmoothTransformation) {
if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip
return smoothScaled(mirrored(true, true), wd, hd);
} else if (mat.m11() < 0.0F) { // horizontal flip
return smoothScaled(mirrored(true, false), wd, hd);
} else if (mat.m22() < 0.0F) { // vertical flip
return smoothScaled(mirrored(false, true), wd, hd);
} else { // no flipping
return smoothScaled(*this, wd, hd);
}
}
int bpp = depth();
int sbpl = bytesPerLine();
const uchar *sptr = bits();
QImage::Format target_format = d->format;
if (complex_xform || mode == Qt::SmoothTransformation) {
if (d->format < QImage::Format_RGB32 || !hasAlphaChannel()) {
switch(d->format) {
case QImage::Format_RGB16:
target_format = Format_ARGB8565_Premultiplied;
break;
case QImage::Format_RGB555:
target_format = Format_ARGB8555_Premultiplied;
break;
case QImage::Format_RGB666:
target_format = Format_ARGB6666_Premultiplied;
break;
case QImage::Format_RGB444:
target_format = Format_ARGB4444_Premultiplied;
break;
default:
target_format = Format_ARGB32_Premultiplied;
break;
}
}
}
QImage dImage(wd, hd, target_format);
QIMAGE_SANITYCHECK_MEMORY(dImage);
if (target_format == QImage::Format_MonoLSB
|| target_format == QImage::Format_Mono
|| target_format == QImage::Format_Indexed8) {
dImage.d->colortable = d->colortable;
dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform;
}
dImage.d->dpmx = dotsPerMeterX();
dImage.d->dpmy = dotsPerMeterY();
switch (bpp) {
// initizialize the data
case 8:
if (dImage.d->colortable.size() < 256) {
// colors are left in the color table, so pick that one as transparent
dImage.d->colortable.append(0x0);
memset(dImage.bits(), dImage.d->colortable.size() - 1, dImage.byteCount());
} else {
memset(dImage.bits(), 0, dImage.byteCount());
}
break;
case 1:
case 16:
case 24:
case 32:
memset(dImage.bits(), 0x00, dImage.byteCount());
break;
}
if (target_format >= QImage::Format_RGB32) {
QPainter p(&dImage);
if (mode == Qt::SmoothTransformation) {
p.setRenderHint(QPainter::Antialiasing);
p.setRenderHint(QPainter::SmoothPixmapTransform);
}
p.setTransform(mat);
p.drawImage(QPoint(0, 0), *this);
} else {
bool invertible;
mat = mat.inverted(&invertible); // invert matrix
if (!invertible) // error, return null image
return QImage();
// create target image (some of the code is from QImage::copy())
int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST;
int dbpl = dImage.bytesPerLine();
qt_xForm_helper(mat, 0, type, bpp, dImage.bits(), dbpl, 0, hd, sptr, sbpl, ws, hs);
}
return dImage;
}
/*!
\fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height)
Returns the actual matrix used for transforming an image with the
given \a width, \a height and \a matrix.
When transforming an image using the transformed() function, the
transformation matrix is internally adjusted to compensate for
unwanted translation, i.e. transformed() returns the smallest
image containing all transformed points of the original image.
This function returns the modified matrix, which maps points
correctly from the original image into the new image.
Unlike the other overload, this function creates transformation
matrices that can be used to perform perspective
transformations on images.
\sa transformed(), {QImage#Image Transformations}{Image
Transformations}
*/
QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h)
{
const QRectF rect(0, 0, w, h);
const QRect mapped = matrix.mapRect(rect).toAlignedRect();
const QPoint delta = mapped.topLeft();
return matrix * QTransform().translate(-delta.x(), -delta.y());
}
bool QImageData::convertInPlace(QImage::Format newFormat, Qt::ImageConversionFlags flags)
{
if (format == newFormat)
return true;
// No in-place conversion if we have to detach
if (ref > 1)
return false;
const InPlace_Image_Converter *const converterPtr = &inplace_converter_map[format][newFormat];
InPlace_Image_Converter converter = *converterPtr;
if (converter)
return converter(this, flags);
else
return false;
}
/*!
\typedef QImage::DataPtr
\internal
*/
/*!
\fn DataPtr & QImage::data_ptr()
\internal
*/
QT_END_NAMESPACE
|