1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
|
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the either Technology Preview License Agreement or the
** Beta Release License Agreement.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain
** additional rights. These rights are described in the Nokia Qt LGPL
** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
** package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
** If you are unsure which license is appropriate for your use, please
** contact the sales department at http://qt.nokia.com/contact.
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector3d.h"
#include "qvector2d.h"
#include "qvector4d.h"
#include <QtCore/qmath.h>
#include <QtCore/qvariant.h>
#include <QtCore/qdebug.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR3D
/*!
\class QVector3D
\brief The QVector3D class represents a vector or vertex in 3D space.
\since 4.6
\ingroup painting-3D
Vectors are one of the main building blocks of 3D representation and
drawing. They consist of three coordinates, traditionally called
x, y, and z.
The QVector3D class can also be used to represent vertices in 3D space.
We therefore do not need to provide a separate vertex class.
\sa QVector2D, QVector4D, QQuaternion
*/
/*!
\fn QVector3D::QVector3D()
Constructs a null vector, i.e. with coordinates (0, 0, 0).
*/
/*!
\fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos)
Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
*/
/*!
\fn QVector3D::QVector3D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point, and a
z coordinate of 0.
*/
/*!
\fn QVector3D::QVector3D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point, and a
z coordinate of 0.
*/
#ifndef QT_NO_VECTOR2D
/*!
Constructs a 3D vector from the specified 2D \a vector. The z
coordinate is set to zero.
\sa toVector2D()
*/
QVector3D::QVector3D(const QVector2D& vector)
{
xp = vector.xp;
yp = vector.yp;
zp = 0.0f;
}
/*!
Constructs a 3D vector from the specified 2D \a vector. The z
coordinate is set to \a zpos.
\sa toVector2D()
*/
QVector3D::QVector3D(const QVector2D& vector, qreal zpos)
{
xp = vector.xp;
yp = vector.yp;
zp = zpos;
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Constructs a 3D vector from the specified 4D \a vector. The w
coordinate is dropped.
\sa toVector4D()
*/
QVector3D::QVector3D(const QVector4D& vector)
{
xp = vector.xp;
yp = vector.yp;
zp = vector.zp;
}
#endif
/*!
\fn bool QVector3D::isNull() const
Returns true if the x, y, and z coordinates are set to 0.0,
otherwise returns false.
*/
/*!
\fn qreal QVector3D::x() const
Returns the x coordinate of this point.
\sa setX(), y(), z()
*/
/*!
\fn qreal QVector3D::y() const
Returns the y coordinate of this point.
\sa setY(), x(), z()
*/
/*!
\fn qreal QVector3D::z() const
Returns the z coordinate of this point.
\sa setZ(), x(), y()
*/
/*!
\fn void QVector3D::setX(qreal x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY(), setZ()
*/
/*!
\fn void QVector3D::setY(qreal y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX(), setZ()
*/
/*!
\fn void QVector3D::setZ(qreal z)
Sets the z coordinate of this point to the given \a z coordinate.
\sa z(), setX(), setY()
*/
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector3D QVector3D::normalized() const
{
qreal len = lengthSquared();
if (qFuzzyIsNull(len - 1.0f))
return *this;
else if (!qFuzzyIsNull(len))
return *this / qSqrt(len);
else
return QVector3D();
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector3D::normalize()
{
qreal len = lengthSquared();
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = qSqrt(len);
xp /= len;
yp /= len;
zp /= len;
}
/*!
\fn QVector3D &QVector3D::operator+=(const QVector3D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector3D &QVector3D::operator-=(const QVector3D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector3D &QVector3D::operator*=(qreal factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector3D &QVector3D::operator*=(const QVector3D& vector)
\overload
Multiplies the components of this vector by the corresponding
components in \a vector.
Note: this is not the same as the crossProduct() of this
vector and \a vector.
\sa crossProduct()
*/
/*!
\fn QVector3D &QVector3D::operator/=(qreal divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2)
{
return v1.xp * v2.xp + v1.yp * v2.yp + v1.zp * v2.zp;
}
/*!
Returns the cross-product of vectors \a v1 and \a v2, which corresponds
to the normal vector of a plane defined by \a v1 and \a v2.
\sa normal()
*/
QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2)
{
return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp,
v1.zp * v2.xp - v1.xp * v2.zp,
v1.xp * v2.yp - v1.yp * v2.xp, 1);
}
/*!
Returns the normal vector of a plane defined by vectors \a v1 and \a v2,
normalized to be a unit vector.
Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you
do not need the result to be normalized to a unit vector.
\sa crossProduct(), distanceToPlane()
*/
QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2)
{
return crossProduct(v1, v2).normalized();
}
/*!
\overload
Returns the normal vector of a plane defined by vectors
\a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector.
Use crossProduct() to compute the cross-product of \a v2 - \a v1 and
\a v3 - \a v1 if you do not need the result to be normalized to a
unit vector.
\sa crossProduct(), distanceToPlane()
*/
QVector3D QVector3D::normal
(const QVector3D& v1, const QVector3D& v2, const QVector3D& v3)
{
return crossProduct((v2 - v1), (v3 - v1)).normalized();
}
/*!
Returns the distance from this vertex to a plane defined by
the vertex \a plane and a \a normal unit vector. The \a normal
parameter is assumed to have been normalized to a unit vector.
The return value will be negative if the vertex is below the plane,
or zero if it is on the plane.
\sa normal(), distanceToLine()
*/
qreal QVector3D::distanceToPlane
(const QVector3D& plane, const QVector3D& normal) const
{
return dotProduct(*this - plane, normal);
}
/*!
\overload
Returns the distance from this vertex a plane defined by
the vertices \a plane1, \a plane2 and \a plane3.
The return value will be negative if the vertex is below the plane,
or zero if it is on the plane.
The two vectors that define the plane are \a plane2 - \a plane1
and \a plane3 - \a plane1.
\sa normal(), distanceToLine()
*/
qreal QVector3D::distanceToPlane
(const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const
{
QVector3D n = normal(plane2 - plane1, plane3 - plane1);
return dotProduct(*this - plane1, n);
}
/*!
Returns the distance that this vertex is from a line defined
by \a point and the unit vector \a direction.
If \a direction is a null vector, then it does not define a line.
In that case, the distance from \a point to this vertex is returned.
\sa distanceToPlane()
*/
qreal QVector3D::distanceToLine
(const QVector3D& point, const QVector3D& direction) const
{
if (direction.isNull())
return (*this - point).length();
QVector3D p = point + dotProduct(*this - point, direction) * direction;
return (*this - p).length();
}
/*!
\fn bool operator==(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns true if \a v1 is equal to \a v2; otherwise returns false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool operator!=(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns true if \a v1 is not equal to \a v2; otherwise returns false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns a QVector3D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector3D::operator+=()
*/
/*!
\fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns a QVector3D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector3D::operator-=()
*/
/*!
\fn const QVector3D operator*(qreal factor, const QVector3D &vector)
\relates QVector3D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector3D::operator*=()
*/
/*!
\fn const QVector3D operator*(const QVector3D &vector, qreal factor)
\relates QVector3D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector3D::operator*=()
*/
/*!
\fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
\relates QVector3D
Multiplies the components of \a v1 by the corresponding components in \a v2.
Note: this is not the same as the crossProduct() of \a v1 and \a v2.
\sa QVector3D::crossProduct()
*/
/*!
\fn const QVector3D operator-(const QVector3D &vector)
\relates QVector3D
\overload
Returns a QVector3D object that is formed by changing the sign of
all three components of the given \a vector.
Equivalent to \c {QVector3D(0,0,0) - vector}.
*/
/*!
\fn const QVector3D operator/(const QVector3D &vector, qreal divisor)
\relates QVector3D
Returns the QVector3D object formed by dividing all three components of
the given \a vector by the given \a divisor.
\sa QVector3D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
\relates QVector3D
Returns true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR2D
/*!
Returns the 2D vector form of this 3D vector, dropping the z coordinate.
\sa toVector4D(), toPoint()
*/
QVector2D QVector3D::toVector2D() const
{
return QVector2D(xp, yp, 1);
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Returns the 4D form of this 3D vector, with the w coordinate set to zero.
\sa toVector2D(), toPoint()
*/
QVector4D QVector3D::toVector4D() const
{
return QVector4D(xp, yp, zp, 0.0f, 1);
}
#endif
/*!
\fn QPoint QVector3D::toPoint() const
Returns the QPoint form of this 3D vector. The z coordinate
is dropped.
\sa toPointF(), toVector2D()
*/
/*!
\fn QPointF QVector3D::toPointF() const
Returns the QPointF form of this 3D vector. The z coordinate
is dropped.
\sa toPoint(), toVector2D()
*/
/*!
Returns the 3D vector as a QVariant.
*/
QVector3D::operator QVariant() const
{
return QVariant(QVariant::Vector3D, this);
}
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
qreal QVector3D::length() const
{
return qSqrt(xp * xp + yp * yp + zp * zp);
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
qreal QVector3D::lengthSquared() const
{
return xp * xp + yp * yp + zp * zp;
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector3D &vector)
{
dbg.nospace() << "QVector3D("
<< vector.x() << ", " << vector.y() << ", " << vector.z() << ')';
return dbg.space();
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
\relates QVector3D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Format of the QDataStream Operators}
*/
QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
{
stream << double(vector.x()) << double(vector.y())
<< double(vector.z());
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
\relates QVector3D
Reads a 3D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Format of the QDataStream Operators}
*/
QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
{
double x, y, z;
stream >> x;
stream >> y;
stream >> z;
vector.setX(qreal(x));
vector.setY(qreal(y));
vector.setZ(qreal(z));
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR3D
QT_END_NAMESPACE
|