summaryrefslogtreecommitdiffstats
path: root/src/gui/painting/qbezier.cpp
blob: 8af69894bfa909655ba9bb8ea3cbdc1fb7137e02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the either Technology Preview License Agreement or the
** Beta Release License Agreement.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain
** additional rights. These rights are described in the Nokia Qt LGPL
** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
** package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
** If you are unsure which license is appropriate for your use, please
** contact the sales department at http://qt.nokia.com/contact.
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qbezier_p.h"
#include <qdebug.h>
#include <qline.h>
#include <qpolygon.h>
#include <qvector.h>
#include <qlist.h>
#include <qmath.h>

#include <private/qnumeric_p.h>
#include <private/qmath_p.h>

QT_BEGIN_NAMESPACE

//#define QDEBUG_BEZIER

#ifdef FLOAT_ACCURACY
#define INV_EPS (1L<<23)
#else
/* The value of 1.0 / (1L<<14) is enough for most applications */
#define INV_EPS (1L<<14)
#endif

#ifndef M_SQRT2
#define M_SQRT2	1.41421356237309504880
#endif

#define log2(x) (qLn(x)/qLn(2.))

static inline qreal log4(qreal x)
{
    return qreal(0.5) * log2(x);
}

/*!
  \internal
*/
QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
                            const QPointF &p3, const QPointF &p4)
{
    QBezier b;
    b.x1 = p1.x();
    b.y1 = p1.y();
    b.x2 = p2.x();
    b.y2 = p2.y();
    b.x3 = p3.x();
    b.y3 = p3.y();
    b.x4 = p4.x();
    b.y4 = p4.y();
    return b;
}

/*!
  \internal
*/
QPolygonF QBezier::toPolygon() const
{
    // flattening is done by splitting the bezier until we can replace the segment by a straight
    // line. We split further until the control points are close enough to the line connecting the
    // boundary points.
    //
    // the Distance of a point p from a line given by the points (a,b) is given by:
    //
    // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
    //
    // We can stop splitting if both control points are close enough to the line.
    // To make the algorithm faster we use the manhattan length of the line.

    QPolygonF polygon;
    polygon.append(QPointF(x1, y1));
    addToPolygon(&polygon);
    return polygon;
}

//0.5 is really low
static const qreal flatness = 0.5;

//based on "Fast, precise flattening of cubic Bezier path and offset curves"
//      by T. F. Hain, A. L. Ahmad, S. V. R. Racherla and D. D. Langan
static inline void flattenBezierWithoutInflections(QBezier &bez,
                                                   QPolygonF *&p)
{
    QBezier left;

    while (1) {
        qreal dx = bez.x2 - bez.x1;
        qreal dy = bez.y2 - bez.y1;

        qreal normalized = qSqrt(dx * dx + dy * dy);
        if (qFuzzyIsNull(normalized))
           break;

        qreal d = qAbs(dx * (bez.y3 - bez.y2) - dy * (bez.x3 - bez.x2));

        qreal t = qSqrt(4. / 3. * normalized * flatness / d);
        if (t > 1 || qFuzzyIsNull(t - (qreal)1.))
            break;
        bez.parameterSplitLeft(t, &left);
        p->append(bez.pt1());
    }
}


static inline int quadraticRoots(qreal a, qreal b, qreal c,
                                 qreal *x1, qreal *x2)
{
    if (qFuzzyIsNull(a)) {
        if (qFuzzyIsNull(b))
            return 0;
        *x1 = *x2 = (-c / b);
        return 1;
    } else {
        const qreal det = b * b - 4 * a * c;
        if (qFuzzyIsNull(det)) {
            *x1 = *x2 = -b / (2 * a);
            return 1;
        }
        if (det > 0) {
            if (qFuzzyIsNull(b)) {
                *x2 = qSqrt(-c / a);
                *x1 = -(*x2);
                return 2;
            }
            const qreal stableA = b / (2 * a);
            const qreal stableB = c / (a * stableA * stableA);
            const qreal stableC = -1 - qSqrt(1 - stableB);
            *x2 = stableA * stableC;
            *x1 = (stableA * stableB) / stableC;
            return 2;
        } else
            return 0;
    }
}

static inline bool findInflections(qreal a, qreal b, qreal c,
                                   qreal *t1 , qreal *t2, qreal *tCups)
{
    qreal r1 = 0, r2 = 0;

    short rootsCount = quadraticRoots(a, b, c, &r1, &r2);

    if (rootsCount >= 1) {
        if (r1 < r2) {
            *t1 = r1;
            *t2 = r2;
        } else {
            *t1 = r2;
            *t2 = r1;
        }
        if (!qFuzzyIsNull(a))
            *tCups = 0.5 * (-b / a);
        else
            *tCups = 2;

        return true;
    }

    return false;
}


void QBezier::addToPolygon(QPolygonF *polygon) const
{
    QBezier beziers[32];
    beziers[0] = *this;
    QBezier *b = beziers;

    while (b >= beziers) {
        // check if we can pop the top bezier curve from the stack
        qreal y4y1 = b->y4 - b->y1;
        qreal x4x1 = b->x4 - b->x1;
        qreal l = qAbs(x4x1) + qAbs(y4y1);
        qreal d;
        if (l > 1.) {
            d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
                + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
        } else {
            d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
            l = 1.;
        }
        if (d < flatness*l || b == beziers + 31) {
            // good enough, we pop it off and add the endpoint
            polygon->append(QPointF(b->x4, b->y4));
            --b;
        } else {
            // split, second half of the polygon goes lower into the stack
            b->split(b+1, b);
            ++b;
        }
    }
}

void QBezier::addToPolygonMixed(QPolygonF *polygon) const
{
    qreal ax = -x1 + 3*x2 - 3*x3 + x4;
    qreal ay = -y1 + 3*y2 - 3*y3 + y4;
    qreal bx = 3*x1 - 6*x2 + 3*x3;
    qreal by = 3*y1 - 6*y2 + 3*y3;
    qreal cx = -3*x1 + 3*x2;
    qreal cy = -3*y1 + 2*y2;
    qreal a = 6 * (ay * bx - ax * by);
    qreal b = 6 * (ay * cx - ax * cy);
    qreal c = 2 * (by * cx - bx * cy);

    if ((qFuzzyIsNull(a) && qFuzzyIsNull(b)) ||
        (b * b - 4 * a *c) < 0) {
        QBezier bez(*this);
        flattenBezierWithoutInflections(bez, polygon);
        polygon->append(QPointF(x4, y4));
    } else {
        QBezier beziers[32];
        beziers[0] = *this;
        QBezier *b = beziers;

        while (b >= beziers) {
            // check if we can pop the top bezier curve from the stack
            qreal y4y1 = b->y4 - b->y1;
            qreal x4x1 = b->x4 - b->x1;
            qreal l = qAbs(x4x1) + qAbs(y4y1);
            qreal d;
            if (l > 1.) {
                d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
                    + qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
            } else {
                d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
                    qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
                l = 1.;
            }
            if (d < .5*l || b == beziers + 31) {
                // good enough, we pop it off and add the endpoint
                polygon->append(QPointF(b->x4, b->y4));
                --b;
            } else {
                // split, second half of the polygon goes lower into the stack
                b->split(b+1, b);
                ++b;
            }
        }
    }
}

QRectF QBezier::bounds() const
{
    qreal xmin = x1;
    qreal xmax = x1;
    if (x2 < xmin)
        xmin = x2;
    else if (x2 > xmax)
        xmax = x2;
    if (x3 < xmin)
        xmin = x3;
    else if (x3 > xmax)
        xmax = x3;
    if (x4 < xmin)
        xmin = x4;
    else if (x4 > xmax)
        xmax = x4;

    qreal ymin = y1;
    qreal ymax = y1;
    if (y2 < ymin)
        ymin = y2;
    else if (y2 > ymax)
        ymax = y2;
    if (y3 < ymin)
        ymin = y3;
    else if (y3 > ymax)
        ymax = y3;
    if (y4 < ymin)
        ymin = y4;
    else if (y4 > ymax)
        ymax = y4;
    return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
}


enum ShiftResult {
    Ok,
    Discard,
    Split,
    Circle
};

static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
{
    const qreal o2 = offset*offset;
    const qreal max_dist_line = threshold*offset*offset;
    const qreal max_dist_normal = threshold*offset;
    const qreal spacing = 0.25;
    for (qreal i = spacing; i < 0.99; i += spacing) {
        QPointF p1 = b1->pointAt(i);
        QPointF p2 = b2->pointAt(i);
        qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
        if (qAbs(d - o2) > max_dist_line)
            return Split;

        QPointF normalPoint = b1->normalVector(i);
        qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
        if (l != 0.) {
            d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
            if (d > max_dist_normal)
                return Split;
        }
    }
    return Ok;
}

static inline QLineF qline_shifted(const QPointF &p1, const QPointF &p2, qreal offset)
{
    QLineF l(p1, p2);
    QLineF ln = l.normalVector().unitVector();
    l.translate(ln.dx() * offset, ln.dy() * offset);
    return l;
}

static bool qbezier_is_line(QPointF *points, int pointCount)
{
    Q_ASSERT(pointCount > 2);

    qreal dx13 = points[2].x() - points[0].x();
    qreal dy13 = points[2].y() - points[0].y();

    qreal dx12 = points[1].x() - points[0].x();
    qreal dy12 = points[1].y() - points[0].y();

    if (pointCount == 3) {
        return qFuzzyCompare(dx12 * dy13, dx13 * dy12);
    } else if (pointCount == 4) {
        qreal dx14 = points[3].x() - points[0].x();
        qreal dy14 = points[3].y() - points[0].y();

        return (qFuzzyCompare(dx12 * dy13, dx13 * dy12) && qFuzzyCompare(dx12 * dy14, dx14 * dy12));
    }

    return false;
}

static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
{
    int map[4];
    bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
    bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
    bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);

    QPointF points[4];
    int np = 0;
    points[np] = QPointF(orig->x1, orig->y1);
    map[0] = 0;
    ++np;
    if (!p1_p2_equal) {
        points[np] = QPointF(orig->x2, orig->y2);
        ++np;
    }
    map[1] = np - 1;
    if (!p2_p3_equal) {
        points[np] = QPointF(orig->x3, orig->y3);
        ++np;
    }
    map[2] = np - 1;
    if (!p3_p4_equal) {
        points[np] = QPointF(orig->x4, orig->y4);
        ++np;
    }
    map[3] = np - 1;
    if (np == 1)
        return Discard;

    // We need to specialcase lines of 3 or 4 points due to numerical
    // instability in intersections below
    if (np > 2 && qbezier_is_line(points, np)) {
        if (points[0] == points[np-1])
            return Discard;

        QLineF l = qline_shifted(points[0], points[np-1], offset);
        *shifted = QBezier::fromPoints(l.p1(), l.pointAt(qreal(0.33)), l.pointAt(qreal(0.66)), l.p2());
        return Ok;
    }

    QRectF b = orig->bounds();
    if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
        qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
                  (orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
                  (orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
                  (orig->y3 - orig->y4)*(orig->y3 - orig->y4);
        qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
                    (orig->y1 - orig->y2)*(orig->y3 - orig->y4);
        if (dot < 0 && dot*dot < 0.8*l)
            // the points are close and reverse dirction. Approximate the whole
            // thing by a semi circle
            return Circle;
    }

    QPointF points_shifted[4];

    QLineF prev = QLineF(QPointF(), points[1] - points[0]);
    QPointF prev_normal = prev.normalVector().unitVector().p2();

    points_shifted[0] = points[0] + offset * prev_normal;

    for (int i = 1; i < np - 1; ++i) {
        QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
        QPointF next_normal = next.normalVector().unitVector().p2();

        QPointF normal_sum = prev_normal + next_normal;

        qreal r = 1.0 + prev_normal.x() * next_normal.x()
                  + prev_normal.y() * next_normal.y();

        if (qFuzzyIsNull(r)) {
            points_shifted[i] = points[i] + offset * prev_normal;
        } else {
            qreal k = offset / r;
            points_shifted[i] = points[i] + k * normal_sum;
        }

        prev_normal = next_normal;
    }

    points_shifted[np - 1] = points[np - 1] + offset * prev_normal;

    *shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
                                   points_shifted[map[2]], points_shifted[map[3]]);

    return good_offset(orig, shifted, offset, threshold);
}

// This value is used to determine the length of control point vectors
// when approximating arc segments as curves. The factor is multiplied
// with the radius of the circle.
#define KAPPA 0.5522847498


static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
{
    QPointF normals[3];

    normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
    qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
    if (qFuzzyIsNull(dist))
        return false;
    normals[0] /= dist;
    normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
    dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
    if (qFuzzyIsNull(dist))
        return false;
    normals[2] /= dist;

    normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
    normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());

    qreal angles[2];
    qreal sign = 1.;
    for (int i = 0; i < 2; ++i) {
        qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
        if (cos_a > 1.)
            cos_a = 1.;
        if (cos_a < -1.)
            cos_a = -1;
        angles[i] = acos(cos_a)/Q_PI;
    }

    if (angles[0] + angles[1] > 1.) {
        // more than 180 degrees
        normals[1] = -normals[1];
        angles[0] = 1. - angles[0];
        angles[1] = 1. - angles[1];
        sign = -1.;

    }

    QPointF circle[3];
    circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
    circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
    circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;

    for (int i = 0; i < 2; ++i) {
        qreal kappa = 2.*KAPPA * sign * offset * angles[i];

        o->x1 = circle[i].x();
        o->y1 = circle[i].y();
        o->x2 = circle[i].x() - normals[i].y()*kappa;
        o->y2 = circle[i].y() + normals[i].x()*kappa;
        o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
        o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
        o->x4 = circle[i+1].x();
        o->y4 = circle[i+1].y();

        ++o;
    }
    return true;
}

int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
{
    Q_ASSERT(curveSegments);
    Q_ASSERT(maxSegments > 0);

    if (x1 == x2 && x1 == x3 && x1 == x4 &&
        y1 == y2 && y1 == y3 && y1 == y4)
        return 0;

    --maxSegments;
    QBezier beziers[10];
redo:
    beziers[0] = *this;
    QBezier *b = beziers;
    QBezier *o = curveSegments;

    while (b >= beziers) {
        int stack_segments = b - beziers + 1;
        if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
            threshold *= 1.5;
            if (threshold > 2.)
                goto give_up;
            goto redo;
        }
        ShiftResult res = shift(b, o, offset, threshold);
        if (res == Discard) {
            --b;
        } else if (res == Ok) {
            ++o;
            --b;
            continue;
        } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
            // add semi circle
            if (addCircle(b, offset, o))
                o += 2;
            --b;
        } else {
            b->split(b+1, b);
            ++b;
        }
    }

give_up:
    while (b >= beziers) {
        ShiftResult res = shift(b, o, offset, threshold);

        // if res isn't Ok or Split then *o is undefined
        if (res == Ok || res == Split)
            ++o;

        --b;
    }

    Q_ASSERT(o - curveSegments <= maxSegments);
    return o - curveSegments;
}

#if 0
static inline bool IntersectBB(const QBezier &a, const QBezier &b)
{
    return a.bounds().intersects(b.bounds());
}
#else
static int IntersectBB(const QBezier &a, const QBezier &b)
{
    // Compute bounding box for a
    qreal minax, maxax, minay, maxay;
    if (a.x1 > a.x4)	 // These are the most likely to be extremal
	minax = a.x4, maxax = a.x1;
    else
	minax = a.x1, maxax = a.x4;

    if (a.x3 < minax)
	minax = a.x3;
    else if (a.x3 > maxax)
	maxax = a.x3;

    if (a.x2 < minax)
	minax = a.x2;
    else if (a.x2 > maxax)
	maxax = a.x2;

    if (a.y1 > a.y4)
	minay = a.y4, maxay = a.y1;
    else
	minay = a.y1, maxay = a.y4;

    if (a.y3 < minay)
	minay = a.y3;
    else if (a.y3 > maxay)
	maxay = a.y3;

    if (a.y2 < minay)
	minay = a.y2;
    else if (a.y2 > maxay)
	maxay = a.y2;

    // Compute bounding box for b
    qreal minbx, maxbx, minby, maxby;
    if (b.x1 > b.x4)
	minbx = b.x4, maxbx = b.x1;
    else
	minbx = b.x1, maxbx = b.x4;

    if (b.x3 < minbx)
	minbx = b.x3;
    else if (b.x3 > maxbx)
	maxbx = b.x3;

    if (b.x2 < minbx)
	minbx = b.x2;
    else if (b.x2 > maxbx)
	maxbx = b.x2;

    if (b.y1 > b.y4)
	minby = b.y4, maxby = b.y1;
    else
	minby = b.y1, maxby = b.y4;

    if (b.y3 < minby)
	minby = b.y3;
    else if (b.y3 > maxby)
	maxby = b.y3;

    if (b.y2 < minby)
	minby = b.y2;
    else if (b.y2 > maxby)
	maxby = b.y2;

    // Test bounding box of b against bounding box of a
    if ((minax > maxbx) || (minay > maxby)  // Not >= : need boundary case
	|| (minbx > maxax) || (minby > maxay))
	return 0; // they don't intersect
    else
	return 1; // they intersect
}
#endif


#ifdef QDEBUG_BEZIER
static QDebug operator<<(QDebug dbg, const QBezier &bz)
{
    dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
        << '[' << bz.x2 <<", " << bz.y2 << "], "
        << '[' << bz.x3 <<", " << bz.y3 << "], "
        << '[' << bz.x4 <<", " << bz.y4 << ']';
    return dbg;
}
#endif

static bool RecursivelyIntersect(const QBezier &a, qreal t0, qreal t1, int deptha,
                                 const QBezier &b, qreal u0, qreal u1, int depthb,
                                 QVector<QPair<qreal, qreal> > *t)
{
#ifdef QDEBUG_BEZIER
    static int I = 0;
    int currentD = I;
    fprintf(stderr, "%d) t0 = %lf, t1 = %lf, deptha = %d\n"
            "u0 = %lf, u1 = %lf, depthb = %d\n", I++, t0, t1, deptha,
            u0, u1, depthb);
#endif
    if (deptha > 0) {
	QBezier A[2];
        a.split(&A[0], &A[1]);
	qreal tmid = (t0+t1)*0.5;
        //qDebug()<<"\t1)"<<A[0];
        //qDebug()<<"\t2)"<<A[1];
	deptha--;
	if (depthb > 0) {
	    QBezier B[2];
            b.split(&B[0], &B[1]);
            //qDebug()<<"\t3)"<<B[0];
            //qDebug()<<"\t4)"<<B[1];
	    qreal umid = (u0+u1)*0.5;
	    depthb--;
	    if (IntersectBB(A[0], B[0])) {
                //fprintf(stderr, "\t 1 from %d\n", currentD);
		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
				     B[0], u0, umid, depthb,
				     t) && !t)
                    return true;
            }
	    if (IntersectBB(A[1], B[0])) {
                //fprintf(stderr, "\t 2 from %d\n", currentD);
		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
                                     B[0], u0, umid, depthb,
                                     t) && !t)
                    return true;
            }
	    if (IntersectBB(A[0], B[1])) {
                //fprintf(stderr, "\t 3 from %d\n", currentD);
		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
                                     B[1], umid, u1, depthb,
                                     t) && !t)
                    return true;
            }
	    if (IntersectBB(A[1], B[1])) {
                //fprintf(stderr, "\t 4 from %d\n", currentD);
		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
				     B[1], umid, u1, depthb,
				     t) && !t)
                    return true;
            }
            return t ? !t->isEmpty() : false;
        } else {
	    if (IntersectBB(A[0], b)) {
                //fprintf(stderr, "\t 5 from %d\n", currentD);
		if (RecursivelyIntersect(A[0], t0, tmid, deptha,
				     b, u0, u1, depthb,
				     t) && !t)
                    return true;
            }
	    if (IntersectBB(A[1], b)) {
                //fprintf(stderr, "\t 6 from %d\n", currentD);
		if (RecursivelyIntersect(A[1], tmid, t1, deptha,
                                     b, u0, u1, depthb,
                                     t) && !t)
                    return true;
            }
            return t ? !t->isEmpty() : false;
        }
    } else {
	if (depthb > 0) {
	    QBezier B[2];
            b.split(&B[0], &B[1]);
	    qreal umid = (u0 + u1)*0.5;
	    depthb--;
	    if (IntersectBB(a, B[0])) {
                //fprintf(stderr, "\t 7 from %d\n", currentD);
		if (RecursivelyIntersect(a, t0, t1, deptha,
                                     B[0], u0, umid, depthb,
                                     t) && !t)
                    return true;
            }
	    if (IntersectBB(a, B[1])) {
                //fprintf(stderr, "\t 8 from %d\n", currentD);
		if (RecursivelyIntersect(a, t0, t1, deptha,
                                     B[1], umid, u1, depthb,
                                     t) && !t)
                    return true;
            }
            return t ? !t->isEmpty() : false;
        }
	else {
            // Both segments are fully subdivided; now do line segments
	    qreal xlk = a.x4 - a.x1;
	    qreal ylk = a.y4 - a.y1;
	    qreal xnm = b.x4 - b.x1;
	    qreal ynm = b.y4 - b.y1;
	    qreal xmk = b.x1 - a.x1;
	    qreal ymk = b.y1 - a.y1;
	    qreal det = xnm * ylk - ynm * xlk;
	    if (1.0 + det == 1.0) {
		return false;
            } else {
                qreal detinv = 1.0 / det;
                qreal rs = (xnm * ymk - ynm *xmk) * detinv;
                qreal rt = (xlk * ymk - ylk * xmk) * detinv;
                if ((rs < 0.0) || (rs > 1.0) || (rt < 0.0) || (rt > 1.0))
                    return false;

                if (t) {
                    const qreal alpha_a = t0 + rs * (t1 - t0);
                    const qreal alpha_b = u0 + rt * (u1 - u0);

                    *t << qMakePair(alpha_a, alpha_b);
                }

                return true;
            }
        }
    }
}

QVector< QPair<qreal, qreal> > QBezier::findIntersections(const QBezier &a, const QBezier &b)
{
    QVector< QPair<qreal, qreal> > v(2);
    findIntersections(a, b, &v);
    return v;
}

bool QBezier::findIntersections(const QBezier &a, const QBezier &b,
                                QVector<QPair<qreal, qreal> > *t)
{
    if (IntersectBB(a, b)) {
        QPointF la1(fabs((a.x3 - a.x2) - (a.x2 - a.x1)),
                    fabs((a.y3 - a.y2) - (a.y2 - a.y1)));
	QPointF la2(fabs((a.x4 - a.x3) - (a.x3 - a.x2)),
                    fabs((a.y4 - a.y3) - (a.y3 - a.y2)));
	QPointF la;
	if (la1.x() > la2.x()) la.setX(la1.x()); else la.setX(la2.x());
	if (la1.y() > la2.y()) la.setY(la1.y()); else la.setY(la2.y());
	QPointF lb1(fabs((b.x3 - b.x2) - (b.x2 - b.x1)),
                    fabs((b.y3 - b.y2) - (b.y2 - b.y1)));
	QPointF lb2(fabs((b.x4 - b.x3) - (b.x3 - b.x2)),
                    fabs((b.y4 - b.y3) - (b.y3 - b.y2)));
	QPointF lb;
	if (lb1.x() > lb2.x()) lb.setX(lb1.x()); else lb.setX(lb2.x());
	if (lb1.y() > lb2.y()) lb.setY(lb1.y()); else lb.setY(lb2.y());
	qreal l0;
	if (la.x() > la.y())
	    l0 = la.x();
	else
	    l0 = la.y();
	int ra;
	if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
	    ra = 0;
	else
	    ra = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
	if (lb.x() > lb.y())
	    l0 = lb.x();
	else
	    l0 = lb.y();
	int rb;
	if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
	    rb = 0;
	else
	    rb = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));

        // if qreal is float then halve the number of subdivisions
        if (sizeof(qreal) == 4) {
            ra /= 2;
            rb /= 2;
        }

	return RecursivelyIntersect(a, 0., 1., ra, b, 0., 1., rb, t);
    }

    //Don't sort here because it breaks the orders of corresponding
    //  intersections points. this way t's at the same locations correspond
    //  to the same intersection point.
    //qSort(parameters[0].begin(), parameters[0].end(), qLess<qreal>());
    //qSort(parameters[1].begin(), parameters[1].end(), qLess<qreal>());

    return false;
}

static inline void splitBezierAt(const QBezier &bez, qreal t,
                                 QBezier *left, QBezier *right)
{
    left->x1 = bez.x1;
    left->y1 = bez.y1;

    left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
    left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );

    left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
    left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot

    right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
    right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );

    right->x2 = left->x3 + t * ( right->x3 - left->x3);
    right->y2 = left->y3 + t * ( right->y3 - left->y3);

    left->x3 = left->x2 + t * ( left->x3 - left->x2 );
    left->y3 = left->y2 + t * ( left->y3 - left->y2 );

    left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
    left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);

    right->x4 = bez.x4;
    right->y4 = bez.y4;
}

QVector< QList<QBezier> > QBezier::splitAtIntersections(QBezier &b)
{
    QVector< QList<QBezier> > curves(2);

    QVector< QPair<qreal, qreal> > allInters = findIntersections(*this, b);

    QList<qreal> inters1;
    QList<qreal> inters2;

    for (int i = 0; i < allInters.size(); ++i) {
        inters1 << allInters[i].first;
        inters2 << allInters[i].second;
    }

    qSort(inters1.begin(), inters1.end(), qLess<qreal>());
    qSort(inters2.begin(), inters2.end(), qLess<qreal>());

    Q_ASSERT(inters1.count() == inters2.count());

    int i;
    for (i = 0; i < inters1.count(); ++i) {
        qreal t1 = inters1.at(i);
        qreal t2 = inters2.at(i);

        QBezier curve1, curve2;
        parameterSplitLeft(t1, &curve1);
	b.parameterSplitLeft(t2, &curve2);
        curves[0].append(curve1);
        curves[0].append(curve2);
    }
    curves[0].append(*this);
    curves[1].append(b);

    return curves;
}

qreal QBezier::length(qreal error) const
{
    qreal length = 0.0;

    addIfClose(&length, error);

    return length;
}

void QBezier::addIfClose(qreal *length, qreal error) const
{
    QBezier left, right;     /* bez poly splits */

    qreal len = 0.0;        /* arc length */
    qreal chord;            /* chord length */

    len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
    len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
    len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();

    chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();

    if((len-chord) > error) {
        split(&left, &right);                 /* split in two */
        left.addIfClose(length, error);       /* try left side */
        right.addIfClose(length, error);      /* try right side */
        return;
    }

    *length = *length + len;

    return;
}

qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
{
    qreal py0 = pointAt(t0).y();
    qreal py1 = pointAt(t1).y();

    if (py0 > py1) {
        qSwap(py0, py1);
        qSwap(t0, t1);
    }

    Q_ASSERT(py0 <= py1);

    if (py0 >= y)
        return t0;
    else if (py1 <= y)
        return t1;

    Q_ASSERT(py0 < y && y < py1);

    qreal lt = t0;
    qreal dt;
    do {
        qreal t = 0.5 * (t0 + t1);

        qreal a, b, c, d;
        QBezier::coefficients(t, a, b, c, d);
        qreal yt = a * y1 + b * y2 + c * y3 + d * y4;

        if (yt < y) {
            t0 = t;
            py0 = yt;
        } else {
            t1 = t;
            py1 = yt;
        }
        dt = lt - t;
        lt = t;
    } while (qAbs(dt) > 1e-7);

    return t0;
}

int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
{
    // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
    // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
    // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))

    const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
    const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
    const qreal c = -y1 + y2;

    qreal reciprocal = b * b - 4 * a * c;

    QList<qreal> result;

    if (qFuzzyIsNull(reciprocal)) {
        t0 = -b / (2 * a);
        return 1;
    } else if (reciprocal > 0) {
        qreal temp = qSqrt(reciprocal);

        t0 = (-b - temp)/(2*a);
        t1 = (-b + temp)/(2*a);

        if (t1 < t0)
            qSwap(t0, t1);

        int count = 0;
        qreal t[2] = { 0, 1 };

        if (t0 > 0 && t0 < 1)
            t[count++] = t0;
        if (t1 > 0 && t1 < 1)
            t[count++] = t1;

        t0 = t[0];
        t1 = t[1];

        return count;
    }

    return 0;
}

qreal QBezier::tAtLength(qreal l) const
{
    qreal len = length();
    qreal t   = 1.0;
    const qreal error = (qreal)0.01;
    if (l > len || qFuzzyCompare(l, len))
        return t;

    t *= 0.5;
    //int iters = 0;
    //qDebug()<<"LEN is "<<l<<len;
    qreal lastBigger = 1.;
    while (1) {
        //qDebug()<<"\tt is "<<t;
        QBezier right = *this;
        QBezier left;
        right.parameterSplitLeft(t, &left);
        qreal lLen = left.length();
        if (qAbs(lLen - l) < error)
            break;

        if (lLen < l) {
            t += (lastBigger - t)*.5;
        } else {
            lastBigger = t;
            t -= t*.5;
        }
        //++iters;
    }
    //qDebug()<<"number of iters is "<<iters;
    return t;
}

QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
{
    if (t0 == 0 && t1 == 1)
        return *this;

    QBezier bezier = *this;

    QBezier result;
    bezier.parameterSplitLeft(t0, &result);
    qreal trueT = (t1-t0)/(1-t0);
    bezier.parameterSplitLeft(trueT, &result);

    return result;
}


static inline void bindInflectionPoint(const QBezier &bez, const qreal t,
                                       qreal *tMinus , qreal *tPlus)
{
    if (t <= 0) {
        *tMinus = *tPlus = -1;
        return;
    } else if (t >= 1) {
        *tMinus = *tPlus = 2;
        return;
    }

    QBezier left, right;
    splitBezierAt(bez, t, &left, &right);

    qreal ax = -right.x1 + 3*right.x2 - 3*right.x3 + right.x4;
    qreal ay = -right.y1 + 3*right.y2 - 3*right.y3 + right.y4;
    qreal ex = 3 * (right.x2 - right.x3);
    qreal ey = 3 * (right.y2 - right.y3);

    qreal s4 = qAbs(6 * (ey * ax - ex * ay) / qSqrt(ex * ex + ey * ey)) + 0.00001f;
    qreal tf = pow(qreal(9 * flatness / s4), qreal(1./3.));
    *tMinus = t - (1 - t) * tf;
    *tPlus  = t + (1 - t) * tf;
}

void QBezier::addToPolygonIterative(QPolygonF *p) const
{
    qreal t1, t2, tcusp;
    qreal t1min, t1plus, t2min, t2plus;

    qreal ax = -x1 + 3*x2 - 3*x3 + x4;
    qreal ay = -y1 + 3*y2 - 3*y3 + y4;
    qreal bx = 3*x1 - 6*x2 + 3*x3;
    qreal by = 3*y1 - 6*y2 + 3*y3;
    qreal cx = -3*x1 + 3*x2;
    qreal cy = -3*y1 + 2*y2;

    if (findInflections(6 * (ay * bx - ax * by),
                        6 * (ay * cx - ax * cy),
                        2 * (by * cx - bx * cy),
                        &t1, &t2, &tcusp)) {
        bindInflectionPoint(*this, t1, &t1min, &t1plus);
        bindInflectionPoint(*this, t2, &t2min, &t2plus);

        QBezier tmpBez = *this;
        QBezier left, right, bez1, bez2, bez3;
	if (t1min > 0) {
            if (t1min >= 1) {
                flattenBezierWithoutInflections(tmpBez, p);
            } else {
                splitBezierAt(tmpBez, t1min, &left, &right);
                flattenBezierWithoutInflections(left, p);
                p->append(tmpBez.pointAt(t1min));

                if (t2min < t1plus) {
                    if (tcusp < 1) {
                        p->append(tmpBez.pointAt(tcusp));
                    }
                    if (t2plus < 1) {
                        splitBezierAt(tmpBez, t2plus, &left, &right);
                        flattenBezierWithoutInflections(right, p);
                    }
                } else if (t1plus < 1) {
                    if (t2min < 1) {
                        splitBezierAt(tmpBez, t2min, &bez3, &right);
                        splitBezierAt(bez3, t1plus, &left, &bez2);

                        flattenBezierWithoutInflections(bez2, p);
                        p->append(tmpBez.pointAt(t2min));

                        if (t2plus < 1) {
                            splitBezierAt(tmpBez, t2plus, &left, &bez2);
                            flattenBezierWithoutInflections(bez2, p);
                        }
                    } else {
                        splitBezierAt(tmpBez, t1plus, &left, &bez2);
                        flattenBezierWithoutInflections(bez2, p);
                    }
                }
            }
	} else if (t1plus > 0) {
            p->append(QPointF(x1, y1));
            if (t2min < t1plus)	{
                if (tcusp < 1) {
                    p->append(tmpBez.pointAt(tcusp));
                }
                if (t2plus < 1) {
                    splitBezierAt(tmpBez, t2plus, &left, &bez2);
                    flattenBezierWithoutInflections(bez2, p);
                }
            } else if (t1plus < 1) {
                if (t2min < 1) {
                    splitBezierAt(tmpBez, t2min, &bez3, &right);
                    splitBezierAt(bez3, t1plus, &left, &bez2);

                    flattenBezierWithoutInflections(bez2, p);

                    p->append(tmpBez.pointAt(t2min));
                    if (t2plus < 1) {
                        splitBezierAt(tmpBez, t2plus, &left, &bez2);
                        flattenBezierWithoutInflections(bez2, p);
                    }
                } else {
                    splitBezierAt(tmpBez, t1plus, &left, &bez2);
                    flattenBezierWithoutInflections(bez2, p);
                }
            }
        } else if (t2min > 0) {
            if (t2min < 1) {
                splitBezierAt(tmpBez, t2min, &bez1, &right);
                flattenBezierWithoutInflections(bez1, p);
                p->append(tmpBez.pointAt(t2min));

                if (t2plus < 1) {
                    splitBezierAt(tmpBez, t2plus, &left, &bez2);
                    flattenBezierWithoutInflections(bez2, p);
                }
            } else {
                //### in here we should check whether the area of the
                //    triangle formed between pt1/pt2/pt3 is smaller
                //    or equal to 0 and then do iterative flattening
                //    if not we should fallback and do the recursive
                //    flattening.
                flattenBezierWithoutInflections(tmpBez, p);
            }
        } else if (t2plus > 0) {
            p->append(QPointF(x1, y1));
            if (t2plus < 1) {
                splitBezierAt(tmpBez, t2plus, &left, &bez2);
                flattenBezierWithoutInflections(bez2, p);
            }
        } else {
            flattenBezierWithoutInflections(tmpBez, p);
        }
    } else {
        QBezier bez = *this;
        flattenBezierWithoutInflections(bez, p);
    }

    p->append(QPointF(x4, y4));
}

QT_END_NAMESPACE