1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <private/qdrawhelper_x86_p.h>
#ifdef QT_HAVE_SSE2
#include <private/qpaintengine_raster_p.h>
#ifdef QT_LINUXBASE
// this is an evil hack - the posix_memalign declaration in LSB
// is wrong - see http://bugs.linuxbase.org/show_bug.cgi?id=2431
# define posix_memalign _lsb_hack_posix_memalign
# include <emmintrin.h>
# undef posix_memalign
#else
# include <emmintrin.h>
#endif
QT_BEGIN_NAMESPACE
/*
* Multiply the components of pixelVector by alphaChannel
* Each 32bits components of alphaChannel must be in the form 0x00AA00AA
* colorMask must have 0x00ff00ff on each 32 bits component
* half must have the value 128 (0x80) for each 32 bits compnent
*/
Q_STATIC_INLINE_FUNCTION __m128i BYTE_MUL_SSE2(const __m128i pixelVector, const __m128i alphaChannel, const __m128i colorMask, const __m128i half)
{
// 1. separate the colors in 2 vectors so each color is on 16 bits
// (in order to be multiplied by the alpha
// each 32 bit of dstVectorAG are in the form 0x00AA00GG
// each 32 bit of dstVectorRB are in the form 0x00RR00BB
__m128i pixelVectorAG = _mm_srli_epi16(pixelVector, 8);
__m128i pixelVectorRB = _mm_and_si128(pixelVector, colorMask);
// 2. multiply the vectors by the alpha channel
pixelVectorAG = _mm_mullo_epi16(pixelVectorAG, alphaChannel);
pixelVectorRB = _mm_mullo_epi16(pixelVectorRB, alphaChannel);
// 3. devide by 255, that's the tricky part.
// we do it like for BYTE_MUL(), with bit shift: X/255 ~= (X + X/256 + rounding)/256
/// so first (X + X/256 + rounding)
pixelVectorRB = _mm_add_epi16(pixelVectorRB, _mm_srli_epi16(pixelVectorRB, 8));
pixelVectorRB = _mm_add_epi16(pixelVectorRB, half);
pixelVectorAG = _mm_add_epi16(pixelVectorAG, _mm_srli_epi16(pixelVectorAG, 8));
pixelVectorAG = _mm_add_epi16(pixelVectorAG, half);
/// second devide by 256
pixelVectorRB = _mm_srli_epi16(pixelVectorRB, 8);
/// for AG, we could >> 8 to divide followed by << 8 to put the
/// bytes in the correct position. By masking instead, we execute
/// only one instruction
pixelVectorAG = _mm_andnot_si128(colorMask, pixelVectorAG);
// 4. combine the 2 pairs of colors
return _mm_or_si128(pixelVectorAG, pixelVectorRB);
}
/*
* Each 32bits components of alphaChannel must be in the form 0x00AA00AA
* oneMinusAlphaChannel must be 255 - alpha for each 32 bits component
* colorMask must have 0x00ff00ff on each 32 bits component
* half must have the value 128 (0x80) for each 32 bits compnent
*/
Q_STATIC_INLINE_FUNCTION __m128i INTERPOLATE_PIXEL_255_SSE2(const __m128i srcVector,
const __m128i dstVector,
const __m128i alphaChannel,
const __m128i oneMinusAlphaChannel ,
const __m128i colorMask,
const __m128i half) {
// interpolate AG
__m128i srcVectorAG = _mm_srli_epi16(srcVector, 8);
__m128i dstVectorAG = _mm_srli_epi16(dstVector, 8);
__m128i srcVectorAGalpha = _mm_mullo_epi16(srcVectorAG, alphaChannel);
__m128i dstVectorAGoneMinusAlphalpha = _mm_mullo_epi16(dstVectorAG, oneMinusAlphaChannel);
__m128i finalAG = _mm_add_epi16(srcVectorAGalpha, dstVectorAGoneMinusAlphalpha);
finalAG = _mm_add_epi16(finalAG, _mm_srli_epi16(finalAG, 8));
finalAG = _mm_add_epi16(finalAG, half);
finalAG = _mm_andnot_si128(colorMask, finalAG);
// interpolate RB
__m128i srcVectorRB = _mm_and_si128(srcVector, colorMask);
__m128i dstVectorRB = _mm_and_si128(dstVector, colorMask);
__m128i srcVectorRBalpha = _mm_mullo_epi16(srcVectorRB, alphaChannel);
__m128i dstVectorRBoneMinusAlphalpha = _mm_mullo_epi16(dstVectorRB, oneMinusAlphaChannel);
__m128i finalRB = _mm_add_epi16(srcVectorRBalpha, dstVectorRBoneMinusAlphalpha);
finalRB = _mm_add_epi16(finalRB, _mm_srli_epi16(finalRB, 8));
finalRB = _mm_add_epi16(finalRB, half);
finalRB = _mm_srli_epi16(finalRB, 8);
// combine
return _mm_or_si128(finalAG, finalRB);
}
void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (uint *) destPixels;
if (const_alpha == 256) {
const __m128i alphaMask = _mm_set1_epi32(0xff000000);
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
for (int y = 0; y < h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
const __m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]);
const __m128i srcVectorAlpha = _mm_and_si128(srcVector, alphaMask);
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, alphaMask)) == 0xffff) {
// all opaque
_mm_storeu_si128((__m128i *)&dst[x], srcVector);
} else if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVectorAlpha, nullVector)) != 0xffff) {
// not fully transparent
// result = s + d * (1-alpha)
// extract the alpha channel on 2 x 16 bits
// so we have room for the multiplication
// each 32 bits will be in the form 0x00AA00AA
// with A being the 1 - alpha
__m128i alphaChannel = _mm_srli_epi32(srcVector, 24);
alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16));
alphaChannel = _mm_sub_epi16(one, alphaChannel);
const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]);
const __m128i destMultipliedByOneMinusAlpha = BYTE_MUL_SSE2(dstVector, alphaChannel, colorMask, half);
// result = s + d * (1-alpha)
const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha);
_mm_storeu_si128((__m128i *)&dst[x], result);
}
}
for (; x<w; ++x) {
uint s = src[x];
if (s >= 0xff000000)
dst[x] = s;
else if (s != 0)
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
} else if (const_alpha != 0) {
// dest = (s + d * sia) * ca + d * cia
// = s * ca + d * (sia * ca + cia)
// = s * ca + d * (1 - sa*ca)
const_alpha = (const_alpha * 255) >> 8;
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
for (int y = 0; y < h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
__m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]);
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) {
srcVector = BYTE_MUL_SSE2(srcVector, constAlphaVector, colorMask, half);
__m128i alphaChannel = _mm_srli_epi32(srcVector, 24);
alphaChannel = _mm_or_si128(alphaChannel, _mm_slli_epi32(alphaChannel, 16));
alphaChannel = _mm_sub_epi16(one, alphaChannel);
const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]);
const __m128i destMultipliedByOneMinusAlpha = BYTE_MUL_SSE2(dstVector, alphaChannel, colorMask, half);
const __m128i result = _mm_add_epi8(srcVector, destMultipliedByOneMinusAlpha);
_mm_storeu_si128((__m128i *)&dst[x], result);
}
}
for (; x<w; ++x) {
quint32 s = src[x];
if (s != 0) {
s = BYTE_MUL(s, const_alpha);
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
}
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
}
// qblendfunctions.cpp
void qt_blend_rgb32_on_rgb32(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha);
void qt_blend_rgb32_on_rgb32_sse2(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (uint *) destPixels;
if (const_alpha != 256) {
if (const_alpha != 0) {
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const_alpha = (const_alpha * 255) >> 8;
int one_minus_const_alpha = 255 - const_alpha;
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha);
for (int y = 0; y < h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
__m128i srcVector = _mm_loadu_si128((__m128i *)&src[x]);
if (_mm_movemask_epi8(_mm_cmpeq_epi32(srcVector, nullVector)) != 0xffff) {
const __m128i dstVector = _mm_loadu_si128((__m128i *)&dst[x]);
const __m128i result = INTERPOLATE_PIXEL_255_SSE2(srcVector,
dstVector,
constAlphaVector,
oneMinusConstAlpha,
colorMask,
half);
_mm_storeu_si128((__m128i *)&dst[x], result);
}
}
for (; x<w; ++x) {
quint32 s = src[x];
s = BYTE_MUL(s, const_alpha);
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
} else {
qt_blend_rgb32_on_rgb32(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha);
}
}
void qt_memfill32_sse2(quint32 *dest, quint32 value, int count)
{
if (count < 7) {
switch (count) {
case 6: *dest++ = value;
case 5: *dest++ = value;
case 4: *dest++ = value;
case 3: *dest++ = value;
case 2: *dest++ = value;
case 1: *dest = value;
}
return;
};
const int align = (quintptr)(dest) & 0xf;
switch (align) {
case 4: *dest++ = value; --count;
case 8: *dest++ = value; --count;
case 12: *dest++ = value; --count;
}
int count128 = count / 4;
__m128i *dst128 = reinterpret_cast<__m128i*>(dest);
const __m128i value128 = _mm_set_epi32(value, value, value, value);
int n = (count128 + 3) / 4;
switch (count128 & 0x3) {
case 0: do { _mm_store_si128(dst128++, value128);
case 3: _mm_store_si128(dst128++, value128);
case 2: _mm_store_si128(dst128++, value128);
case 1: _mm_store_si128(dst128++, value128);
} while (--n > 0);
}
const int rest = count & 0x3;
if (rest) {
switch (rest) {
case 3: dest[count - 3] = value;
case 2: dest[count - 2] = value;
case 1: dest[count - 1] = value;
}
}
}
void qt_memfill16_sse2(quint16 *dest, quint16 value, int count)
{
if (count < 3) {
switch (count) {
case 2: *dest++ = value;
case 1: *dest = value;
}
return;
}
const int align = (quintptr)(dest) & 0x3;
switch (align) {
case 2: *dest++ = value; --count;
}
const quint32 value32 = (value << 16) | value;
qt_memfill32_sse2(reinterpret_cast<quint32*>(dest), value32, count / 2);
if (count & 0x1)
dest[count - 1] = value;
}
void qt_bitmapblit32_sse2(QRasterBuffer *rasterBuffer, int x, int y,
quint32 color,
const uchar *src, int width, int height, int stride)
{
quint32 *dest = reinterpret_cast<quint32*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint32);
const __m128i c128 = _mm_set1_epi32(color);
const __m128i maskmask1 = _mm_set_epi32(0x10101010, 0x20202020,
0x40404040, 0x80808080);
const __m128i maskadd1 = _mm_set_epi32(0x70707070, 0x60606060,
0x40404040, 0x00000000);
if (width > 4) {
const __m128i maskmask2 = _mm_set_epi32(0x01010101, 0x02020202,
0x04040404, 0x08080808);
const __m128i maskadd2 = _mm_set_epi32(0x7f7f7f7f, 0x7e7e7e7e,
0x7c7c7c7c, 0x78787878);
while (height--) {
for (int x = 0; x < width; x += 8) {
const quint8 s = src[x >> 3];
if (!s)
continue;
__m128i mask1 = _mm_set1_epi8(s);
__m128i mask2 = mask1;
mask1 = _mm_and_si128(mask1, maskmask1);
mask1 = _mm_add_epi8(mask1, maskadd1);
_mm_maskmoveu_si128(c128, mask1, (char*)(dest + x));
mask2 = _mm_and_si128(mask2, maskmask2);
mask2 = _mm_add_epi8(mask2, maskadd2);
_mm_maskmoveu_si128(c128, mask2, (char*)(dest + x + 4));
}
dest += destStride;
src += stride;
}
} else {
while (height--) {
const quint8 s = *src;
if (s) {
__m128i mask1 = _mm_set1_epi8(s);
mask1 = _mm_and_si128(mask1, maskmask1);
mask1 = _mm_add_epi8(mask1, maskadd1);
_mm_maskmoveu_si128(c128, mask1, (char*)(dest));
}
dest += destStride;
src += stride;
}
}
}
void qt_bitmapblit16_sse2(QRasterBuffer *rasterBuffer, int x, int y,
quint32 color,
const uchar *src, int width, int height, int stride)
{
const quint16 c = qt_colorConvert<quint16, quint32>(color, 0);
quint16 *dest = reinterpret_cast<quint16*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint16);
const __m128i c128 = _mm_set1_epi16(c);
#if defined(Q_CC_MSVC)
# pragma warning(disable: 4309) // truncation of constant value
#endif
const __m128i maskmask = _mm_set_epi16(0x0101, 0x0202, 0x0404, 0x0808,
0x1010, 0x2020, 0x4040, 0x8080);
const __m128i maskadd = _mm_set_epi16(0x7f7f, 0x7e7e, 0x7c7c, 0x7878,
0x7070, 0x6060, 0x4040, 0x0000);
while (height--) {
for (int x = 0; x < width; x += 8) {
const quint8 s = src[x >> 3];
if (!s)
continue;
__m128i mask = _mm_set1_epi8(s);
mask = _mm_and_si128(mask, maskmask);
mask = _mm_add_epi8(mask, maskadd);
_mm_maskmoveu_si128(c128, mask, (char*)(dest + x));
}
dest += destStride;
src += stride;
}
}
QT_END_NAMESPACE
#endif // QT_HAVE_SSE2
|