1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
|
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtNetwork module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the either Technology Preview License Agreement or the
** Beta Release License Agreement.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain
** additional rights. These rights are described in the Nokia Qt LGPL
** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
** package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
** If you are unsure which license is appropriate for your use, please
** contact the sales department at http://qt.nokia.com/contact.
** $QT_END_LICENSE$
**
****************************************************************************/
//#define QSSLSOCKET_DEBUG
/*!
\class QSslSocket
\brief The QSslSocket class provides an SSL encrypted socket for both
clients and servers.
\since 4.3
\reentrant
\ingroup io
\ingroup ssl
\inmodule QtNetwork
QSslSocket establishes a secure, encrypted TCP connection you can
use for transmitting encrypted data. It can operate in both client
and server mode, and it supports modern SSL protocols, including
SSLv3 and TLSv1. By default, QSslSocket uses SSLv3, but you can
change the SSL protocol by calling setProtocol() as long as you do
it before the handshake has started.
SSL encryption operates on top of the existing TCP stream after
the socket enters the ConnectedState. There are two simple ways to
establish a secure connection using QSslSocket: With an immediate
SSL handshake, or with a delayed SSL handshake occurring after the
connection has been established in unencrypted mode.
The most common way to use QSslSocket is to construct an object
and start a secure connection by calling connectToHostEncrypted().
This method starts an immediate SSL handshake once the connection
has been established.
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 0
As with a plain QTcpSocket, QSslSocket enters the HostLookupState,
ConnectingState, and finally the ConnectedState, if the connection
is successful. The handshake then starts automatically, and if it
succeeds, the encrypted() signal is emitted to indicate the socket
has entered the encrypted state and is ready for use.
Note that data can be written to the socket immediately after the
return from connectToHostEncrypted() (i.e., before the encrypted()
signal is emitted). The data is queued in QSslSocket until after
the encrypted() signal is emitted.
An example of using the delayed SSL handshake to secure an
existing connection is the case where an SSL server secures an
incoming connection. Suppose you create an SSL server class as a
subclass of QTcpServer. You would override
QTcpServer::incomingConnection() with something like the example
below, which first constructs an instance of QSslSocket and then
calls setSocketDescriptor() to set the new socket's descriptor to
the existing one passed in. It then initiates the SSL handshake
by calling startServerEncryption().
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 1
If an error occurs, QSslSocket emits the sslErrors() signal. In this
case, if no action is taken to ignore the error(s), the connection
is dropped. To continue, despite the occurrence of an error, you
can call ignoreSslErrors(), either from within this slot after the
error occurs, or any time after construction of the QSslSocket and
before the connection is attempted. This will allow QSslSocket to
ignore the errors it encounters when establishing the identity of
the peer. Ignoring errors during an SSL handshake should be used
with caution, since a fundamental characteristic of secure
connections is that they should be established with a successful
handshake.
Once encrypted, you use QSslSocket as a regular QTcpSocket. When
readyRead() is emitted, you can call read(), canReadLine() and
readLine(), or getChar() to read decrypted data from QSslSocket's
internal buffer, and you can call write() or putChar() to write
data back to the peer. QSslSocket will automatically encrypt the
written data for you, and emit bytesWritten() once the data has
been written to the peer.
As a convenience, QSslSocket supports QTcpSocket's blocking
functions waitForConnected(), waitForReadyRead(),
waitForBytesWritten(), and waitForDisconnected(). It also provides
waitForEncrypted(), which will block the calling thread until an
encrypted connection has been established.
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 2
QSslSocket provides an extensive, easy-to-use API for handling
cryptographic ciphers, private keys, and local, peer, and
Certification Authority (CA) certificates. It also provides an API
for handling errors that occur during the handshake phase.
The following features can also be customized:
\list
\o The socket's cryptographic cipher suite can be customized before
the handshake phase with setCiphers() and setDefaultCiphers().
\o The socket's local certificate and private key can be customized
before the handshake phase with setLocalCertificate() and
setPrivateKey().
\o The CA certificate database can be extended and customized with
addCaCertificate(), addCaCertificates(), setCaCertificates(),
addDefaultCaCertificate(), addDefaultCaCertificates(), and
setDefaultCaCertificates().
\endlist
For more information about ciphers and certificates, refer to QSslCipher and
QSslCertificate.
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (\l{http://www.openssl.org/}).
\sa QSslCertificate, QSslCipher, QSslError
*/
/*!
\enum QSslSocket::SslMode
Describes the connection modes available for QSslSocket.
\value UnencryptedMode The socket is unencrypted. Its
behavior is identical to QTcpSocket.
\value SslClientMode The socket is a client-side SSL socket.
It is either alreayd encrypted, or it is in the SSL handshake
phase (see QSslSocket::isEncrypted()).
\value SslServerMode The socket is a server-side SSL socket.
It is either already encrypted, or it is in the SSL handshake
phase (see QSslSocket::isEncrypted()).
*/
/*!
\enum QSslSocket::PeerVerifyMode
\since 4.4
Describes the peer verification modes for QSslSocket. The default mode is
AutoVerifyPeer, which selects an appropriate mode depending on the
socket's QSocket::SslMode.
\value VerifyNone QSslSocket will not request a certificate from the
peer. You can set this mode if you are not interested in the identity of
the other side of the connection. The connection will still be encrypted,
and your socket will still send its local certificate to the peer if it's
requested.
\value QueryPeer QSslSocket will request a certificate from the peer, but
does not require this certificate to be valid. This is useful when you
want to display peer certificate details to the user without affecting the
actual SSL handshake. This mode is the default for servers.
\value VerifyPeer QSslSocket will request a certificate from the peer
during the SSL handshake phase, and requires that this certificate is
valid. On failure, QSslSocket will emit the QSslSocket::sslErrors()
signal. This mode is the default for clients.
\value AutoVerifyPeer QSslSocket will automaticaly use QueryPeer for
server sockets and VerifyPeer for client sockets.
\sa QSslSocket::peerVerifyMode()
*/
/*!
\fn QSslSocket::encrypted()
This signal is emitted when QSslSocket enters encrypted mode. After this
signal has been emitted, QSslSocket::isEncrypted() will return true, and
all further transmissions on the socket will be encrypted.
\sa QSslSocket::connectToHostEncrypted(), QSslSocket::isEncrypted()
*/
/*!
\fn QSslSocket::modeChanged(QSslSocket::SslMode mode)
This signal is emitted when QSslSocket changes from \l
QSslSocket::UnencryptedMode to either \l QSslSocket::SslClientMode or \l
QSslSocket::SslServerMode. \a mode is the new mode.
\sa QSslSocket::mode()
*/
/*!
\fn QSslSocket::encryptedBytesWritten(qint64 written)
\since 4.4
This signal is emitted when QSslSocket writes its encrypted data to the
network. The \a written parameter contains the number of bytes that were
successfully written.
\sa QIODevice::bytesWritten()
*/
/*!
\fn void QSslSocket::peerVerifyError(const QSslError &error)
\since 4.4
QSslSocket can emit this signal several times during the SSL handshake,
before encryption has been established, to indicate that an error has
occurred while establishing the identity of the peer. The \a error is
usually an indication that QSslSocket is unable to securely identify the
peer.
This signal provides you with an early indication when something's wrong.
By connecting to this signal, you can manually choose to tear down the
connection from inside the connected slot before the handshake has
completed. If no action is taken, QSslSocket will proceed to emitting
QSslSocket::sslErrors().
\sa sslErrors()
*/
/*!
\fn void QSslSocket::sslErrors(const QList<QSslError> &errors);
QSslSocket emits this signal after the SSL handshake to indicate that one
or more errors have occurred while establishing the identity of the
peer. The errors are usually an indication that QSslSocket is unable to
securely identify the peer. Unless any action is taken, the connection
will be dropped after this signal has been emitted.
If you want to continue connecting despite the errors that have occurred,
you must call QSslSocket::ignoreSslErrors() from inside a slot connected to
this signal. If you need to access the error list at a later point, you
can call sslErrors() (without arguments).
\a errors contains one or more errors that prevent QSslSocket from
verifying the identity of the peer.
Note: You cannot use Qt::QueuedConnection when connecting to this signal,
or calling QSslSocket::ignoreSslErrors() will have no effect.
\sa peerVerifyError()
*/
#include "qsslcipher.h"
#include "qsslsocket.h"
#include "qsslsocket_openssl_p.h"
#include "qsslconfiguration_p.h"
#include <QtCore/qdebug.h>
#include <QtCore/qdir.h>
#include <QtCore/qdatetime.h>
#include <QtCore/qmutex.h>
#include <QtNetwork/qhostaddress.h>
#include <QtNetwork/qhostinfo.h>
QT_BEGIN_NAMESPACE
/*
Returns the difference between msecs and elapsed. If msecs is -1,
however, -1 is returned.
*/
static int qt_timeout_value(int msecs, int elapsed)
{
if (msecs == -1)
return -1;
int timeout = msecs - elapsed;
return timeout < 0 ? 0 : timeout;
}
class QSslSocketGlobalData
{
public:
QSslSocketGlobalData() : config(new QSslConfigurationPrivate) {}
QMutex mutex;
QList<QSslCipher> supportedCiphers;
QExplicitlySharedDataPointer<QSslConfigurationPrivate> config;
};
Q_GLOBAL_STATIC(QSslSocketGlobalData, globalData)
/*!
Constructs a QSslSocket object. \a parent is passed to QObject's
constructor. The new socket's \l {QSslCipher} {cipher} suite is
set to the one returned by the static method defaultCiphers().
*/
QSslSocket::QSslSocket(QObject *parent)
: QTcpSocket(*new QSslSocketBackendPrivate, parent)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::QSslSocket(" << parent << "), this =" << (void *)this;
#endif
d->q_ptr = this;
d->init();
}
/*!
Destroys the QSslSocket.
*/
QSslSocket::~QSslSocket()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::~QSslSocket(), this =" << (void *)this;
#endif
delete d->plainSocket;
d->plainSocket = 0;
}
/*!
Starts an encrypted connection to the device \a hostName on \a
port, using \a mode as the \l OpenMode. This is equivalent to
calling connectToHost() to establish the connection, followed by a
call to startClientEncryption().
QSslSocket first enters the HostLookupState. Then, after entering
either the event loop or one of the waitFor...() functions, it
enters the ConnectingState, emits connected(), and then initiates
the SSL client handshake. At each state change, QSslSocket emits
signal stateChanged().
After initiating the SSL client handshake, if the identity of the
peer can't be established, signal sslErrors() is emitted. If you
want to ignore the errors and continue connecting, you must call
ignoreSslErrors(), either from inside a slot function connected to
the sslErrors() signal, or prior to entering encrypted mode. If
ignoreSslErrors is not called, the connection is dropped, signal
disconnected() is emitted, and QSslSocket returns to the
UnconnectedState.
If the SSL handshake is successful, QSslSocket emits encrypted().
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 3
\bold{Note:} The example above shows that text can be written to
the socket immediately after requesting the encrypted connection,
before the encrypted() signal has been emitted. In such cases, the
text is queued in the object and written to the socket \e after
the connection is established and the encrypted() signal has been
emitted.
The default for \a mode is \l ReadWrite.
If you want to create a QSslSocket on the server side of a connection, you
should instead call startServerEncryption() upon receiving the incoming
connection through QTcpServer.
\sa connectToHost(), startClientEncryption(), waitForConnected(), waitForEncrypted()
*/
void QSslSocket::connectToHostEncrypted(const QString &hostName, quint16 port, OpenMode mode)
{
Q_D(QSslSocket);
if (d->state == ConnectedState || d->state == ConnectingState) {
qWarning("QSslSocket::connectToHostEncrypted() called when already connecting/connected");
return;
}
d->init();
d->autoStartHandshake = true;
d->initialized = true;
// Note: When connecting to localhost, some platforms (e.g., HP-UX and some BSDs)
// establish the connection immediately (i.e., first attempt).
connectToHost(hostName, port, mode);
}
/*!
Initializes QSslSocket with the native socket descriptor \a
socketDescriptor. Returns true if \a socketDescriptor is accepted
as a valid socket descriptor; otherwise returns false.
The socket is opened in the mode specified by \a openMode, and
enters the socket state specified by \a state.
\bold{Note:} It is not possible to initialize two sockets with the same
native socket descriptor.
\sa socketDescriptor()
*/
bool QSslSocket::setSocketDescriptor(int socketDescriptor, SocketState state, OpenMode openMode)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::setSocketDescriptor(" << socketDescriptor << ","
<< state << "," << openMode << ")";
#endif
if (!d->plainSocket)
d->createPlainSocket(openMode);
bool retVal = d->plainSocket->setSocketDescriptor(socketDescriptor, state, openMode);
d->cachedSocketDescriptor = d->plainSocket->socketDescriptor();
setSocketError(d->plainSocket->error());
setSocketState(state);
setOpenMode(openMode);
setLocalPort(d->plainSocket->localPort());
setLocalAddress(d->plainSocket->localAddress());
setPeerPort(d->plainSocket->peerPort());
setPeerAddress(d->plainSocket->peerAddress());
setPeerName(d->plainSocket->peerName());
return retVal;
}
/*!
Returns the current mode for the socket; either UnencryptedMode, where
QSslSocket behaves identially to QTcpSocket, or one of SslClientMode or
SslServerMode, where the client is either negotiating or in encrypted
mode.
When the mode changes, QSslSocket emits modeChanged()
\sa SslMode
*/
QSslSocket::SslMode QSslSocket::mode() const
{
Q_D(const QSslSocket);
return d->mode;
}
/*!
Returns true if the socket is encrypted; otherwise, false is returned.
An encrypted socket encrypts all data that is written by calling write()
or putChar() before the data is written to the network, and decrypts all
incoming data as the data is received from the network, before you call
read(), readLine() or getChar().
QSslSocket emits encrypted() when it enters encrypted mode.
You can call sessionCipher() to find which cryptographic cipher is used to
encrypt and decrypt your data.
\sa mode()
*/
bool QSslSocket::isEncrypted() const
{
Q_D(const QSslSocket);
return d->connectionEncrypted;
}
/*!
Returns the socket's SSL protocol. By default, \l QSsl::SslV3 is used.
\sa setProtocol()
*/
QSsl::SslProtocol QSslSocket::protocol() const
{
Q_D(const QSslSocket);
return d->configuration.protocol;
}
/*!
Sets the socket's SSL protocol to \a protocol. This will affect the next
initiated handshake; calling this function on an already-encrypted socket
will not affect the socket's protocol.
*/
void QSslSocket::setProtocol(QSsl::SslProtocol protocol)
{
Q_D(QSslSocket);
d->configuration.protocol = protocol;
}
/*!
\since 4.4
Returns the socket's verify mode. This mode mode decides whether
QSslSocket should request a certificate from the peer (i.e., the client
requests a certificate from the server, or a server requesting a
certificate from the client), and whether it should require that this
certificate is valid.
The default mode is AutoVerifyPeer, which tells QSslSocket to use
VerifyPeer for clients, QueryPeer for clients.
\sa setPeerVerifyMode(), peerVerifyDepth(), mode()
*/
QSslSocket::PeerVerifyMode QSslSocket::peerVerifyMode() const
{
Q_D(const QSslSocket);
return d->configuration.peerVerifyMode;
}
/*!
\since 4.4
Sets the socket's verify mode to \a mode. This mode decides whether
QSslSocket should request a certificate from the peer (i.e., the client
requests a certificate from the server, or a server requesting a
certificate from the client), and whether it should require that this
certificate is valid.
The default mode is AutoVerifyPeer, which tells QSslSocket to use
VerifyPeer for clients, QueryPeer for clients.
Setting this mode after encryption has started has no effect on the
current connection.
\sa peerVerifyMode(), setPeerVerifyDepth(), mode()
*/
void QSslSocket::setPeerVerifyMode(QSslSocket::PeerVerifyMode mode)
{
Q_D(QSslSocket);
d->configuration.peerVerifyMode = mode;
}
/*!
\since 4.4
Returns the maximum number of certificates in the peer's certificate chain
to be checked during the SSL handshake phase, or 0 (the default) if no
maximum depth has been set, indicating that the whole certificate chain
should be checked.
The certificates are checked in issuing order, starting with the peer's
own certificate, then its issuer's certificate, and so on.
\sa setPeerVerifyDepth(), peerVerifyMode()
*/
int QSslSocket::peerVerifyDepth() const
{
Q_D(const QSslSocket);
return d->configuration.peerVerifyDepth;
}
/*!
\since 4.4
Sets the maximum number of certificates in the peer's certificate chain to
be checked during the SSL handshake phase, to \a depth. Setting a depth of
0 means that no maximum depth is set, indicating that the whole
certificate chain should be checked.
The certificates are checked in issuing order, starting with the peer's
own certificate, then its issuer's certificate, and so on.
\sa peerVerifyDepth(), setPeerVerifyMode()
*/
void QSslSocket::setPeerVerifyDepth(int depth)
{
Q_D(QSslSocket);
if (depth < 0) {
qWarning("QSslSocket::setPeerVerifyDepth: cannot set negative depth of %d", depth);
return;
}
d->configuration.peerVerifyDepth = depth;
}
/*!
\reimp
Returns the number of decrypted bytes that are immediately available for
reading.
*/
qint64 QSslSocket::bytesAvailable() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::bytesAvailable() + (d->plainSocket ? d->plainSocket->bytesAvailable() : 0);
return QIODevice::bytesAvailable() + d->readBuffer.size();
}
/*!
\reimp
Returns the number of unencrypted bytes that are waiting to be encrypted
and written to the network.
*/
qint64 QSslSocket::bytesToWrite() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return d->plainSocket ? d->plainSocket->bytesToWrite() : 0;
return d->writeBuffer.size();
}
/*!
\since 4.4
Returns the number of encrypted bytes that are awaiting decryption.
Normally, this function will return 0 because QSslSocket decrypts its
incoming data as soon as it can.
*/
qint64 QSslSocket::encryptedBytesAvailable() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return 0;
return d->plainSocket->bytesAvailable();
}
/*!
\since 4.4
Returns the number of encrypted bytes that are waiting to be written to
the network.
*/
qint64 QSslSocket::encryptedBytesToWrite() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return 0;
return d->plainSocket->bytesToWrite();
}
/*!
\reimp
Returns true if you can read one while line (terminated by a single ASCII
'\n' character) of decrypted characters; otherwise, false is returned.
*/
bool QSslSocket::canReadLine() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::canReadLine() || (d->plainSocket && d->plainSocket->canReadLine());
return QIODevice::canReadLine() || (!d->readBuffer.isEmpty() && d->readBuffer.canReadLine());
}
/*!
\reimp
*/
void QSslSocket::close()
{
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::close()";
#endif
Q_D(QSslSocket);
QTcpSocket::close();
// must be cleared, reading/writing not possible on closed socket:
d->readBuffer.clear();
d->writeBuffer.clear();
// for QTcpSocket this is already done because it uses the readBuffer/writeBuffer
// if the QIODevice it is based on
// ### FIXME QSslSocket should probably do similar instead of having
// its own readBuffer/writeBuffer
}
/*!
\reimp
*/
bool QSslSocket::atEnd() const
{
Q_D(const QSslSocket);
if (d->mode == UnencryptedMode)
return QIODevice::atEnd() && (!d->plainSocket || d->plainSocket->atEnd());
return QIODevice::atEnd() && d->readBuffer.isEmpty();
}
/*!
This function writes as much as possible from the internal write buffer to
the underlying network socket, without blocking. If any data was written,
this function returns true; otherwise false is returned.
Call this function if you need QSslSocket to start sending buffered data
immediately. The number of bytes successfully written depends on the
operating system. In most cases, you do not need to call this function,
because QAbstractSocket will start sending data automatically once control
goes back to the event loop. In the absence of an event loop, call
waitForBytesWritten() instead.
\sa write(), waitForBytesWritten()
*/
// Note! docs copied from QAbstractSocket::flush()
bool QSslSocket::flush()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::flush()";
#endif
if (d->mode != UnencryptedMode)
// encrypt any unencrypted bytes in our buffer
d->transmit();
return d->plainSocket ? d->plainSocket->flush() : false;
}
/*!
\since 4.4
Sets the size of QSslSocket's internal read buffer to be \a size bytes.
*/
void QSslSocket::setReadBufferSize(qint64 size)
{
Q_D(QSslSocket);
d->readBufferMaxSize = size;
// set the plain socket's buffer size to 1k if we have a limit
// see also the same logic in QSslSocketPrivate::createPlainSocket
if (d->plainSocket) {
if (d->mode == UnencryptedMode)
d->plainSocket->setReadBufferSize(size);
else
d->plainSocket->setReadBufferSize(size ? 1024 : 0);
}
}
/*!
Aborts the current connection and resets the socket. Unlike
disconnectFromHost(), this function immediately closes the socket,
clearing any pending data in the write buffer.
\sa disconnectFromHost(), close()
*/
void QSslSocket::abort()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::abort()";
#endif
if (d->plainSocket)
d->plainSocket->abort();
close();
}
/*!
\since 4.4
Returns the socket's SSL configuration state. The default SSL
configuration of a socket is to use the default ciphers,
default CA certificates, no local private key or certificate.
The SSL configuration also contains fields that can change with
time without notice.
\sa localCertificate(), peerCertificate(), peerCertificateChain(),
sessionCipher(), privateKey(), ciphers(), caCertificates()
*/
QSslConfiguration QSslSocket::sslConfiguration() const
{
Q_D(const QSslSocket);
// create a deep copy of our configuration
QSslConfigurationPrivate *copy = new QSslConfigurationPrivate(d->configuration);
copy->ref = 0; // the QSslConfiguration constructor refs up
copy->sessionCipher = d->sessionCipher();
return QSslConfiguration(copy);
}
/*!
\since 4.4
Sets the socket's SSL configuration to be the contents of \a configuration.
This function sets the local certificate, the ciphers, the private key and the CA
certificates to those stored in \a configuration.
It is not possible to set the SSL-state related fields.
\sa setLocalCertificate(), setPrivateKey(), setCaCertificates(), setCiphers()
*/
void QSslSocket::setSslConfiguration(const QSslConfiguration &configuration)
{
Q_D(QSslSocket);
d->configuration.localCertificate = configuration.localCertificate();
d->configuration.privateKey = configuration.privateKey();
d->configuration.ciphers = configuration.ciphers();
d->configuration.caCertificates = configuration.caCertificates();
d->configuration.peerVerifyDepth = configuration.peerVerifyDepth();
d->configuration.peerVerifyMode = configuration.peerVerifyMode();
d->configuration.protocol = configuration.protocol();
}
/*!
Sets the socket's local certificate to \a certificate. The local
certificate is necessary if you need to confirm your identity to the
peer. It is used together with the private key; if you set the local
certificate, you must also set the private key.
The local certificate and private key are always necessary for server
sockets, but are also rarely used by client sockets if the server requires
the client to authenticate.
\sa localCertificate(), setPrivateKey()
*/
void QSslSocket::setLocalCertificate(const QSslCertificate &certificate)
{
Q_D(QSslSocket);
d->configuration.localCertificate = certificate;
}
/*!
\overload
Sets the socket's local \l {QSslCertificate} {certificate} to the
first one found in file \a path, which is parsed according to the
specified \a format.
*/
void QSslSocket::setLocalCertificate(const QString &path,
QSsl::EncodingFormat format)
{
Q_D(QSslSocket);
QFile file(path);
if (file.open(QIODevice::ReadOnly | QIODevice::Text))
d->configuration.localCertificate = QSslCertificate(file.readAll(), format);
}
/*!
Returns the socket's local \l {QSslCertificate} {certificate}, or
an empty certificate if no local certificate has been assigned.
\sa setLocalCertificate(), privateKey()
*/
QSslCertificate QSslSocket::localCertificate() const
{
Q_D(const QSslSocket);
return d->configuration.localCertificate;
}
/*!
Returns the peer's digital certificate (i.e., the immediate
certificate of the host you are connected to), or a null
certificate, if the peer has not assigned a certificate.
The peer certificate is checked automatically during the
handshake phase, so this function is normally used to fetch
the certificate for display or for connection diagnostic
purposes. It contains information about the peer, including
its host name, the certificate issuer, and the peer's public
key.
Because the peer certificate is set during the handshake phase, it
is safe to access the peer certificate from a slot connected to
the sslErrors() signal or the encrypted() signal.
If a null certificate is returned, it can mean the SSL handshake
failed, or it can mean the host you are connected to doesn't have
a certificate, or it can mean there is no connection.
If you want to check the peer's complete chain of certificates,
use peerCertificateChain() to get them all at once.
\sa peerCertificateChain()
*/
QSslCertificate QSslSocket::peerCertificate() const
{
Q_D(const QSslSocket);
return d->configuration.peerCertificate;
}
/*!
Returns the peer's chain of digital certificates, or an empty list
of certificates.
Peer certificates are checked automatically during the handshake
phase. This function is normally used to fetch certificates for
display, or for performing connection diagnostics. Certificates
contain information about the peer and the certificate issuers,
including host name, issuer names, and issuer public keys.
The peer certificates are set in QSslSocket during the handshake
phase, so it is safe to call this function from a slot connected
to the sslErrors() signal or the encrypted() signal.
If an empty list is returned, it can mean the SSL handshake
failed, or it can mean the host you are connected to doesn't have
a certificate, or it can mean there is no connection.
If you want to get only the peer's immediate certificate, use
peerCertificate().
\sa peerCertificate()
*/
QList<QSslCertificate> QSslSocket::peerCertificateChain() const
{
Q_D(const QSslSocket);
return d->configuration.peerCertificateChain;
}
/*!
Returns the socket's cryptographic \l {QSslCipher} {cipher}, or a
null cipher if the connection isn't encrypted. The socket's cipher
for the session is set during the handshake phase. The cipher is
used to encrypt and decrypt data transmitted through the socket.
QSslSocket also provides functions for setting the ordered list of
ciphers from which the handshake phase will eventually select the
session cipher. This ordered list must be in place before the
handshake phase begins.
\sa ciphers(), setCiphers(), setDefaultCiphers(), defaultCiphers(),
supportedCiphers()
*/
QSslCipher QSslSocket::sessionCipher() const
{
Q_D(const QSslSocket);
return d->sessionCipher();
}
/*!
Sets the socket's private \l {QSslKey} {key} to \a key. The
private key and the local \l {QSslCertificate} {certificate} are
used by clients and servers that must prove their identity to
SSL peers.
Both the key and the local certificate are required if you are
creating an SSL server socket. If you are creating an SSL client
socket, the key and local certificate are required if your client
must identify itself to an SSL server.
\sa privateKey(), setLocalCertificate()
*/
void QSslSocket::setPrivateKey(const QSslKey &key)
{
Q_D(QSslSocket);
d->configuration.privateKey = key;
}
/*!
\overload
Reads the string in file \a fileName and decodes it using
a specified \a algorithm and encoding \a format to construct
an \l {QSslKey} {SSL key}. If the encoded key is encrypted,
\a passPhrase is used to decrypt it.
The socket's private key is set to the constructed key. The
private key and the local \l {QSslCertificate} {certificate} are
used by clients and servers that must prove their identity to SSL
peers.
Both the key and the local certificate are required if you are
creating an SSL server socket. If you are creating an SSL client
socket, the key and local certificate are required if your client
must identify itself to an SSL server.
\sa privateKey(), setLocalCertificate()
*/
void QSslSocket::setPrivateKey(const QString &fileName, QSsl::KeyAlgorithm algorithm,
QSsl::EncodingFormat format, const QByteArray &passPhrase)
{
Q_D(QSslSocket);
QFile file(fileName);
if (file.open(QIODevice::ReadOnly)) {
d->configuration.privateKey = QSslKey(file.readAll(), algorithm,
format, QSsl::PrivateKey, passPhrase);
}
}
/*!
Returns this socket's private key.
\sa setPrivateKey(), localCertificate()
*/
QSslKey QSslSocket::privateKey() const
{
Q_D(const QSslSocket);
return d->configuration.privateKey;
}
/*!
Returns this socket's current cryptographic cipher suite. This
list is used during the socket's handshake phase for choosing a
session cipher. The returned list of ciphers is ordered by
descending preference. (i.e., the first cipher in the list is the
most preferred cipher). The session cipher will be the first one
in the list that is also supported by the peer.
By default, the handshake phase can choose any of the ciphers
supported by this system's SSL libraries, which may vary from
system to system. The list of ciphers supported by this system's
SSL libraries is returned by supportedCiphers(). You can restrict
the list of ciphers used for choosing the session cipher for this
socket by calling setCiphers() with a subset of the supported
ciphers. You can revert to using the entire set by calling
setCiphers() with the list returned by supportedCiphers().
You can restrict the list of ciphers used for choosing the session
cipher for \e all sockets by calling setDefaultCiphers() with a
subset of the supported ciphers. You can revert to using the
entire set by calling setCiphers() with the list returned by
supportedCiphers().
\sa setCiphers(), defaultCiphers(), setDefaultCiphers(), supportedCiphers()
*/
QList<QSslCipher> QSslSocket::ciphers() const
{
Q_D(const QSslSocket);
return d->configuration.ciphers;
}
/*!
Sets the cryptographic cipher suite for this socket to \a ciphers,
which must contain a subset of the ciphers in the list returned by
supportedCiphers().
Restricting the cipher suite must be done before the handshake
phase, where the session cipher is chosen.
\sa ciphers(), setDefaultCiphers(), supportedCiphers()
*/
void QSslSocket::setCiphers(const QList<QSslCipher> &ciphers)
{
Q_D(QSslSocket);
d->configuration.ciphers = ciphers;
}
/*!
Sets the cryptographic cipher suite for this socket to \a ciphers, which
is a colon-separated list of cipher suite names. The ciphers are listed in
order of preference, starting with the most preferred cipher. For example:
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 4
Each cipher name in \a ciphers must be the name of a cipher in the
list returned by supportedCiphers(). Restricting the cipher suite
must be done before the handshake phase, where the session cipher
is chosen.
\sa ciphers(), setDefaultCiphers(), supportedCiphers()
*/
void QSslSocket::setCiphers(const QString &ciphers)
{
Q_D(QSslSocket);
d->configuration.ciphers.clear();
foreach (QString cipherName, ciphers.split(QLatin1String(":"),QString::SkipEmptyParts)) {
for (int i = 0; i < 3; ++i) {
// ### Crude
QSslCipher cipher(cipherName, QSsl::SslProtocol(i));
if (!cipher.isNull())
d->configuration.ciphers << cipher;
}
}
}
/*!
Sets the default cryptographic cipher suite for all sockets in
this application to \a ciphers, which must contain a subset of the
ciphers in the list returned by supportedCiphers().
Restricting the default cipher suite only affects SSL sockets
that perform their handshake phase after the default cipher
suite has been changed.
\sa setCiphers(), defaultCiphers(), supportedCiphers()
*/
void QSslSocket::setDefaultCiphers(const QList<QSslCipher> &ciphers)
{
QSslSocketPrivate::setDefaultCiphers(ciphers);
}
/*!
Returns the default cryptographic cipher suite for all sockets in
this application. This list is used during the socket's handshake
phase when negotiating with the peer to choose a session cipher.
The list is ordered by preference (i.e., the first cipher in the
list is the most preferred cipher).
By default, the handshake phase can choose any of the ciphers
supported by this system's SSL libraries, which may vary from
system to system. The list of ciphers supported by this system's
SSL libraries is returned by supportedCiphers().
\sa supportedCiphers()
*/
QList<QSslCipher> QSslSocket::defaultCiphers()
{
return QSslSocketPrivate::defaultCiphers();
}
/*!
Returns the list of cryptographic ciphers supported by this
system. This list is set by the system's SSL libraries and may
vary from system to system.
\sa defaultCiphers(), ciphers(), setCiphers()
*/
QList<QSslCipher> QSslSocket::supportedCiphers()
{
return QSslSocketPrivate::supportedCiphers();
}
/*!
Searches all files in the \a path for certificates encoded in the
specified \a format and adds them to this socket's CA certificate
database. \a path can be explicit, or it can contain wildcards in
the format specified by \a syntax. Returns true if one or more
certificates are added to the socket's CA certificate database;
otherwise returns false.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
For more precise control, use addCaCertificate().
\sa addCaCertificate(), QSslCertificate::fromPath()
*/
bool QSslSocket::addCaCertificates(const QString &path, QSsl::EncodingFormat format,
QRegExp::PatternSyntax syntax)
{
Q_D(QSslSocket);
QList<QSslCertificate> certs = QSslCertificate::fromPath(path, format, syntax);
if (certs.isEmpty())
return false;
d->configuration.caCertificates += certs;
return true;
}
/*!
Adds the \a certificate to this socket's CA certificate database.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
To add multiple certificates, use addCaCertificates().
\sa caCertificates(), setCaCertificates()
*/
void QSslSocket::addCaCertificate(const QSslCertificate &certificate)
{
Q_D(QSslSocket);
d->configuration.caCertificates += certificate;
}
/*!
Adds the \a certificates to this socket's CA certificate database.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
For more precise control, use addCaCertificate().
\sa caCertificates(), addDefaultCaCertificate()
*/
void QSslSocket::addCaCertificates(const QList<QSslCertificate> &certificates)
{
Q_D(QSslSocket);
d->configuration.caCertificates += certificates;
}
/*!
Sets this socket's CA certificate database to be \a certificates.
The certificate database must be set prior to the SSL handshake.
The CA certificate database is used by the socket during the
handshake phase to validate the peer's certificate.
The CA certificate database can be reset to the current default CA
certificate database by calling this function with the list of CA
certificates returned by defaultCaCertificates().
\sa defaultCaCertificates()
*/
void QSslSocket::setCaCertificates(const QList<QSslCertificate> &certificates)
{
Q_D(QSslSocket);
d->configuration.caCertificates = certificates;
}
/*!
Returns this socket's CA certificate database. The CA certificate
database is used by the socket during the handshake phase to
validate the peer's certificate. It can be moodified prior to the
handshake with addCaCertificate(), addCaCertificates(), and
setCaCertificates().
\sa addCaCertificate(), addCaCertificates(), setCaCertificates()
*/
QList<QSslCertificate> QSslSocket::caCertificates() const
{
Q_D(const QSslSocket);
return d->configuration.caCertificates;
}
/*!
Searches all files in the \a path for certificates with the
specified \a encoding and adds them to the default CA certificate
database. \a path can be an explicit file, or it can contain
wildcards in the format specified by \a syntax. Returns true if
any CA certificates are added to the default database.
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa defaultCaCertificates(), addCaCertificates(), addDefaultCaCertificate()
*/
bool QSslSocket::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat encoding,
QRegExp::PatternSyntax syntax)
{
return QSslSocketPrivate::addDefaultCaCertificates(path, encoding, syntax);
}
/*!
Adds \a certificate to the default CA certificate database. Each
SSL socket's CA certificate database is initialized to the default
CA certificate database.
\sa defaultCaCertificates(), addCaCertificates()
*/
void QSslSocket::addDefaultCaCertificate(const QSslCertificate &certificate)
{
QSslSocketPrivate::addDefaultCaCertificate(certificate);
}
/*!
Adds \a certificates to the default CA certificate database. Each
SSL socket's CA certificate database is initialized to the default
CA certificate database.
\sa defaultCaCertificates(), addCaCertificates()
*/
void QSslSocket::addDefaultCaCertificates(const QList<QSslCertificate> &certificates)
{
QSslSocketPrivate::addDefaultCaCertificates(certificates);
}
/*!
Sets the default CA certificate database to \a certificates. The
default CA certificate database is originally set to your system's
default CA certificate database. If no system default database is
found, Qt will provide its own default database. You can override
the default CA certificate database with your own CA certificate
database using this function.
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa addDefaultCaCertificate()
*/
void QSslSocket::setDefaultCaCertificates(const QList<QSslCertificate> &certificates)
{
QSslSocketPrivate::setDefaultCaCertificates(certificates);
}
/*!
Returns the current default CA certificate database. This database
is originally set to your system's default CA certificate database.
If no system default database is found, Qt will provide its own
default database. You can override the default CA certificate database
with your own CA certificate database using setDefaultCaCertificates().
Each SSL socket's CA certificate database is initialized to the
default CA certificate database.
\sa caCertificates()
*/
QList<QSslCertificate> QSslSocket::defaultCaCertificates()
{
return QSslSocketPrivate::defaultCaCertificates();
}
/*!
This function provides a default CA certificate database
shipped together with Qt. The CA certificate database
returned by this function is used to initialize the database
returned by defaultCaCertificates(). You can replace that database
with your own with setDefaultCaCertificates().
\sa caCertificates(), defaultCaCertificates(), setDefaultCaCertificates()
*/
QList<QSslCertificate> QSslSocket::systemCaCertificates()
{
QSslSocketPrivate::ensureInitialized();
return QSslSocketPrivate::systemCaCertificates();
}
/*!
Waits until the socket is connected, or \a msecs milliseconds,
whichever happens first. If the connection has been established,
this function returns true; otherwise it returns false.
\sa QAbstractSocket::waitForConnected()
*/
bool QSslSocket::waitForConnected(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
bool retVal = d->plainSocket->waitForConnected(msecs);
if (!retVal) {
setSocketState(d->plainSocket->state());
setSocketError(d->plainSocket->error());
setErrorString(d->plainSocket->errorString());
}
return retVal;
}
/*!
Waits until the socket has completed the SSL handshake and has
emitted encrypted(), or \a msecs milliseconds, whichever comes
first. If encrypted() has been emitted, this function returns
true; otherwise (e.g., the socket is disconnected, or the SSL
handshake fails), false is returned.
The following example waits up to one second for the socket to be
encrypted:
\snippet doc/src/snippets/code/src_network_ssl_qsslsocket.cpp 5
If msecs is -1, this function will not time out.
\sa startClientEncryption(), startServerEncryption(), encrypted(), isEncrypted()
*/
bool QSslSocket::waitForEncrypted(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket || d->connectionEncrypted)
return false;
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return false;
QTime stopWatch;
stopWatch.start();
if (d->plainSocket->state() != QAbstractSocket::ConnectedState) {
// Wait until we've entered connected state.
if (!d->plainSocket->waitForConnected(msecs))
return false;
}
while (!d->connectionEncrypted) {
// Start the handshake, if this hasn't been started yet.
if (d->mode == UnencryptedMode)
startClientEncryption();
// Loop, waiting until the connection has been encrypted or an error
// occurs.
if (!d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed())))
return false;
}
return d->connectionEncrypted;
}
/*!
\reimp
*/
bool QSslSocket::waitForReadyRead(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return d->plainSocket->waitForReadyRead(msecs);
// This function must return true if and only if readyRead() *was* emitted.
// So we initialize "readyReadEmitted" to false and check if it was set to true.
// waitForReadyRead() could be called recursively, so we can't use the same variable
// (the inner waitForReadyRead() may fail, but the outer one still succeeded)
bool readyReadEmitted = false;
bool *previousReadyReadEmittedPointer = d->readyReadEmittedPointer;
d->readyReadEmittedPointer = &readyReadEmitted;
QTime stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs)) {
d->readyReadEmittedPointer = previousReadyReadEmittedPointer;
return false;
}
}
if (!d->writeBuffer.isEmpty()) {
// empty our cleartext write buffer first
d->transmit();
}
// test readyReadEmitted first because either operation above
// (waitForEncrypted or transmit) may have set it
while (!readyReadEmitted &&
d->plainSocket->waitForReadyRead(qt_timeout_value(msecs, stopWatch.elapsed()))) {
}
d->readyReadEmittedPointer = previousReadyReadEmittedPointer;
return readyReadEmitted;
}
/*!
\reimp
*/
bool QSslSocket::waitForBytesWritten(int msecs)
{
Q_D(QSslSocket);
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode)
return d->plainSocket->waitForBytesWritten(msecs);
QTime stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs))
return false;
}
if (!d->writeBuffer.isEmpty()) {
// empty our cleartext write buffer first
d->transmit();
}
return d->plainSocket->waitForBytesWritten(qt_timeout_value(msecs, stopWatch.elapsed()));
}
/*!
Waits until the socket has disconnected or \a msecs milliseconds,
whichever comes first. If the connection has been disconnected,
this function returns true; otherwise it returns false.
\sa QAbstractSocket::waitForDisconnected()
*/
bool QSslSocket::waitForDisconnected(int msecs)
{
Q_D(QSslSocket);
// require calling connectToHost() before waitForDisconnected()
if (state() == UnconnectedState) {
qWarning("QSslSocket::waitForDisconnected() is not allowed in UnconnectedState");
return false;
}
if (!d->plainSocket)
return false;
if (d->mode == UnencryptedMode)
return d->plainSocket->waitForDisconnected(msecs);
QTime stopWatch;
stopWatch.start();
if (!d->connectionEncrypted) {
// Wait until we've entered encrypted mode, or until a failure occurs.
if (!waitForEncrypted(msecs))
return false;
}
bool retVal = d->plainSocket->waitForDisconnected(qt_timeout_value(msecs, stopWatch.elapsed()));
if (!retVal) {
setSocketState(d->plainSocket->state());
setSocketError(d->plainSocket->error());
setErrorString(d->plainSocket->errorString());
}
return retVal;
}
/*!
Returns a list of the last SSL errors that occurred. This is the
same list as QSslSocket passes via the sslErrors() signal. If the
connection has been encrypted with no errors, this function will
return an empty list.
\sa connectToHostEncrypted()
*/
QList<QSslError> QSslSocket::sslErrors() const
{
Q_D(const QSslSocket);
return d->sslErrors;
}
/*!
Returns true if this platform supports SSL; otherwise, returns
false. If the platform doesn't support SSL, the socket will fail
in the connection phase.
*/
bool QSslSocket::supportsSsl()
{
return QSslSocketPrivate::ensureInitialized();
}
/*!
Starts a delayed SSL handshake for a client connection. This
function can be called when the socket is in the \l ConnectedState
but still in the \l UnencryptedMode. If it is not yet connected,
or if it is already encrypted, this function has no effect.
Clients that implement STARTTLS functionality often make use of
delayed SSL handshakes. Most other clients can avoid calling this
function directly by using connectToHostEncrypted() instead, which
automatically performs the handshake.
\sa connectToHostEncrypted(), startServerEncryption()
*/
void QSslSocket::startClientEncryption()
{
Q_D(QSslSocket);
if (d->mode != UnencryptedMode) {
qWarning("QSslSocket::startClientEncryption: cannot start handshake on non-plain connection");
return;
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::startClientEncryption()";
#endif
d->mode = SslClientMode;
emit modeChanged(d->mode);
d->startClientEncryption();
}
/*!
Starts a delayed SSL handshake for a server connection. This
function can be called when the socket is in the \l ConnectedState
but still in \l UnencryptedMode. If it is not connected or it is
already encrypted, the function has no effect.
For server sockets, calling this function is the only way to
initiate the SSL handshake. Most servers will call this function
immediately upon receiving a connection, or as a result of having
received a protocol-specific command to enter SSL mode (e.g, the
server may respond to receiving the string "STARTTLS\r\n" by
calling this function).
The most common way to implement an SSL server is to create a
subclass of QTcpServer and reimplement
QTcpServer::incomingConnection(). The returned socket descriptor
is then passed to QSslSocket::setSocketDescriptor().
\sa connectToHostEncrypted(), startClientEncryption()
*/
void QSslSocket::startServerEncryption()
{
Q_D(QSslSocket);
if (d->mode != UnencryptedMode) {
qWarning("QSslSocket::startServerEncryption: cannot start handshake on non-plain connection");
return;
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::startServerEncryption()";
#endif
d->mode = SslServerMode;
emit modeChanged(d->mode);
d->startServerEncryption();
}
/*!
This slot tells QSslSocket to ignore errors during QSslSocket's
handshake phase and continue connecting. If you want to continue
with the connection even if errors occur during the handshake
phase, then you must call this slot, either from a slot connected
to sslErrors(), or before the handshake phase. If you don't call
this slot, either in response to errors or before the handshake,
the connection will be dropped after the sslErrors() signal has
been emitted.
If there are no errors during the SSL handshake phase (i.e., the
identity of the peer is established with no problems), QSslSocket
will not emit the sslErrors() signal, and it is unnecessary to
call this function.
Ignoring errors that occur during an SSL handshake should be done
with caution. A fundamental characteristic of secure connections
is that they should be established with an error free handshake.
\sa sslErrors()
*/
void QSslSocket::ignoreSslErrors()
{
Q_D(QSslSocket);
d->ignoreSslErrors = true;
}
/*!
\internal
*/
void QSslSocket::connectToHostImplementation(const QString &hostName, quint16 port,
OpenMode openMode)
{
Q_D(QSslSocket);
if (!d->initialized)
d->init();
d->initialized = false;
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::connectToHostImplementation("
<< hostName << "," << port << "," << openMode << ")";
#endif
if (!d->plainSocket) {
#ifdef QSSLSOCKET_DEBUG
qDebug() << "\tcreating internal plain socket";
#endif
d->createPlainSocket(openMode);
}
#ifndef QT_NO_NETWORKPROXY
d->plainSocket->setProxy(proxy());
#endif
QIODevice::open(openMode);
d->plainSocket->connectToHost(hostName, port, openMode);
d->cachedSocketDescriptor = d->plainSocket->socketDescriptor();
}
/*!
\internal
*/
void QSslSocket::disconnectFromHostImplementation()
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::disconnectFromHostImplementation()";
#endif
if (!d->plainSocket)
return;
if (d->state == UnconnectedState)
return;
if (d->mode == UnencryptedMode && !d->autoStartHandshake) {
d->plainSocket->disconnectFromHost();
return;
}
if (d->state <= ConnectingState) {
d->pendingClose = true;
return;
}
// Perhaps emit closing()
if (d->state != ClosingState) {
d->state = ClosingState;
emit stateChanged(d->state);
}
if (!d->writeBuffer.isEmpty())
return;
if (d->mode == UnencryptedMode) {
d->plainSocket->disconnectFromHost();
} else {
d->disconnectFromHost();
}
}
/*!
\reimp
*/
qint64 QSslSocket::readData(char *data, qint64 maxlen)
{
Q_D(QSslSocket);
qint64 readBytes = 0;
if (d->mode == UnencryptedMode && !d->autoStartHandshake) {
readBytes = d->plainSocket->read(data, maxlen);
} else {
do {
const char *readPtr = d->readBuffer.readPointer();
int bytesToRead = qMin<int>(maxlen - readBytes, d->readBuffer.nextDataBlockSize());
::memcpy(data + readBytes, readPtr, bytesToRead);
readBytes += bytesToRead;
d->readBuffer.free(bytesToRead);
} while (!d->readBuffer.isEmpty() && readBytes < maxlen);
}
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::readData(" << (void *)data << "," << maxlen << ") ==" << readBytes;
#endif
return readBytes;
}
/*!
\reimp
*/
qint64 QSslSocket::writeData(const char *data, qint64 len)
{
Q_D(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::writeData(" << (void *)data << "," << len << ")";
#endif
if (d->mode == UnencryptedMode && !d->autoStartHandshake)
return d->plainSocket->write(data, len);
char *writePtr = d->writeBuffer.reserve(len);
::memcpy(writePtr, data, len);
// make sure we flush to the plain socket's buffer
QMetaObject::invokeMethod(this, "_q_flushWriteBuffer", Qt::QueuedConnection);
return len;
}
/*!
\internal
*/
QSslSocketPrivate::QSslSocketPrivate()
: initialized(false), readyReadEmittedPointer(0), plainSocket(0)
{
QSslConfigurationPrivate::deepCopyDefaultConfiguration(&configuration);
}
/*!
\internal
*/
QSslSocketPrivate::~QSslSocketPrivate()
{
}
/*!
\internal
*/
void QSslSocketPrivate::init()
{
mode = QSslSocket::UnencryptedMode;
autoStartHandshake = false;
connectionEncrypted = false;
ignoreSslErrors = false;
readBuffer.clear();
writeBuffer.clear();
configuration.peerCertificate.clear();
configuration.peerCertificateChain.clear();
}
/*!
\internal
*/
QList<QSslCipher> QSslSocketPrivate::defaultCiphers()
{
QMutexLocker locker(&globalData()->mutex);
return globalData()->config->ciphers;
}
/*!
\internal
*/
QList<QSslCipher> QSslSocketPrivate::supportedCiphers()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return globalData()->supportedCiphers;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultCiphers(const QList<QSslCipher> &ciphers)
{
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->ciphers = ciphers;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultSupportedCiphers(const QList<QSslCipher> &ciphers)
{
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->supportedCiphers = ciphers;
}
/*!
\internal
*/
QList<QSslCertificate> QSslSocketPrivate::defaultCaCertificates()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return globalData()->config->caCertificates;
}
/*!
\internal
*/
void QSslSocketPrivate::setDefaultCaCertificates(const QList<QSslCertificate> &certs)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates = certs;
}
/*!
\internal
*/
bool QSslSocketPrivate::addDefaultCaCertificates(const QString &path, QSsl::EncodingFormat format,
QRegExp::PatternSyntax syntax)
{
QSslSocketPrivate::ensureInitialized();
QList<QSslCertificate> certs = QSslCertificate::fromPath(path, format, syntax);
if (certs.isEmpty())
return false;
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += certs;
return true;
}
/*!
\internal
*/
void QSslSocketPrivate::addDefaultCaCertificate(const QSslCertificate &cert)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += cert;
}
/*!
\internal
*/
void QSslSocketPrivate::addDefaultCaCertificates(const QList<QSslCertificate> &certs)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
globalData()->config.detach();
globalData()->config->caCertificates += certs;
}
/*!
\internal
*/
QSslConfiguration QSslConfigurationPrivate::defaultConfiguration()
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
return QSslConfiguration(globalData()->config.data());
}
/*!
\internal
*/
void QSslConfigurationPrivate::setDefaultConfiguration(const QSslConfiguration &configuration)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
if (globalData()->config == configuration.d)
return; // nothing to do
globalData()->config = const_cast<QSslConfigurationPrivate*>(configuration.d.constData());
}
/*!
\internal
*/
void QSslConfigurationPrivate::deepCopyDefaultConfiguration(QSslConfigurationPrivate *ptr)
{
QSslSocketPrivate::ensureInitialized();
QMutexLocker locker(&globalData()->mutex);
const QSslConfigurationPrivate *global = globalData()->config.constData();
ptr->ref = 1;
ptr->peerCertificate = global->peerCertificate;
ptr->peerCertificateChain = global->peerCertificateChain;
ptr->localCertificate = global->localCertificate;
ptr->privateKey = global->privateKey;
ptr->sessionCipher = global->sessionCipher;
ptr->ciphers = global->ciphers;
ptr->caCertificates = global->caCertificates;
ptr->protocol = global->protocol;
ptr->peerVerifyMode = global->peerVerifyMode;
ptr->peerVerifyDepth = global->peerVerifyDepth;
}
/*!
\internal
*/
void QSslSocketPrivate::createPlainSocket(QIODevice::OpenMode openMode)
{
Q_Q(QSslSocket);
q->setOpenMode(openMode); // <- from QIODevice
q->setSocketState(QAbstractSocket::UnconnectedState);
q->setSocketError(QAbstractSocket::UnknownSocketError);
q->setLocalPort(0);
q->setLocalAddress(QHostAddress());
q->setPeerPort(0);
q->setPeerAddress(QHostAddress());
q->setPeerName(QString());
plainSocket = new QTcpSocket(q);
q->connect(plainSocket, SIGNAL(connected()),
q, SLOT(_q_connectedSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(hostFound()),
q, SLOT(_q_hostFoundSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(disconnected()),
q, SLOT(_q_disconnectedSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)),
q, SLOT(_q_stateChangedSlot(QAbstractSocket::SocketState)),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(error(QAbstractSocket::SocketError)),
q, SLOT(_q_errorSlot(QAbstractSocket::SocketError)),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(readyRead()),
q, SLOT(_q_readyReadSlot()),
Qt::DirectConnection);
q->connect(plainSocket, SIGNAL(bytesWritten(qint64)),
q, SLOT(_q_bytesWrittenSlot(qint64)),
Qt::DirectConnection);
#ifndef QT_NO_NETWORKPROXY
q->connect(plainSocket, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*)),
q, SIGNAL(proxyAuthenticationRequired(QNetworkProxy,QAuthenticator*)));
#endif
readBuffer.clear();
writeBuffer.clear();
connectionEncrypted = false;
configuration.peerCertificate.clear();
configuration.peerCertificateChain.clear();
mode = QSslSocket::UnencryptedMode;
q->setReadBufferSize(readBufferMaxSize);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_connectedSlot()
{
Q_Q(QSslSocket);
q->setLocalPort(plainSocket->localPort());
q->setLocalAddress(plainSocket->localAddress());
q->setPeerPort(plainSocket->peerPort());
q->setPeerAddress(plainSocket->peerAddress());
q->setPeerName(plainSocket->peerName());
cachedSocketDescriptor = plainSocket->socketDescriptor();
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_connectedSlot()";
qDebug() << "\tstate =" << q->state();
qDebug() << "\tpeer =" << q->peerName() << q->peerAddress() << q->peerPort();
qDebug() << "\tlocal =" << QHostInfo::fromName(q->localAddress().toString()).hostName()
<< q->localAddress() << q->localPort();
#endif
emit q->connected();
if (autoStartHandshake) {
q->startClientEncryption();
} else if (pendingClose) {
pendingClose = false;
q->disconnectFromHost();
}
}
/*!
\internal
*/
void QSslSocketPrivate::_q_hostFoundSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_hostFoundSlot()";
qDebug() << "\tstate =" << q->state();
#endif
emit q->hostFound();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_disconnectedSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_disconnectedSlot()";
qDebug() << "\tstate =" << q->state();
#endif
disconnected();
emit q->disconnected();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_stateChangedSlot(QAbstractSocket::SocketState state)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_stateChangedSlot(" << state << ")";
#endif
q->setSocketState(state);
emit q->stateChanged(state);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_errorSlot(QAbstractSocket::SocketError error)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_errorSlot(" << error << ")";
qDebug() << "\tstate =" << q->state();
qDebug() << "\terrorString =" << q->errorString();
#endif
q->setSocketError(plainSocket->error());
q->setErrorString(plainSocket->errorString());
emit q->error(error);
}
/*!
\internal
*/
void QSslSocketPrivate::_q_readyReadSlot()
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_readyReadSlot() -" << plainSocket->bytesAvailable() << "bytes available";
#endif
if (mode == QSslSocket::UnencryptedMode) {
if (readyReadEmittedPointer)
*readyReadEmittedPointer = true;
emit q->readyRead();
return;
}
transmit();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_bytesWrittenSlot(qint64 written)
{
Q_Q(QSslSocket);
#ifdef QSSLSOCKET_DEBUG
qDebug() << "QSslSocket::_q_bytesWrittenSlot(" << written << ")";
#endif
if (mode == QSslSocket::UnencryptedMode)
emit q->bytesWritten(written);
else
emit q->encryptedBytesWritten(written);
if (state == QAbstractSocket::ClosingState && writeBuffer.isEmpty())
q->disconnectFromHost();
}
/*!
\internal
*/
void QSslSocketPrivate::_q_flushWriteBuffer()
{
Q_Q(QSslSocket);
if (!writeBuffer.isEmpty())
q->flush();
}
QT_END_NAMESPACE
// For private slots
#define d d_ptr
#include "moc_qsslsocket.cpp"
|