summaryrefslogtreecommitdiffstats
path: root/src/opengl/gl2paintengineex/qtriangulatingstroker.cpp
blob: 07701c60a4c027a7eca75bdd2c941ec900bddbec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/****************************************************************************
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the QtOpenGL module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia.  For licensing terms and
** conditions see http://qt.digia.com/licensing.  For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights.  These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qtriangulatingstroker_p.h"
#include <qmath.h>

QT_BEGIN_NAMESPACE

#define CURVE_FLATNESS Q_PI / 8




void QTriangulatingStroker::endCapOrJoinClosed(const qreal *start, const qreal *cur,
                                               bool implicitClose, bool endsAtStart)
{
    if (endsAtStart) {
        join(start + 2);
    } else if (implicitClose) {
        join(start);
        lineTo(start);
        join(start+2);
    } else {
        endCap(cur);
    }
    int count = m_vertices.size();

    // Copy the (x, y) values because QDataBuffer::add(const float& t)
    // may resize the buffer, which will leave t pointing at the
    // previous buffer's memory region if we don't copy first.
    float x = m_vertices.at(count-2);
    float y = m_vertices.at(count-1);
    m_vertices.add(x);
    m_vertices.add(y);
}


void QTriangulatingStroker::process(const QVectorPath &path, const QPen &pen, const QRectF &)
{
    const qreal *pts = path.points();
    const QPainterPath::ElementType *types = path.elements();
    int count = path.elementCount();
    if (count < 2)
        return;

    float realWidth = qpen_widthf(pen);
    if (realWidth == 0)
        realWidth = 1;

    m_width = realWidth / 2;

    bool cosmetic = pen.isCosmetic();
    if (cosmetic) {
        m_width = m_width * m_inv_scale;
    }

    m_join_style = qpen_joinStyle(pen);
    m_cap_style = qpen_capStyle(pen);
    m_vertices.reset();
    m_miter_limit = pen.miterLimit() * qpen_widthf(pen);

    // The curvyness is based on the notion that I originally wanted
    // roughly one line segment pr 4 pixels. This may seem little, but
    // because we sample at constantly incrementing B(t) E [0<t<1], we
    // will get longer segments where the curvature is small and smaller
    // segments when the curvature is high.
    //
    // To get a rough idea of the length of each curve, I pretend that
    // the curve is a 90 degree arc, whose radius is
    // qMax(curveBounds.width, curveBounds.height). Based on this
    // logic we can estimate the length of the outline edges based on
    // the radius + a pen width and adjusting for scale factors
    // depending on if the pen is cosmetic or not.
    //
    // The curvyness value of PI/14 was based on,
    // arcLength = 2*PI*r/4 = PI*r/2 and splitting length into somewhere
    // between 3 and 8 where 5 seemed to be give pretty good results
    // hence: Q_PI/14. Lower divisors will give more detail at the
    // direct cost of performance.

    // simplfy pens that are thin in device size (2px wide or less)
    if (realWidth < 2.5 && (cosmetic || m_inv_scale == 1)) {
        if (m_cap_style == Qt::RoundCap)
            m_cap_style = Qt::SquareCap;
        if (m_join_style == Qt::RoundJoin)
            m_join_style = Qt::MiterJoin;
        m_curvyness_add = 0.5;
        m_curvyness_mul = CURVE_FLATNESS / m_inv_scale;
        m_roundness = 1;
    } else if (cosmetic) {
        m_curvyness_add = realWidth / 2;
        m_curvyness_mul = CURVE_FLATNESS;
        m_roundness = qMax<int>(4, realWidth * CURVE_FLATNESS);
    } else {
        m_curvyness_add = m_width;
        m_curvyness_mul = CURVE_FLATNESS / m_inv_scale;
        m_roundness = qMax<int>(4, realWidth * m_curvyness_mul);
    }

    // Over this level of segmentation, there doesn't seem to be any
    // benefit, even for huge penWidth
    if (m_roundness > 24)
        m_roundness = 24;

    m_sin_theta = qFastSin(Q_PI / m_roundness);
    m_cos_theta = qFastCos(Q_PI / m_roundness);

    const qreal *endPts = pts + (count<<1);
    const qreal *startPts = 0;

    Qt::PenCapStyle cap = m_cap_style;

    if (!types) {
        // skip duplicate points
        while((pts + 2) < endPts && pts[0] == pts[2] && pts[1] == pts[3])
            pts += 2;
        if ((pts + 2) == endPts)
            return;

        startPts = pts;

        bool endsAtStart = startPts[0] == *(endPts-2) && startPts[1] == *(endPts-1);

        if (endsAtStart || path.hasImplicitClose())
            m_cap_style = Qt::FlatCap;
        moveTo(pts);
        m_cap_style = cap;
        pts += 2;
        lineTo(pts);
        pts += 2;
        while (pts < endPts) {
            if (m_cx != pts[0] || m_cy != pts[1]) {
                join(pts);
                lineTo(pts);
            }
            pts += 2;
        }

        endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart);

    } else {
        bool endsAtStart = false;
        while (pts < endPts) {
            switch (*types) {
            case QPainterPath::MoveToElement: {
                if (pts != path.points())
                    endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart);

                startPts = pts;
                int end = (endPts - pts) / 2;
                int i = 2; // Start looking to ahead since we never have two moveto's in a row
                while (i<end && types[i] != QPainterPath::MoveToElement) {
                    ++i;
                }
                endsAtStart = startPts[0] == pts[i*2 - 2] && startPts[1] == pts[i*2 - 1];
                if (endsAtStart || path.hasImplicitClose())
                    m_cap_style = Qt::FlatCap;

                moveTo(pts);
                m_cap_style = cap;
                pts+=2;
                ++types;
                break; }
            case QPainterPath::LineToElement:
                if (*(types - 1) != QPainterPath::MoveToElement)
                    join(pts);
                lineTo(pts);
                pts+=2;
                ++types;
                break;
            case QPainterPath::CurveToElement:
                if (*(types - 1) != QPainterPath::MoveToElement)
                    join(pts);
                cubicTo(pts);
                pts+=6;
                types+=3;
                break;
            default:
                Q_ASSERT(false);
                break;
            }
        }

        endCapOrJoinClosed(startPts, pts-2, path.hasImplicitClose(), endsAtStart);
    }
}

void QTriangulatingStroker::moveTo(const qreal *pts)
{
    m_cx = pts[0];
    m_cy = pts[1];

    float x2 = pts[2];
    float y2 = pts[3];
    normalVector(m_cx, m_cy, x2, y2, &m_nvx, &m_nvy);


    // To acheive jumps we insert zero-area tringles. This is done by
    // adding two identical points in both the end of previous strip
    // and beginning of next strip
    bool invisibleJump = m_vertices.size();

    switch (m_cap_style) {
    case Qt::FlatCap:
        if (invisibleJump) {
            m_vertices.add(m_cx + m_nvx);
            m_vertices.add(m_cy + m_nvy);
        }
        break;
    case Qt::SquareCap: {
        float sx = m_cx - m_nvy;
        float sy = m_cy + m_nvx;
        if (invisibleJump) {
            m_vertices.add(sx + m_nvx);
            m_vertices.add(sy + m_nvy);
        }
        emitLineSegment(sx, sy, m_nvx, m_nvy);
        break; }
    case Qt::RoundCap: {
        QVarLengthArray<float> points;
        arcPoints(m_cx, m_cy, m_cx + m_nvx, m_cy + m_nvy, m_cx - m_nvx, m_cy - m_nvy, points);
        m_vertices.resize(m_vertices.size() + points.size() + 2 * int(invisibleJump));
        int count = m_vertices.size();
        int front = 0;
        int end = points.size() / 2;
        while (front != end) {
            m_vertices.at(--count) = points[2 * end - 1];
            m_vertices.at(--count) = points[2 * end - 2];
            --end;
            if (front == end)
                break;
            m_vertices.at(--count) = points[2 * front + 1];
            m_vertices.at(--count) = points[2 * front + 0];
            ++front;
        }

        if (invisibleJump) {
            m_vertices.at(count - 1) = m_vertices.at(count + 1);
            m_vertices.at(count - 2) = m_vertices.at(count + 0);
        }
        break; }
    default: break; // ssssh gcc...
    }
    emitLineSegment(m_cx, m_cy, m_nvx, m_nvy);
}

void QTriangulatingStroker::cubicTo(const qreal *pts)
{
    const QPointF *p = (const QPointF *) pts;
    QBezier bezier = QBezier::fromPoints(*(p - 1), p[0], p[1], p[2]);

    QRectF bounds = bezier.bounds();
    float rad = qMax(bounds.width(), bounds.height());
    int threshold = qMin<float>(64, (rad + m_curvyness_add) * m_curvyness_mul);
    if (threshold < 4)
        threshold = 4;
    qreal threshold_minus_1 = threshold - 1;
    float vx, vy;

    float cx = m_cx, cy = m_cy;
    float x, y;

    for (int i=1; i<threshold; ++i) {
        qreal t = qreal(i) / threshold_minus_1;
        QPointF p = bezier.pointAt(t);
        x = p.x();
        y = p.y();

        normalVector(cx, cy, x, y, &vx, &vy);

        emitLineSegment(x, y, vx, vy);

        cx = x;
        cy = y;
    }

    m_cx = cx;
    m_cy = cy;

    m_nvx = vx;
    m_nvy = vy;
}

void QTriangulatingStroker::join(const qreal *pts)
{
    // Creates a join to the next segment (m_cx, m_cy) -> (pts[0], pts[1])
    normalVector(m_cx, m_cy, pts[0], pts[1], &m_nvx, &m_nvy);

    switch (m_join_style) {
    case Qt::BevelJoin:
        break;
    case Qt::SvgMiterJoin:
    case Qt::MiterJoin: {
        // Find out on which side the join should be.
        int count = m_vertices.size();
        float prevNvx = m_vertices.at(count - 2) - m_cx;
        float prevNvy = m_vertices.at(count - 1) - m_cy;
        float xprod = prevNvx * m_nvy - prevNvy * m_nvx;
        float px, py, qx, qy;

        // If the segments are parallel, use bevel join.
        if (qFuzzyIsNull(xprod))
            break;

        // Find the corners of the previous and next segment to join.
        if (xprod < 0) {
            px = m_vertices.at(count - 2);
            py = m_vertices.at(count - 1);
            qx = m_cx - m_nvx;
            qy = m_cy - m_nvy;
        } else {
            px = m_vertices.at(count - 4);
            py = m_vertices.at(count - 3);
            qx = m_cx + m_nvx;
            qy = m_cy + m_nvy;
        }

        // Find intersection point.
        float pu = px * prevNvx + py * prevNvy;
        float qv = qx * m_nvx + qy * m_nvy;
        float ix = (m_nvy * pu - prevNvy * qv) / xprod;
        float iy = (prevNvx * qv - m_nvx * pu) / xprod;

        // Check that the distance to the intersection point is less than the miter limit.
        if ((ix - px) * (ix - px) + (iy - py) * (iy - py) <= m_miter_limit * m_miter_limit) {
            m_vertices.add(ix);
            m_vertices.add(iy);
            m_vertices.add(ix);
            m_vertices.add(iy);
        }
        // else
        // Do a plain bevel join if the miter limit is exceeded or if
        // the lines are parallel. This is not what the raster
        // engine's stroker does, but it is both faster and similar to
        // what some other graphics API's do.

        break; }
    case Qt::RoundJoin: {
        QVarLengthArray<float> points;
        int count = m_vertices.size();
        float prevNvx = m_vertices.at(count - 2) - m_cx;
        float prevNvy = m_vertices.at(count - 1) - m_cy;
        if (m_nvx * prevNvy - m_nvy * prevNvx < 0) {
            arcPoints(0, 0, m_nvx, m_nvy, -prevNvx, -prevNvy, points);
            for (int i = points.size() / 2; i > 0; --i)
                emitLineSegment(m_cx, m_cy, points[2 * i - 2], points[2 * i - 1]);
        } else {
            arcPoints(0, 0, -prevNvx, -prevNvy, m_nvx, m_nvy, points);
            for (int i = 0; i < points.size() / 2; ++i)
                emitLineSegment(m_cx, m_cy, points[2 * i + 0], points[2 * i + 1]);
        }
        break; }
    default: break; // gcc warn--
    }

    emitLineSegment(m_cx, m_cy, m_nvx, m_nvy);
}

void QTriangulatingStroker::endCap(const qreal *)
{
    switch (m_cap_style) {
    case Qt::FlatCap:
        break;
    case Qt::SquareCap:
        emitLineSegment(m_cx + m_nvy, m_cy - m_nvx, m_nvx, m_nvy);
        break;
    case Qt::RoundCap: {
        QVarLengthArray<float> points;
        int count = m_vertices.size();
        arcPoints(m_cx, m_cy, m_vertices.at(count - 2), m_vertices.at(count - 1), m_vertices.at(count - 4), m_vertices.at(count - 3), points);
        int front = 0;
        int end = points.size() / 2;
        while (front != end) {
            m_vertices.add(points[2 * end - 2]);
            m_vertices.add(points[2 * end - 1]);
            --end;
            if (front == end)
                break;
            m_vertices.add(points[2 * front + 0]);
            m_vertices.add(points[2 * front + 1]);
            ++front;
        }
        break; }
    default: break; // to shut gcc up...
    }
}

void QTriangulatingStroker::arcPoints(float cx, float cy, float fromX, float fromY, float toX, float toY, QVarLengthArray<float> &points)
{
    float dx1 = fromX - cx;
    float dy1 = fromY - cy;
    float dx2 = toX - cx;
    float dy2 = toY - cy;

    // while more than 180 degrees left:
    while (dx1 * dy2 - dx2 * dy1 < 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // while more than 90 degrees left:
    while (dx1 * dx2 + dy1 * dy2 < 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // while more than 0 degrees left:
    while (dx1 * dy2 - dx2 * dy1 > 0) {
        float tmpx = dx1 * m_cos_theta - dy1 * m_sin_theta;
        float tmpy = dx1 * m_sin_theta + dy1 * m_cos_theta;
        dx1 = tmpx;
        dy1 = tmpy;
        points.append(cx + dx1);
        points.append(cy + dy1);
    }

    // remove last point which was rotated beyond [toX, toY].
    if (!points.isEmpty())
        points.resize(points.size() - 2);
}

static void qdashprocessor_moveTo(qreal x, qreal y, void *data)
{
    ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::MoveToElement, x, y);
}

static void qdashprocessor_lineTo(qreal x, qreal y, void *data)
{
    ((QDashedStrokeProcessor *) data)->addElement(QPainterPath::LineToElement, x, y);
}

static void qdashprocessor_cubicTo(qreal, qreal, qreal, qreal, qreal, qreal, void *)
{
    Q_ASSERT(0); // The dasher should not produce curves...
}

QDashedStrokeProcessor::QDashedStrokeProcessor()
    : m_points(0), m_types(0),
      m_dash_stroker(0), m_inv_scale(1)
{
    m_dash_stroker.setMoveToHook(qdashprocessor_moveTo);
    m_dash_stroker.setLineToHook(qdashprocessor_lineTo);
    m_dash_stroker.setCubicToHook(qdashprocessor_cubicTo);
}

void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen, const QRectF &clip)
{

    const qreal *pts = path.points();
    const QPainterPath::ElementType *types = path.elements();
    int count = path.elementCount();

    bool cosmetic = pen.isCosmetic();

    m_points.reset();
    m_types.reset();
    m_points.reserve(path.elementCount());
    m_types.reserve(path.elementCount());

    qreal width = qpen_widthf(pen);
    if (width == 0)
        width = 1;

    m_dash_stroker.setDashPattern(pen.dashPattern());
    m_dash_stroker.setStrokeWidth(cosmetic ? width * m_inv_scale : width);
    m_dash_stroker.setDashOffset(pen.dashOffset());
    m_dash_stroker.setMiterLimit(pen.miterLimit());
    m_dash_stroker.setClipRect(clip);

    float curvynessAdd, curvynessMul;

    // simplfy pens that are thin in device size (2px wide or less)
    if (width < 2.5 && (cosmetic || m_inv_scale == 1)) {
        curvynessAdd = 0.5;
        curvynessMul = CURVE_FLATNESS / m_inv_scale;
    } else if (cosmetic) {
        curvynessAdd= width / 2;
        curvynessMul= CURVE_FLATNESS;
    } else {
        curvynessAdd = width * m_inv_scale;
        curvynessMul = CURVE_FLATNESS / m_inv_scale;
    }

    if (count < 2)
        return;

    const qreal *endPts = pts + (count<<1);

    m_dash_stroker.begin(this);

    if (!types) {
        m_dash_stroker.moveTo(pts[0], pts[1]);
        pts += 2;
        while (pts < endPts) {
            m_dash_stroker.lineTo(pts[0], pts[1]);
            pts += 2;
        }
    } else {
        while (pts < endPts) {
            switch (*types) {
            case QPainterPath::MoveToElement:
                m_dash_stroker.moveTo(pts[0], pts[1]);
                pts += 2;
                ++types;
                break;
            case QPainterPath::LineToElement:
                m_dash_stroker.lineTo(pts[0], pts[1]);
                pts += 2;
                ++types;
                break;
            case QPainterPath::CurveToElement: {
                QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1),
                                                *(((const QPointF *) pts)),
                                                *(((const QPointF *) pts) + 1),
                                                *(((const QPointF *) pts) + 2));
                QRectF bounds = b.bounds();
                float rad = qMax(bounds.width(), bounds.height());
                int threshold = qMin<float>(64, (rad + curvynessAdd) * curvynessMul);
                if (threshold < 4)
                    threshold = 4;

                qreal threshold_minus_1 = threshold - 1;
                for (int i=0; i<threshold; ++i) {
                    QPointF pt = b.pointAt(i / threshold_minus_1);
                    m_dash_stroker.lineTo(pt.x(), pt.y());
                }
                pts += 6;
                types += 3;
                break; }
            default: break;
            }
        }
    }

    m_dash_stroker.end();
}

QT_END_NAMESPACE