# MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """The Scanner package for the SCons software construction utility.""" import re import SCons.Node.FS import SCons.Util class _Null: pass # This is used instead of None as a default argument value so None can be # used as an actual argument value. _null = _Null def Scanner(function, *args, **kw): """Factory function to create a Scanner Object. Creates the appropriate Scanner based on the type of "function". TODO: Deprecate this some day. We've moved the functionality inside the Base class and really don't need this factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in various people's custom modules patterned on SCons code. """ if SCons.Util.is_Dict(function): return Selector(function, *args, **kw) else: return Base(function, *args, **kw) class FindPathDirs: """Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories. """ def __init__(self, variable): self.variable = variable def __call__(self, env, dir=None, target=None, source=None, argument=None): import SCons.PathList try: path = env[self.variable] except KeyError: return () dir = dir or env.fs._cwd path = SCons.PathList.PathList(path).subst_path(env, target, source) return tuple(dir.Rfindalldirs(path)) class Base: """Base class for dependency scanners. This implements straightforward, single-pass scanning of a single file. """ def __init__( self, function, name="NONE", argument=_null, skeys=_null, path_function=None, # Node.FS.Base so that, by default, it's okay for a # scanner to return a Dir, File or Entry. node_class=SCons.Node.FS.Base, node_factory=None, scan_check=None, recursive=None, ): """Construct a new scanner object given a scanner function. The scanner function's first argument will be a Node that should be scanned for dependencies, the second argument will be an Environment object, the third argument will be the tuple of paths returned by the path_function, and the fourth argument will be the value passed into 'argument', and the returned list should contain the Nodes for all the direct dependencies of the file. Examples: s = Scanner(my_scanner_function) s = Scanner(function = my_scanner_function) s = Scanner(function = my_scanner_function, argument = 'foo') Args: function: a scanner function taking two or three arguments and returning a list of strings. name: a name for identifying this scanner object. argument: an optional argument that, if specified, will be passed to both the scanner function and the path_function. skeys: an optional list argument that can be used to determine which scanner should be used for a given Node. In the case of File nodes, for example, the 'skeys' would be file suffixes. path_function: a function that takes four or five arguments (a construction environment, Node for the directory containing the SConscript file that defined the primary target, list of target nodes, list of source nodes, and optional argument for this instance) and returns a tuple of the directories that can be searched for implicit dependency files. May also return a callable() which is called with no args and returns the tuple (supporting Bindable class). node_class: the class of Nodes which this scan will return. If node_class is None, then this scanner will not enforce any Node conversion and will return the raw results from the underlying scanner function. node_factory: the factory function to be called to translate the raw results returned by the scanner function into the expected node_class objects. scan_check: a function to be called to first check whether this node really needs to be scanned. recursive: specifies that this scanner should be invoked recursively on all of the implicit dependencies it returns (the canonical example being #include lines in C source files). May be a callable, which will be called to filter the list of nodes found to select a subset for recursive scanning (the canonical example being only recursively scanning subdirectories within a directory). """ # Note: this class could easily work with scanner functions that take # something other than a filename as an argument (e.g. a database # node) and a dependencies list that aren't file names. All that # would need to be changed is the documentation. self.function = function self.path_function = path_function self.name = name self.argument = argument if skeys is _null: if SCons.Util.is_Dict(function): skeys = list(function.keys()) else: skeys = [] self.skeys = skeys self.node_class = node_class self.node_factory = node_factory self.scan_check = scan_check if callable(recursive): self.recurse_nodes = recursive elif recursive: self.recurse_nodes = self._recurse_all_nodes else: self.recurse_nodes = self._recurse_no_nodes def path(self, env, dir=None, target=None, source=None): if not self.path_function: return () if self.argument is not _null: return self.path_function(env, dir, target, source, self.argument) else: return self.path_function(env, dir, target, source) def __call__(self, node, env, path=()): """Scans a single object. Args: node: the node that will be passed to the scanner function env: the environment that will be passed to the scanner function. Returns: A list of direct dependency nodes for the specified node. """ if self.scan_check and not self.scan_check(node, env): return [] self = self.select(node) if self.argument is not _null: node_list = self.function(node, env, path, self.argument) else: node_list = self.function(node, env, path) kw = {} if hasattr(node, 'dir'): kw['directory'] = node.dir node_factory = env.get_factory(self.node_factory) nodes = [] for l in node_list: if self.node_class and not isinstance(l, self.node_class): l = node_factory(l, **kw) nodes.append(l) return nodes def __eq__(self, other): try: return self.__dict__ == other.__dict__ except AttributeError: # other probably doesn't have a __dict__ return self.__dict__ == other def __hash__(self): return id(self) def __str__(self): return self.name def add_skey(self, skey): """Add a skey to the list of skeys""" self.skeys.append(skey) def get_skeys(self, env=None): if env and SCons.Util.is_String(self.skeys): return env.subst_list(self.skeys)[0] return self.skeys def select(self, node): if SCons.Util.is_Dict(self.function): key = node.scanner_key() try: return self.function[key] except KeyError: return None else: return self def _recurse_all_nodes(self, nodes): return nodes def _recurse_no_nodes(self, nodes): return [] # recurse_nodes = _recurse_no_nodes def add_scanner(self, skey, scanner): self.function[skey] = scanner self.add_skey(skey) class Selector(Base): """ A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node. TODO: This functionality has been moved into the inner workings of the Base class, and this class will be deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom modules that may be out there.) """ def __init__(self, dict, *args, **kw): Base.__init__(self, None, *args, **kw) self.dict = dict self.skeys = list(dict.keys()) def __call__(self, node, env, path=()): return self.select(node)(node, env, path) def select(self, node): try: return self.dict[node.scanner_key()] except KeyError: return None def add_scanner(self, skey, scanner): self.dict[skey] = scanner self.add_skey(skey) class Current(Base): """ A class for scanning files that are source files (have no builder) or are derived files and are current (which implies that they exist, either locally or in a repository). """ def __init__(self, *args, **kw): def current_check(node, env): return not node.has_builder() or node.is_up_to_date() kw['scan_check'] = current_check Base.__init__(self, *args, **kw) class Classic(Current): """ A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be customized to use different regular expressions to find the includes. Note that in order for this to work "out of the box" (without overriding the find_include() and sort_key() methods), the regular expression passed to the constructor must return the name of the include file in group 0. """ def __init__(self, name, suffixes, path_variable, regex, *args, **kw): self.cre = re.compile(regex, re.M) def _scan(node, _, path=(), self=self): node = node.rfile() if not node.exists(): return [] return self.scan(node, path) kw['function'] = _scan kw['path_function'] = FindPathDirs(path_variable) # Allow recursive to propagate if child class specifies. # In this case resource scanner needs to specify a filter on which files # get recursively processed. Previously was hardcoded to 1 instead of # defaulted to 1. kw['recursive'] = kw.get('recursive', 1) kw['skeys'] = suffixes kw['name'] = name Current.__init__(self, *args, **kw) def find_include(self, include, source_dir, path): n = SCons.Node.FS.find_file(include, (source_dir,) + tuple(path)) return n, include def sort_key(self, include): return SCons.Node.FS._my_normcase(include) def find_include_names(self, node): return self.cre.findall(node.get_text_contents()) def scan(self, node, path=()): # cache the includes list in node so we only scan it once: if node.includes is not None: includes = node.includes else: includes = self.find_include_names(node) # Intern the names of the include files. Saves some memory # if the same header is included many times. node.includes = list(map(SCons.Util.silent_intern, includes)) # This is a hand-coded DSU (decorate-sort-undecorate, or # Schwartzian transform) pattern. The sort key is the raw name # of the file as specifed on the #include line (including the # " or <, since that may affect what file is found), which lets # us keep the sort order constant regardless of whether the file # is actually found in a Repository or locally. nodes = [] source_dir = node.get_dir() if callable(path): path = path() for include in includes: n, i = self.find_include(include, source_dir, path) if n is None: SCons.Warnings.warn(SCons.Warnings.DependencyWarning, "No dependency generated for file: %s (included from: %s) -- file not found" % (i, node)) else: nodes.append((self.sort_key(include), n)) return [pair[1] for pair in sorted(nodes)] class ClassicCPP(Classic): """ A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses classic CPP rules for searching for the files based on the bracketing. Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket in group 0, and the contained filename in group 1. """ def find_include(self, include, source_dir, path): include = list(map(SCons.Util.to_str, include)) if include[0] == '"': paths = (source_dir,) + tuple(path) else: paths = tuple(path) + (source_dir,) n = SCons.Node.FS.find_file(include[1], paths) i = SCons.Util.silent_intern(include[1]) return n, i def sort_key(self, include): return SCons.Node.FS._my_normcase(' '.join(include)) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4: