summaryrefslogtreecommitdiffstats
path: root/doc/user/repositories.xml
blob: 766d8bc82e163bc84a32941fd95ee1df5b4d34d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
<!--

  __COPYRIGHT__

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be included
  in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
  KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
  WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-->

  <para>

  Often, a software project will have
  one or more central repositories,
  directory trees that contain
  source code, or derived files, or both.
  You can eliminate additional unnecessary
  rebuilds of files by having &SCons;
  use files from one or more code repositories
  to build files in your local build tree.

  </para>

  <section>
  <title>The &Repository; Method</title>

 <!--

 The repository directories specified may contain source files, derived files
 (objects, libraries and executables), or both.  If there is no local file
 (source or derived) under the directory in which Cons is executed, then the
 first copy of a same-named file found under a repository directory will be
 used to build any local derived files.

 -->

    <para>

    It's often useful to allow multiple programmers working
    on a project to build software from
    source files and/or derived files that
    are stored in a centrally-accessible repository,
    a directory copy of the source code tree.
    (Note that this is not the sort of repository
    maintained by a source code management system
    like BitKeeper, CVS, or Subversion.)
    <!--
    For information about using &SCons;
    with these systems, see the section,
    "Fetching Files From Source Code Management Systems,"
    below.)
    -->
    You use the &Repository; method
    to tell &SCons; to search one or more
    central code repositories (in order)
    for any source files and derived files
    that are not present in the local build tree:

    </para>

    <programlisting>
       env = Environment()
       env.Program('hello.c')
       Repository('/usr/repository1', '/usr/repository2')
    </programlisting>

    <para>

    Multiple calls to the &Repository; method
    will simply add repositories to the global list
    that &SCons; maintains,
    with the exception that &SCons; will automatically eliminate
    the current directory and any non-existent
    directories from the list.

    </para>

  </section>

  <section>
  <title>Finding source files in repositories</title>

    <para>

    The above example
    specifies that &SCons;
    will first search for files under
    the <filename>/usr/repository1</filename> tree
    and next under the <filename>/usr/repository2</filename> tree.
    &SCons; expects that any files it searches
    for will be found in the same position
    relative to the top-level directory.
    In the above example, if the &hello_c; file is not
    found in the local build tree,
    &SCons; will search first for
    a <filename>/usr/repository1/hello.c</filename> file
    and then for a <filename>/usr/repository2/hello.c</filename> file
    to use in its place.

    </para>

    <para>

    So given the &SConstruct; file above,
    if the &hello_c; file exists in the local
    build directory,
    &SCons; will rebuild the &hello; program
    as normal:

    </para>

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c hello.c
      cc -o hello hello.o
    </screen>

    <para>

    If, however, there is no local &hello_c; file,
    but one exists in <filename>/usr/repository1</filename>,
    &SCons; will recompile the &hello; program
    from the source file it finds in the repository:

    </para>

    

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c /usr/repository1/hello.c
      cc -o hello hello.o
    </screen>

    <para>

    And similarly, if there is no local &hello_c; file
    and no <filename>/usr/repository1/hello.c</filename>,
    but one exists in <filename>/usr/repository2</filename>:

    </para>

    

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c /usr/repository2/hello.c
      cc -o hello hello.o
    </screen>

    <para>

    </para>

  </section>

  <section>
  <title>Finding <literal>#include</literal> files in repositories</title>

    <para>

    We've already seen that SCons will scan the contents of
    a source file for <literal>#include</literal> file names
    and realize that targets built from that source file
    also depend on the <literal>#include</literal> file(s).
    For each directory in the &cv-link-CPPPATH; list,
    &SCons; will actually search the corresponding directories
    in any repository trees and establish the
    correct dependencies on any
    <literal>#include</literal> files that it finds
    in repository directory.

    </para>

    <para>

    Unless the C compiler also knows about these directories
    in the repository trees, though,
    it will be unable to find the <literal>#include</literal> files.
    If, for example, the &hello_c; file in
    our previous example includes the &hello;.h;
    in its current directory,
    and the &hello;.h; only exists in the repository:

    </para>

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c hello.c
      hello.c:1: hello.h: No such file or directory
    </screen>

    <para>

    In order to inform the C compiler about the repositories,
    &SCons; will add appropriate
    <literal>-I</literal> flags to the compilation commands
    for each directory in the &cv-CPPPATH; list.
    So if we add the current directory to the
    construction environment &cv-CPPPATH; like so:

    </para>

    <programlisting>
       env = Environment(CPPPATH = ['.'])
       env.Program('hello.c')
       Repository('/usr/repository1')
    </programlisting>

    <para>

    Then re-executing &SCons; yields:

    </para>

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c -I. -I/usr/repository1 hello.c
      cc -o hello hello.o
    </screen>

    <para>

    The order of the <literal>-I</literal> options replicates,
    for the C preprocessor,
    the same repository-directory search path
    that &SCons; uses for its own dependency analysis.
    If there are multiple repositories and multiple &cv-CPPPATH;
    directories, &SCons; will add the repository directories
    to the beginning of each &cv-CPPPATH; directory,
    rapidly multiplying the number of <literal>-I</literal> flags.
    If, for example, the &cv-CPPPATH; contains three directories
    (and shorter repository path names!):

    </para>

    <programlisting>
       env = Environment(CPPPATH = ['dir1', 'dir2', 'dir3'])
       env.Program('hello.c')
       Repository('/r1', '/r2')
    </programlisting>

    <para>

    Then we'll end up with nine <literal>-I</literal> options
    on the command line,
    three (for each of the &cv-CPPPATH; directories)
    times three (for the local directory plus the two repositories):

    </para>

    <screen>
      % <userinput>scons -Q</userinput>
      cc -o hello.o -c -Idir1 -I/r1/dir1 -I/r2/dir1 -Idir2 -I/r1/dir2 -I/r2/dir2 -Idir3 -I/r1/dir3 -I/r2/dir3 hello.c
      cc -o hello hello.o
    </screen>

<!--

Cons classic did the following, does SCons?

In order to shorten the command lines as much as possible, Cons will
remove C<-I> flags for any directories, locally or in the repositories,
which do not actually exist.  (Note that the C<-I> flags are not included
in the MD5 signature calculation for the target file, so the target will
not be recompiled if the compilation command changes due to a directory
coming into existence.)

-->

    <section>
    <title>Limitations on <literal>#include</literal> files in repositories</title>

      <para>

      &SCons; relies on the C compiler's
      <literal>-I</literal> options to control the order in which
      the preprocessor will search the repository directories
      for <literal>#include</literal> files.
      This causes a problem, however, with how the C preprocessor
      handles <literal>#include</literal> lines with
      the file name included in double-quotes.

      </para>

      <para>

      As we've seen,
      &SCons; will compile the &hello_c; file from
      the repository if it doesn't exist in
      the local directory.
      If, however, the &hello_c; file in the repository contains
      a <literal>#include</literal> line with the file name in
      double quotes:

      </para>

      <programlisting>
        #include "hello.h"
        int
        main(int argc, char *argv[])
        {
            printf(HELLO_MESSAGE);
            return (0);
        }
      </programlisting>

      <para>

      Then the C preprocessor will <emphasis>always</emphasis>
      use a &hello_h; file from the repository directory first,
      even if there is a &hello_h; file in the local directory,
      despite the fact that the command line specifies
      <literal>-I</literal> as the first option:

      </para>

      

      <screen>
        % <userinput>scons -Q</userinput>
        cc -o hello.o -c -I. -I/usr/repository1 /usr/repository1/hello.c
        cc -o hello hello.o
      </screen>

      <para>

      This behavior of the C preprocessor--always search
      for a <literal>#include</literal> file in double-quotes
      first in the same directory as the source file,
      and only then search the <literal>-I</literal>--can
      not, in general, be changed.
      In other words, it's a limitation
      that must be lived with if you want to use
      code repositories in this way.
      There are three ways you can possibly
      work around this C preprocessor behavior:

      </para>

      <orderedlist>

        <listitem>
        <para>

        Some modern versions of C compilers do have an option
        to disable or control this behavior.
        If so, add that option to &cv-link-CFLAGS;
        (or &cv-link-CXXFLAGS; or both) in your construction environment(s).
        Make sure the option is used for all construction
        environments that use C preprocessing!

        </para>
        </listitem>

        <listitem>
        <para>

        Change all occurrences of <literal>#include "file.h"</literal>
        to <literal>#include &lt;file.h&gt;</literal>.
        Use of <literal>#include</literal> with angle brackets
        does not have the same behavior--the <literal>-I</literal>
        directories are searched first
        for <literal>#include</literal> files--which
        gives &SCons; direct control over the list of
        directories the C preprocessor will search.

        </para>
        </listitem>

        <listitem>
        <para>

        Require that everyone working with compilation from
        repositories check out and work on entire directories of files,
        not individual files.
        (If you use local wrapper scripts around
        your source code control system's command,
        you could add logic to enforce this restriction there.

        </para>
        </listitem>

      </orderedlist>

    </section>

  </section>

  <section>
  <title>Finding the &SConstruct; file in repositories</title>

    <para>

    &SCons; will also search in repositories
    for the &SConstruct; file and any specified &SConscript; files.
    This poses a problem, though:  how can &SCons; search a
    repository tree for an &SConstruct; file
    if the &SConstruct; file itself contains the information
    about the pathname of the repository?
    To solve this problem, &SCons; allows you
    to specify repository directories
    on the command line using the <literal>-Y</literal> option:

    </para>

    <screen>
      % <userinput>scons -Q -Y /usr/repository1 -Y /usr/repository2</userinput>
    </screen>

    <para>

    When looking for source or derived files,
    &SCons; will first search the repositories
    specified on the command line,
    and then search the repositories
    specified in the &SConstruct; or &SConscript; files.

    </para>

  </section>

  <section>
  <title>Finding derived files in repositories</title>

    <para>

    If a repository contains not only source files,
    but also derived files (such as object files,
    libraries, or executables), &SCons; will perform
    its normal MD5 signature calculation to
    decide if a derived file in a repository is up-to-date,
    or the derived file must be rebuilt in the local build directory.
    For the &SCons; signature calculation to work correctly,
    a repository tree must contain the &sconsign; files
    that &SCons; uses to keep track of signature information.

    </para>

    <para>

    Usually, this would be done by a build integrator
    who would run &SCons; in the repository
    to create all of its derived files and &sconsign; files,
    or who would run &SCons; in a separate build directory
    and copy the resulting tree to the desired repository:

    </para>

    

    <screen>
      % <userinput>cd /usr/repository1</userinput>
      % <userinput>scons -Q</userinput>
      cc -o file1.o -c file1.c
      cc -o file2.o -c file2.c
      cc -o hello.o -c hello.c
      cc -o hello hello.o file1.o file2.o
    </screen>

    <para>
    
    (Note that this is safe even if the &SConstruct; file
    lists <filename>/usr/repository1</filename> as a repository,
    because &SCons; will remove the current build directory
    from its repository list for that invocation.)

    </para>

    <para>

    Now, with the repository populated,
    we only need to create the one local source file
    we're interested in working with at the moment,
    and use the <literal>-Y</literal> option to
    tell &SCons; to fetch any other files it needs
    from the repository:

    </para>

    <!--
    <scons_output example="ex4">
      <scons_output_command>cd $HOME/build</scons_output_command>
      <scons_output_command>edit hello.c</scons_output_command>
      <scons_output_command>scons -Q -Y __ROOT__/usr/repository1</scons_output_command>
    </scons_output>
    -->
    <screen>
      % <userinput>cd $HOME/build</userinput>
      % <userinput>edit hello.c</userinput>
      % <userinput>scons -Q -Y /usr/repository1</userinput>
      cc -c -o hello.o hello.c
      cc -o hello hello.o /usr/repository1/file1.o /usr/repository1/file2.o
    </screen>

    <para>

    Notice that &SCons; realizes that it does not need to
    rebuild local copies <filename>file1.o</filename> and <filename>file2.o</filename> files,
    but instead uses the already-compiled files
    from the repository.

    </para>

  </section>

  <section>
  <title>Guaranteeing local copies of files</title>

    <para>

    If the repository tree contains the complete results of a build,
    and we try to build from the repository
    without any files in our local tree,
    something moderately surprising happens:

    </para>

    <screen>
      % <userinput>mkdir $HOME/build2</userinput>
      % <userinput>cd $HOME/build2</userinput>
      % <userinput>scons -Q -Y /usr/all/repository hello</userinput>
      scons: `hello' is up-to-date.
    </screen>

    <para>

    Why does &SCons; say that the &hello; program
    is up-to-date when there is no &hello; program
    in the local build directory?
    Because the repository (not the local directory)
    contains the up-to-date &hello; program,
    and &SCons; correctly determines that nothing
    needs to be done to rebuild that
    up-to-date copy of the file.

    </para>

    <para>

    There are, however, many times when you want to ensure that a
    local copy of a file always exists.
    A packaging or testing script, for example,
    may assume that certain generated files exist locally.
    To tell &SCons; to make a copy of any up-to-date repository
    file in the local build directory,
    use the &Local; function:

    </para>

    <programlisting>
       env = Environment()
       hello = env.Program('hello.c')
       Local(hello)
    </programlisting>

    <para>

    If we then run the same command,
    &SCons; will make a local copy of the program
    from the repository copy,
    and tell you that it is doing so:

    </para>

    <screen>
      % <userinput>scons -Y /usr/all/repository hello</userinput>
      Local copy of hello from /usr/all/repository/hello
      scons: `hello' is up-to-date.
    </screen>

    <para>

    (Notice that, because the act of making the local copy
    is not considered a "build" of the &hello; file,
    &SCons; still reports that it is up-to-date.)

    </para>

  </section>