summaryrefslogtreecommitdiffstats
path: root/src/bltGrElemLineSpline.C
diff options
context:
space:
mode:
authorjoye <joye>2013-08-27 18:44:24 (GMT)
committerjoye <joye>2013-08-27 18:44:24 (GMT)
commit48974a09f23839821ca95f228fc0f3f53bb1cefa (patch)
tree9d5cfa1305ef57b69c9b1dd09dc3ffe536c0777d /src/bltGrElemLineSpline.C
parent05d8c009040abfcb5f62644fbb99c8ff453d4519 (diff)
downloadblt-48974a09f23839821ca95f228fc0f3f53bb1cefa.zip
blt-48974a09f23839821ca95f228fc0f3f53bb1cefa.tar.gz
blt-48974a09f23839821ca95f228fc0f3f53bb1cefa.tar.bz2
*** empty log message ***
Diffstat (limited to 'src/bltGrElemLineSpline.C')
-rw-r--r--src/bltGrElemLineSpline.C1399
1 files changed, 1399 insertions, 0 deletions
diff --git a/src/bltGrElemLineSpline.C b/src/bltGrElemLineSpline.C
new file mode 100644
index 0000000..3f3b621
--- /dev/null
+++ b/src/bltGrElemLineSpline.C
@@ -0,0 +1,1399 @@
+
+#include "bltInt.h"
+#include "bltOp.h"
+#include <bltVector.h>
+
+typedef int (SplineProc)(Point2d origPts[], int nOrigPts, Point2d intpPts[],
+ int nIntpPts);
+
+typedef double TriDiagonalMatrix[3];
+typedef struct {
+ double b, c, d;
+} Cubic2D;
+
+typedef struct {
+ double b, c, d, e, f;
+} Quint2D;
+
+/*
+ * Quadratic spline parameters
+ */
+#define E1 param[0]
+#define E2 param[1]
+#define V1 param[2]
+#define V2 param[3]
+#define W1 param[4]
+#define W2 param[5]
+#define Z1 param[6]
+#define Z2 param[7]
+#define Y1 param[8]
+#define Y2 param[9]
+
+static Tcl_ObjCmdProc SplineCmd;
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * Search --
+ *
+ * Conducts a binary search for a value. This routine is called
+ * only if key is between x(0) and x(len - 1).
+ *
+ * Results:
+ * Returns the index of the largest value in xtab for which
+ * x[i] < key.
+ *
+ *---------------------------------------------------------------------------
+ */
+static int
+Search(
+ Point2d points[], /* Contains the abscissas of the data
+ * points of interpolation. */
+ int nPoints, /* Dimension of x. */
+ double key, /* Value whose relative position in
+ * x is to be located. */
+ int *foundPtr) /* (out) Returns 1 if s is found in
+ * x and 0 otherwise. */
+{
+ int high, low, mid;
+
+ low = 0;
+ high = nPoints - 1;
+
+ while (high >= low) {
+ mid = (high + low) / 2;
+ if (key > points[mid].x) {
+ low = mid + 1;
+ } else if (key < points[mid].x) {
+ high = mid - 1;
+ } else {
+ *foundPtr = 1;
+ return mid;
+ }
+ }
+ *foundPtr = 0;
+ return low;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadChoose --
+ *
+ * Determines the case needed for the computation of the parame-
+ * ters of the quadratic spline.
+ *
+ * Results:
+ * Returns a case number (1-4) which controls how the parameters
+ * of the quadratic spline are evaluated.
+ *
+ *---------------------------------------------------------------------------
+ */
+static int
+QuadChoose(
+ Point2d *p, /* Coordinates of one of the points of
+ * interpolation */
+ Point2d *q, /* Coordinates of one of the points of
+ * interpolation */
+ double m1, /* Derivative condition at point P */
+ double m2, /* Derivative condition at point Q */
+ double epsilon) /* Error tolerance used to distinguish
+ * cases when m1 or m2 is relatively
+ * close to the slope or twice the
+ * slope of the line segment joining
+ * the points P and Q. If
+ * epsilon is not 0.0, then epsilon
+ * should be greater than or equal to
+ * machine epsilon. */
+{
+ double slope;
+
+ /* Calculate the slope of the line joining P and Q. */
+ slope = (q->y - p->y) / (q->x - p->x);
+
+ if (slope != 0.0) {
+ double relerr;
+ double mref, mref1, mref2, prod1, prod2;
+
+ prod1 = slope * m1;
+ prod2 = slope * m2;
+
+ /* Find the absolute values of the slopes slope, m1, and m2. */
+ mref = FABS(slope);
+ mref1 = FABS(m1);
+ mref2 = FABS(m2);
+
+ /*
+ * If the relative deviation of m1 or m2 from slope is less than
+ * epsilon, then choose case 2 or case 3.
+ */
+ relerr = epsilon * mref;
+ if ((FABS(slope - m1) > relerr) && (FABS(slope - m2) > relerr) &&
+ (prod1 >= 0.0) && (prod2 >= 0.0)) {
+ double prod;
+
+ prod = (mref - mref1) * (mref - mref2);
+ if (prod < 0.0) {
+ /*
+ * l1, the line through (x1,y1) with slope m1, and l2,
+ * the line through (x2,y2) with slope m2, intersect
+ * at a point whose abscissa is between x1 and x2.
+ * The abscissa becomes a knot of the spline.
+ */
+ return 1;
+ }
+ if (mref1 > (mref * 2.0)) {
+ if (mref2 <= ((2.0 - epsilon) * mref)) {
+ return 3;
+ }
+ } else if (mref2 <= (mref * 2.0)) {
+ /*
+ * Both l1 and l2 cross the line through
+ * (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the
+ * midline of the rectangle formed by P and Q or both
+ * m1 and m2 have signs different than the sign of
+ * slope, or one of m1 and m2 has opposite sign from
+ * slope and l1 and l2 intersect to the left of x1 or
+ * to the right of x2. The point (x1+x2)/2. is a knot
+ * of the spline.
+ */
+ return 2;
+ } else if (mref1 <= ((2.0 - epsilon) * mref)) {
+ /*
+ * In cases 3 and 4, sign(m1)=sign(m2)=sign(slope).
+ * Either l1 or l2 crosses the midline, but not both.
+ * Choose case 4 if mref1 is greater than
+ * (2.-epsilon)*mref; otherwise, choose case 3.
+ */
+ return 3;
+ }
+ /*
+ * If neither l1 nor l2 crosses the midline, the spline
+ * requires two knots between x1 and x2.
+ */
+ return 4;
+ } else {
+ /*
+ * The sign of at least one of the slopes m1 or m2 does not
+ * agree with the sign of *slope*.
+ */
+ if ((prod1 < 0.0) && (prod2 < 0.0)) {
+ return 2;
+ } else if (prod1 < 0.0) {
+ if (mref2 > ((epsilon + 1.0) * mref)) {
+ return 1;
+ } else {
+ return 2;
+ }
+ } else if (mref1 > ((epsilon + 1.0) * mref)) {
+ return 1;
+ } else {
+ return 2;
+ }
+ }
+ } else if ((m1 * m2) >= 0.0) {
+ return 2;
+ } else {
+ return 1;
+ }
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadCases --
+ *
+ * Computes the knots and other parameters of the spline on the
+ * interval PQ.
+ *
+ *
+ * On input--
+ *
+ * P and Q are the coordinates of the points of interpolation.
+ *
+ * m1 is the slope at P.
+ *
+ * m2 is the slope at Q.
+ *
+ * ncase controls the number and location of the knots.
+ *
+ *
+ * On output--
+ *
+ * (v1,v2),(w1,w2),(z1,z2), and (e1,e2) are the coordinates of
+ * the knots and other parameters of the spline on P.
+ * (e1,e2) and Q are used only if ncase=4.
+ *
+ *---------------------------------------------------------------------------
+ */
+static void
+QuadCases(Point2d *p, Point2d *q, double m1, double m2, double param[],
+ int which)
+{
+ if ((which == 3) || (which == 4)) { /* Parameters used in both 3 and 4 */
+ double mbar1, mbar2, mbar3, c1, d1, h1, j1, k1;
+
+ c1 = p->x + (q->y - p->y) / m1;
+ d1 = q->x + (p->y - q->y) / m2;
+ h1 = c1 * 2.0 - p->x;
+ j1 = d1 * 2.0 - q->x;
+ mbar1 = (q->y - p->y) / (h1 - p->x);
+ mbar2 = (p->y - q->y) / (j1 - q->x);
+
+ if (which == 4) { /* Case 4. */
+ Y1 = (p->x + c1) / 2.0;
+ V1 = (p->x + Y1) / 2.0;
+ V2 = m1 * (V1 - p->x) + p->y;
+ Z1 = (d1 + q->x) / 2.0;
+ W1 = (q->x + Z1) / 2.0;
+ W2 = m2 * (W1 - q->x) + q->y;
+ mbar3 = (W2 - V2) / (W1 - V1);
+ Y2 = mbar3 * (Y1 - V1) + V2;
+ Z2 = mbar3 * (Z1 - V1) + V2;
+ E1 = (Y1 + Z1) / 2.0;
+ E2 = mbar3 * (E1 - V1) + V2;
+ } else { /* Case 3. */
+ k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1);
+ if (FABS(m1) > FABS(m2)) {
+ Z1 = (k1 + p->x) / 2.0;
+ } else {
+ Z1 = (k1 + q->x) / 2.0;
+ }
+ V1 = (p->x + Z1) / 2.0;
+ V2 = p->y + m1 * (V1 - p->x);
+ W1 = (q->x + Z1) / 2.0;
+ W2 = q->y + m2 * (W1 - q->x);
+ Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
+ }
+ } else if (which == 2) { /* Case 2. */
+ Z1 = (p->x + q->x) / 2.0;
+ V1 = (p->x + Z1) / 2.0;
+ V2 = p->y + m1 * (V1 - p->x);
+ W1 = (Z1 + q->x) / 2.0;
+ W2 = q->y + m2 * (W1 - q->x);
+ Z2 = (V2 + W2) / 2.0;
+ } else { /* Case 1. */
+ double ztwo;
+
+ Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1);
+ ztwo = p->y + m1 * (Z1 - p->x);
+ V1 = (p->x + Z1) / 2.0;
+ V2 = (p->y + ztwo) / 2.0;
+ W1 = (Z1 + q->x) / 2.0;
+ W2 = (ztwo + q->y) / 2.0;
+ Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
+ }
+}
+
+static int
+QuadSelect(Point2d *p, Point2d *q, double m1, double m2, double epsilon,
+ double param[])
+{
+ int ncase;
+
+ ncase = QuadChoose(p, q, m1, m2, epsilon);
+ QuadCases(p, q, m1, m2, param, ncase);
+ return ncase;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadGetImage --
+ *
+ *---------------------------------------------------------------------------
+ */
+INLINE static double
+QuadGetImage(double p1, double p2, double p3, double x1, double x2, double x3)
+{
+ double A, B, C;
+ double y;
+
+ A = x1 - x2;
+ B = x2 - x3;
+ C = x1 - x3;
+
+ y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C);
+ return y;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadSpline --
+ *
+ * Finds the image of a point in x.
+ *
+ * On input
+ *
+ * x Contains the value at which the spline is evaluated.
+ * leftX, leftY
+ * Coordinates of the left-hand data point used in the
+ * evaluation of x values.
+ * rightX, rightY
+ * Coordinates of the right-hand data point used in the
+ * evaluation of x values.
+ * Z1, Z2, Y1, Y2, E2, W2, V2
+ * Parameters of the spline.
+ * ncase Controls the evaluation of the spline by indicating
+ * whether one or two knots were placed in the interval
+ * (xtabs,xtabs1).
+ *
+ * Results:
+ * The image of the spline at x.
+ *
+ *---------------------------------------------------------------------------
+ */
+static void
+QuadSpline(
+ Point2d *intp, /* Value at which spline is evaluated */
+ Point2d *left, /* Point to the left of the data point to
+ * be evaluated */
+ Point2d *right, /* Point to the right of the data point to
+ * be evaluated */
+ double param[], /* Parameters of the spline */
+ int ncase) /* Controls the evaluation of the
+ * spline by indicating whether one or
+ * two knots were placed in the
+ * interval (leftX,rightX) */
+{
+ double y;
+
+ if (ncase == 4) {
+ /*
+ * Case 4: More than one knot was placed in the interval.
+ */
+
+ /*
+ * Determine the location of data point relative to the 1st knot.
+ */
+ if (Y1 > intp->x) {
+ y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x);
+ } else if (Y1 < intp->x) {
+ /*
+ * Determine the location of the data point relative to
+ * the 2nd knot.
+ */
+ if (Z1 > intp->x) {
+ y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1);
+ } else if (Z1 < intp->x) {
+ y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
+ } else {
+ y = Z2;
+ }
+ } else {
+ y = Y2;
+ }
+ } else {
+
+ /*
+ * Cases 1, 2, or 3:
+ *
+ * Determine the location of the data point relative to the
+ * knot.
+ */
+ if (Z1 < intp->x) {
+ y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
+ } else if (Z1 > intp->x) {
+ y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x);
+ } else {
+ y = Z2;
+ }
+ }
+ intp->y = y;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadSlopes --
+ *
+ * Calculates the derivative at each of the data points. The
+ * slopes computed will insure that an osculatory quadratic
+ * spline will have one additional knot between two adjacent
+ * points of interpolation. Convexity and monotonicity are
+ * preserved wherever these conditions are compatible with the
+ * data.
+ *
+ * Results:
+ * The output array "m" is filled with the derivates at each
+ * data point.
+ *
+ *---------------------------------------------------------------------------
+ */
+static void
+QuadSlopes(Point2d *points, double *m, int nPoints)
+{
+ double xbar, xmid, xhat, ydif1, ydif2;
+ double yxmid;
+ double m1, m2;
+ double m1s, m2s;
+ int i, n, l;
+
+ m1s = m2s = m1 = m2 = 0;
+ for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) {
+ /*
+ * Calculate the slopes of the two lines joining three
+ * consecutive data points.
+ */
+ ydif1 = points[i].y - points[l].y;
+ ydif2 = points[n].y - points[i].y;
+ m1 = ydif1 / (points[i].x - points[l].x);
+ m2 = ydif2 / (points[n].x - points[i].x);
+ if (i == 1) {
+ m1s = m1, m2s = m2; /* Save slopes of starting point */
+ }
+ /*
+ * If one of the preceding slopes is zero or if they have opposite
+ * sign, assign the value zero to the derivative at the middle
+ * point.
+ */
+ if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0)) {
+ m[i] = 0.0;
+ } else if (FABS(m1) > FABS(m2)) {
+ /*
+ * Calculate the slope by extending the line with slope m1.
+ */
+ xbar = ydif2 / m1 + points[i].x;
+ xhat = (xbar + points[n].x) / 2.0;
+ m[i] = ydif2 / (xhat - points[i].x);
+ } else {
+ /*
+ * Calculate the slope by extending the line with slope m2.
+ */
+ xbar = -ydif1 / m2 + points[i].x;
+ xhat = (points[l].x + xbar) / 2.0;
+ m[i] = ydif1 / (points[i].x - xhat);
+ }
+ }
+
+ /* Calculate the slope at the last point, x(n). */
+ i = nPoints - 2;
+ n = nPoints - 1;
+ if ((m1 * m2) < 0.0) {
+ m[n] = m2 * 2.0;
+ } else {
+ xmid = (points[i].x + points[n].x) / 2.0;
+ yxmid = m[i] * (xmid - points[i].x) + points[i].y;
+ m[n] = (points[n].y - yxmid) / (points[n].x - xmid);
+ if ((m[n] * m2) < 0.0) {
+ m[n] = 0.0;
+ }
+ }
+
+ /* Calculate the slope at the first point, x(0). */
+ if ((m1s * m2s) < 0.0) {
+ m[0] = m1s * 2.0;
+ } else {
+ xmid = (points[0].x + points[1].x) / 2.0;
+ yxmid = m[1] * (xmid - points[1].x) + points[1].y;
+ m[0] = (yxmid - points[0].y) / (xmid - points[0].x);
+ if ((m[0] * m1s) < 0.0) {
+ m[0] = 0.0;
+ }
+ }
+
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * QuadEval --
+ *
+ * QuadEval controls the evaluation of an osculatory quadratic
+ * spline. The user may provide his own slopes at the points of
+ * interpolation or use the subroutine 'QuadSlopes' to calculate
+ * slopes which are consistent with the shape of the data.
+ *
+ * ON INPUT--
+ * intpPts must be a nondecreasing vector of points at which the
+ * spline will be evaluated.
+ * origPts contains the abscissas of the data points to be
+ * interpolated. xtab must be increasing.
+ * y contains the ordinates of the data points to be
+ * interpolated.
+ * m contains the slope of the spline at each point of
+ * interpolation.
+ * nPoints number of data points (dimension of xtab and y).
+ * numEval is the number of points of evaluation (dimension of
+ * xval and yval).
+ * epsilon is a relative error tolerance used in subroutine
+ * 'QuadChoose' to distinguish the situation m(i) or
+ * m(i+1) is relatively close to the slope or twice
+ * the slope of the linear segment between xtab(i) and
+ * xtab(i+1). If this situation occurs, roundoff may
+ * cause a change in convexity or monotonicity of the
+ * resulting spline and a change in the case number
+ * provided by 'QuadChoose'. If epsilon is not equal to zero,
+ * then epsilon should be greater than or equal to machine
+ * epsilon.
+ * ON OUTPUT--
+ * yval contains the images of the points in xval.
+ * err is one of the following error codes:
+ * 0 - QuadEval ran normally.
+ * 1 - xval(i) is less than xtab(1) for at least one
+ * i or xval(i) is greater than xtab(num) for at
+ * least one i. QuadEval will extrapolate to provide
+ * function values for these abscissas.
+ * 2 - xval(i+1) < xval(i) for some i.
+ *
+ *
+ * QuadEval calls the following subroutines or functions:
+ * Search
+ * QuadCases
+ * QuadChoose
+ * QuadSpline
+ *---------------------------------------------------------------------------
+ */
+static int
+QuadEval(
+ Point2d origPts[],
+ int nOrigPts,
+ Point2d intpPts[],
+ int nIntpPts,
+ double *m, /* Slope of the spline at each point
+ * of interpolation. */
+ double epsilon) /* Relative error tolerance (see choose) */
+{
+ int error;
+ int i, j;
+ double param[10];
+ int ncase;
+ int start, end;
+ int l, p;
+ int n;
+ int found;
+
+ /* Initialize indices and set error result */
+ error = 0;
+ l = nOrigPts - 1;
+ p = l - 1;
+ ncase = 1;
+
+ /*
+ * Determine if abscissas of new vector are non-decreasing.
+ */
+ for (j = 1; j < nIntpPts; j++) {
+ if (intpPts[j].x < intpPts[j - 1].x) {
+ return 2;
+ }
+ }
+ /*
+ * Determine if any of the points in xval are LESS than the
+ * abscissa of the first data point.
+ */
+ for (start = 0; start < nIntpPts; start++) {
+ if (intpPts[start].x >= origPts[0].x) {
+ break;
+ }
+ }
+ /*
+ * Determine if any of the points in xval are GREATER than the
+ * abscissa of the l data point.
+ */
+ for (end = nIntpPts - 1; end >= 0; end--) {
+ if (intpPts[end].x <= origPts[l].x) {
+ break;
+ }
+ }
+
+ if (start > 0) {
+ error = 1; /* Set error value to indicate that
+ * extrapolation has occurred. */
+ /*
+ * Calculate the images of points of evaluation whose abscissas
+ * are less than the abscissa of the first data point.
+ */
+ ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param);
+ for (j = 0; j < (start - 1); j++) {
+ QuadSpline(intpPts + j, origPts, origPts + 1, param, ncase);
+ }
+ if (nIntpPts == 1) {
+ return error;
+ }
+ }
+ if ((nIntpPts == 1) && (end != (nIntpPts - 1))) {
+ goto noExtrapolation;
+ }
+
+ /*
+ * Search locates the interval in which the first in-range
+ * point of evaluation lies.
+ */
+
+ i = Search(origPts, nOrigPts, intpPts[start].x, &found);
+
+ n = i + 1;
+ if (n >= nOrigPts) {
+ n = nOrigPts - 1;
+ i = nOrigPts - 2;
+ }
+ /*
+ * If the first in-range point of evaluation is equal to one
+ * of the data points, assign the appropriate value from y.
+ * Continue until a point of evaluation is found which is not
+ * equal to a data point.
+ */
+ if (found) {
+ do {
+ intpPts[start].y = origPts[i].y;
+ start++;
+ if (start >= nIntpPts) {
+ return error;
+ }
+ } while (intpPts[start - 1].x == intpPts[start].x);
+
+ for (;;) {
+ if (intpPts[start].x < origPts[n].x) {
+ break; /* Break out of for-loop */
+ }
+ if (intpPts[start].x == origPts[n].x) {
+ do {
+ intpPts[start].y = origPts[n].y;
+ start++;
+ if (start >= nIntpPts) {
+ return error;
+ }
+ } while (intpPts[start].x == intpPts[start - 1].x);
+ }
+ i++;
+ n++;
+ }
+ }
+ /*
+ * Calculate the images of all the points which lie within
+ * range of the data.
+ */
+ if ((i > 0) || (error != 1)) {
+ ncase = QuadSelect(origPts + i, origPts + n, m[i], m[n],
+ epsilon, param);
+ }
+ for (j = start; j <= end; j++) {
+ /*
+ * If xx(j) - x(n) is negative, do not recalculate
+ * the parameters for this section of the spline since
+ * they are already known.
+ */
+ if (intpPts[j].x == origPts[n].x) {
+ intpPts[j].y = origPts[n].y;
+ continue;
+ } else if (intpPts[j].x > origPts[n].x) {
+ double delta;
+
+ /* Determine that the routine is in the correct part of
+ the spline. */
+ do {
+ i++, n++;
+ delta = intpPts[j].x - origPts[n].x;
+ } while (delta > 0.0);
+
+ if (delta < 0.0) {
+ ncase = QuadSelect(origPts + i, origPts + n, m[i],
+ m[n], epsilon, param);
+ } else if (delta == 0.0) {
+ intpPts[j].y = origPts[n].y;
+ continue;
+ }
+ }
+ QuadSpline(intpPts + j, origPts + i, origPts + n, param, ncase);
+ }
+
+ if (end == (nIntpPts - 1)) {
+ return error;
+ }
+ if ((n == l) && (intpPts[end].x != origPts[l].x)) {
+ goto noExtrapolation;
+ }
+
+ error = 1; /* Set error value to indicate that
+ * extrapolation has occurred. */
+ ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param);
+
+ noExtrapolation:
+ /*
+ * Calculate the images of the points of evaluation whose
+ * abscissas are greater than the abscissa of the last data point.
+ */
+ for (j = (end + 1); j < nIntpPts; j++) {
+ QuadSpline(intpPts + j, origPts + p, origPts + l, param, ncase);
+ }
+ return error;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * Shape preserving quadratic splines
+ * by D.F.Mcallister & J.A.Roulier
+ * Coded by S.L.Dodd & M.Roulier
+ * N.C.State University
+ *
+ *---------------------------------------------------------------------------
+ */
+/*
+ * Driver routine for quadratic spline package
+ * On input--
+ * X,Y Contain n-long arrays of data (x is increasing)
+ * XM Contains m-long array of x values (increasing)
+ * eps Relative error tolerance
+ * n Number of input data points
+ * m Number of output data points
+ * On output--
+ * work Contains the value of the first derivative at each data point
+ * ym Contains the interpolated spline value at each data point
+ */
+int
+Blt_QuadraticSpline(Point2d *origPts, int nOrigPts, Point2d *intpPts,
+ int nIntpPts)
+{
+ double epsilon;
+ double *work;
+ int result;
+
+ work = Blt_AssertMalloc(nOrigPts * sizeof(double));
+ epsilon = 0.0; /* TBA: adjust error via command-line option */
+ /* allocate space for vectors used in calculation */
+ QuadSlopes(origPts, work, nOrigPts);
+ result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon);
+ Blt_Free(work);
+ if (result > 1) {
+ return FALSE;
+ }
+ return TRUE;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * Reference:
+ * Numerical Analysis, R. Burden, J. Faires and A. Reynolds.
+ * Prindle, Weber & Schmidt 1981 pp 112
+ *
+ * Parameters:
+ * origPts - vector of points, assumed to be sorted along x.
+ * intpPts - vector of new points.
+ *
+ *---------------------------------------------------------------------------
+ */
+int
+Blt_NaturalSpline(Point2d *origPts, int nOrigPts, Point2d *intpPts,
+ int nIntpPts)
+{
+ Cubic2D *eq;
+ Point2d *ip, *iend;
+ TriDiagonalMatrix *A;
+ double *dx; /* vector of deltas in x */
+ double x, dy, alpha;
+ int isKnot;
+ int i, j, n;
+
+ dx = Blt_AssertMalloc(sizeof(double) * nOrigPts);
+ /* Calculate vector of differences */
+ for (i = 0, j = 1; j < nOrigPts; i++, j++) {
+ dx[i] = origPts[j].x - origPts[i].x;
+ if (dx[i] < 0.0) {
+ return 0;
+ }
+ }
+ n = nOrigPts - 1; /* Number of intervals. */
+ A = Blt_AssertMalloc(sizeof(TriDiagonalMatrix) * nOrigPts);
+ if (A == NULL) {
+ Blt_Free(dx);
+ return 0;
+ }
+ /* Vectors to solve the tridiagonal matrix */
+ A[0][0] = A[n][0] = 1.0;
+ A[0][1] = A[n][1] = 0.0;
+ A[0][2] = A[n][2] = 0.0;
+
+ /* Calculate the intermediate results */
+ for (i = 0, j = 1; j < n; j++, i++) {
+ alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) -
+ (origPts[j].y / dx[j]) + (origPts[i].y / dx[i]));
+ A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1];
+ A[j][1] = dx[j] / A[j][0];
+ A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0];
+ }
+
+ eq = Blt_Malloc(sizeof(Cubic2D) * nOrigPts);
+ if (eq == NULL) {
+ Blt_Free(A);
+ Blt_Free(dx);
+ return FALSE;
+ }
+ eq[0].c = eq[n].c = 0.0;
+ for (j = n, i = n - 1; i >= 0; i--, j--) {
+ eq[i].c = A[i][2] - A[i][1] * eq[j].c;
+ dy = origPts[i+1].y - origPts[i].y;
+ eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0;
+ eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]);
+ }
+ Blt_Free(A);
+ Blt_Free(dx);
+
+ /* Now calculate the new values */
+ for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) {
+ ip->y = 0.0;
+ x = ip->x;
+
+ /* Is it outside the interval? */
+ if ((x < origPts[0].x) || (x > origPts[n].x)) {
+ continue;
+ }
+ /* Search for the interval containing x in the point array */
+ i = Search(origPts, nOrigPts, x, &isKnot);
+ if (isKnot) {
+ ip->y = origPts[i].y;
+ } else {
+ i--;
+ x -= origPts[i].x;
+ ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d));
+ }
+ }
+ Blt_Free(eq);
+ return TRUE;
+}
+
+static Blt_OpSpec splineOps[] =
+{
+ {"natural", 1, Blt_NaturalSpline, 6, 6, "x y splx sply",},
+ {"quadratic", 1, Blt_QuadraticSpline, 6, 6, "x y splx sply",},
+};
+static int nSplineOps = sizeof(splineOps) / sizeof(Blt_OpSpec);
+
+/*ARGSUSED*/
+static int
+SplineCmd(
+ ClientData clientData, /* Not used. */
+ Tcl_Interp *interp,
+ int objc,
+ Tcl_Obj *const *objv)
+{
+ SplineProc *proc;
+ Blt_Vector *x, *y, *splX, *splY;
+ double *xArr, *yArr;
+ int i;
+ Point2d *origPts, *intpPts;
+ int nOrigPts, nIntpPts;
+
+ proc = Blt_GetOpFromObj(interp, nSplineOps, splineOps, BLT_OP_ARG1,
+ objc, objv, 0);
+ if (proc == NULL) {
+ return TCL_ERROR;
+ }
+ if ((Blt_GetVectorFromObj(interp, objv[2], &x) != TCL_OK) ||
+ (Blt_GetVectorFromObj(interp, objv[3], &y) != TCL_OK) ||
+ (Blt_GetVectorFromObj(interp, objv[4], &splX) != TCL_OK)) {
+ return TCL_ERROR;
+ }
+ nOrigPts = Blt_VecLength(x);
+ if (nOrigPts < 3) {
+ Tcl_AppendResult(interp, "length of vector \"", Tcl_GetString(objv[2]),
+ "\" is < 3", (char *)NULL);
+ return TCL_ERROR;
+ }
+ for (i = 1; i < nOrigPts; i++) {
+ if (Blt_VecData(x)[i] < Blt_VecData(x)[i - 1]) {
+ Tcl_AppendResult(interp, "x vector \"", Tcl_GetString(objv[2]),
+ "\" must be monotonically increasing", (char *)NULL);
+ return TCL_ERROR;
+ }
+ }
+ /* Check that all the data points aren't the same. */
+ if (Blt_VecData(x)[i - 1] <= Blt_VecData(x)[0]) {
+ Tcl_AppendResult(interp, "x vector \"", Tcl_GetString(objv[2]),
+ "\" must be monotonically increasing", (char *)NULL);
+ return TCL_ERROR;
+ }
+ if (nOrigPts != Blt_VecLength(y)) {
+ Tcl_AppendResult(interp, "vectors \"", Tcl_GetString(objv[2]),
+ "\" and \"", Tcl_GetString(objv[3]),
+ " have different lengths", (char *)NULL);
+ return TCL_ERROR;
+ }
+ nIntpPts = Blt_VecLength(splX);
+ if (Blt_GetVectorFromObj(interp, objv[5], &splY) != TCL_OK) {
+ /*
+ * If the named vector to hold the ordinates of the spline
+ * doesn't exist, create one the same size as the vector
+ * containing the abscissas.
+ */
+ if (Blt_CreateVector(interp, Tcl_GetString(objv[5]), nIntpPts, &splY)
+ != TCL_OK) {
+ return TCL_ERROR;
+ }
+ } else if (nIntpPts != Blt_VecLength(splY)) {
+ /*
+ * The x and y vectors differ in size. Make the number of ordinates
+ * the same as the number of abscissas.
+ */
+ if (Blt_ResizeVector(splY, nIntpPts) != TCL_OK) {
+ return TCL_ERROR;
+ }
+ }
+ origPts = Blt_Malloc(sizeof(Point2d) * nOrigPts);
+ if (origPts == NULL) {
+ Tcl_AppendResult(interp, "can't allocate \"", Blt_Itoa(nOrigPts),
+ "\" points", (char *)NULL);
+ return TCL_ERROR;
+ }
+ intpPts = Blt_Malloc(sizeof(Point2d) * nIntpPts);
+ if (intpPts == NULL) {
+ Tcl_AppendResult(interp, "can't allocate \"", Blt_Itoa(nIntpPts),
+ "\" points", (char *)NULL);
+ Blt_Free(origPts);
+ return TCL_ERROR;
+ }
+ xArr = Blt_VecData(x);
+ yArr = Blt_VecData(y);
+ for (i = 0; i < nOrigPts; i++) {
+ origPts[i].x = xArr[i];
+ origPts[i].y = yArr[i];
+ }
+ xArr = Blt_VecData(splX);
+ yArr = Blt_VecData(splY);
+ for (i = 0; i < nIntpPts; i++) {
+ intpPts[i].x = xArr[i];
+ intpPts[i].y = yArr[i];
+ }
+ if (!(*proc) (origPts, nOrigPts, intpPts, nIntpPts)) {
+ Tcl_AppendResult(interp, "error generating spline for \"",
+ Blt_NameOfVector(splY), "\"", (char *)NULL);
+ Blt_Free(origPts);
+ Blt_Free(intpPts);
+ return TCL_ERROR;
+ }
+ yArr = Blt_VecData(splY);
+ for (i = 0; i < nIntpPts; i++) {
+ yArr[i] = intpPts[i].y;
+ }
+ Blt_Free(origPts);
+ Blt_Free(intpPts);
+
+ /* Finally update the vector. The size of the vector hasn't
+ * changed, just the data. Reset the vector using TCL_STATIC to
+ * indicate this. */
+ if (Blt_ResetVector(splY, Blt_VecData(splY), Blt_VecLength(splY),
+ Blt_VecSize(splY), TCL_STATIC) != TCL_OK) {
+ return TCL_ERROR;
+ }
+ return TCL_OK;
+}
+
+int
+Blt_SplineCmdInitProc(Tcl_Interp *interp)
+{
+ static Blt_InitCmdSpec cmdSpec = {"spline", SplineCmd,};
+
+ return Blt_InitCmd(interp, "::blt", &cmdSpec);
+}
+
+
+#define SQR(x) ((x)*(x))
+
+typedef struct {
+ double t; /* Arc length of interval. */
+ double x; /* 2nd derivative of X with respect to T */
+ double y; /* 2nd derivative of Y with respect to T */
+} CubicSpline;
+
+
+/*
+ * The following two procedures solve the special linear system which arise
+ * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
+ * equations can be written as (i=0,1,...,n-1):
+ * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
+ * In matrix notation one gets A * x = b, where the matrix A is tridiagonal
+ * with additional elements in the upper right and lower left position:
+ * A[i][0] = A_{i,i-1} for i=1,2,...,n-1 and m[0][0] = A_{0,n-1} ,
+ * A[i][1] = A_{i, i } for i=0,1,...,n-1
+ * A[i][2] = A_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = A_{n-1,0}.
+ * A should be symmetric (A[i+1][0] == A[i][2]) and positive definite.
+ * The size of the system is given in n (n>=1).
+ *
+ * In the first procedure the Cholesky decomposition A = C^T * D * C
+ * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
+ * Return TRUE if decomposition exist.
+ */
+static int
+SolveCubic1(TriDiagonalMatrix A[], int n)
+{
+ int i;
+ double m_ij, m_n, m_nn, d;
+
+ if (n < 1) {
+ return FALSE; /* Dimension should be at least 1 */
+ }
+ d = A[0][1]; /* D_{0,0} = A_{0,0} */
+ if (d <= 0.0) {
+ return FALSE; /* A (or D) should be positive definite */
+ }
+ m_n = A[0][0]; /* A_{0,n-1} */
+ m_nn = A[n - 1][1]; /* A_{n-1,n-1} */
+ for (i = 0; i < n - 2; i++) {
+ m_ij = A[i][2]; /* A_{i,1} */
+ A[i][2] = m_ij / d; /* C_{i,i+1} */
+ A[i][0] = m_n / d; /* C_{i,n-1} */
+ m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */
+ m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */
+ d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */
+ if (d <= 0.0) {
+ return FALSE; /* Elements of D should be positive */
+ }
+ A[i + 1][1] = d;
+ }
+ if (n >= 2) { /* Complete last column */
+ m_n += A[n - 2][2]; /* add A_{n-2,n-1} */
+ A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
+ A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */
+ if (d <= 0.0) {
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+/*
+ * The second procedure solves the linear system, with the Cholesky
+ * decomposition calculated above (in m[][]) and the right side b given
+ * in x[]. The solution x overwrites the right side in x[].
+ */
+static void
+SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[], int nIntervals)
+{
+ int i;
+ double x, y;
+ int n, m;
+
+ n = nIntervals - 2;
+ m = nIntervals - 1;
+
+ /* Division by transpose of C : b = C^{-T} * b */
+ x = spline[m].x;
+ y = spline[m].y;
+ for (i = 0; i < n; i++) {
+ spline[i + 1].x -= A[i][2] * spline[i].x; /* C_{i,i+1} * x(i) */
+ spline[i + 1].y -= A[i][2] * spline[i].y; /* C_{i,i+1} * x(i) */
+ x -= A[i][0] * spline[i].x; /* C_{i,n-1} * x(i) */
+ y -= A[i][0] * spline[i].y; /* C_{i,n-1} * x(i) */
+ }
+ if (n >= 0) {
+ /* C_{n-2,n-1} * x_{n-1} */
+ spline[m].x = x - A[n][0] * spline[n].x;
+ spline[m].y = y - A[n][0] * spline[n].y;
+ }
+ /* Division by D: b = D^{-1} * b */
+ for (i = 0; i < nIntervals; i++) {
+ spline[i].x /= A[i][1];
+ spline[i].y /= A[i][1];
+ }
+
+ /* Division by C: b = C^{-1} * b */
+ x = spline[m].x;
+ y = spline[m].y;
+ if (n >= 0) {
+ /* C_{n-2,n-1} * x_{n-1} */
+ spline[n].x -= A[n][0] * x;
+ spline[n].y -= A[n][0] * y;
+ }
+ for (i = (n - 1); i >= 0; i--) {
+ /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
+ spline[i].x -= A[i][2] * spline[i + 1].x + A[i][0] * x;
+ spline[i].y -= A[i][2] * spline[i + 1].y + A[i][0] * y;
+ }
+}
+
+/*
+ * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
+ * through list of points (x_i,y_i). The parameter t is calculated as the
+ * length of the linear stroke. The number of points must be at least 3.
+ * Note: For CLOSED_CONTOURs the first and last point must be equal.
+ */
+static CubicSpline *
+CubicSlopes(
+ Point2d points[],
+ int nPoints, /* Number of points (nPoints>=3) */
+ int isClosed, /* CLOSED_CONTOUR or OPEN_CONTOUR */
+ double unitX,
+ double unitY) /* Unit length in x and y (norm=1) */
+{
+ CubicSpline *spline;
+ CubicSpline *s1, *s2;
+ int n, i;
+ double norm, dx, dy;
+ TriDiagonalMatrix *A; /* The tri-diagonal matrix is saved here. */
+
+ spline = Blt_Malloc(sizeof(CubicSpline) * nPoints);
+ if (spline == NULL) {
+ return NULL;
+ }
+ A = Blt_Malloc(sizeof(TriDiagonalMatrix) * nPoints);
+ if (A == NULL) {
+ Blt_Free(spline);
+ return NULL;
+ }
+ /*
+ * Calculate first differences in (dxdt2[i], y[i]) and interval lengths
+ * in dist[i]:
+ */
+ s1 = spline;
+ for (i = 0; i < nPoints - 1; i++) {
+ s1->x = points[i+1].x - points[i].x;
+ s1->y = points[i+1].y - points[i].y;
+
+ /*
+ * The Norm of a linear stroke is calculated in "normal coordinates"
+ * and used as interval length:
+ */
+ dx = s1->x / unitX;
+ dy = s1->y / unitY;
+ s1->t = sqrt(dx * dx + dy * dy);
+
+ s1->x /= s1->t; /* first difference, with unit norm: */
+ s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */
+ s1++;
+ }
+
+ /*
+ * Setup linear System: Ax = b
+ */
+ n = nPoints - 2; /* Without first and last point */
+ if (isClosed) {
+ /* First and last points must be equal for CLOSED_CONTOURs */
+ spline[nPoints - 1].t = spline[0].t;
+ spline[nPoints - 1].x = spline[0].x;
+ spline[nPoints - 1].y = spline[0].y;
+ n++; /* Add last point (= first point) */
+ }
+ s1 = spline, s2 = s1 + 1;
+ for (i = 0; i < n; i++) {
+ /* Matrix A, mainly tridiagonal with cyclic second index
+ ("j = j+n mod n")
+ */
+ A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */
+ A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */
+ A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */
+
+ /* Right side b_x and b_y */
+ s1->x = (s2->x - s1->x) * 6.0;
+ s1->y = (s2->y - s1->y) * 6.0;
+
+ /*
+ * If the linear stroke shows a cusp of more than 90 degree,
+ * the right side is reduced to avoid oscillations in the
+ * spline:
+ */
+ /*
+ * The Norm of a linear stroke is calculated in "normal coordinates"
+ * and used as interval length:
+ */
+ dx = s1->x / unitX;
+ dy = s1->y / unitY;
+ norm = sqrt(dx * dx + dy * dy) / 8.5;
+ if (norm > 1.0) {
+ /* The first derivative will not be continuous */
+ s1->x /= norm;
+ s1->y /= norm;
+ }
+ s1++, s2++;
+ }
+
+ if (!isClosed) {
+ /* Third derivative is set to zero at both ends */
+ A[0][1] += A[0][0]; /* A_{0,0} */
+ A[0][0] = 0.0; /* A_{0,n-1} */
+ A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */
+ A[n-1][2] = 0.0; /* A_{n-1,0} */
+ }
+ /* Solve linear systems for dxdt2[] and y[] */
+
+ if (SolveCubic1(A, n)) { /* Cholesky decomposition */
+ SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */
+ } else { /* Should not happen, but who knows ... */
+ Blt_Free(A);
+ Blt_Free(spline);
+ return NULL;
+ }
+ /* Shift all second derivatives one place right and update the ends. */
+ s2 = spline + n, s1 = s2 - 1;
+ for (/* empty */; s2 > spline; s2--, s1--) {
+ s2->x = s1->x;
+ s2->y = s1->y;
+ }
+ if (isClosed) {
+ spline[0].x = spline[n].x;
+ spline[0].y = spline[n].y;
+ } else {
+ /* Third derivative is 0.0 for the first and last interval. */
+ spline[0].x = spline[1].x;
+ spline[0].y = spline[1].y;
+ spline[n + 1].x = spline[n].x;
+ spline[n + 1].y = spline[n].y;
+ }
+ Blt_Free( A);
+ return spline;
+}
+
+
+/*
+ * Calculate interpolated values of the spline function (defined via p_cntr
+ * and the second derivatives dxdt2[] and dydt2[]). The number of tabulated
+ * values is n. On an equidistant grid n_intpol values are calculated.
+ */
+static int
+CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts, int nIntpPts,
+ CubicSpline *spline)
+{
+ double t, tSkip, tMax;
+ Point2d q;
+ int i, j, count;
+
+ /* Sum the lengths of all the segments (intervals). */
+ tMax = 0.0;
+ for (i = 0; i < nOrigPts - 1; i++) {
+ tMax += spline[i].t;
+ }
+
+ /* Need a better way of doing this... */
+
+ /* The distance between interpolated points */
+ tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1);
+
+ t = 0.0; /* Spline parameter value. */
+ q = origPts[0];
+ count = 0;
+
+ intpPts[count++] = q; /* First point. */
+ t += tSkip;
+
+ for (i = 0, j = 1; j < nOrigPts; i++, j++) {
+ Point2d p;
+ double d, hx, dx0, dx01, hy, dy0, dy01;
+
+ d = spline[i].t; /* Interval length */
+ p = q;
+ q = origPts[i+1];
+ hx = (q.x - p.x) / d;
+ hy = (q.y - p.y) / d;
+ dx0 = (spline[j].x + 2 * spline[i].x) / 6.0;
+ dy0 = (spline[j].y + 2 * spline[i].y) / 6.0;
+ dx01 = (spline[j].x - spline[i].x) / (6.0 * d);
+ dy01 = (spline[j].y - spline[i].y) / (6.0 * d);
+ while (t <= spline[i].t) { /* t in current interval ? */
+ p.x += t * (hx + (t - d) * (dx0 + t * dx01));
+ p.y += t * (hy + (t - d) * (dy0 + t * dy01));
+ intpPts[count++] = p;
+ t += tSkip;
+ }
+ /* Parameter t relative to start of next interval */
+ t -= spline[i].t;
+ }
+ return count;
+}
+
+/*
+ * Generate a cubic spline curve through the points (x_i,y_i) which are
+ * stored in the linked list p_cntr.
+ * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
+ * parameter t is the length of the linear stroke.
+ */
+int
+Blt_NaturalParametricSpline(Point2d *origPts, int nOrigPts, Region2d *extsPtr,
+ int isClosed, Point2d *intpPts, int nIntpPts)
+{
+ double unitX, unitY; /* To define norm (x,y)-plane */
+ CubicSpline *spline;
+ int result;
+
+ if (nOrigPts < 3) {
+ return 0;
+ }
+ if (isClosed) {
+ origPts[nOrigPts].x = origPts[0].x;
+ origPts[nOrigPts].y = origPts[0].y;
+ nOrigPts++;
+ }
+ /* Width and height of the grid is used at unit length (2d-norm) */
+ unitX = extsPtr->right - extsPtr->left;
+ unitY = extsPtr->bottom - extsPtr->top;
+
+ if (unitX < FLT_EPSILON) {
+ unitX = FLT_EPSILON;
+ }
+ if (unitY < FLT_EPSILON) {
+ unitY = FLT_EPSILON;
+ }
+ /* Calculate parameters for cubic spline:
+ * t = arc length of interval.
+ * dxdt2 = second derivatives of x with respect to t,
+ * dydt2 = second derivatives of y with respect to t,
+ */
+ spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY);
+ if (spline == NULL) {
+ return 0;
+ }
+ result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline);
+ Blt_Free(spline);
+ return result;
+}
+
+static INLINE void
+CatromCoeffs(Point2d *p, Point2d *a, Point2d *b, Point2d *c, Point2d *d)
+{
+ a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x;
+ b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x;
+ c->x = -p[0].x + p[2].x;
+ d->x = 2.0 * p[1].x;
+ a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y;
+ b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y;
+ c->y = -p[0].y + p[2].y;
+ d->y = 2.0 * p[1].y;
+}
+
+/*
+ *---------------------------------------------------------------------------
+ *
+ * Blt_ParametricCatromSpline --
+ *
+ * Computes a spline based upon the data points, returning a new (larger)
+ * coordinate array of points.
+ *
+ * Results:
+ * None.
+ *
+ *---------------------------------------------------------------------------
+ */
+int
+Blt_CatromParametricSpline(Point2d *points, int nPoints, Point2d *intpPts,
+ int nIntpPts)
+{
+ int i;
+ Point2d *origPts;
+ double t;
+ int interval;
+ Point2d a, b, c, d;
+
+ assert(nPoints > 0);
+
+ /*
+ * The spline is computed in screen coordinates instead of data points so
+ * that we can select the abscissas of the interpolated points from each
+ * pixel horizontally across the plotting area.
+ */
+ origPts = Blt_AssertMalloc((nPoints + 4) * sizeof(Point2d));
+ memcpy(origPts + 1, points, sizeof(Point2d) * nPoints);
+
+ origPts[0] = origPts[1];
+ origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints];
+
+ for (i = 0; i < nIntpPts; i++) {
+ interval = (int)intpPts[i].x;
+ t = intpPts[i].y;
+ assert(interval < nPoints);
+ CatromCoeffs(origPts + interval, &a, &b, &c, &d);
+ intpPts[i].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0;
+ intpPts[i].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0;
+ }
+ Blt_Free(origPts);
+ return 1;
+}