summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorjoye <joye>2014-06-27 20:56:21 (GMT)
committerjoye <joye>2014-06-27 20:56:21 (GMT)
commitc1f6dd4fc502e60c0b7dd3cb9b29618237fec586 (patch)
treebf63201c27395048677f73588308ecc93332db6f /src
parentb4a656e5a895f5caf5235b34dfbbbff217263cde (diff)
downloadblt-c1f6dd4fc502e60c0b7dd3cb9b29618237fec586.zip
blt-c1f6dd4fc502e60c0b7dd3cb9b29618237fec586.tar.gz
blt-c1f6dd4fc502e60c0b7dd3cb9b29618237fec586.tar.bz2
*** empty log message ***
Diffstat (limited to 'src')
-rw-r--r--src/bltGrElemLine.C26
-rw-r--r--src/bltGrElemLine.h6
-rw-r--r--src/bltGrElemLineSpline.C1705
3 files changed, 774 insertions, 963 deletions
diff --git a/src/bltGrElemLine.C b/src/bltGrElemLine.C
index 9cd9337..358006e 100644
--- a/src/bltGrElemLine.C
+++ b/src/bltGrElemLine.C
@@ -35,7 +35,6 @@
#include <X11/Xlib.h>
#include "bltGraph.h"
-#include "bltSpline.h"
#include "bltGrElemLine.h"
#include "bltGrElemOption.h"
#include "bltGrAxis.h"
@@ -1154,9 +1153,9 @@ void LineElement::generateSpline(MapInfo *mapPtr)
niPts = count;
int result = 0;
if (smooth_ == CUBIC)
- result = Blt_NaturalSpline(origPts, nOrigPts, iPts, niPts);
+ result = naturalSpline(origPts, nOrigPts, iPts, niPts);
else if (smooth_ == QUADRATIC)
- result = Blt_QuadraticSpline(origPts, nOrigPts, iPts, niPts);
+ result = quadraticSpline(origPts, nOrigPts, iPts, niPts);
// The spline interpolation failed. We will fall back to the current
// coordinates and do no smoothing (standard line segments)
@@ -1199,7 +1198,7 @@ void LineElement::generateParametricSpline(MapInfo *mapPtr)
p = origPts[i];
q = origPts[j];
count++;
- if (LineRectClip(&exts, &p, &q)) {
+ if (lineRectClip(&exts, &p, &q)) {
count += (int)(hypot(q.x - p.x, q.y - p.y) * 0.5);
}
}
@@ -1237,7 +1236,7 @@ void LineElement::generateParametricSpline(MapInfo *mapPtr)
/* Is any part of the interval (line segment) in the plotting
* area? */
- if (LineRectClip(&exts, &p, &q)) {
+ if (lineRectClip(&exts, &p, &q)) {
double dp, dq;
/* Distance of original point to p. */
@@ -1262,10 +1261,9 @@ void LineElement::generateParametricSpline(MapInfo *mapPtr)
niPts = count;
result = 0;
if (smooth_ == CUBIC)
- result = Blt_NaturalParametricSpline(origPts, nOrigPts, &exts, 0,
- iPts, niPts);
+ result = naturalParametricSpline(origPts, nOrigPts, &exts, 0, iPts, niPts);
else if (smooth_ == CATROM)
- result = Blt_CatromParametricSpline(origPts, nOrigPts, iPts, niPts);
+ result = catromParametricSpline(origPts, nOrigPts, iPts, niPts);
// The spline interpolation failed. We will fall back to the current
// coordinates and do no smoothing (standard line segments)
@@ -1786,7 +1784,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
q = graphPtr_->map2D(low, y, ops->xAxis, ops->yAxis);
segPtr->p = p;
segPtr->q = q;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
@@ -1794,7 +1792,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
segPtr->p.x = segPtr->q.x = p.x;
segPtr->p.y = p.y - stylePtr->errorBarCapWidth;
segPtr->q.y = p.y + stylePtr->errorBarCapWidth;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
@@ -1802,7 +1800,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
segPtr->p.x = segPtr->q.x = q.x;
segPtr->p.y = q.y - stylePtr->errorBarCapWidth;
segPtr->q.y = q.y + stylePtr->errorBarCapWidth;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
@@ -1855,7 +1853,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
q = graphPtr_->map2D(x, low, ops->xAxis, ops->yAxis);
segPtr->p = p;
segPtr->q = q;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
@@ -1863,7 +1861,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
segPtr->p.y = segPtr->q.y = p.y;
segPtr->p.x = p.x - stylePtr->errorBarCapWidth;
segPtr->q.x = p.x + stylePtr->errorBarCapWidth;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
@@ -1871,7 +1869,7 @@ void LineElement::mapErrorBars(LineStyle **styleMap)
segPtr->p.y = segPtr->q.y = q.y;
segPtr->p.x = q.x - stylePtr->errorBarCapWidth;
segPtr->q.x = q.x + stylePtr->errorBarCapWidth;
- if (LineRectClip(&exts, &segPtr->p, &segPtr->q)) {
+ if (lineRectClip(&exts, &segPtr->p, &segPtr->q)) {
segPtr++;
*indexPtr++ = i;
}
diff --git a/src/bltGrElemLine.h b/src/bltGrElemLine.h
index 3cdd24f..30f5c50 100644
--- a/src/bltGrElemLine.h
+++ b/src/bltGrElemLine.h
@@ -32,6 +32,7 @@
#include <tk.h>
+#include "bltGraph.h"
#include "bltGrElem.h"
#include "bltGrPenLine.h"
@@ -154,6 +155,11 @@ namespace Blt {
int simplify(Point2d*, int, int, double, int*);
double findSplit(Point2d*, int, int, int*);
+ int naturalSpline(Point2d*, int, Point2d*, int);
+ int quadraticSpline(Point2d*, int, Point2d*, int);
+ int naturalParametricSpline(Point2d*, int, Region2d*, int, Point2d*, int);
+ int catromParametricSpline(Point2d*, int, Point2d*, int);
+
public:
LineElement(Graph*, const char*, Tcl_HashEntry*);
virtual ~LineElement();
diff --git a/src/bltGrElemLineSpline.C b/src/bltGrElemLineSpline.C
index 3d75f11..75957a2 100644
--- a/src/bltGrElemLineSpline.C
+++ b/src/bltGrElemLineSpline.C
@@ -33,22 +33,20 @@
#include <stdlib.h>
#include <string.h>
-#include "bltSpline.h"
+#include "bltGrElemLine.h"
using namespace Blt;
typedef double TriDiagonalMatrix[3];
typedef struct {
- double b, c, d;
+ double b, c, d;
} Cubic2D;
typedef struct {
- double b, c, d, e, f;
+ double b, c, d, e, f;
} Quint2D;
-/*
- * Quadratic spline parameters
- */
+// Quadratic spline parameters
#define E1 param[0]
#define E2 param[1]
#define V1 param[2]
@@ -74,34 +72,24 @@ typedef struct {
*
*---------------------------------------------------------------------------
*/
-static int
-Search(
- Point2d points[], /* Contains the abscissas of the data
- * points of interpolation. */
- int nPoints, /* Dimension of x. */
- double key, /* Value whose relative position in
- * x is to be located. */
- int *foundPtr) /* (out) Returns 1 if s is found in
- * x and 0 otherwise. */
+static int Search(Point2d points[], int nPoints, double key, int *foundPtr)
{
- int high, low, mid;
-
- low = 0;
- high = nPoints - 1;
-
- while (high >= low) {
- mid = (high + low) / 2;
- if (key > points[mid].x) {
- low = mid + 1;
- } else if (key < points[mid].x) {
- high = mid - 1;
- } else {
- *foundPtr = 1;
- return mid;
- }
+ int low = 0;
+ int high = nPoints - 1;
+
+ while (high >= low) {
+ int mid = (high + low) / 2;
+ if (key > points[mid].x)
+ low = mid + 1;
+ else if (key < points[mid].x)
+ high = mid - 1;
+ else {
+ *foundPtr = 1;
+ return mid;
}
- *foundPtr = 0;
- return low;
+ }
+ *foundPtr = 0;
+ return low;
}
/*
@@ -118,243 +106,184 @@ Search(
*
*---------------------------------------------------------------------------
*/
-static int
-QuadChoose(
- Point2d *p, /* Coordinates of one of the points of
- * interpolation */
- Point2d *q, /* Coordinates of one of the points of
- * interpolation */
- double m1, /* Derivative condition at point P */
- double m2, /* Derivative condition at point Q */
- double epsilon) /* Error tolerance used to distinguish
- * cases when m1 or m2 is relatively
- * close to the slope or twice the
- * slope of the line segment joining
- * the points P and Q. If
- * epsilon is not 0.0, then epsilon
- * should be greater than or equal to
- * machine epsilon. */
+static int QuadChoose(Point2d* p, Point2d* q, double m1, double m2,
+ double epsilon)
{
- double slope;
-
- /* Calculate the slope of the line joining P and Q. */
- slope = (q->y - p->y) / (q->x - p->x);
-
- if (slope != 0.0) {
- double relerr;
- double mref, mref1, mref2, prod1, prod2;
-
- prod1 = slope * m1;
- prod2 = slope * m2;
-
- /* Find the absolute values of the slopes slope, m1, and m2. */
- mref = fabs(slope);
- mref1 = fabs(m1);
- mref2 = fabs(m2);
-
- /*
- * If the relative deviation of m1 or m2 from slope is less than
- * epsilon, then choose case 2 or case 3.
- */
- relerr = epsilon * mref;
- if ((fabs(slope - m1) > relerr) && (fabs(slope - m2) > relerr) &&
- (prod1 >= 0.0) && (prod2 >= 0.0)) {
- double prod;
-
- prod = (mref - mref1) * (mref - mref2);
- if (prod < 0.0) {
- /*
- * l1, the line through (x1,y1) with slope m1, and l2,
- * the line through (x2,y2) with slope m2, intersect
- * at a point whose abscissa is between x1 and x2.
- * The abscissa becomes a knot of the spline.
- */
- return 1;
- }
- if (mref1 > (mref * 2.0)) {
- if (mref2 <= ((2.0 - epsilon) * mref)) {
- return 3;
- }
- } else if (mref2 <= (mref * 2.0)) {
- /*
- * Both l1 and l2 cross the line through
- * (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the
- * midline of the rectangle formed by P and Q or both
- * m1 and m2 have signs different than the sign of
- * slope, or one of m1 and m2 has opposite sign from
- * slope and l1 and l2 intersect to the left of x1 or
- * to the right of x2. The point (x1+x2)/2. is a knot
- * of the spline.
- */
- return 2;
- } else if (mref1 <= ((2.0 - epsilon) * mref)) {
- /*
- * In cases 3 and 4, sign(m1)=sign(m2)=sign(slope).
- * Either l1 or l2 crosses the midline, but not both.
- * Choose case 4 if mref1 is greater than
- * (2.-epsilon)*mref; otherwise, choose case 3.
- */
- return 3;
- }
- /*
- * If neither l1 nor l2 crosses the midline, the spline
- * requires two knots between x1 and x2.
- */
- return 4;
- } else {
- /*
- * The sign of at least one of the slopes m1 or m2 does not
- * agree with the sign of *slope*.
- */
- if ((prod1 < 0.0) && (prod2 < 0.0)) {
- return 2;
- } else if (prod1 < 0.0) {
- if (mref2 > ((epsilon + 1.0) * mref)) {
- return 1;
- } else {
- return 2;
- }
- } else if (mref1 > ((epsilon + 1.0) * mref)) {
- return 1;
- } else {
- return 2;
- }
- }
- } else if ((m1 * m2) >= 0.0) {
+ // Calculate the slope of the line joining P and Q
+ double slope = (q->y - p->y) / (q->x - p->x);
+
+ if (slope != 0.0) {
+ double prod1 = slope * m1;
+ double prod2 = slope * m2;
+
+ // Find the absolute values of the slopes slope, m1, and m2
+ double mref = fabs(slope);
+ double mref1 = fabs(m1);
+ double mref2 = fabs(m2);
+
+ // If the relative deviation of m1 or m2 from slope is less than
+ // epsilon, then choose case 2 or case 3.
+ double relerr = epsilon * mref;
+ if ((fabs(slope - m1) > relerr) && (fabs(slope - m2) > relerr) &&
+ (prod1 >= 0.0) && (prod2 >= 0.0)) {
+ double prod = (mref - mref1) * (mref - mref2);
+ if (prod < 0.0) {
+ // l1, the line through (x1,y1) with slope m1, and l2,
+ // the line through (x2,y2) with slope m2, intersect
+ // at a point whose abscissa is between x1 and x2.
+ // The abscissa becomes a knot of the spline.
+ return 1;
+ }
+ if (mref1 > (mref * 2.0)) {
+ if (mref2 <= ((2.0 - epsilon) * mref))
+ return 3;
+ }
+ else if (mref2 <= (mref * 2.0)) {
+ // Both l1 and l2 cross the line through
+ // (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the
+ // midline of the rectangle formed by P and Q or both
+ // m1 and m2 have signs different than the sign of
+ // slope, or one of m1 and m2 has opposite sign from
+ // slope and l1 and l2 intersect to the left of x1 or
+ // to the right of x2. The point (x1+x2)/2. is a knot
+ // of the spline.
return 2;
- } else {
+ }
+ else if (mref1 <= ((2.0 - epsilon) * mref)) {
+ // In cases 3 and 4, sign(m1)=sign(m2)=sign(slope).
+ // Either l1 or l2 crosses the midline, but not both.
+ // Choose case 4 if mref1 is greater than
+ // (2.-epsilon)*mref; otherwise, choose case 3.
+ return 3;
+ }
+ // If neither l1 nor l2 crosses the midline, the spline
+ // requires two knots between x1 and x2.
+ return 4;
+ }
+ else {
+ // The sign of at least one of the slopes m1 or m2 does not
+ // agree with the sign of *slope*.
+ if ((prod1 < 0.0) && (prod2 < 0.0)) {
+ return 2;
+ }
+ else if (prod1 < 0.0) {
+ if (mref2 > ((epsilon + 1.0) * mref))
+ return 1;
+ else
+ return 2;
+ }
+ else if (mref1 > ((epsilon + 1.0) * mref))
return 1;
+ else
+ return 2;
}
+ }
+ else if ((m1 * m2) >= 0.0)
+ return 2;
+ else
+ return 1;
}
/*
*---------------------------------------------------------------------------
- *
- * QuadCases --
- *
* Computes the knots and other parameters of the spline on the
* interval PQ.
- *
- *
* On input--
- *
* P and Q are the coordinates of the points of interpolation.
- *
* m1 is the slope at P.
- *
* m2 is the slope at Q.
- *
* ncase controls the number and location of the knots.
- *
- *
* On output--
*
* (v1,v2),(w1,w2),(z1,z2), and (e1,e2) are the coordinates of
* the knots and other parameters of the spline on P.
* (e1,e2) and Q are used only if ncase=4.
- *
*---------------------------------------------------------------------------
*/
-static void
-QuadCases(Point2d *p, Point2d *q, double m1, double m2, double param[],
- int which)
+static void QuadCases(Point2d* p, Point2d* q, double m1, double m2,
+ double param[], int which)
{
- if ((which == 3) || (which == 4)) { /* Parameters used in both 3 and 4 */
- double mbar1, mbar2, mbar3, c1, d1, h1, j1, k1;
-
- c1 = p->x + (q->y - p->y) / m1;
- d1 = q->x + (p->y - q->y) / m2;
- h1 = c1 * 2.0 - p->x;
- j1 = d1 * 2.0 - q->x;
- mbar1 = (q->y - p->y) / (h1 - p->x);
- mbar2 = (p->y - q->y) / (j1 - q->x);
-
- if (which == 4) { /* Case 4. */
- Y1 = (p->x + c1) / 2.0;
- V1 = (p->x + Y1) / 2.0;
- V2 = m1 * (V1 - p->x) + p->y;
- Z1 = (d1 + q->x) / 2.0;
- W1 = (q->x + Z1) / 2.0;
- W2 = m2 * (W1 - q->x) + q->y;
- mbar3 = (W2 - V2) / (W1 - V1);
- Y2 = mbar3 * (Y1 - V1) + V2;
- Z2 = mbar3 * (Z1 - V1) + V2;
- E1 = (Y1 + Z1) / 2.0;
- E2 = mbar3 * (E1 - V1) + V2;
- } else { /* Case 3. */
- k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1);
- if (fabs(m1) > fabs(m2)) {
- Z1 = (k1 + p->x) / 2.0;
- } else {
- Z1 = (k1 + q->x) / 2.0;
- }
- V1 = (p->x + Z1) / 2.0;
- V2 = p->y + m1 * (V1 - p->x);
- W1 = (q->x + Z1) / 2.0;
- W2 = q->y + m2 * (W1 - q->x);
- Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
- }
- } else if (which == 2) { /* Case 2. */
- Z1 = (p->x + q->x) / 2.0;
- V1 = (p->x + Z1) / 2.0;
- V2 = p->y + m1 * (V1 - p->x);
- W1 = (Z1 + q->x) / 2.0;
- W2 = q->y + m2 * (W1 - q->x);
- Z2 = (V2 + W2) / 2.0;
- } else { /* Case 1. */
- double ztwo;
-
- Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1);
- ztwo = p->y + m1 * (Z1 - p->x);
- V1 = (p->x + Z1) / 2.0;
- V2 = (p->y + ztwo) / 2.0;
- W1 = (Z1 + q->x) / 2.0;
- W2 = (ztwo + q->y) / 2.0;
- Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
+ if ((which == 3) || (which == 4)) {
+ double c1 = p->x + (q->y - p->y) / m1;
+ double d1 = q->x + (p->y - q->y) / m2;
+ double h1 = c1 * 2.0 - p->x;
+ double j1 = d1 * 2.0 - q->x;
+ double mbar1 = (q->y - p->y) / (h1 - p->x);
+ double mbar2 = (p->y - q->y) / (j1 - q->x);
+
+ if (which == 4) {
+ // Case 4
+ Y1 = (p->x + c1) / 2.0;
+ V1 = (p->x + Y1) / 2.0;
+ V2 = m1 * (V1 - p->x) + p->y;
+ Z1 = (d1 + q->x) / 2.0;
+ W1 = (q->x + Z1) / 2.0;
+ W2 = m2 * (W1 - q->x) + q->y;
+ double mbar3 = (W2 - V2) / (W1 - V1);
+ Y2 = mbar3 * (Y1 - V1) + V2;
+ Z2 = mbar3 * (Z1 - V1) + V2;
+ E1 = (Y1 + Z1) / 2.0;
+ E2 = mbar3 * (E1 - V1) + V2;
}
+ else {
+ // Case 3
+ double k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1);
+ if (fabs(m1) > fabs(m2)) {
+ Z1 = (k1 + p->x) / 2.0;
+ } else {
+ Z1 = (k1 + q->x) / 2.0;
+ }
+ V1 = (p->x + Z1) / 2.0;
+ V2 = p->y + m1 * (V1 - p->x);
+ W1 = (q->x + Z1) / 2.0;
+ W2 = q->y + m2 * (W1 - q->x);
+ Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
+ }
+ }
+ else if (which == 2) {
+ // Case 2
+ Z1 = (p->x + q->x) / 2.0;
+ V1 = (p->x + Z1) / 2.0;
+ V2 = p->y + m1 * (V1 - p->x);
+ W1 = (Z1 + q->x) / 2.0;
+ W2 = q->y + m2 * (W1 - q->x);
+ Z2 = (V2 + W2) / 2.0;
+ }
+ else {
+ // Case 1
+ Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1);
+ double ztwo = p->y + m1 * (Z1 - p->x);
+ V1 = (p->x + Z1) / 2.0;
+ V2 = (p->y + ztwo) / 2.0;
+ W1 = (Z1 + q->x) / 2.0;
+ W2 = (ztwo + q->y) / 2.0;
+ Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1);
+ }
}
-static int
-QuadSelect(Point2d *p, Point2d *q, double m1, double m2, double epsilon,
- double param[])
+static int QuadSelect(Point2d* p, Point2d* q, double m1, double m2,
+ double epsilon, double param[])
{
- int ncase;
-
- ncase = QuadChoose(p, q, m1, m2, epsilon);
- QuadCases(p, q, m1, m2, param, ncase);
- return ncase;
+ int ncase = QuadChoose(p, q, m1, m2, epsilon);
+ QuadCases(p, q, m1, m2, param, ncase);
+ return ncase;
}
-/*
- *---------------------------------------------------------------------------
- *
- * QuadGetImage --
- *
- *---------------------------------------------------------------------------
- */
-INLINE static double
-QuadGetImage(double p1, double p2, double p3, double x1, double x2, double x3)
+static double QuadGetImage(double p1, double p2, double p3, double x1,
+ double x2, double x3)
{
- double A, B, C;
- double y;
-
- A = x1 - x2;
- B = x2 - x3;
- C = x1 - x3;
+ double A = x1 - x2;
+ double B = x2 - x3;
+ double C = x1 - x3;
- y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C);
- return y;
+ double y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C);
+ return y;
}
/*
*---------------------------------------------------------------------------
- *
- * QuadSpline --
- *
* Finds the image of a point in x.
- *
* On input
- *
* x Contains the value at which the spline is evaluated.
* leftX, leftY
* Coordinates of the left-hand data point used in the
@@ -367,161 +296,115 @@ QuadGetImage(double p1, double p2, double p3, double x1, double x2, double x3)
* ncase Controls the evaluation of the spline by indicating
* whether one or two knots were placed in the interval
* (xtabs,xtabs1).
- *
- * Results:
- * The image of the spline at x.
- *
*---------------------------------------------------------------------------
*/
-static void
-QuadSpline(
- Point2d *intp, /* Value at which spline is evaluated */
- Point2d *left, /* Point to the left of the data point to
- * be evaluated */
- Point2d *right, /* Point to the right of the data point to
- * be evaluated */
- double param[], /* Parameters of the spline */
- int ncase) /* Controls the evaluation of the
- * spline by indicating whether one or
- * two knots were placed in the
- * interval (leftX,rightX) */
-{
- double y;
-
- if (ncase == 4) {
- /*
- * Case 4: More than one knot was placed in the interval.
- */
-
- /*
- * Determine the location of data point relative to the 1st knot.
- */
- if (Y1 > intp->x) {
- y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x);
- } else if (Y1 < intp->x) {
- /*
- * Determine the location of the data point relative to
- * the 2nd knot.
- */
- if (Z1 > intp->x) {
- y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1);
- } else if (Z1 < intp->x) {
- y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
- } else {
- y = Z2;
- }
- } else {
- y = Y2;
- }
- } else {
+static void QuadSpline(Point2d* intp, Point2d* left, Point2d* right,
+ double param[], int ncase)
- /*
- * Cases 1, 2, or 3:
- *
- * Determine the location of the data point relative to the
- * knot.
- */
- if (Z1 < intp->x) {
- y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
- } else if (Z1 > intp->x) {
- y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x);
- } else {
- y = Z2;
- }
+{
+ double y;
+
+ if (ncase == 4) {
+ // Case 4: More than one knot was placed in the interval.
+ // Determine the location of data point relative to the 1st knot.
+ if (Y1 > intp->x)
+ y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x);
+ else if (Y1 < intp->x) {
+ // Determine the location of the data point relative to the 2nd knot.
+ if (Z1 > intp->x)
+ y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1);
+ else if (Z1 < intp->x)
+ y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
+ else
+ y = Z2;
}
- intp->y = y;
+ else
+ y = Y2;
+ }
+ else {
+ // Cases 1, 2, or 3:
+ // Determine the location of the data point relative to the knot.
+ if (Z1 < intp->x)
+ y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1);
+ else if (Z1 > intp->x)
+ y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x);
+ else
+ y = Z2;
+ }
+
+ intp->y = y;
}
/*
*---------------------------------------------------------------------------
- *
- * QuadSlopes --
- *
* Calculates the derivative at each of the data points. The
* slopes computed will insure that an osculatory quadratic
* spline will have one additional knot between two adjacent
* points of interpolation. Convexity and monotonicity are
* preserved wherever these conditions are compatible with the
* data.
- *
- * Results:
- * The output array "m" is filled with the derivates at each
- * data point.
- *
*---------------------------------------------------------------------------
*/
-static void
-QuadSlopes(Point2d *points, double *m, int nPoints)
+static void QuadSlopes(Point2d *points, double *m, int nPoints)
{
- double xbar, xmid, xhat, ydif1, ydif2;
- double yxmid;
- double m1, m2;
- double m1s, m2s;
- int i, n, l;
-
- m1s = m2s = m1 = m2 = 0;
- for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) {
- /*
- * Calculate the slopes of the two lines joining three
- * consecutive data points.
- */
- ydif1 = points[i].y - points[l].y;
- ydif2 = points[n].y - points[i].y;
- m1 = ydif1 / (points[i].x - points[l].x);
- m2 = ydif2 / (points[n].x - points[i].x);
- if (i == 1) {
- m1s = m1, m2s = m2; /* Save slopes of starting point */
- }
- /*
- * If one of the preceding slopes is zero or if they have opposite
- * sign, assign the value zero to the derivative at the middle
- * point.
- */
- if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0)) {
- m[i] = 0.0;
- } else if (fabs(m1) > fabs(m2)) {
- /*
- * Calculate the slope by extending the line with slope m1.
- */
- xbar = ydif2 / m1 + points[i].x;
- xhat = (xbar + points[n].x) / 2.0;
- m[i] = ydif2 / (xhat - points[i].x);
- } else {
- /*
- * Calculate the slope by extending the line with slope m2.
- */
- xbar = -ydif1 / m2 + points[i].x;
- xhat = (points[l].x + xbar) / 2.0;
- m[i] = ydif1 / (points[i].x - xhat);
- }
+ double m1s =0;
+ double m2s =0;
+ double m1 =0;
+ double m2 =0;
+ int i, n, l;
+ for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) {
+ // Calculate the slopes of the two lines joining three
+ // consecutive data points.
+ double ydif1 = points[i].y - points[l].y;
+ double ydif2 = points[n].y - points[i].y;
+ m1 = ydif1 / (points[i].x - points[l].x);
+ m2 = ydif2 / (points[n].x - points[i].x);
+ if (i == 1) {
+ // Save slopes of starting point
+ m1s = m1;
+ m2s = m2;
}
-
- /* Calculate the slope at the last point, x(n). */
- i = nPoints - 2;
- n = nPoints - 1;
- if ((m1 * m2) < 0.0) {
- m[n] = m2 * 2.0;
- } else {
- xmid = (points[i].x + points[n].x) / 2.0;
- yxmid = m[i] * (xmid - points[i].x) + points[i].y;
- m[n] = (points[n].y - yxmid) / (points[n].x - xmid);
- if ((m[n] * m2) < 0.0) {
- m[n] = 0.0;
- }
+ // If one of the preceding slopes is zero or if they have opposite
+ // sign, assign the value zero to the derivative at the middle point.
+ if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0))
+ m[i] = 0.0;
+ else if (fabs(m1) > fabs(m2)) {
+ // Calculate the slope by extending the line with slope m1.
+ double xbar = ydif2 / m1 + points[i].x;
+ double xhat = (xbar + points[n].x) / 2.0;
+ m[i] = ydif2 / (xhat - points[i].x);
}
-
- /* Calculate the slope at the first point, x(0). */
- if ((m1s * m2s) < 0.0) {
- m[0] = m1s * 2.0;
- } else {
- xmid = (points[0].x + points[1].x) / 2.0;
- yxmid = m[1] * (xmid - points[1].x) + points[1].y;
- m[0] = (yxmid - points[0].y) / (xmid - points[0].x);
- if ((m[0] * m1s) < 0.0) {
- m[0] = 0.0;
- }
+ else {
+ // Calculate the slope by extending the line with slope m2.
+ double xbar = -ydif1 / m2 + points[i].x;
+ double xhat = (points[l].x + xbar) / 2.0;
+ m[i] = ydif1 / (points[i].x - xhat);
}
-
+ }
+
+ // Calculate the slope at the last point, x(n).
+ i = nPoints - 2;
+ n = nPoints - 1;
+ if ((m1 * m2) < 0.0)
+ m[n] = m2 * 2.0;
+ else {
+ double xmid = (points[i].x + points[n].x) / 2.0;
+ double yxmid = m[i] * (xmid - points[i].x) + points[i].y;
+ m[n] = (points[n].y - yxmid) / (points[n].x - xmid);
+ if ((m[n] * m2) < 0.0)
+ m[n] = 0.0;
+ }
+
+ // Calculate the slope at the first point, x(0).
+ if ((m1s * m2s) < 0.0)
+ m[0] = m1s * 2.0;
+ else {
+ double xmid = (points[0].x + points[1].x) / 2.0;
+ double yxmid = m[1] * (xmid - points[1].x) + points[1].y;
+ m[0] = (yxmid - points[0].y) / (xmid - points[0].x);
+ if ((m[0] * m1s) < 0.0)
+ m[0] = 0.0;
+ }
}
/*
@@ -574,179 +457,149 @@ QuadSlopes(Point2d *points, double *m, int nPoints)
* QuadSpline
*---------------------------------------------------------------------------
*/
-static int
-QuadEval(
- Point2d origPts[],
- int nOrigPts,
- Point2d intpPts[],
- int nIntpPts,
- double *m, /* Slope of the spline at each point
- * of interpolation. */
- double epsilon) /* Relative error tolerance (see choose) */
+static int QuadEval(Point2d origPts[], int nOrigPts, Point2d intpPts[],
+ int nIntpPts, double *m, double epsilon)
{
- int error;
- int i, j;
- double param[10];
- int ncase;
- int start, end;
- int l, p;
- int n;
- int found;
-
- /* Initialize indices and set error result */
- error = 0;
- l = nOrigPts - 1;
- p = l - 1;
- ncase = 1;
-
- /*
- * Determine if abscissas of new vector are non-decreasing.
- */
- for (j = 1; j < nIntpPts; j++) {
- if (intpPts[j].x < intpPts[j - 1].x) {
- return 2;
- }
- }
- /*
- * Determine if any of the points in xval are LESS than the
- * abscissa of the first data point.
- */
- for (start = 0; start < nIntpPts; start++) {
- if (intpPts[start].x >= origPts[0].x) {
- break;
- }
- }
- /*
- * Determine if any of the points in xval are GREATER than the
- * abscissa of the l data point.
- */
- for (end = nIntpPts - 1; end >= 0; end--) {
- if (intpPts[end].x <= origPts[l].x) {
- break;
- }
- }
-
- if (start > 0) {
- error = 1; /* Set error value to indicate that
- * extrapolation has occurred. */
- /*
- * Calculate the images of points of evaluation whose abscissas
- * are less than the abscissa of the first data point.
- */
- ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param);
- for (j = 0; j < (start - 1); j++) {
- QuadSpline(intpPts + j, origPts, origPts + 1, param, ncase);
- }
- if (nIntpPts == 1) {
- return error;
- }
- }
- if ((nIntpPts == 1) && (end != (nIntpPts - 1))) {
- goto noExtrapolation;
- }
+ double param[10];
+
+ // Initialize indices and set error result
+ int error = 0;
+ int l = nOrigPts - 1;
+ int p = l - 1;
+ int ncase = 1;
+
+ // Determine if abscissas of new vector are non-decreasing.
+ for (int jj=1; jj<nIntpPts; jj++) {
+ if (intpPts[jj].x < intpPts[jj - 1].x)
+ return 2;
+ }
+ // Determine if any of the points in xval are LESS than the
+ // abscissa of the first data point.
+ int start;
+ for (start = 0; start < nIntpPts; start++) {
+ if (intpPts[start].x >= origPts[0].x)
+ break;
+ }
+ // Determine if any of the points in xval are GREATER than the
+ // abscissa of the l data point.
+ int end;
+ for (end = nIntpPts - 1; end >= 0; end--) {
+ if (intpPts[end].x <= origPts[l].x)
+ break;
+ }
+
+ if (start > 0) {
+ // Set error value to indicate that extrapolation has occurred
+ error = 1;
+
+ // Calculate the images of points of evaluation whose abscissas
+ // are less than the abscissa of the first data point.
+ ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param);
+ for (int jj=0; jj<(start - 1); jj++)
+ QuadSpline(intpPts + jj, origPts, origPts + 1, param, ncase);
+ if (nIntpPts == 1)
+ return error;
+ }
+ int ii;
+ int nn;
+ if ((nIntpPts == 1) && (end != (nIntpPts - 1)))
+ goto noExtrapolation;
- /*
- * Search locates the interval in which the first in-range
- * point of evaluation lies.
- */
-
- i = Search(origPts, nOrigPts, intpPts[start].x, &found);
+ // Search locates the interval in which the first in-range
+ // point of evaluation lies.
+ int found;
+ ii = Search(origPts, nOrigPts, intpPts[start].x, &found);
- n = i + 1;
- if (n >= nOrigPts) {
- n = nOrigPts - 1;
- i = nOrigPts - 2;
- }
- /*
- * If the first in-range point of evaluation is equal to one
- * of the data points, assign the appropriate value from y.
- * Continue until a point of evaluation is found which is not
- * equal to a data point.
- */
- if (found) {
- do {
- intpPts[start].y = origPts[i].y;
- start++;
- if (start >= nIntpPts) {
- return error;
- }
- } while (intpPts[start - 1].x == intpPts[start].x);
+ nn = ii + 1;
+ if (nn >= nOrigPts) {
+ nn = nOrigPts - 1;
+ ii = nOrigPts - 2;
+ }
+ /*
+ * If the first in-range point of evaluation is equal to one
+ * of the data points, assign the appropriate value from y.
+ * Continue until a point of evaluation is found which is not
+ * equal to a data point.
+ */
+ if (found) {
+ do {
+ intpPts[start].y = origPts[ii].y;
+ start++;
+ if (start >= nIntpPts) {
+ return error;
+ }
+ } while (intpPts[start - 1].x == intpPts[start].x);
- for (;;) {
- if (intpPts[start].x < origPts[n].x) {
- break; /* Break out of for-loop */
- }
- if (intpPts[start].x == origPts[n].x) {
- do {
- intpPts[start].y = origPts[n].y;
- start++;
- if (start >= nIntpPts) {
- return error;
- }
- } while (intpPts[start].x == intpPts[start - 1].x);
- }
- i++;
- n++;
- }
+ for (;;) {
+ if (intpPts[start].x < origPts[nn].x) {
+ break; /* Break out of for-loop */
+ }
+ if (intpPts[start].x == origPts[nn].x) {
+ do {
+ intpPts[start].y = origPts[nn].y;
+ start++;
+ if (start >= nIntpPts) {
+ return error;
+ }
+ } while (intpPts[start].x == intpPts[start - 1].x);
+ }
+ ii++;
+ nn++;
}
- /*
- * Calculate the images of all the points which lie within
- * range of the data.
- */
- if ((i > 0) || (error != 1)) {
- ncase = QuadSelect(origPts + i, origPts + n, m[i], m[n],
- epsilon, param);
+ }
+ /*
+ * Calculate the images of all the points which lie within
+ * range of the data.
+ */
+ if ((ii > 0) || (error != 1))
+ ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn], epsilon, param);
+
+ for (int jj=start; jj<=end; jj++) {
+ // If xx(j) - x(n) is negative, do not recalculate
+ // the parameters for this section of the spline since
+ // they are already known.
+ if (intpPts[jj].x == origPts[nn].x) {
+ intpPts[jj].y = origPts[nn].y;
+ continue;
}
- for (j = start; j <= end; j++) {
- /*
- * If xx(j) - x(n) is negative, do not recalculate
- * the parameters for this section of the spline since
- * they are already known.
- */
- if (intpPts[j].x == origPts[n].x) {
- intpPts[j].y = origPts[n].y;
- continue;
- } else if (intpPts[j].x > origPts[n].x) {
- double delta;
+ else if (intpPts[jj].x > origPts[nn].x) {
+ double delta;
- /* Determine that the routine is in the correct part of
- the spline. */
- do {
- i++, n++;
- delta = intpPts[j].x - origPts[n].x;
- } while (delta > 0.0);
+ // Determine that the routine is in the correct part of the spline
+ do {
+ ii++;
+ nn++;
+ delta = intpPts[jj].x - origPts[nn].x;
+ } while (delta > 0.0);
- if (delta < 0.0) {
- ncase = QuadSelect(origPts + i, origPts + n, m[i],
- m[n], epsilon, param);
- } else if (delta == 0.0) {
- intpPts[j].y = origPts[n].y;
- continue;
- }
- }
- QuadSpline(intpPts + j, origPts + i, origPts + n, param, ncase);
+ if (delta < 0.0)
+ ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn],
+ epsilon, param);
+ else if (delta == 0.0) {
+ intpPts[jj].y = origPts[nn].y;
+ continue;
+ }
}
+ QuadSpline(intpPts+jj, origPts+ii, origPts+nn, param, ncase);
+ }
- if (end == (nIntpPts - 1)) {
- return error;
- }
- if ((n == l) && (intpPts[end].x != origPts[l].x)) {
- goto noExtrapolation;
- }
+ if (end == (nIntpPts - 1))
+ return error;
- error = 1; /* Set error value to indicate that
- * extrapolation has occurred. */
- ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param);
+ if ((nn == l) && (intpPts[end].x != origPts[l].x))
+ goto noExtrapolation;
- noExtrapolation:
- /*
- * Calculate the images of the points of evaluation whose
- * abscissas are greater than the abscissa of the last data point.
- */
- for (j = (end + 1); j < nIntpPts; j++) {
- QuadSpline(intpPts + j, origPts + p, origPts + l, param, ncase);
- }
- return error;
+ // Set error value to indicate that extrapolation has occurred
+ error = 1;
+ ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param);
+
+ noExtrapolation:
+ // Calculate the images of the points of evaluation whose
+ // abscissas are greater than the abscissa of the last data point.
+ for (int jj=(end + 1); jj<nIntpPts; jj++)
+ QuadSpline(intpPts + jj, origPts + p, origPts + l, param, ncase);
+
+ return error;
}
/*
@@ -771,116 +624,108 @@ QuadEval(
* work Contains the value of the first derivative at each data point
* ym Contains the interpolated spline value at each data point
*/
-int
-Blt_QuadraticSpline(Point2d *origPts, int nOrigPts, Point2d *intpPts,
- int nIntpPts)
+int LineElement::quadraticSpline(Point2d *origPts, int nOrigPts,
+ Point2d *intpPts, int nIntpPts)
{
- double* work = (double*)malloc(nOrigPts * sizeof(double));
- double epsilon = 0.0;
- /* allocate space for vectors used in calculation */
- QuadSlopes(origPts, work, nOrigPts);
- int result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon);
- free(work);
- if (result > 1) {
- return 0;
- }
- return 1;
+ double* work = (double*)malloc(nOrigPts * sizeof(double));
+ double epsilon = 0.0;
+ /* allocate space for vectors used in calculation */
+ QuadSlopes(origPts, work, nOrigPts);
+ int result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon);
+ free(work);
+ if (result > 1) {
+ return 0;
+ }
+ return 1;
}
/*
*---------------------------------------------------------------------------
- *
* Reference:
* Numerical Analysis, R. Burden, J. Faires and A. Reynolds.
* Prindle, Weber & Schmidt 1981 pp 112
- *
- * Parameters:
- * origPts - vector of points, assumed to be sorted along x.
- * intpPts - vector of new points.
- *
*---------------------------------------------------------------------------
*/
-int
-Blt_NaturalSpline(Point2d *origPts, int nOrigPts, Point2d *intpPts,
- int nIntpPts)
+int LineElement::naturalSpline(Point2d *origPts, int nOrigPts,
+ Point2d *intpPts, int nIntpPts)
{
- Point2d *ip, *iend;
- double x, dy, alpha;
- int isKnot;
- int i, j, n;
-
- double* dx = (double*)malloc(sizeof(double) * nOrigPts);
- /* Calculate vector of differences */
- for (i = 0, j = 1; j < nOrigPts; i++, j++) {
- dx[i] = origPts[j].x - origPts[i].x;
- if (dx[i] < 0.0) {
- return 0;
- }
- }
- n = nOrigPts - 1; /* Number of intervals. */
- TriDiagonalMatrix* A =
- (TriDiagonalMatrix*)malloc(sizeof(TriDiagonalMatrix) * nOrigPts);
- if (!A) {
- free(dx);
- return 0;
- }
- /* Vectors to solve the tridiagonal matrix */
- A[0][0] = A[n][0] = 1.0;
- A[0][1] = A[n][1] = 0.0;
- A[0][2] = A[n][2] = 0.0;
-
- /* Calculate the intermediate results */
- for (i = 0, j = 1; j < n; j++, i++) {
- alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) -
- (origPts[j].y / dx[j]) + (origPts[i].y / dx[i]));
- A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1];
- A[j][1] = dx[j] / A[j][0];
- A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0];
- }
-
- Cubic2D* eq = (Cubic2D*)malloc(sizeof(Cubic2D) * nOrigPts);
- if (!eq) {
- free(A);
- free(dx);
- return 0;
- }
- eq[0].c = eq[n].c = 0.0;
- for (j = n, i = n - 1; i >= 0; i--, j--) {
- eq[i].c = A[i][2] - A[i][1] * eq[j].c;
- dy = origPts[i+1].y - origPts[i].y;
- eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0;
- eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]);
+ Point2d *ip, *iend;
+ double x, dy, alpha;
+ int isKnot;
+ int i, j, n;
+
+ double* dx = (double*)malloc(sizeof(double) * nOrigPts);
+ /* Calculate vector of differences */
+ for (i = 0, j = 1; j < nOrigPts; i++, j++) {
+ dx[i] = origPts[j].x - origPts[i].x;
+ if (dx[i] < 0.0) {
+ return 0;
}
+ }
+ n = nOrigPts - 1; /* Number of intervals. */
+ TriDiagonalMatrix* A =
+ (TriDiagonalMatrix*)malloc(sizeof(TriDiagonalMatrix) * nOrigPts);
+ if (!A) {
+ free(dx);
+ return 0;
+ }
+ /* Vectors to solve the tridiagonal matrix */
+ A[0][0] = A[n][0] = 1.0;
+ A[0][1] = A[n][1] = 0.0;
+ A[0][2] = A[n][2] = 0.0;
+
+ /* Calculate the intermediate results */
+ for (i = 0, j = 1; j < n; j++, i++) {
+ alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) -
+ (origPts[j].y / dx[j]) + (origPts[i].y / dx[i]));
+ A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1];
+ A[j][1] = dx[j] / A[j][0];
+ A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0];
+ }
+
+ Cubic2D* eq = (Cubic2D*)malloc(sizeof(Cubic2D) * nOrigPts);
+ if (!eq) {
free(A);
free(dx);
-
- /* Now calculate the new values */
- for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) {
- ip->y = 0.0;
- x = ip->x;
-
- /* Is it outside the interval? */
- if ((x < origPts[0].x) || (x > origPts[n].x)) {
- continue;
- }
- /* Search for the interval containing x in the point array */
- i = Search(origPts, nOrigPts, x, &isKnot);
- if (isKnot) {
- ip->y = origPts[i].y;
- } else {
- i--;
- x -= origPts[i].x;
- ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d));
- }
+ return 0;
+ }
+ eq[0].c = eq[n].c = 0.0;
+ for (j = n, i = n - 1; i >= 0; i--, j--) {
+ eq[i].c = A[i][2] - A[i][1] * eq[j].c;
+ dy = origPts[i+1].y - origPts[i].y;
+ eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0;
+ eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]);
+ }
+ free(A);
+ free(dx);
+
+ /* Now calculate the new values */
+ for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) {
+ ip->y = 0.0;
+ x = ip->x;
+
+ /* Is it outside the interval? */
+ if ((x < origPts[0].x) || (x > origPts[n].x)) {
+ continue;
}
- free(eq);
- return 1;
+ /* Search for the interval containing x in the point array */
+ i = Search(origPts, nOrigPts, x, &isKnot);
+ if (isKnot) {
+ ip->y = origPts[i].y;
+ } else {
+ i--;
+ x -= origPts[i].x;
+ ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d));
+ }
+ }
+ free(eq);
+ return 1;
}
typedef struct {
- double t; /* Arc length of interval. */
- double x; /* 2nd derivative of X with respect to T */
- double y; /* 2nd derivative of Y with respect to T */
+ double t; /* Arc length of interval. */
+ double x; /* 2nd derivative of X with respect to T */
+ double y; /* 2nd derivative of Y with respect to T */
} CubicSpline;
/*
@@ -900,42 +745,41 @@ typedef struct {
* (C is upper triangle with unit diagonal, D is diagonal) is calculated.
* Return TRUE if decomposition exist.
*/
-static int
-SolveCubic1(TriDiagonalMatrix A[], int n)
+static int SolveCubic1(TriDiagonalMatrix A[], int n)
{
- int i;
- double m_ij, m_n, m_nn, d;
-
- if (n < 1) {
- return 0; /* Dimension should be at least 1 */
- }
- d = A[0][1]; /* D_{0,0} = A_{0,0} */
+ int i;
+ double m_ij, m_n, m_nn, d;
+
+ if (n < 1) {
+ return 0; /* Dimension should be at least 1 */
+ }
+ d = A[0][1]; /* D_{0,0} = A_{0,0} */
+ if (d <= 0.0) {
+ return 0; /* A (or D) should be positive definite */
+ }
+ m_n = A[0][0]; /* A_{0,n-1} */
+ m_nn = A[n - 1][1]; /* A_{n-1,n-1} */
+ for (i = 0; i < n - 2; i++) {
+ m_ij = A[i][2]; /* A_{i,1} */
+ A[i][2] = m_ij / d; /* C_{i,i+1} */
+ A[i][0] = m_n / d; /* C_{i,n-1} */
+ m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */
+ m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */
+ d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */
if (d <= 0.0) {
- return 0; /* A (or D) should be positive definite */
+ return 0; /* Elements of D should be positive */
}
- m_n = A[0][0]; /* A_{0,n-1} */
- m_nn = A[n - 1][1]; /* A_{n-1,n-1} */
- for (i = 0; i < n - 2; i++) {
- m_ij = A[i][2]; /* A_{i,1} */
- A[i][2] = m_ij / d; /* C_{i,i+1} */
- A[i][0] = m_n / d; /* C_{i,n-1} */
- m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */
- m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */
- d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */
- if (d <= 0.0) {
- return 0; /* Elements of D should be positive */
- }
- A[i + 1][1] = d;
- }
- if (n >= 2) { /* Complete last column */
- m_n += A[n - 2][2]; /* add A_{n-2,n-1} */
- A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
- A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */
- if (d <= 0.0) {
- return 0;
- }
+ A[i + 1][1] = d;
+ }
+ if (n >= 2) { /* Complete last column */
+ m_n += A[n - 2][2]; /* add A_{n-2,n-1} */
+ A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
+ A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */
+ if (d <= 0.0) {
+ return 0;
}
- return 1;
+ }
+ return 1;
}
/*
@@ -943,49 +787,45 @@ SolveCubic1(TriDiagonalMatrix A[], int n)
* decomposition calculated above (in m[][]) and the right side b given
* in x[]. The solution x overwrites the right side in x[].
*/
-static void
-SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[], int nIntervals)
+static void SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[],
+ int nIntervals)
{
- int i;
- double x, y;
- int n, m;
-
- n = nIntervals - 2;
- m = nIntervals - 1;
-
- /* Division by transpose of C : b = C^{-T} * b */
- x = spline[m].x;
- y = spline[m].y;
- for (i = 0; i < n; i++) {
- spline[i + 1].x -= A[i][2] * spline[i].x; /* C_{i,i+1} * x(i) */
- spline[i + 1].y -= A[i][2] * spline[i].y; /* C_{i,i+1} * x(i) */
- x -= A[i][0] * spline[i].x; /* C_{i,n-1} * x(i) */
- y -= A[i][0] * spline[i].y; /* C_{i,n-1} * x(i) */
- }
- if (n >= 0) {
- /* C_{n-2,n-1} * x_{n-1} */
- spline[m].x = x - A[n][0] * spline[n].x;
- spline[m].y = y - A[n][0] * spline[n].y;
- }
- /* Division by D: b = D^{-1} * b */
- for (i = 0; i < nIntervals; i++) {
- spline[i].x /= A[i][1];
- spline[i].y /= A[i][1];
- }
-
- /* Division by C: b = C^{-1} * b */
- x = spline[m].x;
- y = spline[m].y;
- if (n >= 0) {
- /* C_{n-2,n-1} * x_{n-1} */
- spline[n].x -= A[n][0] * x;
- spline[n].y -= A[n][0] * y;
- }
- for (i = (n - 1); i >= 0; i--) {
- /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
- spline[i].x -= A[i][2] * spline[i + 1].x + A[i][0] * x;
- spline[i].y -= A[i][2] * spline[i + 1].y + A[i][0] * y;
- }
+ int n = nIntervals - 2;
+ int m = nIntervals - 1;
+
+ // Division by transpose of C : b = C^{-T} * b
+ double x = spline[m].x;
+ double y = spline[m].y;
+ for (int ii=0; ii<n; ii++) {
+ spline[ii + 1].x -= A[ii][2] * spline[ii].x; /* C_{i,i+1} * x(i) */
+ spline[ii + 1].y -= A[ii][2] * spline[ii].y; /* C_{i,i+1} * x(i) */
+ x -= A[ii][0] * spline[ii].x; /* C_{i,n-1} * x(i) */
+ y -= A[ii][0] * spline[ii].y; /* C_{i,n-1} * x(i) */
+ }
+ if (n >= 0) {
+ // C_{n-2,n-1} * x_{n-1}
+ spline[m].x = x - A[n][0] * spline[n].x;
+ spline[m].y = y - A[n][0] * spline[n].y;
+ }
+ // Division by D: b = D^{-1} * b
+ for (int ii=0; ii<nIntervals; ii++) {
+ spline[ii].x /= A[ii][1];
+ spline[ii].y /= A[ii][1];
+ }
+
+ // Division by C: b = C^{-1} * b
+ x = spline[m].x;
+ y = spline[m].y;
+ if (n >= 0) {
+ // C_{n-2,n-1} * x_{n-1}
+ spline[n].x -= A[n][0] * x;
+ spline[n].y -= A[n][0] * y;
+ }
+ for (int ii=(n - 1); ii>=0; ii--) {
+ // C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1}
+ spline[ii].x -= A[ii][2] * spline[ii + 1].x + A[ii][0] * x;
+ spline[ii].y -= A[ii][2] * spline[ii + 1].y + A[ii][0] * y;
+ }
}
/*
@@ -994,286 +834,253 @@ SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[], int nIntervals)
* length of the linear stroke. The number of points must be at least 3.
* Note: For CLOSED_CONTOURs the first and last point must be equal.
*/
-static CubicSpline *
-CubicSlopes(
- Point2d points[],
- int nPoints, /* Number of points (nPoints>=3) */
- int isClosed, /* CLOSED_CONTOUR or OPEN_CONTOUR */
- double unitX,
- double unitY) /* Unit length in x and y (norm=1) */
+static CubicSpline* CubicSlopes(Point2d points[], int nPoints,
+ int isClosed, double unitX, double unitY)
{
- CubicSpline *s1, *s2;
- int n, i;
- double norm, dx, dy;
+ CubicSpline *s1, *s2;
+ int n, i;
+ double norm, dx, dy;
- CubicSpline* spline = (CubicSpline*)malloc(sizeof(CubicSpline) * nPoints);
- if (!spline)
- return NULL;
-
- TriDiagonalMatrix *A
- = (TriDiagonalMatrix*)malloc(sizeof(TriDiagonalMatrix) * nPoints);
- if (!A) {
- free(spline);
- return NULL;
- }
+ CubicSpline* spline = (CubicSpline*)malloc(sizeof(CubicSpline) * nPoints);
+ if (!spline)
+ return NULL;
+
+ TriDiagonalMatrix *A
+ = (TriDiagonalMatrix*)malloc(sizeof(TriDiagonalMatrix) * nPoints);
+ if (!A) {
+ free(spline);
+ return NULL;
+ }
+ /*
+ * Calculate first differences in (dxdt2[i], y[i]) and interval lengths
+ * in dist[i]:
+ */
+ s1 = spline;
+ for (i = 0; i < nPoints - 1; i++) {
+ s1->x = points[i+1].x - points[i].x;
+ s1->y = points[i+1].y - points[i].y;
+
/*
- * Calculate first differences in (dxdt2[i], y[i]) and interval lengths
- * in dist[i]:
+ * The Norm of a linear stroke is calculated in "normal coordinates"
+ * and used as interval length:
+ */
+ dx = s1->x / unitX;
+ dy = s1->y / unitY;
+ s1->t = sqrt(dx * dx + dy * dy);
+
+ s1->x /= s1->t; /* first difference, with unit norm: */
+ s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */
+ s1++;
+ }
+
+ /*
+ * Setup linear System: Ax = b
+ */
+ n = nPoints - 2; /* Without first and last point */
+ if (isClosed) {
+ /* First and last points must be equal for CLOSED_CONTOURs */
+ spline[nPoints - 1].t = spline[0].t;
+ spline[nPoints - 1].x = spline[0].x;
+ spline[nPoints - 1].y = spline[0].y;
+ n++; /* Add last point (= first point) */
+ }
+ s1 = spline, s2 = s1 + 1;
+ for (i = 0; i < n; i++) {
+ /* Matrix A, mainly tridiagonal with cyclic second index
+ ("j = j+n mod n")
+ */
+ A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */
+ A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */
+ A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */
+
+ /* Right side b_x and b_y */
+ s1->x = (s2->x - s1->x) * 6.0;
+ s1->y = (s2->y - s1->y) * 6.0;
+
+ /*
+ * If the linear stroke shows a cusp of more than 90 degree,
+ * the right side is reduced to avoid oscillations in the
+ * spline:
*/
- s1 = spline;
- for (i = 0; i < nPoints - 1; i++) {
- s1->x = points[i+1].x - points[i].x;
- s1->y = points[i+1].y - points[i].y;
-
- /*
- * The Norm of a linear stroke is calculated in "normal coordinates"
- * and used as interval length:
- */
- dx = s1->x / unitX;
- dy = s1->y / unitY;
- s1->t = sqrt(dx * dx + dy * dy);
-
- s1->x /= s1->t; /* first difference, with unit norm: */
- s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */
- s1++;
- }
-
/*
- * Setup linear System: Ax = b
+ * The Norm of a linear stroke is calculated in "normal coordinates"
+ * and used as interval length:
*/
- n = nPoints - 2; /* Without first and last point */
- if (isClosed) {
- /* First and last points must be equal for CLOSED_CONTOURs */
- spline[nPoints - 1].t = spline[0].t;
- spline[nPoints - 1].x = spline[0].x;
- spline[nPoints - 1].y = spline[0].y;
- n++; /* Add last point (= first point) */
- }
- s1 = spline, s2 = s1 + 1;
- for (i = 0; i < n; i++) {
- /* Matrix A, mainly tridiagonal with cyclic second index
- ("j = j+n mod n")
- */
- A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */
- A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */
- A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */
-
- /* Right side b_x and b_y */
- s1->x = (s2->x - s1->x) * 6.0;
- s1->y = (s2->y - s1->y) * 6.0;
-
- /*
- * If the linear stroke shows a cusp of more than 90 degree,
- * the right side is reduced to avoid oscillations in the
- * spline:
- */
- /*
- * The Norm of a linear stroke is calculated in "normal coordinates"
- * and used as interval length:
- */
- dx = s1->x / unitX;
- dy = s1->y / unitY;
- norm = sqrt(dx * dx + dy * dy) / 8.5;
- if (norm > 1.0) {
- /* The first derivative will not be continuous */
- s1->x /= norm;
- s1->y /= norm;
- }
- s1++, s2++;
- }
-
- if (!isClosed) {
- /* Third derivative is set to zero at both ends */
- A[0][1] += A[0][0]; /* A_{0,0} */
- A[0][0] = 0.0; /* A_{0,n-1} */
- A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */
- A[n-1][2] = 0.0; /* A_{n-1,0} */
- }
- /* Solve linear systems for dxdt2[] and y[] */
-
- if (SolveCubic1(A, n)) { /* Cholesky decomposition */
- SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */
- } else { /* Should not happen, but who knows ... */
- free(A);
- free(spline);
- return NULL;
+ dx = s1->x / unitX;
+ dy = s1->y / unitY;
+ norm = sqrt(dx * dx + dy * dy) / 8.5;
+ if (norm > 1.0) {
+ /* The first derivative will not be continuous */
+ s1->x /= norm;
+ s1->y /= norm;
}
- /* Shift all second derivatives one place right and update the ends. */
- s2 = spline + n, s1 = s2 - 1;
- for (/* empty */; s2 > spline; s2--, s1--) {
- s2->x = s1->x;
- s2->y = s1->y;
- }
- if (isClosed) {
- spline[0].x = spline[n].x;
- spline[0].y = spline[n].y;
- } else {
- /* Third derivative is 0.0 for the first and last interval. */
- spline[0].x = spline[1].x;
- spline[0].y = spline[1].y;
- spline[n + 1].x = spline[n].x;
- spline[n + 1].y = spline[n].y;
- }
- free( A);
- return spline;
+ s1++, s2++;
+ }
+
+ if (!isClosed) {
+ /* Third derivative is set to zero at both ends */
+ A[0][1] += A[0][0]; /* A_{0,0} */
+ A[0][0] = 0.0; /* A_{0,n-1} */
+ A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */
+ A[n-1][2] = 0.0; /* A_{n-1,0} */
+ }
+ /* Solve linear systems for dxdt2[] and y[] */
+
+ if (SolveCubic1(A, n)) { /* Cholesky decomposition */
+ SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */
+ } else { /* Should not happen, but who knows ... */
+ free(A);
+ free(spline);
+ return NULL;
+ }
+ /* Shift all second derivatives one place right and update the ends. */
+ s2 = spline + n, s1 = s2 - 1;
+ for (/* empty */; s2 > spline; s2--, s1--) {
+ s2->x = s1->x;
+ s2->y = s1->y;
+ }
+ if (isClosed) {
+ spline[0].x = spline[n].x;
+ spline[0].y = spline[n].y;
+ } else {
+ /* Third derivative is 0.0 for the first and last interval. */
+ spline[0].x = spline[1].x;
+ spline[0].y = spline[1].y;
+ spline[n + 1].x = spline[n].x;
+ spline[n + 1].y = spline[n].y;
+ }
+ free( A);
+ return spline;
}
-
-/*
- * Calculate interpolated values of the spline function (defined via p_cntr
- * and the second derivatives dxdt2[] and dydt2[]). The number of tabulated
- * values is n. On an equidistant grid n_intpol values are calculated.
- */
-static int
-CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts, int nIntpPts,
- CubicSpline *spline)
+// Calculate interpolated values of the spline function (defined via p_cntr
+// and the second derivatives dxdt2[] and dydt2[]). The number of tabulated
+// values is n. On an equidistant grid n_intpol values are calculated.
+static int CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts,
+ int nIntpPts, CubicSpline *spline)
{
- double t, tSkip, tMax;
- Point2d q;
- int i, j, count;
-
- /* Sum the lengths of all the segments (intervals). */
- tMax = 0.0;
- for (i = 0; i < nOrigPts - 1; i++) {
- tMax += spline[i].t;
- }
+ double t, tSkip;
+ Point2d q;
+ int count;
+
+ /* Sum the lengths of all the segments (intervals). */
+ double tMax = 0.0;
+ for (int ii=0; ii<nOrigPts - 1; ii++)
+ tMax += spline[ii].t;
- /* Need a better way of doing this... */
+ /* Need a better way of doing this... */
- /* The distance between interpolated points */
- tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1);
+ /* The distance between interpolated points */
+ tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1);
- t = 0.0; /* Spline parameter value. */
- q = origPts[0];
- count = 0;
+ t = 0.0; /* Spline parameter value. */
+ q = origPts[0];
+ count = 0;
- intpPts[count++] = q; /* First point. */
- t += tSkip;
+ intpPts[count++] = q; /* First point. */
+ t += tSkip;
- for (i = 0, j = 1; j < nOrigPts; i++, j++) {
- Point2d p;
- double d, hx, dx0, dx01, hy, dy0, dy01;
-
- d = spline[i].t; /* Interval length */
- p = q;
- q = origPts[i+1];
- hx = (q.x - p.x) / d;
- hy = (q.y - p.y) / d;
- dx0 = (spline[j].x + 2 * spline[i].x) / 6.0;
- dy0 = (spline[j].y + 2 * spline[i].y) / 6.0;
- dx01 = (spline[j].x - spline[i].x) / (6.0 * d);
- dy01 = (spline[j].y - spline[i].y) / (6.0 * d);
- while (t <= spline[i].t) { /* t in current interval ? */
- p.x += t * (hx + (t - d) * (dx0 + t * dx01));
- p.y += t * (hy + (t - d) * (dy0 + t * dy01));
- intpPts[count++] = p;
- t += tSkip;
- }
- /* Parameter t relative to start of next interval */
- t -= spline[i].t;
+ for (int ii=0, jj=1; jj<nOrigPts; ii++, jj++) {
+ // Interval length
+ double d = spline[ii].t;
+ Point2d p = q;
+ q = origPts[ii+1];
+ double hx = (q.x - p.x) / d;
+ double hy = (q.y - p.y) / d;
+ double dx0 = (spline[jj].x + 2 * spline[ii].x) / 6.0;
+ double dy0 = (spline[jj].y + 2 * spline[ii].y) / 6.0;
+ double dx01 = (spline[jj].x - spline[ii].x) / (6.0 * d);
+ double dy01 = (spline[jj].y - spline[ii].y) / (6.0 * d);
+ while (t <= spline[ii].t) { /* t in current interval ? */
+ p.x += t * (hx + (t - d) * (dx0 + t * dx01));
+ p.y += t * (hy + (t - d) * (dy0 + t * dy01));
+ intpPts[count++] = p;
+ t += tSkip;
}
- return count;
-}
-/*
- * Generate a cubic spline curve through the points (x_i,y_i) which are
- * stored in the linked list p_cntr.
- * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
- * parameter t is the length of the linear stroke.
- */
-int
-Blt_NaturalParametricSpline(Point2d *origPts, int nOrigPts, Region2d *extsPtr,
- int isClosed, Point2d *intpPts, int nIntpPts)
-{
- double unitX, unitY; /* To define norm (x,y)-plane */
- CubicSpline *spline;
- int result;
+ // Parameter t relative to start of next interval
+ t -= spline[ii].t;
+ }
- if (nOrigPts < 3) {
- return 0;
- }
- if (isClosed) {
- origPts[nOrigPts].x = origPts[0].x;
- origPts[nOrigPts].y = origPts[0].y;
- nOrigPts++;
- }
- /* Width and height of the grid is used at unit length (2d-norm) */
- unitX = extsPtr->right - extsPtr->left;
- unitY = extsPtr->bottom - extsPtr->top;
+ return count;
+}
- if (unitX < FLT_EPSILON) {
- unitX = FLT_EPSILON;
- }
- if (unitY < FLT_EPSILON) {
- unitY = FLT_EPSILON;
- }
- /* Calculate parameters for cubic spline:
- * t = arc length of interval.
- * dxdt2 = second derivatives of x with respect to t,
- * dydt2 = second derivatives of y with respect to t,
- */
- spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY);
- if (spline == NULL) {
- return 0;
- }
- result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline);
- free(spline);
- return result;
+int LineElement::naturalParametricSpline(Point2d *origPts, int nOrigPts,
+ Region2d *extsPtr, int isClosed,
+ Point2d *intpPts, int nIntpPts)
+{
+ // Generate a cubic spline curve through the points (x_i,y_i) which are
+ // stored in the linked list p_cntr.
+ // The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
+ // parameter t is the length of the linear stroke.
+
+ if (nOrigPts < 3)
+ return 0;
+
+ if (isClosed) {
+ origPts[nOrigPts].x = origPts[0].x;
+ origPts[nOrigPts].y = origPts[0].y;
+ nOrigPts++;
+ }
+
+ // Width and height of the grid is used at unit length (2d-norm)
+ double unitX = extsPtr->right - extsPtr->left;
+ double unitY = extsPtr->bottom - extsPtr->top;
+ if (unitX < FLT_EPSILON)
+ unitX = FLT_EPSILON;
+ if (unitY < FLT_EPSILON)
+ unitY = FLT_EPSILON;
+
+ /* Calculate parameters for cubic spline:
+ * t = arc length of interval.
+ * dxdt2 = second derivatives of x with respect to t,
+ * dydt2 = second derivatives of y with respect to t,
+ */
+ CubicSpline* spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY);
+ if (spline == NULL)
+ return 0;
+
+ int result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline);
+
+ free(spline);
+ return result;
}
-static INLINE void
-CatromCoeffs(Point2d *p, Point2d *a, Point2d *b, Point2d *c, Point2d *d)
+static void CatromCoeffs(Point2d* p, Point2d* a, Point2d* b,
+ Point2d* c, Point2d* d)
{
- a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x;
- b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x;
- c->x = -p[0].x + p[2].x;
- d->x = 2.0 * p[1].x;
- a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y;
- b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y;
- c->y = -p[0].y + p[2].y;
- d->y = 2.0 * p[1].y;
+ a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x;
+ b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x;
+ c->x = -p[0].x + p[2].x;
+ d->x = 2.0 * p[1].x;
+ a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y;
+ b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y;
+ c->y = -p[0].y + p[2].y;
+ d->y = 2.0 * p[1].y;
}
-/*
- *---------------------------------------------------------------------------
- *
- * Blt_ParametricCatromSpline --
- *
- * Computes a spline based upon the data points, returning a new (larger)
- * coordinate array of points.
- *
- * Results:
- * None.
- *
- *---------------------------------------------------------------------------
- */
-int
-Blt_CatromParametricSpline(Point2d *points, int nPoints, Point2d *intpPts,
- int nIntpPts)
+int LineElement::catromParametricSpline(Point2d* points, int nPoints,
+ Point2d* intpPts, int nIntpPts)
{
- int i;
- double t;
- int interval;
+ // The spline is computed in screen coordinates instead of data points so
+ // that we can select the abscissas of the interpolated points from each
+ // pixel horizontally across the plotting area.
+
+ Point2d* origPts = new Point2d[nPoints + 4];
+ memcpy(origPts + 1, points, sizeof(Point2d) * nPoints);
+
+ origPts[0] = origPts[1];
+ origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints];
+
+ for (int ii=0; ii<nIntpPts; ii++) {
+ int interval = (int)intpPts[ii].x;
+ double t = intpPts[ii].y;
Point2d a, b, c, d;
+ CatromCoeffs(origPts + interval, &a, &b, &c, &d);
+ intpPts[ii].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0;
+ intpPts[ii].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0;
+ }
- /*
- * The spline is computed in screen coordinates instead of data points so
- * that we can select the abscissas of the interpolated points from each
- * pixel horizontally across the plotting area.
- */
- Point2d* origPts = (Point2d*)malloc((nPoints + 4) * sizeof(Point2d));
- memcpy(origPts + 1, points, sizeof(Point2d) * nPoints);
-
- origPts[0] = origPts[1];
- origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints];
-
- for (i = 0; i < nIntpPts; i++) {
- interval = (int)intpPts[i].x;
- t = intpPts[i].y;
- CatromCoeffs(origPts + interval, &a, &b, &c, &d);
- intpPts[i].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0;
- intpPts[i].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0;
- }
- free(origPts);
- return 1;
+ delete [] origPts;
+ return 1;
}