summaryrefslogtreecommitdiffstats
path: root/tk8.6/generic/tkTrig.c
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2019-07-31 17:58:33 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2019-07-31 17:58:33 (GMT)
commit31ea2092cd64f21068bdca467639237ca3cab2bd (patch)
tree8330b605eef4885855552ad7d301fb1c447796cd /tk8.6/generic/tkTrig.c
parentde0c57b4383a4d7ced5058c2c50580a0f4ba5477 (diff)
downloadblt-31ea2092cd64f21068bdca467639237ca3cab2bd.zip
blt-31ea2092cd64f21068bdca467639237ca3cab2bd.tar.gz
blt-31ea2092cd64f21068bdca467639237ca3cab2bd.tar.bz2
upgrade tcl/tk 8.6.10
Diffstat (limited to 'tk8.6/generic/tkTrig.c')
-rw-r--r--tk8.6/generic/tkTrig.c1753
1 files changed, 1753 insertions, 0 deletions
diff --git a/tk8.6/generic/tkTrig.c b/tk8.6/generic/tkTrig.c
new file mode 100644
index 0000000..a2bf456
--- /dev/null
+++ b/tk8.6/generic/tkTrig.c
@@ -0,0 +1,1753 @@
+/*
+ * tkTrig.c --
+ *
+ * This file contains a collection of trigonometry utility routines that
+ * are used by Tk and in particular by the canvas code. It also has
+ * miscellaneous geometry functions used by canvases.
+ *
+ * Copyright (c) 1992-1994 The Regents of the University of California.
+ * Copyright (c) 1994-1997 Sun Microsystems, Inc.
+ *
+ * See the file "license.terms" for information on usage and redistribution of
+ * this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ */
+
+#include "tkInt.h"
+#include "tkCanvas.h"
+
+#undef MIN
+#define MIN(a,b) (((a) < (b)) ? (a) : (b))
+#undef MAX
+#define MAX(a,b) (((a) > (b)) ? (a) : (b))
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkLineToPoint --
+ *
+ * Compute the distance from a point to a finite line segment.
+ *
+ * Results:
+ * The return value is the distance from the line segment whose
+ * end-points are *end1Ptr and *end2Ptr to the point given by *pointPtr.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+double
+TkLineToPoint(
+ double end1Ptr[2], /* Coordinates of first end-point of line. */
+ double end2Ptr[2], /* Coordinates of second end-point of line. */
+ double pointPtr[2]) /* Points to coords for point. */
+{
+ double x, y;
+
+ /*
+ * Compute the point on the line that is closest to the point. This must
+ * be done separately for vertical edges, horizontal edges, and other
+ * edges.
+ */
+
+ if (end1Ptr[0] == end2Ptr[0]) {
+
+ /*
+ * Vertical edge.
+ */
+
+ x = end1Ptr[0];
+ if (end1Ptr[1] >= end2Ptr[1]) {
+ y = MIN(end1Ptr[1], pointPtr[1]);
+ y = MAX(y, end2Ptr[1]);
+ } else {
+ y = MIN(end2Ptr[1], pointPtr[1]);
+ y = MAX(y, end1Ptr[1]);
+ }
+ } else if (end1Ptr[1] == end2Ptr[1]) {
+
+ /*
+ * Horizontal edge.
+ */
+
+ y = end1Ptr[1];
+ if (end1Ptr[0] >= end2Ptr[0]) {
+ x = MIN(end1Ptr[0], pointPtr[0]);
+ x = MAX(x, end2Ptr[0]);
+ } else {
+ x = MIN(end2Ptr[0], pointPtr[0]);
+ x = MAX(x, end1Ptr[0]);
+ }
+ } else {
+ double m1, b1, m2, b2;
+
+ /*
+ * The edge is neither horizontal nor vertical. Convert the edge to a
+ * line equation of the form y = m1*x + b1. Then compute a line
+ * perpendicular to this edge but passing through the point, also in
+ * the form y = m2*x + b2.
+ */
+
+ m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
+ b1 = end1Ptr[1] - m1*end1Ptr[0];
+ m2 = -1.0/m1;
+ b2 = pointPtr[1] - m2*pointPtr[0];
+ x = (b2 - b1)/(m1 - m2);
+ y = m1*x + b1;
+ if (end1Ptr[0] > end2Ptr[0]) {
+ if (x > end1Ptr[0]) {
+ x = end1Ptr[0];
+ y = end1Ptr[1];
+ } else if (x < end2Ptr[0]) {
+ x = end2Ptr[0];
+ y = end2Ptr[1];
+ }
+ } else {
+ if (x > end2Ptr[0]) {
+ x = end2Ptr[0];
+ y = end2Ptr[1];
+ } else if (x < end1Ptr[0]) {
+ x = end1Ptr[0];
+ y = end1Ptr[1];
+ }
+ }
+ }
+
+ /*
+ * Compute the distance to the closest point.
+ */
+
+ return hypot(pointPtr[0] - x, pointPtr[1] - y);
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkLineToArea --
+ *
+ * Determine whether a line lies entirely inside, entirely outside, or
+ * overlapping a given rectangular area.
+ *
+ * Results:
+ * -1 is returned if the line given by end1Ptr and end2Ptr is entirely
+ * outside the rectangle given by rectPtr. 0 is returned if the polygon
+ * overlaps the rectangle, and 1 is returned if the polygon is entirely
+ * inside the rectangle.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkLineToArea(
+ double end1Ptr[2], /* X and y coordinates for one endpoint of
+ * line. */
+ double end2Ptr[2], /* X and y coordinates for other endpoint of
+ * line. */
+ double rectPtr[4]) /* Points to coords for rectangle, in the
+ * order x1, y1, x2, y2. X1 must be no larger
+ * than x2, and y1 no larger than y2. */
+{
+ int inside1, inside2;
+
+ /*
+ * First check the two points individually to see whether they are inside
+ * the rectangle or not.
+ */
+
+ inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
+ && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
+ inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
+ && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
+ if (inside1 != inside2) {
+ return 0;
+ }
+ if (inside1 & inside2) {
+ return 1;
+ }
+
+ /*
+ * Both points are outside the rectangle, but still need to check for
+ * intersections between the line and the rectangle. Horizontal and
+ * vertical lines are particularly easy, so handle them separately.
+ */
+
+ if (end1Ptr[0] == end2Ptr[0]) {
+ /*
+ * Vertical line.
+ */
+
+ if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
+ && (end1Ptr[0] >= rectPtr[0])
+ && (end1Ptr[0] <= rectPtr[2])) {
+ return 0;
+ }
+ } else if (end1Ptr[1] == end2Ptr[1]) {
+ /*
+ * Horizontal line.
+ */
+
+ if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
+ && (end1Ptr[1] >= rectPtr[1])
+ && (end1Ptr[1] <= rectPtr[3])) {
+ return 0;
+ }
+ } else {
+ double m, x, y, low, high;
+
+ /*
+ * Diagonal line. Compute slope of line and use for intersection
+ * checks against each of the sides of the rectangle: left, right,
+ * bottom, top.
+ */
+
+ m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
+ if (end1Ptr[0] < end2Ptr[0]) {
+ low = end1Ptr[0];
+ high = end2Ptr[0];
+ } else {
+ low = end2Ptr[0];
+ high = end1Ptr[0];
+ }
+
+ /*
+ * Left edge.
+ */
+
+ y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
+ if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
+ && (y >= rectPtr[1]) && (y <= rectPtr[3])) {
+ return 0;
+ }
+
+ /*
+ * Right edge.
+ */
+
+ y += (rectPtr[2] - rectPtr[0])*m;
+ if ((y >= rectPtr[1]) && (y <= rectPtr[3])
+ && (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
+ return 0;
+ }
+
+ /*
+ * Bottom edge.
+ */
+
+ if (end1Ptr[1] < end2Ptr[1]) {
+ low = end1Ptr[1];
+ high = end2Ptr[1];
+ } else {
+ low = end2Ptr[1];
+ high = end1Ptr[1];
+ }
+ x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
+ if ((x >= rectPtr[0]) && (x <= rectPtr[2])
+ && (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
+ return 0;
+ }
+
+ /*
+ * Top edge.
+ */
+
+ x += (rectPtr[3] - rectPtr[1])/m;
+ if ((x >= rectPtr[0]) && (x <= rectPtr[2])
+ && (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
+ return 0;
+ }
+ }
+ return -1;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkThickPolyLineToArea --
+ *
+ * This function is called to determine whether a connected series of
+ * line segments lies entirely inside, entirely outside, or overlapping a
+ * given rectangular area.
+ *
+ * Results:
+ * -1 is returned if the lines are entirely outside the area, 0 if they
+ * overlap, and 1 if they are entirely inside the given area.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+int
+TkThickPolyLineToArea(
+ double *coordPtr, /* Points to an array of coordinates for the
+ * polyline: x0, y0, x1, y1, ... */
+ int numPoints, /* Total number of points at *coordPtr. */
+ double width, /* Width of each line segment. */
+ int capStyle, /* How are end-points of polyline drawn?
+ * CapRound, CapButt, or CapProjecting. */
+ int joinStyle, /* How are joints in polyline drawn?
+ * JoinMiter, JoinRound, or JoinBevel. */
+ double *rectPtr) /* Rectangular area to check against. */
+{
+ double radius, poly[10];
+ int count;
+ int changedMiterToBevel; /* Non-zero means that a mitered corner had to
+ * be treated as beveled after all because the
+ * angle was < 11 degrees. */
+ int inside; /* Tentative guess about what to return, based
+ * on all points seen so far: one means
+ * everything seen so far was inside the area;
+ * -1 means everything was outside the area.
+ * 0 means overlap has been found. */
+
+ radius = width/2.0;
+ inside = -1;
+
+ if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2])
+ && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) {
+ inside = 1;
+ }
+
+ /*
+ * Iterate through all of the edges of the line, computing a polygon for
+ * each edge and testing the area against that polygon. In addition, there
+ * are additional tests to deal with rounded joints and caps.
+ */
+
+ changedMiterToBevel = 0;
+ for (count = numPoints; count >= 2; count--, coordPtr += 2) {
+ /*
+ * If rounding is done around the first point of the edge then test a
+ * circular region around the point with the area.
+ */
+
+ if (((capStyle == CapRound) && (count == numPoints))
+ || ((joinStyle == JoinRound) && (count != numPoints))) {
+ poly[0] = coordPtr[0] - radius;
+ poly[1] = coordPtr[1] - radius;
+ poly[2] = coordPtr[0] + radius;
+ poly[3] = coordPtr[1] + radius;
+ if (TkOvalToArea(poly, rectPtr) != inside) {
+ return 0;
+ }
+ }
+
+ /*
+ * Compute the polygonal shape corresponding to this edge, consisting
+ * of two points for the first point of the edge and two points for
+ * the last point of the edge.
+ */
+
+ if (count == numPoints) {
+ TkGetButtPoints(coordPtr+2, coordPtr, width,
+ capStyle == CapProjecting, poly, poly+2);
+ } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) {
+ poly[0] = poly[6];
+ poly[1] = poly[7];
+ poly[2] = poly[4];
+ poly[3] = poly[5];
+ } else {
+ TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2);
+
+ /*
+ * If the last joint was beveled, then also check a polygon
+ * comprising the last two points of the previous polygon and the
+ * first two from this polygon; this checks the wedges that fill
+ * the beveled joint.
+ */
+
+ if ((joinStyle == JoinBevel) || changedMiterToBevel) {
+ poly[8] = poly[0];
+ poly[9] = poly[1];
+ if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
+ return 0;
+ }
+ changedMiterToBevel = 0;
+ }
+ }
+ if (count == 2) {
+ TkGetButtPoints(coordPtr, coordPtr+2, width,
+ capStyle == CapProjecting, poly+4, poly+6);
+ } else if (joinStyle == JoinMiter) {
+ if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4,
+ (double) width, poly+4, poly+6) == 0) {
+ changedMiterToBevel = 1;
+ TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4,
+ poly+6);
+ }
+ } else {
+ TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6);
+ }
+ poly[8] = poly[0];
+ poly[9] = poly[1];
+ if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
+ return 0;
+ }
+ }
+
+ /*
+ * If caps are rounded, check the cap around the final point of the line.
+ */
+
+ if (capStyle == CapRound) {
+ poly[0] = coordPtr[0] - radius;
+ poly[1] = coordPtr[1] - radius;
+ poly[2] = coordPtr[0] + radius;
+ poly[3] = coordPtr[1] + radius;
+ if (TkOvalToArea(poly, rectPtr) != inside) {
+ return 0;
+ }
+ }
+
+ return inside;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkPolygonToPoint --
+ *
+ * Compute the distance from a point to a polygon.
+ *
+ * Results:
+ * The return value is 0.0 if the point referred to by pointPtr is within
+ * the polygon referred to by polyPtr and numPoints. Otherwise the return
+ * value is the distance of the point from the polygon.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+double
+TkPolygonToPoint(
+ double *polyPtr, /* Points to an array coordinates for closed
+ * polygon: x0, y0, x1, y1, ... The polygon
+ * may be self-intersecting. */
+ int numPoints, /* Total number of points at *polyPtr. */
+ double *pointPtr) /* Points to coords for point. */
+{
+ double bestDist; /* Closest distance between point and any edge
+ * in polygon. */
+ int intersections; /* Number of edges in the polygon that
+ * intersect a ray extending vertically
+ * upwards from the point to infinity. */
+ int count;
+ register double *pPtr;
+
+ /*
+ * Iterate through all of the edges in the polygon, updating bestDist and
+ * intersections.
+ *
+ * TRICKY POINT: when computing intersections, include left x-coordinate
+ * of line within its range, but not y-coordinate. Otherwise if the point
+ * lies exactly below a vertex we'll count it as two intersections.
+ */
+
+ bestDist = 1.0e36;
+ intersections = 0;
+
+ for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
+ double x, y, dist;
+
+ /*
+ * Compute the point on the current edge closest to the point and
+ * update the intersection count. This must be done separately for
+ * vertical edges, horizontal edges, and other edges.
+ */
+
+ if (pPtr[2] == pPtr[0]) {
+
+ /*
+ * Vertical edge.
+ */
+
+ x = pPtr[0];
+ if (pPtr[1] >= pPtr[3]) {
+ y = MIN(pPtr[1], pointPtr[1]);
+ y = MAX(y, pPtr[3]);
+ } else {
+ y = MIN(pPtr[3], pointPtr[1]);
+ y = MAX(y, pPtr[1]);
+ }
+ } else if (pPtr[3] == pPtr[1]) {
+
+ /*
+ * Horizontal edge.
+ */
+
+ y = pPtr[1];
+ if (pPtr[0] >= pPtr[2]) {
+ x = MIN(pPtr[0], pointPtr[0]);
+ x = MAX(x, pPtr[2]);
+ if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
+ && (pointPtr[0] >= pPtr[2])) {
+ intersections++;
+ }
+ } else {
+ x = MIN(pPtr[2], pointPtr[0]);
+ x = MAX(x, pPtr[0]);
+ if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
+ && (pointPtr[0] >= pPtr[0])) {
+ intersections++;
+ }
+ }
+ } else {
+ double m1, b1, m2, b2;
+ int lower; /* Non-zero means point below line. */
+
+ /*
+ * The edge is neither horizontal nor vertical. Convert the edge
+ * to a line equation of the form y = m1*x + b1. Then compute a
+ * line perpendicular to this edge but passing through the point,
+ * also in the form y = m2*x + b2.
+ */
+
+ m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
+ b1 = pPtr[1] - m1*pPtr[0];
+ m2 = -1.0/m1;
+ b2 = pointPtr[1] - m2*pointPtr[0];
+ x = (b2 - b1)/(m1 - m2);
+ y = m1*x + b1;
+ if (pPtr[0] > pPtr[2]) {
+ if (x > pPtr[0]) {
+ x = pPtr[0];
+ y = pPtr[1];
+ } else if (x < pPtr[2]) {
+ x = pPtr[2];
+ y = pPtr[3];
+ }
+ } else {
+ if (x > pPtr[2]) {
+ x = pPtr[2];
+ y = pPtr[3];
+ } else if (x < pPtr[0]) {
+ x = pPtr[0];
+ y = pPtr[1];
+ }
+ }
+ lower = (m1*pointPtr[0] + b1) > pointPtr[1];
+ if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
+ && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
+ intersections++;
+ }
+ }
+
+ /*
+ * Compute the distance to the closest point, and see if that is the
+ * best distance seen so far.
+ */
+
+ dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
+ if (dist < bestDist) {
+ bestDist = dist;
+ }
+ }
+
+ /*
+ * We've processed all of the points. If the number of intersections is
+ * odd, the point is inside the polygon.
+ */
+
+ if (intersections & 0x1) {
+ return 0.0;
+ }
+ return bestDist;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkPolygonToArea --
+ *
+ * Determine whether a polygon lies entirely inside, entirely outside, or
+ * overlapping a given rectangular area.
+ *
+ * Results:
+ * -1 is returned if the polygon given by polyPtr and numPoints is
+ * entirely outside the rectangle given by rectPtr. 0 is returned if the
+ * polygon overlaps the rectangle, and 1 is returned if the polygon is
+ * entirely inside the rectangle.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkPolygonToArea(
+ double *polyPtr, /* Points to an array coordinates for closed
+ * polygon: x0, y0, x1, y1, ... The polygon
+ * may be self-intersecting. */
+ int numPoints, /* Total number of points at *polyPtr. */
+ register double *rectPtr) /* Points to coords for rectangle, in the
+ * order x1, y1, x2, y2. X1 and y1 must be
+ * lower-left corner. */
+{
+ int state; /* State of all edges seen so far (-1 means
+ * outside, 1 means inside, won't ever be
+ * 0). */
+ int count;
+ register double *pPtr;
+
+ /*
+ * Iterate over all of the edges of the polygon and test them against the
+ * rectangle. Can quit as soon as the state becomes "intersecting".
+ */
+
+ state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);
+ if (state == 0) {
+ return 0;
+ }
+ for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
+ pPtr += 2, count--) {
+ if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {
+ return 0;
+ }
+ }
+
+ /*
+ * If all of the edges were inside the rectangle we're done. If all of the
+ * edges were outside, then the rectangle could still intersect the
+ * polygon (if it's entirely enclosed). Call TkPolygonToPoint to figure
+ * this out.
+ */
+
+ if (state == 1) {
+ return 1;
+ }
+ if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
+ return 0;
+ }
+ return -1;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkOvalToPoint --
+ *
+ * Computes the distance from a given point to a given oval, in canvas
+ * units.
+ *
+ * Results:
+ * The return value is 0 if the point given by *pointPtr is inside the
+ * oval. If the point isn't inside the oval then the return value is
+ * approximately the distance from the point to the oval. If the oval is
+ * filled, then anywhere in the interior is considered "inside"; if the
+ * oval isn't filled, then "inside" means only the area occupied by the
+ * outline.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+double
+TkOvalToPoint(
+ double ovalPtr[4], /* Pointer to array of four coordinates (x1,
+ * y1, x2, y2) defining oval's bounding
+ * box. */
+ double width, /* Width of outline for oval. */
+ int filled, /* Non-zero means oval should be treated as
+ * filled; zero means only consider
+ * outline. */
+ double pointPtr[2]) /* Coordinates of point. */
+{
+ double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;
+ double xDiam, yDiam;
+
+ /*
+ * Compute the distance between the center of the oval and the point in
+ * question, using a coordinate system where the oval has been transformed
+ * to a circle with unit radius.
+ */
+
+ xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);
+ yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);
+ distToCenter = hypot(xDelta, yDelta);
+ scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),
+ yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));
+
+ /*
+ * If the scaled distance is greater than 1 then it means no hit. Compute
+ * the distance from the point to the edge of the circle, then scale this
+ * distance back to the original coordinate system.
+ *
+ * Note: this distance isn't completely accurate. It's only an
+ * approximation, and it can overestimate the correct distance when the
+ * oval is eccentric.
+ */
+
+ if (scaledDistance > 1.0) {
+ return (distToCenter/scaledDistance) * (scaledDistance - 1.0);
+ }
+
+ /*
+ * Scaled distance less than 1 means the point is inside the outer edge of
+ * the oval. If this is a filled oval, then we have a hit. Otherwise, do
+ * the same computation as above (scale back to original coordinate
+ * system), but also check to see if the point is within the width of the
+ * outline.
+ */
+
+ if (filled) {
+ return 0.0;
+ }
+ if (scaledDistance > 1E-10) {
+ distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)
+ - width;
+ } else {
+ /*
+ * Avoid dividing by a very small number (it could cause an arithmetic
+ * overflow). This problem occurs if the point is very close to the
+ * center of the oval.
+ */
+
+ xDiam = ovalPtr[2] - ovalPtr[0];
+ yDiam = ovalPtr[3] - ovalPtr[1];
+ if (xDiam < yDiam) {
+ distToOutline = (xDiam - width)/2;
+ } else {
+ distToOutline = (yDiam - width)/2;
+ }
+ }
+
+ if (distToOutline < 0.0) {
+ return 0.0;
+ }
+ return distToOutline;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkOvalToArea --
+ *
+ * Determine whether an oval lies entirely inside, entirely outside, or
+ * overlapping a given rectangular area.
+ *
+ * Results:
+ * -1 is returned if the oval described by ovalPtr is entirely outside
+ * the rectangle given by rectPtr. 0 is returned if the oval overlaps the
+ * rectangle, and 1 is returned if the oval is entirely inside the
+ * rectangle.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkOvalToArea(
+ register double *ovalPtr, /* Points to coordinates defining the
+ * bounding rectangle for the oval: x1, y1,
+ * x2, y2. X1 must be less than x2 and y1 less
+ * than y2. */
+ register double *rectPtr) /* Points to coords for rectangle, in the
+ * order x1, y1, x2, y2. X1 and y1 must be
+ * lower-left corner. */
+{
+ double centerX, centerY, radX, radY, deltaX, deltaY;
+
+ /*
+ * First, see if oval is entirely inside rectangle or entirely outside
+ * rectangle.
+ */
+
+ if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])
+ && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {
+ return 1;
+ }
+ if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])
+ || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {
+ return -1;
+ }
+
+ /*
+ * Next, go through the rectangle side by side. For each side of the
+ * rectangle, find the point on the side that is closest to the oval's
+ * center, and see if that point is inside the oval. If at least one such
+ * point is inside the oval, then the rectangle intersects the oval.
+ */
+
+ centerX = (ovalPtr[0] + ovalPtr[2])/2;
+ centerY = (ovalPtr[1] + ovalPtr[3])/2;
+ radX = (ovalPtr[2] - ovalPtr[0])/2;
+ radY = (ovalPtr[3] - ovalPtr[1])/2;
+
+ deltaY = rectPtr[1] - centerY;
+ if (deltaY < 0.0) {
+ deltaY = centerY - rectPtr[3];
+ if (deltaY < 0.0) {
+ deltaY = 0;
+ }
+ }
+ deltaY /= radY;
+ deltaY *= deltaY;
+
+ /*
+ * Left side:
+ */
+
+ deltaX = (rectPtr[0] - centerX)/radX;
+ deltaX *= deltaX;
+ if ((deltaX + deltaY) <= 1.0) {
+ return 0;
+ }
+
+ /*
+ * Right side:
+ */
+
+ deltaX = (rectPtr[2] - centerX)/radX;
+ deltaX *= deltaX;
+ if ((deltaX + deltaY) <= 1.0) {
+ return 0;
+ }
+
+ deltaX = rectPtr[0] - centerX;
+ if (deltaX < 0.0) {
+ deltaX = centerX - rectPtr[2];
+ if (deltaX < 0.0) {
+ deltaX = 0;
+ }
+ }
+ deltaX /= radX;
+ deltaX *= deltaX;
+
+ /*
+ * Bottom side:
+ */
+
+ deltaY = (rectPtr[1] - centerY)/radY;
+ deltaY *= deltaY;
+ if ((deltaX + deltaY) < 1.0) {
+ return 0;
+ }
+
+ /*
+ * Top side:
+ */
+
+ deltaY = (rectPtr[3] - centerY)/radY;
+ deltaY *= deltaY;
+ if ((deltaX + deltaY) < 1.0) {
+ return 0;
+ }
+
+ return -1;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkIncludePoint --
+ *
+ * Given a point and a generic canvas item header, expand the item's
+ * bounding box if needed to include the point.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The boudn.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+void
+TkIncludePoint(
+ register Tk_Item *itemPtr, /* Item whose bounding box is being
+ * calculated. */
+ double *pointPtr) /* Address of two doubles giving x and y
+ * coordinates of point. */
+{
+ int tmp;
+
+ tmp = (int) (pointPtr[0] + 0.5);
+ if (tmp < itemPtr->x1) {
+ itemPtr->x1 = tmp;
+ }
+ if (tmp > itemPtr->x2) {
+ itemPtr->x2 = tmp;
+ }
+ tmp = (int) (pointPtr[1] + 0.5);
+ if (tmp < itemPtr->y1) {
+ itemPtr->y1 = tmp;
+ }
+ if (tmp > itemPtr->y2) {
+ itemPtr->y2 = tmp;
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkBezierScreenPoints --
+ *
+ * Given four control points, create a larger set of XPoints for a Bezier
+ * curve based on the points.
+ *
+ * Results:
+ * The array at *xPointPtr gets filled in with numSteps XPoints
+ * corresponding to the Bezier spline defined by the four control points.
+ * Note: no output point is generated for the first input point, but an
+ * output point *is* generated for the last input point.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkBezierScreenPoints(
+ Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
+ double control[], /* Array of coordinates for four control
+ * points: x0, y0, x1, y1, ... x3 y3. */
+ int numSteps, /* Number of curve points to generate. */
+ register XPoint *xPointPtr) /* Where to put new points. */
+{
+ int i;
+ double u, u2, u3, t, t2, t3;
+
+ for (i = 1; i <= numSteps; i++, xPointPtr++) {
+ t = ((double) i)/((double) numSteps);
+ t2 = t*t;
+ t3 = t2*t;
+ u = 1.0 - t;
+ u2 = u*u;
+ u3 = u2*u;
+ Tk_CanvasDrawableCoords(canvas,
+ (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
+ + control[6]*t3),
+ (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
+ + control[7]*t3),
+ &xPointPtr->x, &xPointPtr->y);
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkBezierPoints --
+ *
+ * Given four control points, create a larger set of points for a Bezier
+ * curve based on the points.
+ *
+ * Results:
+ * The array at *coordPtr gets filled in with 2*numSteps coordinates,
+ * which correspond to the Bezier spline defined by the four control
+ * points. Note: no output point is generated for the first input point,
+ * but an output point *is* generated for the last input point.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkBezierPoints(
+ double control[], /* Array of coordinates for four control
+ * points: x0, y0, x1, y1, ... x3 y3. */
+ int numSteps, /* Number of curve points to generate. */
+ register double *coordPtr) /* Where to put new points. */
+{
+ int i;
+ double u, u2, u3, t, t2, t3;
+
+ for (i = 1; i <= numSteps; i++, coordPtr += 2) {
+ t = ((double) i)/((double) numSteps);
+ t2 = t*t;
+ t3 = t2*t;
+ u = 1.0 - t;
+ u2 = u*u;
+ u3 = u2*u;
+ coordPtr[0] = control[0]*u3
+ + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
+ coordPtr[1] = control[1]*u3
+ + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeBezierCurve --
+ *
+ * Given a set of points, create a new set of points that fit parabolic
+ * splines to the line segments connecting the original points. Produces
+ * output points in either of two forms.
+ *
+ * Note: the name of this function should *not* be taken to mean that it
+ * interprets the input points as directly defining Bezier curves.
+ * Rather, it internally computes a Bezier curve representation of each
+ * parabolic spline segment. (These Bezier curves are then flattened to
+ * produce the points filled into the output arrays.)
+ *
+ * Results:
+ * Either or both of the xPoints or dblPoints arrays are filled in. The
+ * return value is the number of points placed in the arrays. Note: if
+ * the first and last points are the same, then a closed curve is
+ * generated.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkMakeBezierCurve(
+ Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
+ double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
+ * etc.. */
+ int numPoints, /* Number of points at pointPtr. */
+ int numSteps, /* Number of steps to use for each spline
+ * segments (determines smoothness of
+ * curve). */
+ XPoint xPoints[], /* Array of XPoints to fill in (e.g. for
+ * display). NULL means don't fill in any
+ * XPoints. */
+ double dblPoints[]) /* Array of points to fill in as doubles, in
+ * the form x0, y0, x1, y1, .... NULL means
+ * don't fill in anything in this form. Caller
+ * must make sure that this array has enough
+ * space. */
+{
+ int closed, outputPoints, i;
+ int numCoords = numPoints*2;
+ double control[8];
+
+ /*
+ * If the curve is a closed one then generate a special spline that spans
+ * the last points and the first ones. Otherwise just put the first point
+ * into the output.
+ */
+
+ if (!pointPtr) {
+ /*
+ * Of pointPtr == NULL, this function returns an upper limit of the
+ * array size to store the coordinates. This can be used to allocate
+ * storage, before the actual coordinates are calculated.
+ */
+
+ return 1 + numPoints * numSteps;
+ }
+
+ outputPoints = 0;
+ if ((pointPtr[0] == pointPtr[numCoords-2])
+ && (pointPtr[1] == pointPtr[numCoords-1])) {
+ closed = 1;
+ control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
+ control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
+ control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
+ control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
+ control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
+ control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
+ control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+ control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, control[0], control[1],
+ &xPoints->x, &xPoints->y);
+ TkBezierScreenPoints(canvas, control, numSteps, xPoints+1);
+ xPoints += numSteps+1;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = control[0];
+ dblPoints[1] = control[1];
+ TkBezierPoints(control, numSteps, dblPoints+2);
+ dblPoints += 2*(numSteps+1);
+ }
+ outputPoints += numSteps+1;
+ } else {
+ closed = 0;
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
+ &xPoints->x, &xPoints->y);
+ xPoints += 1;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = pointPtr[0];
+ dblPoints[1] = pointPtr[1];
+ dblPoints += 2;
+ }
+ outputPoints += 1;
+ }
+
+ for (i = 2; i < numPoints; i++, pointPtr += 2) {
+ /*
+ * Set up the first two control points. This is done differently for
+ * the first spline of an open curve than for other cases.
+ */
+
+ if ((i == 2) && !closed) {
+ control[0] = pointPtr[0];
+ control[1] = pointPtr[1];
+ control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
+ control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
+ } else {
+ control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+ control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+ control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
+ control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
+ }
+
+ /*
+ * Set up the last two control points. This is done differently for
+ * the last spline of an open curve than for other cases.
+ */
+
+ if ((i == (numPoints-1)) && !closed) {
+ control[4] = .667*pointPtr[2] + .333*pointPtr[4];
+ control[5] = .667*pointPtr[3] + .333*pointPtr[5];
+ control[6] = pointPtr[4];
+ control[7] = pointPtr[5];
+ } else {
+ control[4] = .833*pointPtr[2] + .167*pointPtr[4];
+ control[5] = .833*pointPtr[3] + .167*pointPtr[5];
+ control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
+ control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
+ }
+
+ /*
+ * If the first two points coincide, or if the last two points
+ * coincide, then generate a single straight-line segment by
+ * outputting the last control point.
+ */
+
+ if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
+ || ((pointPtr[2] == pointPtr[4])
+ && (pointPtr[3] == pointPtr[5]))) {
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, control[6], control[7],
+ &xPoints[0].x, &xPoints[0].y);
+ xPoints++;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = control[6];
+ dblPoints[1] = control[7];
+ dblPoints += 2;
+ }
+ outputPoints += 1;
+ continue;
+ }
+
+ /*
+ * Generate a Bezier spline using the control points.
+ */
+
+
+ if (xPoints != NULL) {
+ TkBezierScreenPoints(canvas, control, numSteps, xPoints);
+ xPoints += numSteps;
+ }
+ if (dblPoints != NULL) {
+ TkBezierPoints(control, numSteps, dblPoints);
+ dblPoints += 2*numSteps;
+ }
+ outputPoints += numSteps;
+ }
+ return outputPoints;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeRawCurve --
+ *
+ * Interpret the given set of points as the raw knots and control points
+ * defining a sequence of cubic Bezier curves. Create a new set of points
+ * that fit these Bezier curves. Output points are produced in either of
+ * two forms.
+ *
+ * Results:
+ * Either or both of the xPoints or dblPoints arrays are filled in. The
+ * return value is the number of points placed in the arrays.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkMakeRawCurve(
+ Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
+ double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
+ * etc.. */
+ int numPoints, /* Number of points at pointPtr. */
+ int numSteps, /* Number of steps to use for each curve
+ * segment (determines smoothness of
+ * curve). */
+ XPoint xPoints[], /* Array of XPoints to fill in (e.g. for
+ * display). NULL means don't fill in any
+ * XPoints. */
+ double dblPoints[]) /* Array of points to fill in as doubles, in
+ * the form x0, y0, x1, y1, .... NULL means
+ * don't fill in anything in this form.
+ * Caller must make sure that this array has
+ * enough space. */
+{
+ int outputPoints, i;
+ int numSegments = (numPoints+1)/3;
+ double *segPtr;
+
+ /*
+ * The input describes a curve with s Bezier curve segments if there are
+ * 3s+1, 3s, or 3s-1 input points. In the last two cases, 1 or 2 initial
+ * points from the first curve segment are reused as defining points also
+ * for the last curve segment. In the case of 3s input points, this will
+ * automatically close the curve.
+ */
+
+ if (!pointPtr) {
+ /*
+ * If pointPtr == NULL, this function returns an upper limit of the
+ * array size to store the coordinates. This can be used to allocate
+ * storage, before the actual coordinates are calculated.
+ */
+
+ return 1 + numSegments * numSteps;
+ }
+
+ outputPoints = 0;
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
+ &xPoints->x, &xPoints->y);
+ xPoints += 1;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = pointPtr[0];
+ dblPoints[1] = pointPtr[1];
+ dblPoints += 2;
+ }
+ outputPoints += 1;
+
+ /*
+ * The next loop handles all curve segments except one that overlaps the
+ * end of the list of coordinates.
+ */
+
+ for (i=numPoints,segPtr=pointPtr ; i>=4 ; i-=3,segPtr+=6) {
+ if (segPtr[0]==segPtr[2] && segPtr[1]==segPtr[3] &&
+ segPtr[4]==segPtr[6] && segPtr[5]==segPtr[7]) {
+ /*
+ * The control points on this segment are equal to their
+ * neighbouring knots, so this segment is just a straight line. A
+ * single point is sufficient.
+ */
+
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, segPtr[6], segPtr[7],
+ &xPoints->x, &xPoints->y);
+ xPoints += 1;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = segPtr[6];
+ dblPoints[1] = segPtr[7];
+ dblPoints += 2;
+ }
+ outputPoints += 1;
+ } else {
+ /*
+ * This is a generic Bezier curve segment.
+ */
+
+ if (xPoints != NULL) {
+ TkBezierScreenPoints(canvas, segPtr, numSteps, xPoints);
+ xPoints += numSteps;
+ }
+ if (dblPoints != NULL) {
+ TkBezierPoints(segPtr, numSteps, dblPoints);
+ dblPoints += 2*numSteps;
+ }
+ outputPoints += numSteps;
+ }
+ }
+
+ /*
+ * If at this point i>1, then there is some point which has not yet been
+ * used. Make another curve segment.
+ */
+
+ if (i > 1) {
+ int j;
+ double control[8];
+
+ /*
+ * Copy the relevant coordinates to control[], so that it can be
+ * passed as a unit to e.g. TkBezierPoints.
+ */
+
+ for (j=0; j<2*i; j++) {
+ control[j] = segPtr[j];
+ }
+ for (; j<8; j++) {
+ control[j] = pointPtr[j-2*i];
+ }
+
+ /*
+ * Then we just do the same things as above.
+ */
+
+ if (control[0]==control[2] && control[1]==control[3] &&
+ control[4]==control[6] && control[5]==control[7]) {
+ /*
+ * The control points on this segment are equal to their
+ * neighbouring knots, so this segment is just a straight line. A
+ * single point is sufficient.
+ */
+
+ if (xPoints != NULL) {
+ Tk_CanvasDrawableCoords(canvas, control[6], control[7],
+ &xPoints->x, &xPoints->y);
+ xPoints += 1;
+ }
+ if (dblPoints != NULL) {
+ dblPoints[0] = control[6];
+ dblPoints[1] = control[7];
+ dblPoints += 2;
+ }
+ outputPoints += 1;
+ } else {
+ /*
+ * This is a generic Bezier curve segment.
+ */
+
+ if (xPoints != NULL) {
+ TkBezierScreenPoints(canvas, control, numSteps, xPoints);
+ xPoints += numSteps;
+ }
+ if (dblPoints != NULL) {
+ TkBezierPoints(control, numSteps, dblPoints);
+ dblPoints += 2*numSteps;
+ }
+ outputPoints += numSteps;
+ }
+ }
+
+ return outputPoints;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeBezierPostscript --
+ *
+ * This function generates Postscript commands that create a path
+ * corresponding to a given Bezier curve.
+ *
+ * Results:
+ * None. Postscript commands to generate the path are appended to the
+ * interp's result.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkMakeBezierPostscript(
+ Tcl_Interp *interp, /* Interpreter in whose result the Postscript
+ * is to be stored. */
+ Tk_Canvas canvas, /* Canvas widget for which the Postscript is
+ * being generated. */
+ double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
+ * etc.. */
+ int numPoints) /* Number of points at pointPtr. */
+{
+ int closed, i;
+ int numCoords = numPoints*2;
+ double control[8];
+ Tcl_Obj *psObj;
+
+ /*
+ * If the curve is a closed one then generate a special spline that spans
+ * the last points and the first ones. Otherwise just put the first point
+ * into the path.
+ */
+
+ if ((pointPtr[0] == pointPtr[numCoords-2])
+ && (pointPtr[1] == pointPtr[numCoords-1])) {
+ closed = 1;
+ control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
+ control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
+ control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
+ control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
+ control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
+ control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
+ control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+ control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+ psObj = Tcl_ObjPrintf(
+ "%.15g %.15g moveto\n"
+ "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+ control[0], Tk_CanvasPsY(canvas, control[1]),
+ control[2], Tk_CanvasPsY(canvas, control[3]),
+ control[4], Tk_CanvasPsY(canvas, control[5]),
+ control[6], Tk_CanvasPsY(canvas, control[7]));
+ } else {
+ closed = 0;
+ control[6] = pointPtr[0];
+ control[7] = pointPtr[1];
+ psObj = Tcl_ObjPrintf("%.15g %.15g moveto\n",
+ control[6], Tk_CanvasPsY(canvas, control[7]));
+ }
+
+ /*
+ * Cycle through all the remaining points in the curve, generating a curve
+ * section for each vertex in the linear path.
+ */
+
+ for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
+ control[2] = 0.333*control[6] + 0.667*pointPtr[0];
+ control[3] = 0.333*control[7] + 0.667*pointPtr[1];
+
+ /*
+ * Set up the last two control points. This is done differently for
+ * the last spline of an open curve than for other cases.
+ */
+
+ if ((i == 1) && !closed) {
+ control[6] = pointPtr[2];
+ control[7] = pointPtr[3];
+ } else {
+ control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
+ control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
+ }
+ control[4] = 0.333*control[6] + 0.667*pointPtr[0];
+ control[5] = 0.333*control[7] + 0.667*pointPtr[1];
+
+ Tcl_AppendPrintfToObj(psObj,
+ "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+ control[2], Tk_CanvasPsY(canvas, control[3]),
+ control[4], Tk_CanvasPsY(canvas, control[5]),
+ control[6], Tk_CanvasPsY(canvas, control[7]));
+ }
+
+ Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
+ Tcl_DecrRefCount(psObj);
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkMakeRawCurvePostscript --
+ *
+ * This function interprets the input points as the raw knot and control
+ * points for a curve composed of Bezier curve segments, just like
+ * TkMakeRawCurve. It generates Postscript commands that create a path
+ * corresponding to this given curve.
+ *
+ * Results:
+ * None. Postscript commands to generate the path are appended to the
+ * interp's result.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkMakeRawCurvePostscript(
+ Tcl_Interp *interp, /* Interpreter in whose result the Postscript
+ * is to be stored. */
+ Tk_Canvas canvas, /* Canvas widget for which the Postscript is
+ * being generated. */
+ double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
+ * etc.. */
+ int numPoints) /* Number of points at pointPtr. */
+{
+ int i;
+ double *segPtr;
+ Tcl_Obj *psObj;
+
+ /*
+ * Put the first point into the path.
+ */
+
+ psObj = Tcl_ObjPrintf("%.15g %.15g moveto\n",
+ pointPtr[0], Tk_CanvasPsY(canvas, pointPtr[1]));
+
+ /*
+ * Loop through all the remaining points in the curve, generating a
+ * straight line or curve section for every three of them.
+ */
+
+ for (i=numPoints-1,segPtr=pointPtr ; i>=3 ; i-=3,segPtr+=6) {
+ if (segPtr[0]==segPtr[2] && segPtr[1]==segPtr[3] &&
+ segPtr[4]==segPtr[6] && segPtr[5]==segPtr[7]) {
+ /*
+ * The control points on this segment are equal to their
+ * neighbouring knots, so this segment is just a straight line.
+ */
+
+ Tcl_AppendPrintfToObj(psObj, "%.15g %.15g lineto\n",
+ segPtr[6], Tk_CanvasPsY(canvas, segPtr[7]));
+ } else {
+ /*
+ * This is a generic Bezier curve segment.
+ */
+
+ Tcl_AppendPrintfToObj(psObj,
+ "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+ segPtr[2], Tk_CanvasPsY(canvas, segPtr[3]),
+ segPtr[4], Tk_CanvasPsY(canvas, segPtr[5]),
+ segPtr[6], Tk_CanvasPsY(canvas, segPtr[7]));
+ }
+ }
+
+ /*
+ * If there are any points left that haven't been used, then build the
+ * last segment and generate Postscript in the same way for that.
+ */
+
+ if (i > 0) {
+ int j;
+ double control[8];
+
+ for (j=0; j<2*i+2; j++) {
+ control[j] = segPtr[j];
+ }
+ for (; j<8; j++) {
+ control[j] = pointPtr[j-2*i-2];
+ }
+
+ if (control[0]==control[2] && control[1]==control[3] &&
+ control[4]==control[6] && control[5]==control[7]) {
+ /*
+ * Straight line.
+ */
+
+ Tcl_AppendPrintfToObj(psObj, "%.15g %.15g lineto\n",
+ control[6], Tk_CanvasPsY(canvas, control[7]));
+ } else {
+ /*
+ * Bezier curve segment.
+ */
+
+ Tcl_AppendPrintfToObj(psObj,
+ "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
+ control[2], Tk_CanvasPsY(canvas, control[3]),
+ control[4], Tk_CanvasPsY(canvas, control[5]),
+ control[6], Tk_CanvasPsY(canvas, control[7]));
+ }
+ }
+
+ Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
+ Tcl_DecrRefCount(psObj);
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkGetMiterPoints --
+ *
+ * Given three points forming an angle, compute the coordinates of the
+ * inside and outside points of the mitered corner formed by a line of a
+ * given width at that angle.
+ *
+ * Results:
+ * If the angle formed by the three points is less than 11 degrees then 0
+ * is returned and m1 and m2 aren't modified. Otherwise 1 is returned and
+ * the points at m1 and m2 are filled in with the positions of the points
+ * of the mitered corner.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+int
+TkGetMiterPoints(
+ double p1[], /* Points to x- and y-coordinates of point
+ * before vertex. */
+ double p2[], /* Points to x- and y-coordinates of vertex
+ * for mitered joint. */
+ double p3[], /* Points to x- and y-coordinates of point
+ * after vertex. */
+ double width, /* Width of line. */
+ double m1[], /* Points to place to put "left" vertex point
+ * (see as you face from p1 to p2). */
+ double m2[]) /* Points to place to put "right" vertex
+ * point. */
+{
+ double theta1; /* Angle of segment p2-p1. */
+ double theta2; /* Angle of segment p2-p3. */
+ double theta; /* Angle between line segments (angle of
+ * joint). */
+ double theta3; /* Angle that bisects theta1 and theta2 and
+ * points to m1. */
+ double dist; /* Distance of miter points from p2. */
+ double deltaX, deltaY; /* X and y offsets cooresponding to dist
+ * (fudge factors for bounding box). */
+ double p1x, p1y, p2x, p2y, p3x, p3y;
+#ifndef _MSC_VER
+ static const double elevenDegrees = (11.0*2.0*PI)/360.0;
+#else /* msvc8 with -fp:strict requires it this way */
+ static const double elevenDegrees = 0.19198621771937624;
+#endif
+
+ /*
+ * Round the coordinates to integers to mimic what happens when the line
+ * segments are displayed; without this code, the bounding box of a
+ * mitered line can be miscomputed greatly.
+ */
+
+ p1x = floor(p1[0]+0.5);
+ p1y = floor(p1[1]+0.5);
+ p2x = floor(p2[0]+0.5);
+ p2y = floor(p2[1]+0.5);
+ p3x = floor(p3[0]+0.5);
+ p3y = floor(p3[1]+0.5);
+
+ if (p2y == p1y) {
+ theta1 = (p2x < p1x) ? 0 : PI;
+ } else if (p2x == p1x) {
+ theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0;
+ } else {
+ theta1 = atan2(p1y - p2y, p1x - p2x);
+ }
+
+ if (p3y == p2y) {
+ theta2 = (p3x > p2x) ? 0 : PI;
+ } else if (p3x == p2x) {
+ theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0;
+ } else {
+ theta2 = atan2(p3y - p2y, p3x - p2x);
+ }
+
+ theta = theta1 - theta2;
+ if (theta > PI) {
+ theta -= 2*PI;
+ } else if (theta < -PI) {
+ theta += 2*PI;
+ }
+
+ if ((theta < elevenDegrees) && (theta > -elevenDegrees)) {
+ return 0;
+ }
+
+ dist = 0.5*width/sin(0.5*theta);
+ if (dist < 0.0) {
+ dist = -dist;
+ }
+
+ /*
+ * Compute theta3 (make sure that it points to the left when looking from
+ * p1 to p2).
+ */
+
+ theta3 = (theta1 + theta2)/2.0;
+ if (sin(theta3 - (theta1 + PI)) < 0.0) {
+ theta3 += PI;
+ }
+ deltaX = dist*cos(theta3);
+ m1[0] = p2x + deltaX;
+ m2[0] = p2x - deltaX;
+ deltaY = dist*sin(theta3);
+ m1[1] = p2y + deltaY;
+ m2[1] = p2y - deltaY;
+
+ return 1;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TkGetButtPoints --
+ *
+ * Given two points forming a line segment, compute the coordinates of
+ * two endpoints of a rectangle formed by bloating the line segment until
+ * it is width units wide.
+ *
+ * Results:
+ * There is no return value. M1 and m2 are filled in to correspond to m1
+ * and m2 in the diagram below:
+ *
+ * ----------------* m1
+ * |
+ * p1 *---------------* p2
+ * |
+ * ----------------* m2
+ *
+ * M1 and m2 will be W units apart, with p2 centered between them and
+ * m1-m2 perpendicular to p1-p2. However, if "project" is true then m1
+ * and m2 will be as follows:
+ *
+ * -------------------* m1
+ * p2 |
+ * p1 *---------------* |
+ * |
+ * -------------------* m2
+ *
+ * In this case p2 will be width/2 units from the segment m1-m2.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+void
+TkGetButtPoints(
+ double p1[], /* Points to x- and y-coordinates of point
+ * before vertex. */
+ double p2[], /* Points to x- and y-coordinates of vertex
+ * for mitered joint. */
+ double width, /* Width of line. */
+ int project, /* Non-zero means project p2 by an additional
+ * width/2 before computing m1 and m2. */
+ double m1[], /* Points to place to put "left" result point,
+ * as you face from p1 to p2. */
+ double m2[]) /* Points to place to put "right" result
+ * point. */
+{
+ double length; /* Length of p1-p2 segment. */
+ double deltaX, deltaY; /* Increments in coords. */
+
+ width *= 0.5;
+ length = hypot(p2[0] - p1[0], p2[1] - p1[1]);
+ if (length == 0.0) {
+ m1[0] = m2[0] = p2[0];
+ m1[1] = m2[1] = p2[1];
+ } else {
+ deltaX = -width * (p2[1] - p1[1]) / length;
+ deltaY = width * (p2[0] - p1[0]) / length;
+ m1[0] = p2[0] + deltaX;
+ m2[0] = p2[0] - deltaX;
+ m1[1] = p2[1] + deltaY;
+ m2[1] = p2[1] - deltaY;
+ if (project) {
+ m1[0] += deltaY;
+ m2[0] += deltaY;
+ m1[1] -= deltaX;
+ m2[1] -= deltaX;
+ }
+ }
+}
+
+/*
+ * Local Variables:
+ * mode: c
+ * c-basic-offset: 4
+ * fill-column: 78
+ * End:
+ */