diff options
Diffstat (limited to 'ast/cmpmap.c')
-rw-r--r-- | ast/cmpmap.c | 4739 |
1 files changed, 4739 insertions, 0 deletions
diff --git a/ast/cmpmap.c b/ast/cmpmap.c new file mode 100644 index 0000000..d0210ec --- /dev/null +++ b/ast/cmpmap.c @@ -0,0 +1,4739 @@ +/* +*class++ +* Name: +* CmpMap + +* Purpose: +* Compound Mapping. + +* Constructor Function: +c astCmpMap +f AST_CMPMAP + +* Description: +* A CmpMap is a compound Mapping which allows two component +* Mappings (of any class) to be connected together to form a more +* complex Mapping. This connection may either be "in series" +* (where the first Mapping is used to transform the coordinates of +* each point and the second mapping is then applied to the +* result), or "in parallel" (where one Mapping transforms the +* earlier coordinates for each point and the second Mapping +* simultaneously transforms the later coordinates). +* +* Since a CmpMap is itself a Mapping, it can be used as a +* component in forming further CmpMaps. Mappings of arbitrary +* complexity may be built from simple individual Mappings in this +* way. + +* Inheritance: +* The CmpMap class inherits from the Mapping class. + +* Attributes: +* The CmpMap class does not define any new attributes beyond those +* which are applicable to all Mappings. + +* Functions: +c The CmpMap class does not define any new functions beyond those +f The CmpMap class does not define any new routines beyond those +* which are applicable to all Mappings. + +* Copyright: +* Copyright (C) 1997-2006 Council for the Central Laboratory of the +* Research Councils + +* Licence: +* This program is free software: you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation, either +* version 3 of the License, or (at your option) any later +* version. +* +* This program is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU Lesser General Public License for more details. +* +* You should have received a copy of the GNU Lesser General +* License along with this program. If not, see +* <http://www.gnu.org/licenses/>. + +* Authors: +* RFWS: R.F. Warren-Smith (Starlink) + +* History: +* 1-FEB-1996 (RFWS): +* Original version. +* 25-SEP-1996 (RFWS): +* Implemented external interface and I/O facilities. +* 12-DEC-1996 (RFWS): +* Over-ride the astMapList method. +* 13-DEC-1996 (RFWS): +* Over-ride the astSimplify method. +* 4-JUN-1997 (RFWS): +* Eliminate any simplification when MapList is used. Instead, +* over-ride the MapMerge method and implement all +* simplification in this. +* 24-MAR-1998 (RFWS): +* Fixed bug in testing of simplified invert flag in Simplify. +* 15-APR-1998 (RFWS): +* Improved the MapMerge method to allow parallel combinations +* of series CmpMaps to be replaced by series combinations of +* parallel CmpMaps, and vice versa. +* 26-SEP-2001 (DSB): +* Over-ride the astDecompose method. +* 8-JAN-2003 (DSB): +* - Changed private InitVtab method to protected astInitCmpMapVtab +* method. +* 8-JAN-2003 (DSB): +* - Modified MapMerge so that a parallel CmpMap can swap with a +* suitable PermMap lower neighbour. +* 23-APR-2004 (DSB): +* - Modified Simplify to avoid infinite loops. +* 27-APR-2004 (DSB): +* - Correction to MapMerge to prevent segvio if CmpMap and PermMap +* cannot be swapped. +* 4-OCT-2004 (DSB): +* Modify astMapList to return flag indicating presence of inverted +* CmpMaps in supplied Mapping. +* 20-APR-2005 (DSB): +* Modify MapMerge so that it will attempt to merge the first +* and second CmpMaps in a list of series CmpMaps. +* 8-FEB-2006 (DSB): +* Corrected logic within MapMerge for cases where a PermMap is +* followed by a parallel CmpMap. +* 14-FEB-2006 (DSB): +* Override astGetObjSize. +* 14-MAR-2006 (DSB): +* - When checking for patterns in the simplification process, +* require at least 30 samples in the waveform for evidence of a +* pattern. +* - Override astEqual. +* - The constructor no longer reports an error if the resulting +* CmpMap cannot transform points in either direction. This is +* because it may be possible to simplify such a CmpMap and the +* simplified Mapping may have defined transformations. E.g. if a +* Mapping which has only a forward transformation is combined in +* series with its own inverse, the combination will simplify to a +* UnitMap (usually). +* 9-MAY-2006 (DSB): +* - In Simplify, remove checks for patterns in the number of atomic +* mappings when calling astSimplify recursively. +* 23-AUG-2006 (DSB): +* - In Simplify, add checks for re-appearance of a Mapping that is +* already being simplified at a higher levelin the call stack. +* 18-APR-2007 (DSB): +* In Simplify: if the returned Mapping is not a CmpMap, always copy +* the returned component Mapping (rather than cloning it) so that +* the returned Mapping is not affected if user code subsequently +* inverts the component Mapping via some other pointer. +* 12-MAR-2008 (DSB): +* Modify MapSplit so that attempts to split the inverse +* transformation if it cannot split the forward transformation. +* 30-JUL-2009 (DSB): +* Ensure the PermMap has equal number of inputs and outputs when +* swapping a PermMap and a CmpMap in astMapMerge. +* 3-JAN-2011 (DSB): +* In MapSplit, certain classes of Mapping (e.g. PermMaps) can +* produce a returned Mapping with zero outputs. Consider such +* Mappings to be unsplitable. +* 11-JAN-2011 (DSB): +* Improve simplification of serial combinations of parellel CmpMaps. +* 25-JAN-2011 (DSB): +* Big improvement to the efficiency of the astMapSplit method. +* 24-JAN-2012 (DSB): +* If efficient MapSplit fails to split (e.g. due to the presence +* of PermMaps), then revert to the older slower method. +* 5-FEB-2013 (DSB): +* Take account of Invert flags when combining parallel CmpMaps in +* series. +* 29-APR-2013 (DSB): +* In MapList, use the astDoNotSimplify method to check that it is +* OK to expand the CmpMap. +* 23-APR-2015 (DSB): +* In Simplify, prevent mappings that are known to cause infinite +* loops from being nominated for simplification. +*class-- +*/ + +/* Module Macros. */ +/* ============== */ +/* Set the name of the class we are implementing. This indicates to + the header files that define class interfaces that they should make + "protected" symbols available. */ +#define astCLASS CmpMap + +/* Include files. */ +/* ============== */ +/* Interface definitions. */ +/* ---------------------- */ + +#include "error.h" /* Error reporting facilities */ +#include "memory.h" /* Memory allocation facilities */ +#include "object.h" /* Base Object class */ +#include "pointset.h" /* Sets of points/coordinates */ +#include "mapping.h" /* Coordinate Mappings (parent class) */ +#include "channel.h" /* I/O channels */ +#include "permmap.h" /* Coordinate permutation Mappings */ +#include "unitmap.h" /* Unit transformations */ +#include "cmpmap.h" /* Interface definition for this class */ +#include "frameset.h" /* Interface definition for FrameSets */ +#include "globals.h" /* Thread-safe global data access */ + +/* Error code definitions. */ +/* ----------------------- */ +#include "ast_err.h" /* AST error codes */ + +/* C header files. */ +/* --------------- */ +#include <stdarg.h> +#include <stddef.h> +#include <string.h> +#include <stdio.h> + +/* Module Variables. */ +/* ================= */ + +/* Address of this static variable is used as a unique identifier for + member of this class. */ +static int class_check; + +/* Pointers to parent class methods which are extended by this class. */ +static int (* parent_getobjsize)( AstObject *, int * ); +static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * ); +static int (* parent_maplist)( AstMapping *, int, int, int *, AstMapping ***, int **, int * ); +static int *(* parent_mapsplit)( AstMapping *, int, const int *, AstMapping **, int * ); + +#if defined(THREAD_SAFE) +static int (* parent_managelock)( AstObject *, int, int, AstObject **, int * ); +#endif + + +/* Define macros for accessing each item of thread specific global data. */ +#ifdef THREAD_SAFE + +/* Define how to initialise thread-specific globals. */ +#define GLOBAL_inits \ + globals->Class_Init = 0; \ + globals->Simplify_Depth = 0; \ + globals->Simplify_Stackmaps = NULL; + +/* Create the function that initialises global data for this module. */ +astMAKE_INITGLOBALS(CmpMap) + +#define class_init astGLOBAL(CmpMap,Class_Init) +#define class_vtab astGLOBAL(CmpMap,Class_Vtab) +#define simplify_depth astGLOBAL(CmpMap,Simplify_Depth) +#define simplify_stackmaps astGLOBAL(CmpMap,Simplify_Stackmaps) + + + +/* If thread safety is not needed, declare and initialise globals at static + variables. */ +#else + +static int simplify_depth = 0; +static AstMapping **simplify_stackmaps = NULL; + + +/* Define the class virtual function table and its initialisation flag + as static variables. */ +static AstCmpMapVtab class_vtab; /* Virtual function table */ +static int class_init = 0; /* Virtual function table initialised? */ + +#endif + +/* External Interface Function Prototypes. */ +/* ======================================= */ +/* The following functions have public prototypes only (i.e. no + protected prototypes), so we must provide local prototypes for use + within this module. */ +AstCmpMap *astCmpMapId_( void *, void *, int, const char *, ... ); + +/* Prototypes for Private Member Functions. */ +/* ======================================== */ +static AstMapping *CombineMaps( AstMapping *, int, AstMapping *, int, int, int * ); +static AstMapping *RemoveRegions( AstMapping *, int * ); +static AstMapping *Simplify( AstMapping *, int * ); +static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * ); +static double Rate( AstMapping *, double *, int, int, int * ); +static int *MapSplit( AstMapping *, int, const int *, AstMapping **, int * ); +static int *MapSplit0( AstMapping *, int, const int *, AstMapping **, int, int * ); +static int *MapSplit1( AstMapping *, int, const int *, AstMapping **, int * ); +static int *MapSplit2( AstMapping *, int, const int *, AstMapping **, int * ); +static int Equal( AstObject *, AstObject *, int * ); +static int GetIsLinear( AstMapping *, int * ); +static int MapList( AstMapping *, int, int, int *, AstMapping ***, int **, int * ); +static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * ); +static int PatternCheck( int, int, int **, int *, int * ); +static void Copy( const AstObject *, AstObject *, int * ); +static void Decompose( AstMapping *, AstMapping **, AstMapping **, int *, int *, int *, int * ); +static void Delete( AstObject *, int * ); +static void Dump( AstObject *, AstChannel *, int * ); +static int GetObjSize( AstObject *, int * ); + +#if defined(THREAD_SAFE) +static int ManageLock( AstObject *, int, int, AstObject **, int * ); +#endif + + +/* Member functions. */ +/* ================= */ +static int Equal( AstObject *this_object, AstObject *that_object, int *status ) { +/* +* Name: +* Equal + +* Purpose: +* Test if two CmpMaps are equivalent. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int Equal( AstObject *this, AstObject *that, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the astEqual protected +* method inherited from the astMapping class). + +* Description: +* This function returns a boolean result (0 or 1) to indicate whether +* two CmpMaps are equivalent. + +* Parameters: +* this +* Pointer to the first Object (a CmpMap). +* that +* Pointer to the second Object. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* One if the CmpMaps are equivalent, zero otherwise. + +* Notes: +* - A value of zero will be returned if this function is invoked +* with the global status set, or if it should fail for any reason. +*/ + +/* Local Variables: */ + AstCmpMap *that; + AstCmpMap *this; + AstMapping **that_map_list; + AstMapping **this_map_list; + int *that_invert_list; + int *this_invert_list; + int i; + int result; + int that_inv; + int that_nmap; + int this_inv; + int this_nmap; + +/* Initialise. */ + result = 0; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Obtain pointers to the two CmpMap structures. */ + this = (AstCmpMap *) this_object; + that = (AstCmpMap *) that_object; + +/* Check the second object is a CmpMap. We know the first is a + CmpMap since we have arrived at this implementation of the virtual + function. */ + if( astIsACmpMap( that ) ) { + +/* Check they are both either parallel or series. */ + if( that->series == that->series ) { + +/* Decompose the first CmpMap into a sequence of Mappings to be applied in + series or parallel, as appropriate, and an associated list of + Invert flags. */ + this_nmap = 0; + this_map_list = NULL; + this_invert_list = NULL; + astMapList( (AstMapping *) this, this->series, astGetInvert( this ), + &this_nmap, &this_map_list, &this_invert_list ); + +/* Similarly decompose the second CmpMap. */ + that_nmap = 0; + that_map_list = NULL; + that_invert_list = NULL; + astMapList( (AstMapping *) that, that->series, astGetInvert( that ), + &that_nmap, &that_map_list, &that_invert_list ); + +/* Check the decompositions yielded the same number of component + Mappings. */ + if( that_nmap == this_nmap ) { + +/* Check equality of every component. */ + for( i = 0; i < this_nmap; i++ ) { + +/* Temporarily set the Mapping Invert flags to the required values, + saving the original values so that they can be re-instated later.*/ + this_inv = astGetInvert( this_map_list[ i ] ); + astSetInvert( this_map_list[ i ], this_invert_list[ i ] ); + that_inv = astGetInvert( that_map_list[ i ] ); + astSetInvert( that_map_list[ i ], that_invert_list[ i ] ); + +/* Compare the two component Mappings for equality. */ + result = astEqual( this_map_list[ i ], that_map_list[ i ] ); + +/* Re-instate the original Invert flags. */ + astSetInvert( this_map_list[ i ], this_inv ); + astSetInvert( that_map_list[ i ], that_inv ); + +/* Leave the loop if the Mappings are not equal. */ + if( !result ) break; + } + } + +/* Free resources */ + for( i = 0; i < this_nmap; i++ ) { + this_map_list[ i ] = astAnnul( this_map_list[ i ] ); + } + this_map_list = astFree( this_map_list ); + this_invert_list = astFree( this_invert_list ); + + for( i = 0; i < that_nmap; i++ ) { + that_map_list[ i ] = astAnnul( that_map_list[ i ] ); + } + that_map_list = astFree( that_map_list ); + that_invert_list = astFree( that_invert_list ); + + } + } + +/* If an error occurred, clear the result value. */ + if ( !astOK ) result = 0; + +/* Return the result, */ + return result; +} + +static int GetIsLinear( AstMapping *this_mapping, int *status ){ +/* +* Name: +* GetIsLinear + +* Purpose: +* Return the value of the IsLinear attribute for a CmpMap. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* void GetIsLinear( AstMapping *this, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the protected astGetIsLinear +* method inherited from the Mapping class). + +* Description: +* This function returns the value of the IsLinear attribute for a +* Frame, which is one if both component Mappings have a value of 1 +* for the IsLinear attribute. + +* Parameters: +* this +* Pointer to the CmpqMap. +* status +* Pointer to the inherited status variable. +*/ + AstCmpMap *this; + this = (AstCmpMap *) this_mapping; + return astGetIsLinear( this->map1 ) && astGetIsLinear( this->map2 ); +} + +static int GetObjSize( AstObject *this_object, int *status ) { +/* +* Name: +* GetObjSize + +* Purpose: +* Return the in-memory size of an Object. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int GetObjSize( AstObject *this, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the astGetObjSize protected +* method inherited from the parent class). + +* Description: +* This function returns the in-memory size of the supplied CmpMap, +* in bytes. + +* Parameters: +* this +* Pointer to the CmpMap. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* The Object size, in bytes. + +* Notes: +* - A value of zero will be returned if this function is invoked +* with the global status set, or if it should fail for any reason. +*/ + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + int result; /* Result value to return */ + +/* Initialise. */ + result = 0; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Obtain a pointers to the CmpMap structure. */ + this = (AstCmpMap *) this_object; + +/* Invoke the GetObjSize method inherited from the parent class, and then + add on any components of the class structure defined by thsi class + which are stored in dynamically allocated memory. */ + result = (*parent_getobjsize)( this_object, status ); + + result += astGetObjSize( this->map1 ); + result += astGetObjSize( this->map2 ); + +/* If an error occurred, clear the result value. */ + if ( !astOK ) result = 0; + +/* Return the result, */ + return result; +} + +static AstMapping *CombineMaps( AstMapping *mapping1, int invert1, + AstMapping *mapping2, int invert2, + int series, int *status ) { +/* +* Name: +* CombineMaps + +* Purpose: +* Combine two Mappings with specified Invert flags into a CmpMap. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* AstMapping *CombineMaps( AstMapping *mapping1, int invert1, +* AstMapping *mapping2, int invert2, +* int series, int *status ) + +* Class Membership: +* CmpMap member function. + +* Description: +* This function combines two Mappings into a CmpMap (compound +* Mapping) as if their Invert flags were set to specified values +* when the CmpMap is created. However, the individual Mappings are +* returned with their Invert flag values unchanged from their +* original state. + +* Parameters: +* mapping1 +* Pointer to the first Mapping. +* invert1 +* The (boolean) Invert flag value required for the first Mapping. +* mapping2 +* Pointer to the second Mapping. +* invert2 +* The (boolean) Invert flag value required for the second Mapping. +* series +* Whether the Mappings are to be combined in series (as opposed to +* in parallel). +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A pointer to the resulting compound Mapping (a CmpMap). + +* Notes: +* - This function is a wrap-up for the astCmpMap constructor and +* temporarily assigns the required Invert flag values while +* creating the required CmpMap. However, it also takes account of +* the possibility that the two Mapping pointers supplied may point +* at the same Mapping. +* - A null Object pointer (AST__NULL) will be returned if this +* function is invoked with the AST error status set, or if it +* should fail for any reason. +*/ + +/* Local Variables: */ + AstMapping *map1; /* First temporary Mapping pointer */ + AstMapping *map2; /* Second temporary Mapping pointer */ + AstMapping *result; /* Pointer to result Mapping */ + int copy; /* Copy needed? */ + int inv1; /* First original Invert flag value */ + int inv2; /* Second original Invert flag value */ + int set1; /* First Invert flag originally set? */ + int set2; /* Second Invert flag originally set? */ + +/* Initialise */ + result = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Limit incoming values to 0 or 1. */ + invert1 = ( invert1 != 0 ); + invert2 = ( invert2 != 0 ); + +/* Obtain the Invert flag values for each Mapping. */ + inv1 = astGetInvert( mapping1 ); + inv2 = astGetInvert( mapping2 ); + +/* Also determine if these values are explicitly set. */ + set1 = astTestInvert( mapping1 ); + set2 = astTestInvert( mapping2 ); + +/* If both Mappings are actually the same but we need different Invert + flag values to be set, then this can only be achieved by making a + copy. Note if this is necessary. */ + copy = ( ( mapping1 == mapping2 ) && ( invert1 != invert2 ) ); + +/* Clone the first Mapping pointer. Do likewise for the second but + make a copy instead if necessary. */ + map1 = astClone( mapping1 ); + map2 = copy ? astCopy( mapping2 ) : astClone( mapping2 ); + +/* If the Invert value for the first Mapping needs changing, make the + change. */ + if ( invert1 != inv1 ) { + if ( invert1 ) { + astSetInvert( map1, 1 ); + } else { + astClearInvert( map1 ); + } + } + +/* Similarly, change the Invert flag for the second Mapping if + necessary. */ + if ( invert2 != inv2 ) { + if ( invert2 ) { + astSetInvert( map2, 1 ); + } else { + astClearInvert( map2 ); + } + } + +/* Combine the two Mappings into a CmpMap. */ + result = (AstMapping *) astCmpMap( map1, map2, series, "", status ); + +/* If the first Mapping's Invert value was changed, restore it to its + original state. */ + if ( invert1 != inv1 ) { + if ( set1 ) { + astSetInvert( map1, inv1 ); + } else { + astClearInvert( map1 ); + } + } + +/* Similarly, restore the second Mapping's Invert value if + necessary. This step is not needed, however, if a copy was made. */ + if ( ( invert2 != inv2 ) && !copy ) { + if ( set2 ) { + astSetInvert( map2, inv2 ); + } else { + astClearInvert( map2 ); + } + } + +/* Annul the temporary Mapping pointers. */ + map1 = astAnnul( map1 ); + map2 = astAnnul( map2 ); + +/* If an error occurred, then annul the result pointer. */ + if ( !astOK ) result = astAnnul( result ); + +/* Return the result. */ + return result; +} + +static void Decompose( AstMapping *this_mapping, AstMapping **map1, + AstMapping **map2, int *series, int *invert1, + int *invert2, int *status ) { +/* +* +* Name: +* Decompose + +* Purpose: +* Decompose a Mapping into two component Mappings. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* void Decompose( AstMapping *this, AstMapping **map1, +* AstMapping **map2, int *series, +* int *invert1, int *invert2, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the protected astDecompose +* method inherited from the Mapping class). + +* Description: +* This function returns pointers to two Mappings which, when applied +* either in series or parallel, are equivalent to the supplied Mapping. +* +* Since the Frame class inherits from the Mapping class, Frames can +* be considered as special types of Mappings and so this method can +* be used to decompose either CmpMaps or CmpFrames. + +* Parameters: +* this +* Pointer to the Mapping. +* map1 +* Address of a location to receive a pointer to first component +* Mapping. +* map2 +* Address of a location to receive a pointer to second component +* Mapping. +* series +* Address of a location to receive a value indicating if the +* component Mappings are applied in series or parallel. A non-zero +* value means that the supplied Mapping is equivalent to applying map1 +* followed by map2 in series. A zero value means that the supplied +* Mapping is equivalent to applying map1 to the lower numbered axes +* and map2 to the higher numbered axes, in parallel. +* invert1 +* The value of the Invert attribute to be used with map1. +* invert2 +* The value of the Invert attribute to be used with map2. +* status +* Pointer to the inherited status variable. + +* Notes: +* - Any changes made to the component Mappings using the returned +* pointers will be reflected in the supplied Mapping. + +*- +*/ + + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Obtain a pointer to the CmpMap structure. */ + this = (AstCmpMap *) this_mapping; + +/* First deal with series mappings. */ + if( this->series ) { + if( series ) *series = 1; + +/* If the CmpMap has been inverted, return the Mappings in reverse + order with inverted Invert falgs. */ + if( astGetInvert( this ) ) { + if( map1 ) *map1 = astClone( this->map2 ); + if( map2 ) *map2 = astClone( this->map1 ); + if( invert1 ) *invert1 = this->invert2 ? 0 : 1; + if( invert2 ) *invert2 = this->invert1 ? 0 : 1; + +/* If the CmpMap has not been inverted, return the Mappings in their + original order with their original Invert flags. */ + } else { + if( map1 ) *map1 = astClone( this->map1 ); + if( map2 ) *map2 = astClone( this->map2 ); + if( invert1 ) *invert1 = this->invert1; + if( invert2 ) *invert2 = this->invert2; + } + +/* Now deal with parallel mappings. */ + } else { + if( series ) *series = 0; + +/* The mappings are returned in their original order whether or not the + CmpMap has been inverted. */ + if( map1 ) *map1 = astClone( this->map1 ); + if( map2 ) *map2 = astClone( this->map2 ); + +/* If the CmpMap has been inverted, return inverted Invert flags. */ + if( astGetInvert( this ) ) { + if( invert1 ) *invert1 = this->invert1 ? 0 : 1; + if( invert2 ) *invert2 = this->invert2 ? 0 : 1; + +/* If the CmpMap has not been inverted, return the original Invert flags. */ + } else { + if( invert1 ) *invert1 = this->invert1; + if( invert2 ) *invert2 = this->invert2; + } + + } +} + +void astInitCmpMapVtab_( AstCmpMapVtab *vtab, const char *name, int *status ) { +/* +*+ +* Name: +* astInitCmpMapVtab + +* Purpose: +* Initialise a virtual function table for a CmpMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "cmpmap.h" +* void astInitCmpMapVtab( AstCmpMapVtab *vtab, const char *name ) + +* Class Membership: +* CmpMap vtab initialiser. + +* Description: +* This function initialises the component of a virtual function +* table which is used by the CmpMap class. + +* Parameters: +* vtab +* Pointer to the virtual function table. The components used by +* all ancestral classes will be initialised if they have not already +* been initialised. +* name +* Pointer to a constant null-terminated character string which contains +* the name of the class to which the virtual function table belongs (it +* is this pointer value that will subsequently be returned by the Object +* astClass function). +*- +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */ + AstObjectVtab *object; /* Pointer to Object component of Vtab */ + +/* Check the local error status. */ + if ( !astOK ) return; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Initialize the component of the virtual function table used by the + parent class. */ + astInitMappingVtab( (AstMappingVtab *) vtab, name ); + +/* Store a unique "magic" value in the virtual function table. This + will be used (by astIsACmpMap) to determine if an object belongs to + this class. We can conveniently use the address of the (static) + class_check variable to generate this unique value. */ + vtab->id.check = &class_check; + vtab->id.parent = &(((AstMappingVtab *) vtab)->id); + +/* Initialise member function pointers. */ +/* ------------------------------------ */ +/* Store pointers to the member functions (implemented here) that + provide virtual methods for this class. */ + +/* None. */ + +/* Save the inherited pointers to methods that will be extended, and + replace them with pointers to the new member functions. */ + object = (AstObjectVtab *) vtab; + mapping = (AstMappingVtab *) vtab; + parent_getobjsize = object->GetObjSize; + object->GetObjSize = GetObjSize; + +#if defined(THREAD_SAFE) + parent_managelock = object->ManageLock; + object->ManageLock = ManageLock; +#endif + + parent_maplist = mapping->MapList; + mapping->MapList = MapList; + + parent_transform = mapping->Transform; + mapping->Transform = Transform; + + parent_mapsplit = mapping->MapSplit; + mapping->MapSplit = MapSplit; + +/* Store replacement pointers for methods which will be over-ridden by + new member functions implemented here. */ + object->Equal = Equal; + mapping->Decompose = Decompose; + mapping->MapMerge = MapMerge; + mapping->Simplify = Simplify; + mapping->RemoveRegions = RemoveRegions; + mapping->GetIsLinear = GetIsLinear; + +/* For some reason the CmpMap implementation of astRate can be immensely + slow for complex Mapping, so it's currently disable until such time as + I have time to sort it out. + + mapping->Rate = Rate; +*/ + +/* Declare the copy constructor, destructor and class dump function. */ + astSetCopy( vtab, Copy ); + astSetDelete( vtab, Delete ); + astSetDump( vtab, Dump, "CmpMap", "Compound Mapping" ); + +/* If we have just initialised the vtab for the current class, indicate + that the vtab is now initialised, and store a pointer to the class + identifier in the base "object" level of the vtab. */ + if( vtab == &class_vtab ) { + class_init = 1; + astSetVtabClassIdentifier( vtab, &(vtab->id) ); + } +} + +#if defined(THREAD_SAFE) +static int ManageLock( AstObject *this_object, int mode, int extra, + AstObject **fail, int *status ) { +/* +* Name: +* ManageLock + +* Purpose: +* Manage the thread lock on an Object. + +* Type: +* Private function. + +* Synopsis: +* #include "object.h" +* AstObject *ManageLock( AstObject *this, int mode, int extra, +* AstObject **fail, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the astManageLock protected +* method inherited from the parent class). + +* Description: +* This function manages the thread lock on the supplied Object. The +* lock can be locked, unlocked or checked by this function as +* deteremined by parameter "mode". See astLock for details of the way +* these locks are used. + +* Parameters: +* this +* Pointer to the Object. +* mode +* An integer flag indicating what the function should do: +* +* AST__LOCK: Lock the Object for exclusive use by the calling +* thread. The "extra" value indicates what should be done if the +* Object is already locked (wait or report an error - see astLock). +* +* AST__UNLOCK: Unlock the Object for use by other threads. +* +* AST__CHECKLOCK: Check that the object is locked for use by the +* calling thread (report an error if not). +* extra +* Extra mode-specific information. +* fail +* If a non-zero function value is returned, a pointer to the +* Object that caused the failure is returned at "*fail". This may +* be "this" or it may be an Object contained within "this". Note, +* the Object's reference count is not incremented, and so the +* returned pointer should not be annulled. A NULL pointer is +* returned if this function returns a value of zero. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A local status value: +* 0 - Success +* 1 - Could not lock or unlock the object because it was already +* locked by another thread. +* 2 - Failed to lock a POSIX mutex +* 3 - Failed to unlock a POSIX mutex +* 4 - Bad "mode" value supplied. + +* Notes: +* - This function attempts to execute even if an error has already +* occurred. +*/ + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + int result; /* Returned status value */ + +/* Initialise */ + result = 0; + +/* Check the supplied pointer is not NULL. */ + if( !this_object ) return result; + +/* Obtain a pointers to the CmpMap structure. */ + this = (AstCmpMap *) this_object; + +/* Invoke the ManageLock method inherited from the parent class. */ + if( !result ) result = (*parent_managelock)( this_object, mode, extra, + fail, status ); + +/* Invoke the astManageLock method on any Objects contained within + the supplied Object. */ + if( !result ) result = astManageLock( this->map1, mode, extra, fail ); + if( !result ) result = astManageLock( this->map2, mode, extra, fail ); + + return result; + +} +#endif + +static int MapList( AstMapping *this_mapping, int series, int invert, + int *nmap, AstMapping ***map_list, int **invert_list, int *status ) { +/* +* Name: +* MapList + +* Purpose: +* Decompose a CmpMap into a sequence of simpler Mappings. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* int MapList( AstMapping *this, int series, int invert, int *nmap, +* AstMapping ***map_list, int **invert_list ) + +* Class Membership: +* CmpMap member function (over-rides the protected astMapList +* method inherited from the Maping class). + +* Description: +* This function decomposes a CmpMap into a sequence of simpler +* Mappings which may be applied in sequence to achieve the same +* effect. The CmpMap is decomposed as far as possible, but it is +* not guaranteed that this will necessarily yield any more than +* one Mapping, which may actually be the original CmpMap supplied. +* +* This function is provided to support both the simplification of +* CmpMaps, and the analysis of CmpMap structure so that particular +* forms can be recognised. + +* Parameters: +* this +* Pointer to the CmpMap to be decomposed (the CmpMap is not +* actually modified by this function). +* series +* If this value is non-zero, an attempt will be made to +* decompose the CmpMap into a sequence of equivalent Mappings +* which can be applied in series (i.e. one after the other). If +* it is zero, the decomposition will instead yield Mappings +* which can be applied in parallel (i.e. on successive sub-sets +* of the input/output coordinates). +* invert +* The value to which the CmpMap's Invert attribute is to be +* (notionally) set before performing the +* decomposition. Normally, the value supplied here will be the +* actual Invert value obtained from the CmpMap (e.g. using +* astGetInvert). Sometimes, however, when a CmpMap is +* encapsulated within another structure, that structure may +* retain an Invert value (in order to prevent external +* interference) which should be used instead. +* +* Note that the actual Invert value of the CmpMap supplied is +* not used (or modified) by this function. +* nmap +* The address of an int which holds a count of the number of +* individual Mappings in the decomposition. On entry, this +* should count the number of Mappings already in the +* "*map_list" array (below). On exit, it is updated to include +* any new Mappings appended by this function. +* map_list +* Address of a pointer to an array of Mapping pointers. On +* entry, this array pointer should either be NULL (if no +* Mappings have yet been obtained) or should point at a +* dynamically allocated array containing Mapping pointers +* ("*nmap" in number) which have been obtained from a previous +* invocation of this function. +* +* On exit, the dynamic array will be enlarged to contain any +* new Mapping pointers that result from the decomposition +* requested. These pointers will be appended to any previously +* present, and the array pointer will be updated as necessary +* to refer to the enlarged array (any space released by the +* original array will be freed automatically). +* +* The new Mapping pointers returned will identify a sequence of +* Mappings which, when applied in order, will perform a forward +* transformation equivalent to that of the original CmpMap +* (after its Invert flag has first been set to the value +* requested above). The Mappings should be applied in series or +* in parallel according to the type of decomposition requested. +* +* All the Mapping pointers returned by this function should be +* annulled by the caller, using astAnnul, when no longer +* required. The dynamic array holding these pointers should +* also be freed, using astFree. +* invert_list +* Address of a pointer to an array of int. On entry, this array +* pointer should either be NULL (if no Mappings have yet been +* obtained) or should point at a dynamically allocated array +* containing Invert attribute values ("*nmap" in number) which +* have been obtained from a previous invocation of this +* function. +* +* On exit, the dynamic array will be enlarged to contain any +* new Invert attribute values that result from the +* decomposition requested. These values will be appended to any +* previously present, and the array pointer will be updated as +* necessary to refer to the enlarged array (any space released +* by the original array will be freed automatically). +* +* The new Invert values returned identify the values which must +* be assigned to the Invert attributes of the corresponding +* Mappings (whose pointers are in the "*map_list" array) before +* they are applied. Note that these values may differ from the +* actual Invert attribute values of these Mappings, which are +* not relevant. +* +* The dynamic array holding these values should be freed by the +* caller, using astFree, when no longer required. + +* Returned Value: +* A non-zero value is returned if the supplied Mapping contained any +* inverted CmpMaps. + +* Notes: +* - It is unspecified to what extent the original CmpMap and the +* individual (decomposed) Mappings are +* inter-dependent. Consequently, the individual Mappings cannot be +* modified without risking modification of the original CmpMap. +* - If this function is invoked with the global error status set, +* or if it should fail for any reason, then the *nmap value, the +* list of Mapping pointers and the list of Invert values will all +* be returned unchanged. +*/ + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + int invert1; /* Invert flag for first component Mapping */ + int invert2; /* Invert flag for second component Mapping */ + int r1; /* Value returned from first map list */ + int r2; /* Value returned from second map list */ + int result; /* Returned value */ + +/* Check the global error status. */ + if ( !astOK ) return 0; + +/* Obtain a pointer to the CmpMap structure. */ + this = (AstCmpMap *) this_mapping; + +/* Check if the CmpMap combines its component Mappings in the same way + (series or parallel) as the decomposition requires. Also, do not + expand CmpMaps that are not appropriate for simplification. */ + if ( this->series == series && !astDoNotSimplify( this ) ) { + +/* If so, obtain the Invert attribute values to be applied to each + component Mapping. */ + invert1 = this->invert1; + invert2 = this->invert2; + +/* If the CmpMap itself is inverted, also invert the Invert values to be + applied to its components. */ + if ( invert ) { + invert1 = !invert1; + invert2 = !invert2; + } + +/* If the component Mappings are applied in series, then concatenate + the Mapping lists obtained from each of them. Do this in reverse + order if the CmpMap is inverted, since the second Mapping would be + applied first in this case. */ + if ( series ) { + if ( !invert ) { + r1 = astMapList( this->map1, series, invert1, + nmap, map_list, invert_list ); + r2 = astMapList( this->map2, series, invert2, + nmap, map_list, invert_list ); + } else { + r1 = astMapList( this->map2, series, invert2, + nmap, map_list, invert_list ); + r2 = astMapList( this->map1, series, invert1, + nmap, map_list, invert_list ); + } + +/* If the component Mappings are applied in parallel, then concatenate + the Mapping lists obtained from each of them. In this case, + inverting the CmpMap has no effect on the order in which they are + applied. */ + } else { + r1 = astMapList( this->map1, series, invert1, + nmap, map_list, invert_list ); + r2 = astMapList( this->map2, series, invert2, + nmap, map_list, invert_list ); + } + +/* Did we find any inverted CmpMaps? */ + result = invert || r1 || r2; + +/* If the CmpMap does not combine its components in the way required + by the decomposition (series or parallel), then we cannot decompose + it. In this case it must be appended to the Mapping list as a + single entity. We can use the parent class method to do this. */ + } else { + result = ( *parent_maplist )( this_mapping, series, invert, nmap, + map_list, invert_list, status ); + } + + return result; +} + +static int MapMerge( AstMapping *this, int where, int series, int *nmap, + AstMapping ***map_list, int **invert_list, int *status ) { +/* +* Name: +* MapMerge + +* Purpose: +* Simplify a sequence of Mappings containing a CmpMap. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* int MapMerge( AstMapping *this, int where, int series, int *nmap, +* AstMapping ***map_list, int **invert_list ) + +* Class Membership: +* CmpMap method (over-rides the protected astMapMerge method +* inherited from the Mapping class). + +* Description: +* This function attempts to simplify a sequence of Mappings by +* merging a nominated CmpMap in the sequence with its neighbours, +* so as to shorten the sequence if possible. +* +* In many cases, simplification will not be possible and the +* function will return -1 to indicate this, without further +* action. +* +* In most cases of interest, however, this function will either +* attempt to replace the nominated CmpMap with one which it +* considers simpler, or to merge it with the Mappings which +* immediately precede it or follow it in the sequence (both will +* normally be considered). This is sufficient to ensure the +* eventual simplification of most Mapping sequences by repeated +* application of this function. +* +* In some cases, the function may attempt more elaborate +* simplification, involving any number of other Mappings in the +* sequence. It is not restricted in the type or scope of +* simplification it may perform, but will normally only attempt +* elaborate simplification in cases where a more straightforward +* approach is not adequate. + +* Parameters: +* this +* Pointer to the nominated CmpMap which is to be merged with +* its neighbours. This should be a cloned copy of the CmpMap +* pointer contained in the array element "(*map_list)[where]" +* (see below). This pointer will not be annulled, and the +* CmpMap it identifies will not be modified by this function. +* where +* Index in the "*map_list" array (below) at which the pointer +* to the nominated CmpMap resides. +* series +* A non-zero value indicates that the sequence of Mappings to +* be simplified will be applied in series (i.e. one after the +* other), whereas a zero value indicates that they will be +* applied in parallel (i.e. on successive sub-sets of the +* input/output coordinates). +* nmap +* Address of an int which counts the number of Mappings in the +* sequence. On entry this should be set to the initial number +* of Mappings. On exit it will be updated to record the number +* of Mappings remaining after simplification. +* map_list +* Address of a pointer to a dynamically allocated array of +* Mapping pointers (produced, for example, by the astMapList +* method) which identifies the sequence of Mappings. On entry, +* the initial sequence of Mappings to be simplified should be +* supplied. +* +* On exit, the contents of this array will be modified to +* reflect any simplification carried out. Any form of +* simplification may be performed. This may involve any of: (a) +* removing Mappings by annulling any of the pointers supplied, +* (b) replacing them with pointers to new Mappings, (c) +* inserting additional Mappings and (d) changing their order. +* +* The intention is to reduce the number of Mappings in the +* sequence, if possible, and any reduction will be reflected in +* the value of "*nmap" returned. However, simplifications which +* do not reduce the length of the sequence (but improve its +* execution time, for example) may also be performed, and the +* sequence might conceivably increase in length (but normally +* only in order to split up a Mapping into pieces that can be +* more easily merged with their neighbours on subsequent +* invocations of this function). +* +* If Mappings are removed from the sequence, any gaps that +* remain will be closed up, by moving subsequent Mapping +* pointers along in the array, so that vacated elements occur +* at the end. If the sequence increases in length, the array +* will be extended (and its pointer updated) if necessary to +* accommodate any new elements. +* +* Note that any (or all) of the Mapping pointers supplied in +* this array may be annulled by this function, but the Mappings +* to which they refer are not modified in any way (although +* they may, of course, be deleted if the annulled pointer is +* the final one). +* invert_list +* Address of a pointer to a dynamically allocated array which, +* on entry, should contain values to be assigned to the Invert +* attributes of the Mappings identified in the "*map_list" +* array before they are applied (this array might have been +* produced, for example, by the astMapList method). These +* values will be used by this function instead of the actual +* Invert attributes of the Mappings supplied, which are +* ignored. +* +* On exit, the contents of this array will be updated to +* correspond with the possibly modified contents of the +* "*map_list" array. If the Mapping sequence increases in +* length, the "*invert_list" array will be extended (and its +* pointer updated) if necessary to accommodate any new +* elements. + +* Returned Value: +* If simplification was possible, the function returns the index +* in the "map_list" array of the first element which was +* modified. Otherwise, it returns -1 (and makes no changes to the +* arrays supplied). + +* Notes: +* - A value of -1 will be returned if this function is invoked +* with the global error status set, or if it should fail for any +* reason. +*/ + +/* Local Variables: */ + AstCmpMap *cmpmap1; /* Pointer to first CmpMap */ + AstCmpMap *cmpmap2; /* Pointer to second CmpMap */ + AstCmpMap *cmpmap; /* Pointer to nominated CmpMap */ + AstCmpMap *new_cm; /* Pointer to new CmpMap */ + AstMapping **map_list1; /* Pointer to list of cmpmap1 component Mappings */ + AstMapping **map_list2; /* Pointer to list of cmpmap2 component Mappings */ + AstMapping **new_map_list; /* Extended Mapping list */ + AstMapping *map; /* Pointer to nominated CmpMap */ + AstMapping *new1; /* Pointer to new CmpMap */ + AstMapping *new2; /* Pointer to new CmpMap */ + AstMapping *new; /* Pointer to replacement Mapping */ + AstMapping *simp1; /* Pointer to simplified Mapping */ + AstMapping *simp2; /* Pointer to simplified Mapping */ + AstMapping *submap1; /* A subset of mappings from cmpmap1 */ + AstMapping *submap2; /* A subset of mappings from cmpmap2 */ + AstMapping *tmap2; /* Temporary Mapping */ + AstMapping *tmap; /* Temporary Mapping */ + AstPermMap *new_pm; /* Pointer to new PermMap */ + AstPermMap *permmap1; /* Pointer to first PermMap */ + AstUnitMap *unit; /* UnitMap that feeds const PermMap i/p's */ + const char *class; /* Pointer to Mapping class string */ + double *conperm; /* Pointer to PermMap constants array */ + double *const_new; /* Pointer to new PermMap constants array */ + double *p; /* Pointer to PermMap input position */ + double *q; /* Pointer to PermMap output position */ + double *qa; /* Pointer to 1st component output position */ + double *qb; /* Pointer to 2nd component output position */ + int *inperm; /* Pointer to copy of PermMap inperm array */ + int *inperm_new; /* Pointer to new PermMap inperm array */ + int *invert_list1; /* Pointer to list of cmpmap1 invert values */ + int *invert_list2; /* Pointer to list of cmpmap2 invert values */ + int *new_invert_list; /* Extended Invert flag list */ + int *outperm; /* Pointer to copy of PermMap outperm array */ + int *outperm_new; /* Pointer to new PermMap outperm array */ + int aconstants; /* Are all 1st component outputs constant? */ + int bconstants; /* Are all 2nd component outputs constant? */ + int canswap; /* Can nominated Mapping swap with lower neighbour? */ + int i; /* Coordinate index */ + int iconid; /* Constant identifier in supplied PermMap */ + int imap1; /* Index of first Mapping */ + int imap2; /* Index of second Mapping */ + int imap; /* Loop counter for Mappings */ + int invert1; /* Invert flag for first CmpMap */ + int invert1a; /* Invert flag for sub-Mapping */ + int invert1b; /* Invert flag for sub-Mapping */ + int invert2; /* Invert flag for second CmpMap */ + int invert2a; /* Invert flag for sub-Mapping */ + int invert2b; /* Invert flag for sub-Mapping */ + int invert; /* Invert attribute value */ + int j; /* Coordinate index */ + int jmap1; /* Index of next component Mapping in cmpmap1 */ + int jmap2; /* Index of next component Mapping in cmpmap2 */ + int new_invert; /* New Invert attribute value */ + int nin2a; /* No. input coordinates for sub-Mapping */ + int nin2b; /* No. input coordinates for sub-Mapping */ + int nmap1; /* Number of Mappings in cmpmap1 */ + int nmap2; /* Number of Mappings in cmpmap2 */ + int nout2a; /* No. of outputs for 1st component Mapping */ + int nout2b; /* No. of outputs for 2nd component Mapping */ + int npin; /* No. of inputs for original PermMap */ + int npin_new; /* No. of inputs for new PermMap */ + int npout; /* No. of outputs for original PermMap */ + int npout_new; /* No. of outputs for new PermMap */ + int nunit; /* No. of PermMap i/p's fed by UnitMap */ + int oconid; /* Constant identifier in returned PermMap */ + int result; /* Result value to return */ + int set; /* Invert attribute set? */ + int simpler; /* Simplification possible? */ + int subin2; /* Number of inputs of submap2 */ + int subinv1; /* Invert attribute to use with submap1 */ + int subinv2; /* Invert attribute to use with submap2 */ + int subout1; /* Number of outputs of submap1 */ + +/* Initialise.*/ + result = -1; + +/* Check the inherited status. */ + if ( !astOK ) return result; + +/* Simplify the CmpMap on its own. */ +/* =============================== */ +/* Obtain a pointer to the nominated Mapping (which is a CmpMap). */ + map = ( *map_list )[ where ]; + cmpmap = (AstCmpMap *) map; + +/* Determine if the Mapping's Invert attribute is set and obtain its + value. */ + set = astTestInvert( map ); + invert = astGetInvert( map ); + +/* If necessary, change the Invert attribute to the value we want. We + do this so that simplification (below) has a chance to absorb a + non-zero Invert value into the implementation of the simplified + Mapping (the preference being to have an Invert value of zero after + simplification, if possible). */ + if ( invert != ( *invert_list )[ where ] ) { + astSetInvert( map, ( *invert_list )[ where ] ); + } + +/* Simplify the Mapping and obtain the new Invert value. */ + new = astSimplify( map ); + new_invert = astGetInvert( new ); + +/* If necessary, restore the original Mapping's Invert attribute to + its initial state. */ + if ( invert != ( *invert_list )[ where ] ) { + if ( set ) { + astSetInvert( map, invert ); + } else { + astClearInvert( map ); + } + } + +/* We must now determine if simplification has occurred. Since this is + internal code, we can compare the two Mapping pointers directly to + see whether "astSimplify" just cloned the pointer we gave it. If it + did, then simplification was probably not possible, but check to + see if the Invert attribute has changed to be sure. */ + if ( astOK ) { + simpler = ( new != map ) || ( new_invert != ( *invert_list )[ where ] ); + +/* If simplification was successful, annul the original pointer in the + Mapping list and replace it with the new one, together with its + invert flag. */ + if ( simpler ) { + (void) astAnnul( ( *map_list )[ where ] ); + ( *map_list )[ where ] = new; + ( *invert_list )[ where ] = new_invert; + +/* Return the result. */ + result = where; + +/* Otherwise, annul the new Mapping pointer. */ + } else { + new = astAnnul( new ); + +/* If the nominated CmpMap is a series CmpMap and the sequence of + Mappings are being combined in series, or if the nominated CmpMap is + a parallel CmpMap and the sequence of Mappings are being combined in + parallel, replace the single CmpMap with the two component Mappings. */ + if( ( series && cmpmap->series ) || + ( !series && !cmpmap->series ) ) { + +/* We are increasing the number of Mappings in the list, so we need to create + new, larger, arrays to hold the list of Mapping pointers and invert flags. */ + new_map_list = astMalloc( ( *nmap + 1 )*sizeof( AstMapping * ) ); + new_invert_list = astMalloc( ( *nmap + 1 )*sizeof( int ) ); + if( astOK ) { + +/* Copy the values prior to the nominated CmpMap. */ + for( i = 0; i < where; i++ ) { + new_map_list[ i ] = astClone( ( *map_list )[ i ] ); + new_invert_list[ i ] = ( *invert_list )[ i ]; + } + +/* Next insert the two components of the nominated CmpMap */ + new_map_list[ where ] = astClone( cmpmap->map1 ); + new_invert_list[ where ] = cmpmap->invert1; + new_map_list[ where + 1 ] = astClone( cmpmap->map2 ); + new_invert_list[ where + 1 ] = cmpmap->invert2; + +/* Now copy any values after the nominated CmpMap. */ + for( i = where + 1; i < *nmap; i++ ) { + new_map_list[ i + 1 ] = astClone( ( *map_list )[ i ] ); + new_invert_list[ i + 1 ] = ( *invert_list )[ i ]; + } + +/* Now annul the Object pointers in the supplied map list. */ + for( i = 0; i < *nmap; i++ ) { + (* map_list )[ i ] = astAnnul( ( *map_list )[ i ] ); + } + +/* Free the memory holding the supplied Mapping and invert flag lists. */ + astFree( *map_list ); + astFree( *invert_list ); + +/* Return pointers to the new extended lists. */ + *map_list = new_map_list; + *invert_list = new_invert_list; + +/* Increase the number of Mappings in the list, and the index of + the first modified Mapping. */ + (*nmap)++; + result = where; + +/* Indicate some simplification has taken place */ + simpler = 1; + } + } + } + +/* If no simplification has been done, merge adjacent CmpMaps. */ +/* ========================================================== */ +/* If the CmpMap would not simplify on its own, we now look for a + neighbouring CmpMap with which it might merge. We use the previous + Mapping, if suitable, since this will normally also have been fully + simplified on its own. Check if a previous Mapping exists. */ + if( !simpler ) { + if ( astOK && *nmap > 1 ) { + +/* Obtain the indices of the two potential Mappings to be merged. imap1 + is the first Mapping, imap2 is the second. imapc is the CmpMap, imapn is + the neighbouring Mapping. */ + if( where == 0 ) { + imap1 = 0; + imap2 = 1; + } else { + imap1 = where - 1; + imap2 = where; + } + +/* Obtain the Class string of the neighbouring Mapping and determine if it + is a CmpMap. */ + class = astGetClass( ( *map_list )[ (where>0)?where-1:1 ] ); + if ( astOK && !strcmp( class, "CmpMap" ) ) { + +/* If suitable, obtain pointers to the two CmpMaps. */ + cmpmap1 = (AstCmpMap *) ( *map_list )[ imap1 ]; + cmpmap2 = (AstCmpMap *) ( *map_list )[ imap2 ]; + +/* Obtain the associated invert flag values. */ + invert1 = ( *invert_list )[ imap1 ]; + invert2 = ( *invert_list )[ imap2 ]; + +/* Extract the invert flags associated with each CmpMap sub-Mapping + and combine these with the flag values obtained above so as to give + the invert flag to be used with each individual sub-Mapping. */ + invert1a = cmpmap1->invert1; + invert1b = cmpmap1->invert2; + if ( invert1 ) { + invert1a = !invert1a; + invert1b = !invert1b; + } + invert2a = cmpmap2->invert1; + invert2b = cmpmap2->invert2; + if ( invert2 ) { + invert2a = !invert2a; + invert2b = !invert2b; + } + +/* Series CmpMaps in parallel. */ +/* =========================== */ +/* Now check if the CmpMaps can be merged. This may be possible if we + are examining a list of Mappings combined in parallel and the two + adjacent CmpMaps both combine their sub-Mappings in series. */ + if ( !series && cmpmap1->series && cmpmap2->series ) { + +/* Form two new parallel CmpMaps with the sub-Mappings re-arranged so + that when combined in series these new CmpMaps are equivalent to + the original ones. In doing this, we must take account of the + invert flags which apply to each sub-Mapping and also of the fact + that the order in which the sub-Mappings are applied depends on the + invert flags of the original CmpMaps. */ + new1 = CombineMaps( invert1 ? cmpmap1->map2 : cmpmap1->map1, + invert1 ? invert1b : invert1a, + invert2 ? cmpmap2->map2 : cmpmap2->map1, + invert2 ? invert2b : invert2a, 0, status ); + new2 = CombineMaps( invert1 ? cmpmap1->map1 : cmpmap1->map2, + invert1 ? invert1a : invert1b, + invert2 ? cmpmap2->map1 : cmpmap2->map2, + invert2 ? invert2a : invert2b, 0, status ); + +/* Having converted the parallel combination of series CmpMaps into a + pair of equivalent parallel CmpMaps that can be combined in series, + try and simplify each of these new CmpMaps. */ + simp1 = astSimplify( new1 ); + simp2 = astSimplify( new2 ); + +/* Test if either could be simplified by checking if its pointer value + has changed. Also check if the Invert attribute has changed (not + strictly necessary, but a useful safety feature in case of any + rogue code which just changes this attribute instead of issuing a + new pointer). */ + simpler = ( simp1 != new1 ) || ( simp2 != new2 ) || + astGetInvert( simp1 ) || astGetInvert( simp2 ); + +/* If either CmpMap was simplified, then combine the resulting + Mappings in series to give the replacement CmpMap. */ + if ( simpler ) new = + (AstMapping *) astCmpMap( simp1, simp2, 1, "", status ); + +/* Annul the temporary Mapping pointers. */ + new1 = astAnnul( new1 ); + new2 = astAnnul( new2 ); + simp1 = astAnnul( simp1 ); + simp2 = astAnnul( simp2 ); + +/* Parallel CmpMaps in series. */ +/* =========================== */ +/* A pair of adjacent CmpMaps can also potentially be merged if we are + examining a list of Mappings combined in series and the two + adjacent CmpMaps both combine their sub-Mappings in parallel. */ + } else if ( series && !cmpmap1->series && !cmpmap2->series ) { + +/* Expand each of the two adjacent CmpMaps into a list of Mappings to be + combined in parallel. */ + map_list1 = map_list2 = NULL; + invert_list1 = invert_list2 = NULL; + nmap1 = nmap2 = 0; + (void) astMapList( (AstMapping *) cmpmap1, 0, invert1, + &nmap1, &map_list1, &invert_list1 ); + (void) astMapList( (AstMapping *) cmpmap2, 0, invert2, + &nmap2, &map_list2, &invert_list2 ); + +/* We want to divide each of these lists into N sub-lists so that the + outputs of the Mappings in the i'th sub-list from cmpmap1 can feed + (i.e. equal in number) the inputs of the Mappings in the i'th sub-list + from cmpmap2. If such a sub-list contains more than one Mapping we + combine them together into a parallel CmpMap. Initialise a flag to + indicate that we have not yet found any genuine simplification. */ + simpler = 0; + +/* Initialise the index of the next Mapping to be added into each + sublist. */ + jmap1 = jmap2 = 0; + +/* Indicate both sublists are currently empty. */ + subout1 = subin2 = 0; + new = submap1 = submap2 = NULL; + subinv1 = subinv2 = 0; + +/* Loop round untill all Mappings have been used. */ + while( jmap1 <= nmap1 && jmap2 <= nmap2 && astOK ) { + +/* Note the number of outputs from submap1 and the number of inputs to + submap2. If the Invert flag is not set to the required value for + either Mapping, then inputs become outputs and vice-versa, so swap Nin + and Nout. */ + if( !submap1 ) { + subout1 = 0; + } else if( subinv1 == astGetInvert( submap1 ) ) { + subout1 = astGetNout( submap1 ); + } else { + subout1 = astGetNin( submap1 ); + } + + if( !submap2 ) { + subin2 = 0; + } else if( subinv2 == astGetInvert( submap2 ) ) { + subin2 = astGetNin( submap2 ); + } else { + subin2 = astGetNout( submap2 ); + } + +/* If sublist for cmpmap1 has too few outputs, add the next Mapping from + the cmpmap1 list into the submap1 sublist. */ + if( subout1 < subin2 ) { + tmap = CombineMaps( submap1, subinv1, + map_list1[ jmap1 ], + invert_list1[ jmap1 ], 0, status ); + (void) astAnnul( submap1 ); + submap1 = tmap; + subinv1 = 0; + jmap1++; + +/* If sublist for cmpmap2 has too few inputs, add the next Mapping from + the cmpmap2 list into the submap2 sublist. */ + } else if( subin2 < subout1 ) { + tmap = CombineMaps( submap2, subinv2, + map_list2[ jmap2 ], + invert_list2[ jmap2 ], 0, status ); + (void) astAnnul( submap2 ); + submap2 = tmap; + subinv2 = 0; + jmap2++; + +/* If submap1 can now feed submap2, combine them in series, and attempt to + simplify it. */ + } else { + +/* Check this is not the first pass (when we do not have a submap1 or + submap2). */ + if( submap1 && submap2 ) { + +/* Combine the Mappings in series and simplify. */ + tmap = CombineMaps( submap1, subinv1, submap2, + subinv2, 1, status ); + submap1 = astAnnul( submap1 ); + submap2 = astAnnul( submap2 ); + tmap2 = astSimplify( tmap ); + tmap = astAnnul( tmap ); + +/* Note if any simplification took place. */ + if( tmap != tmap2 || + astGetInvert( tmap ) != astGetInvert( tmap2 ) ) + simpler = 1; + +/* Add the simplifed Mapping into the total merged Mapping (a parallel + CmpMap). */ + if( !new ) { + new = tmap2; + } else { + tmap = (AstMapping *) astCmpMap( new, tmap2, 0, + " ", status ); + tmap2 = astAnnul( tmap2 ); + (void) astAnnul( new ); + new = tmap; + } + } + +/* Reset submap1 to be the next Mapping from the cmpmap1 map list. First, + save its old Invert flag and set it to the required value. */ + if( jmap1 < nmap1 ) { + submap1 = astClone( map_list1[ jmap1 ] ); + subinv1 = invert_list1[ jmap1 ]; + jmap1++; + } else { + break; + } + +/* Do the same for the second list. */ + if( jmap2 < nmap2 ) { + submap2 = astClone( map_list2[ jmap2 ] ); + subinv2 = invert_list2[ jmap2 ]; + jmap2++; + } else { + break; + } + } + } + +/* Free the lists of Mapping pointers and invert flags. */ + if( map_list1 ) { + for( jmap1 = 0; jmap1 < nmap1; jmap1++ ) { + map_list1[ jmap1 ] = astAnnul( map_list1[ jmap1 ] ); + } + map_list1 = astFree( map_list1 ); + } + invert_list1 = astFree( invert_list1 ); + + if( map_list2 ) { + for( jmap2 = 0; jmap2 < nmap2; jmap2++ ) { + map_list2[ jmap2 ] = astAnnul( map_list2[ jmap2 ] ); + } + map_list2 = astFree( map_list2 ); + } + invert_list2 = astFree( invert_list2 ); + + } + } + +/* Update Mapping list. */ +/* ==================== */ +/* If adjacent CmpMaps can be combined, then annul the original pointers. */ + if ( astOK && simpler ) { + ( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] ); + ( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] ); + +/* Insert the pointer to the replacement CmpMap and initialise its + invert flag. */ + ( *map_list )[ imap1 ] = new; + ( *invert_list )[ imap1 ] = 0; + +/* Loop to close the resulting gap by moving subsequent elements down + in the arrays. */ + for ( imap = imap2 + 1; imap < *nmap; imap++ ) { + ( *map_list )[ imap - 1 ] = ( *map_list )[ imap ]; + ( *invert_list )[ imap - 1 ] = ( *invert_list )[ imap ]; + } + +/* Clear the vacated elements at the end. */ + ( *map_list )[ *nmap - 1 ] = NULL; + ( *invert_list )[ *nmap - 1 ] = 0; + +/* Decrement the Mapping count and return the index of the first + modified element. */ + ( *nmap )--; + result = imap1; + } + } + } + } + +/* If we are merging the Mappings in series, and if the nominated CmpMap + is a parallel CmpMap, and if the lower neighbour is a PermMap, it may + be possible to swap the PermMap and the CmpMap. This may allow one of + the two swapped Mappings to merge with its new neighbour. + ==================================================================== */ + +/* Only do this if no simplification occurred above, and if the Mappings + are being merged in series, and if the nominated Mapping is not the + first in the list. */ + if( result == -1 && where > 0 ){ + +/* Obtain the indices of the two potential Mappings to be swapped. */ + imap1 = where - 1; + imap2 = where; + +/* Obtain a pointer to the CmpMap. */ + cmpmap2 = (AstCmpMap *) ( *map_list )[ imap2 ]; + +/* Obtain the Class string of the first (previous) Mapping and + determine if it is a PermMap. Also check that the nominated Mapping is + a parallel CmpMap. */ + class = astGetClass( ( *map_list )[ imap1 ] ); + if ( astOK && !strcmp( class, "PermMap" ) && !cmpmap2->series) { + +/* Indicate we have no new Mapping to store. */ + new = NULL; + +/* If suitable, obtain a pointer to the PermMap. */ + permmap1 = (AstPermMap *) ( *map_list )[ imap1 ]; + +/* Obtain the current values of the Invert attribute in the Mappings. */ + invert1 = astGetInvert( permmap1 ); + invert2 = astGetInvert( cmpmap2 ); + +/* Temporarily set the Invert attributes of both Mappings to the values + supplied in the "invert_list" parameter. */ + astSetInvert( permmap1, ( *invert_list )[ imap1 ] ); + astSetInvert( cmpmap2, ( *invert_list )[ imap2 ] ); + +/* Get the number of inputs and outputs for the PermMap.*/ + npout = astGetNout( permmap1 ); + npin = astGetNin( permmap1 ); + +/* Get the number of inputs and outputs for the two components of the + nominated parallel CmpMap. */ + nin2a = astGetNin( cmpmap2->map1 ); + nin2b = astGetNin( cmpmap2->map2 ); + nout2a = astGetNout( cmpmap2->map1 ); + nout2b = astGetNout( cmpmap2->map2 ); + +/* Get the input and output axis permutation arrays and the constants + array from the PermMap */ + inperm =astGetInPerm( permmap1 ); + outperm =astGetOutPerm( permmap1 ); + conperm = astGetConstants( permmap1 ); + +/* In order to swap the Mappings, the PermMap outputs which feed the + inputs of the first component of the parallel CmpMap must be copied + from a contiguous block at the end of the list of PermMap inputs, or + must all be assigned constant values. Likewise, the PermMap outputs which + feed the inputs of the second component of the parallel CmpMap must be + copied from a contiguous block at the beggining of the list of PermMap + inputs or must be assigned constant values. Also, there must be a + one-to-one correspondance between inputs and outputs in the PermMap. + Check that the first block of nin2a PermMap outputs are copied from + the last block of nin2a PermMap inputs (and vica-versa) or are constant. */ + canswap = ( npin == npout ); + aconstants = ( outperm[ 0 ] < 0 ); + + for( i = 0, j = npin - nin2a; i < nin2a; i++, j++ ) { + if( aconstants ) { + if( outperm[ i ] >= 0 ) { + canswap = 0; + break; + } + + } else if( outperm[ i ] != j || inperm[ j ] != i ) { + canswap = 0; + break; + } + } + +/* Check that the first block of nin2b PermMap inputs are copied from + the last block of nin2b PermMap outputs, and vica-versa. */ + bconstants = ( outperm[ nin2a ] < 0 ); + for( i = 0, j = npout - nin2b; i < nin2b; i++, j++ ) { + if( bconstants ) { + if( outperm[ j ] >= 0 ) { + canswap = 0; + break; + } + } else if( inperm[ i ] != j || outperm[ j ] != i ) { + canswap = 0; + break; + } + } + +/* If the Mappings can be swapped.. */ + new_pm = NULL; + new_cm = NULL; + qa = NULL; + qb = NULL; + if( canswap ) { + +/* Temporarily set the Invert attributes of the component Mappings to the + values they had when the CmpMap was created. */ + invert2a = astGetInvert( cmpmap2->map1 ); + invert2b = astGetInvert( cmpmap2->map2 ); + astSetInvert( cmpmap2->map1, cmpmap2->invert1 ); + astSetInvert( cmpmap2->map2, cmpmap2->invert2 ); + +/* If any PermMap outputs are constant, we will need the results of + transforming these constants using the CmpMap which follows. */ + if( aconstants || bconstants ) { + +/* Transform a set of bad inputs using the PermMap. This will assign the + PermMap constant to any fixed outputs. */ + p = astMalloc( sizeof( double )*(size_t) npin ); + q = astMalloc( sizeof( double )*(size_t) npout ); + qa = astMalloc( sizeof( double )*(size_t) nout2a ); + qb = astMalloc( sizeof( double )*(size_t) nout2b ); + if( astOK ) { + for( i = 0; i < npin; i++ ) p[ i ] = AST__BAD; + astTranN( permmap1, 1, npin, 1, p, 1, npout, 1, q ); + +/* Transform the PermMap outputs using the two component Mappings in the + CmpMap. */ + astTranN( cmpmap2->map1, 1, nin2a, 1, q, 1, nout2a, 1, qa ); + astTranN( cmpmap2->map2, 1, nin2b, 1, q + nin2a, 1, nout2b, 1, qb ); + + } + p = astFree( p ); + q = astFree( q ); + } + +/* If necessary, create a UnitMap to replace a Mapping which has constant + outputs. The number of axes for the UnitMap is chosen to give the + correct total number of inputs for the final parallel CmpMap. At the + same time determine the number of inputs needed by the final PermMap. */ + if( aconstants ) { + nunit = npin - nin2b; + npin_new = nout2b + nunit; + } else if( bconstants ) { + nunit = npin - nin2a; + npin_new = nout2a + nunit; + } else { + nunit = 0; + npin_new = nout2a + nout2b; + } + unit = nunit ? astUnitMap( nunit, "", status ) : NULL; + +/* Determine the number of outputs for the final PermMap and allocate memory + for its permutation arrays. */ + npout_new = nout2a + nout2b; + outperm_new = astMalloc( sizeof( int )*(size_t) npout_new ); + inperm_new = astMalloc( sizeof( int )*(size_t) npin_new ); + const_new = astMalloc( sizeof( double )*(size_t) ( npout_new + npin_new ) ); + if( astOK ) { + oconid = 0; + +/* First assign permutations for the second component Mapping, if used. */ + if( !bconstants ) { + for( i = 0, j = npout_new - nout2b; i < nout2b; i++,j++ ) { + inperm_new[ i ] = j; + outperm_new[ j ] = i; + } + +/* Otherwise, store constants */ + } else { + + for( i = 0; i < nunit; i++ ){ + iconid = inperm[ i ]; + if( iconid >= npout ) { + inperm_new[ i ] = npout_new; + + } else if( iconid >= 0 ) { + astError( AST__INTER, "astMapMerge(CmpMap): Swapped PermMap " + "input is not constant (internal AST programming " + "error)." , status); + break; + + } else { + inperm_new[ i ] = --oconid; + const_new[ -( oconid + 1 ) ] = conperm[ -( iconid + 1 ) ]; + } + } + + for( i = 0, j = npout_new - nout2b; i < nout2b; i++,j++ ) { + outperm_new[ j ] = --oconid; + const_new[ -( oconid + 1 ) ] = qb[ i ]; + } + + } + +/* Now assign permutations for the first component Mapping, if used. */ + if( !aconstants ) { + for( i = 0, j = npin_new - nout2a; i < nout2a; i++,j++ ) { + inperm_new[ j ] = i; + outperm_new[ i ] = j; + } + +/* Otherwise, store constants */ + } else { + + for( i = nout2b; i < npin_new; i++ ){ + iconid = inperm[ i - nout2b + nin2b ]; + if( iconid >= npout ) { + inperm_new[ i ] = npout_new; + + } else if( iconid >= 0 ) { + astError( AST__INTER, "astMapMerge(CmpMap): Swapped PermMap " + "input is not constant (internal AST programming " + "error)." , status); + break; + + } else { + inperm_new[ i ] = --oconid; + const_new[ -( oconid + 1 ) ] = conperm[ -( iconid + 1 ) ]; + } + } + + for( i = 0; i < nout2a; i++ ) { + outperm_new[ i ] = --oconid; + const_new[ -( oconid + 1 ) ] = qa[ i ]; + } + + } + +/* Create the new PermMap */ + new_pm = astPermMap( npin_new, inperm_new, npout_new, + outperm_new, const_new, "", status ); + +/* Create the new CmpMap.*/ + if( aconstants ) { + if( unit ) { + new_cm = astCmpMap( cmpmap2->map2, unit, 0, "", status ); + } else { + new_cm = astCopy( cmpmap2->map2 ); + } + + } else if( bconstants ) { + if( unit ) { + new_cm = astCmpMap( unit, cmpmap2->map1, 0, "", status ); + } else { + new_cm = astCopy( cmpmap2->map1 ); + } + + } else{ + new_cm = astCmpMap( cmpmap2->map2, cmpmap2->map1, 0, "", status ); + } + + } + +/* Free Memory. */ + if( unit ) unit = astAnnul( unit ); + outperm_new = astFree( outperm_new ); + inperm_new = astFree( inperm_new ); + const_new = astFree( const_new ); + if( aconstants || bconstants ) { + qa = astFree( qa ); + qb = astFree( qb ); + } + +/* Re-instate the original Invert attributes in the component Mappings. */ + astSetInvert( cmpmap2->map1, invert2a ); + astSetInvert( cmpmap2->map2, invert2b ); + + } + +/* Release the arrays holding the input and output permutation arrays + and constants copied from the PermMap. */ + inperm = astFree( inperm ); + outperm = astFree( outperm ); + conperm = astFree( conperm ); + +/* Re-instate the original values of the Invert attributes of both + Mappings. */ + astSetInvert( permmap1, invert1 ); + astSetInvert( cmpmap2, invert2 ); + +/* If the Mappings can be swapped... */ + if( astOK && canswap ) { + +/* Annul the supplied pointer to the two Mappings. */ + ( *map_list )[ imap1 ] = astAnnul( ( *map_list )[ imap1 ] ); + ( *map_list )[ imap2 ] = astAnnul( ( *map_list )[ imap2 ] ); + +/* Store the new PermMap pointer in the slot previously occupied by the + nominated CmpMap pointer. Likewise, store the invert flag. */ + ( *map_list )[ imap2 ] = (AstMapping *) new_pm; + ( *invert_list )[ imap2 ] = astGetInvert( new_pm ); + +/* Store the new PermMap pointer in the slot previously occupied by the + nominated CmpMap pointer. Likewise, store the invert flag. */ + ( *map_list )[ imap1 ] = (AstMapping *) new_cm; + ( *invert_list )[ imap1 ] = astGetInvert( new_cm ); + +/* Return the index of the first modified element. */ + result = imap1; + + } + } + } + +/* If an error occurred, clear the result value. */ + if ( !astOK ) result = -1; + +/* Return the result. */ + return result; +} + +static int *MapSplit1( AstMapping *this, int nin, const int *in, AstMapping **map, int *status ){ +/* +* Name: +* MapSplit1 + +* Purpose: +* Create a Mapping representing a subset of the inputs of an existing +* Mapping. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int *MapSplit1( AstMapping *this, int nin, const int *in, AstMapping **map ) + +* Class Membership: +* CmpMap method + +* Description: +* This function performs the work for the astMapSplit method. It +* first invokes the astMapSplit method to see if the forward +* transformation of the supplied Mapping (not necessarily a CmpMap) +* can be split as requested. If this is not possible it invokes MapSplit2 +* which attempts an inverse approach to the problem. For each possible +* sub-sets of the Mapping outputs it call astMapSplit to see if the +* sub-set of outputs are generated from the selected inputs. + +* Parameters: +* this +* Pointer to the Mapping to be split. It is not assumed to be a CmpMap. +* nin +* The number of inputs to pick from "this". +* in +* Pointer to an array of indices (zero based) for the inputs which +* are to be picked. This array should have "nin" elements. If "Nin" +* is the number of inputs of the supplied Mapping, then each element +* should have a value in the range zero to Nin-1. +* map +* Address of a location at which to return a pointer to the new +* Mapping. This Mapping will have "nin" inputs (the number of +* outputs may be different to "nin"). A NULL pointer will be +* returned if the supplied Mapping has no subset of outputs which +* depend only on the selected inputs. + +* Returned Value: +* A pointer to a dynamically allocated array of ints. The number of +* elements in this array will equal the number of outputs for the +* returned Mapping. Each element will hold the index of the +* corresponding output in the supplied Mapping. The array should be +* freed using astFree when no longer needed. A NULL pointer will +* be returned if no output Mapping can be created. + +* Notes: +* - If this function is invoked with the global error status set, +* or if it should fail for any reason, then NULL values will be +* returned as the function value and for the "map" pointer. +*/ + +/* Local Variables: */ + int *result; /* Axis order to return */ + +/* Initialise */ + result = NULL; + *map = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* First see if the forward transformation can be split as requested. */ + result = astMapSplit( this, nin, in, map ); + +/* If forward transformation could not be split, we attempt to split the + inverse transformation by selecting every possible sub-set of Mapping + outputs until one is found which is fed by the requested mapping inputs. */ + if( !result ) result = MapSplit2( this, nin, in, map, status ); + +/* Free returned resources if an error has occurred. */ + if( !astOK ) { + result = astFree( result ); + *map = astAnnul( *map ); + } + +/* Return the list of output indices. */ + return result; +} + +static int *MapSplit2( AstMapping *this, int nin, const int *in, AstMapping **map, int *status ){ +/* +* Name: +* MapSplit2 + +* Purpose: +* Create a Mapping representing a subset of the inputs of an existing +* Mapping. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int *MapSplit2( AstMapping *this, int nin, const int *in, AstMapping **map ) + +* Class Membership: +* CmpMap method + +* Description: +* This function attempts to split the supplied Mapping using an +* inverse approach to the problem. For each possible sub-sets of the +* Mapping outputs it call astMapSplit to see if the sub-set of outputs +* are generated from the selected inputs. + +* Parameters: +* this +* Pointer to the Mapping to be split. It is not assumed to be a CmpMap. +* nin +* The number of inputs to pick from "this". +* in +* Pointer to an array of indices (zero based) for the inputs which +* are to be picked. This array should have "nin" elements. If "Nin" +* is the number of inputs of the supplied Mapping, then each element +* should have a value in the range zero to Nin-1. +* map +* Address of a location at which to return a pointer to the new +* Mapping. This Mapping will have "nin" inputs (the number of +* outputs may be different to "nin"). A NULL pointer will be +* returned if the supplied Mapping has no subset of outputs which +* depend only on the selected inputs. + +* Returned Value: +* A pointer to a dynamically allocated array of ints. The number of +* elements in this array will equal the number of outputs for the +* returned Mapping. Each element will hold the index of the +* corresponding output in the supplied Mapping. The array should be +* freed using astFree when no longer needed. A NULL pointer will +* be returned if no output Mapping can be created. + +* Notes: +* - If this function is invoked with the global error status set, +* or if it should fail for any reason, then NULL values will be +* returned as the function value and for the "map" pointer. +*/ + +/* Local Variables: */ + AstMapping *map2; /* Subset Mapping */ + AstMapping *this2; /* Inverted copy of the supplied Mapping */ + int *out; /* Selected output indices */ + int *result; /* Axis order to return */ + int *result2; /* Axis order for current output subset */ + int i; /* Loop count */ + int iscmp; /* Is "this" a CmpMap? */ + int j; /* Loop count */ + int mout; /* Number of selected outputs */ + int nin2; /* Number of inputs fed by current outputs */ + int nout; /* The number of outputs from the supplied Mapping */ + int ok; /* Are all required inputs fed by current outputs? */ + +/* Initialise */ + result = NULL; + *map = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Get the number of Mapping outputs. */ + nout = astGetNout( this ); + +/* Get an inverted copy of the Mapping. We do this rather than inverting + the supplied Maping in case an error occurs which may leave the + supplied Mapping inverted. */ + this2 = astCopy( this ); + astInvert( this2 ); + +/* Note if the Mapping is a CmpMap. */ + iscmp = astIsACmpMap( this ); + +/* Allocate memory to hold the selected output indices. */ + out = astMalloc( nout*sizeof( int ) ); + +/* Loop round all useful subset sizes. */ + if( out ) { + for( mout = 1; mout < nout && !result; mout++ ) { + +/* Initialise the first subset of outputs to check at the current subset + size. */ + for( i = 0; i < mout; i++ ) out[ i ] = 0; + +/* Loop round all ways of picking a subset of "mout" outputs from the total + available "nout" outputs. */ + while( ! result ) { + +/* Skip this subset if it refers to any axis index more than once. */ + ok = 1; + for( i = 1; i < mout && ok; i++ ) { + for( j = 0; j < i; j++ ) { + if( out[ i ] == out[ j ] ) { + ok = 0; + break; + } + } + } + if( ok ) { + +/* Attempt to split the inverted Mapping using the current subset of + outputs. Take care to avoid an infinite loop if "this" is a CmpMap. */ + if( iscmp ) { + result2 = MapSplit0( this2, mout, out, &map2, 1, status ); + } else { + result2 = astMapSplit( this2, mout, out, &map2 ); + } + +/* If succesful... */ + if( result2 ) { + +/* See if the inputs that feed the current subset of outputs are the same + as the inputs specified by the caller (and in the same order). */ + nin2 = astGetNout( map2 ); + ok = ( nin2 == nin ); + if( ok ) { + for( i = 0; i < nin; i++ ) { + if( in[ i ] != result2[ i ] ) { + ok = 0; + break; + } + } + } + +/* If so, set up the values returned to the caller. */ + if( ok ) { + result = astStore( result, out, mout*sizeof(int) ); + astInvert( map2 ); + *map = astClone( map2 ); + } + +/* Free resources. */ + result2 = astFree( result2 ); + map2 = astAnnul( map2 ); + } + } + +/* Increment the first axis index. */ + i = 0; + out[ i ]++; + +/* If the incremented axis index is now too high, reset it to zero and + increment the next higher axis index. Do this until an incremented axis + index is not too high. */ + while( out[ i ] == nout ) { + out[ i++ ] = 0; + + if( i < mout ) { + out[ i ]++; + } else { + break; + } + } + +/* If all subsets have been checked break out of the loop. */ + if( i == mout ) break; + + } + } + } + +/* Free resources. */ + out = astFree( out ); + this2 = astAnnul( this2 ); + +/* Free returned resources if an error has occurred. */ + if( !astOK ) { + result = astFree( result ); + *map = astAnnul( *map ); + } + +/* Return the list of output indices. */ + return result; +} + +static int *MapSplit0( AstMapping *this_mapping, int nin, const int *in, + AstMapping **map, int reentry, int *status ){ +/* +* Name: +* MapSplit0 + +* Purpose: +* Create a Mapping representing a subset of the inputs of an existing +* CmpMap. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int *MapSplit0( AstMapping *this, int nin, const int *in, +* AstMapping **map, int reentry, int *status ) + +* Class Membership: +* CmpMap method + +* Description: +* This function creates a new Mapping by picking specified inputs from +* an existing CmpMap. This is only possible if the specified inputs +* correspond to some subset of the CmpMap outputs. That is, there +* must exist a subset of the CmpMap outputs for which each output +* depends only on the selected CmpMap inputs, and not on any of the +* inputs which have not been selected. If this condition is not met +* by the supplied CmpMap, then a NULL Mapping is returned. + +* Parameters: +* this +* Pointer to the CmpMap to be split (the CmpMap is not actually +* modified by this function). +* nin +* The number of inputs to pick from "this". +* in +* Pointer to an array of indices (zero based) for the inputs which +* are to be picked. This array should have "nin" elements. If "Nin" +* is the number of inputs of the supplied CmpMap, then each element +* should have a value in the range zero to Nin-1. +* map +* Address of a location at which to return a pointer to the new +* Mapping. This Mapping will have "nin" inputs (the number of +* outputs may be different to "nin"). A NULL pointer will be +* returned if the supplied CmpMap has no subset of outputs which +* depend only on the selected inputs. +* reentry +* Set to zero if this is a top level entry, and non-zero if it is +* a recursive entry. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A pointer to a dynamically allocated array of ints. The number of +* elements in this array will equal the number of outputs for the +* returned Mapping. Each element will hold the index of the +* corresponding output in the supplied CmpMap. The array should be +* freed using astFree when no longer needed. A NULL pointer will +* be returned if no output Mapping can be created. + +* Notes: +* - If this function is invoked with the global error status set, +* or if it should fail for any reason, then NULL values will be +* returned as the function value and for the "map" pointer. +*/ + +/* Local Variables: */ + AstCmpMap *this; + AstMapping **map_list; + AstMapping *amap; + AstMapping *bmap; + AstPermMap *pmap; + int *aout; + int *cin; + int *cout; + int *inp; + int *invert_list; + int *outp; + int *p; + int *result; + int doperm; + int i; + int ibot; + int ibotout; + int iin; + int imap; + int iout; + int itop; + int j; + int naout; + int ncin; + int ncout; + int nmap; + int npin; + int npout; + int ok; + int old_inv; + int t; + + +/* Initialise */ + result = NULL; + *map = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Get a pointer to the CmpMap structure. */ + this = (AstCmpMap *) this_mapping; + +/* Get the number of inputs and outputs in the supplied CmpMap. */ + npin = astGetNin( this ); + npout = astGetNout( this ); + +/* Check all input axis indices are valid. */ + ok = 1; + for( i = 0; i < nin; i++ ) { + if( in[ i ] < 0 || in[ i ] >= npin ) { + ok = 0; + break; + } + } + +/* If OK, proceed. */ + if( ok ) { + +/* Initialise dynamic arrays of Mapping pointers and associated Invert + flags. */ + nmap = 0; + map_list = NULL; + invert_list = NULL; + +/* Decompose the CmpMap into a sequence of Mappings to be applied in + series or parallel, as appropriate, and an associated list of + Invert flags. */ + (void) astMapList( this_mapping, this->series, astGetInvert( this ), + &nmap, &map_list, &invert_list ); + +/* First handle lists of Mapping in series. */ + if( this->series ) { + +/* Initialise the array of inputs to be split from the next component + Mapping. */ + ncin = nin; + cin = astStore( NULL, in, sizeof( int )*nin ); + +/* Loop round all the component Mappings that are combined in series to form + the supplied CmpMap. */ + for( imap = 0; imap < nmap && cin; imap++ ) { + +/* Temporarily reset the Invert attribute within the commponent Mapping back + to the value it had when the CmpMap was created. */ + old_inv = astGetInvert( map_list[ imap ] ); + astSetInvert( map_list[ imap ], invert_list[ imap ] ); + +/* Attempt to split the component Mapping using the current list of + inputs. */ + cout = MapSplit1( map_list[ imap ], ncin, cin, &amap, status ); + +/* If the split could be done... */ + if( amap ) { + +/* The outputs that correspond to the picked inputs become the inputs to + be picked from the next component Mapping. */ + (void) astFree( cin ); + cin = cout; + ncin = astGetNout( amap ); + +/* Combine the split Mapping in series with the earlier split Mappings. */ + if( *map ) { + bmap = (AstMapping *) astCmpMap( *map, amap, 1, " ", status ); + amap = astAnnul( amap ); + (void) astAnnul( *map ); + *map = bmap; + } else { + *map = amap; + } + +/* If the split could not be done, free the array of Mapping inputs to + indicate that no more component Mappings need be checked. */ + } else { + cin = astFree( cin ); + cout = astFree( cout ); + } + +/* Re-instate the original value of the Invert attribute within the + commponent Mapping. */ + astSetInvert( map_list[ imap ], old_inv ); + } + +/* Return the final array of output indices. */ + result = cin; + +/* Now handle lists of Mapping in parallel. */ + } else { + +/* Allocate work space. */ + outp = astMalloc( sizeof(int)*(size_t)nin ); + inp = astMalloc( sizeof(int)*(size_t)nin ); + cin = astMalloc( sizeof(int)*(size_t)npin ); + cout = astMalloc( sizeof(int)*(size_t)npout ); + if( astOK ) { + +/* The caller may have selected the Mapping inputs in any order, so we + need to create a PermMap which will permute the inputs from the + requested order to the order used by the CmpMap. First fill the outperm + work array with its own indices. */ + for( i = 0; i < nin; i++ ) outp[ i ] = i; + +/* Sort the outperm work array so that it accesses the array of input indices + in ascending order */ + for( j = nin - 1; j > 0; j-- ) { + p = outp; + for( i = 0; i < j; i++,p++ ) { + if( in[ p[0] ] > in[ p[1] ] ) { + t = p[0]; + p[0] = p[1]; + p[1] = t; + } + } + } + +/* Create the inperm array which is the inverse of the above outperm + array. Note if the permutation is necessary. */ + doperm = 0; + for( i = 0; i < nin; i++ ) { + if( outp[ i ] != i ) doperm = 1; + inp[ outp[ i ] ] = i; + } + +/* Create a PermMap which reorders the inputs into ascending order. */ + pmap = doperm ? astPermMap( nin, inp, nin, outp, NULL, "", status ) : NULL; + +/* Store the sorted input indices in the inp work array. */ + for( i = 0; i < nin; i++ ) { + inp[ i ] = in[ outp[ i ] ]; + } + +/* Initialise the index within the supplied CmpMap of the last (highest) + input in the current component Mapping. */ + itop = -1; + +/* Initialise the index within the supplied CmpMap of the first (lowest) + output for the current component Mapping. */ + ibotout = 0; + +/* Initialise the index within the supplied CmpMap of the current picked input. */ + iin = 0; + +/* Initialise the index of the next returned output index. */ + ncout = 0; + +/* Loop round all the component Mappings that are combined in series to form + the supplied CmpMap. */ + for( imap = 0; imap < nmap && cout; imap++ ) { + +/* Temporarily reset the Invert attribute within the component Mapping back + to the value it had when the CmpMap was created. */ + old_inv = astGetInvert( map_list[ imap ] ); + astSetInvert( map_list[ imap ], invert_list[ imap ] ); + +/* Get the index within the supplied CmpMap of the first (lowest) input in + the current component Mapping. */ + ibot = itop + 1; + +/* Get the index within the supplied CmpMap of the last (highest) input in + the current component Mapping. */ + itop += astGetNin( map_list[ imap ] ); + +/* Get the zero-based indices of the required inputs that feed the current + component Mapping. */ + ncin = 0; + while( iin < nin && inp[ iin ] <= itop ) { + cin[ ncin++ ] = inp[ iin++ ] - ibot; + } + +/* Skip components from which no inputs are being picked. */ + if( ncin > 0 ) { + +/* Attempt to split the component Mapping using the current list of inputs. */ + aout = MapSplit1( map_list[ imap ], ncin, cin, &amap, + status ); + +/* If successful... */ + if( amap ) { + +/* Correct the output indices so that they refer to the numbering scheme + of the total CmpMap, and append to the total list of output indices. */ + naout = astGetNout( amap ); + for( iout = 0; iout < naout; iout++ ) { + cout[ ncout++ ] = aout[ iout ] + ibotout; + } + +/* Combine the split Mapping in parallel with the earlier split Mappings. */ + if( *map ) { + bmap = (AstMapping *) astCmpMap( *map, amap, 0, " ", + status ); + amap = astAnnul( amap ); + (void) astAnnul( *map ); + *map = bmap; + } else { + *map = amap; + } + +/* If the component Mapping could not be split, free the cout array to + indicate that no more component Mappings need be considered. */ + } else { + cout = astFree( cout ); + } + +/* Free remaining resources. */ + aout = astFree( aout ); + } + +/* Update the index within the supplied CmpMap of the first (lowest) output in + the next component Mapping. */ + ibotout += astGetNout( map_list[ imap ] ); + +/* Re-instate the original value of the Invert attribute within the + commponent Mapping. */ + astSetInvert( map_list[ imap ], old_inv ); + } + +/* If the requested inputs could be split from the total CmpMap, add in any + PermMap needed to re-order the inputs. */ + if( cout && ncout ){ + if( doperm ) { + bmap = (AstMapping *) astCmpMap( pmap, *map, 1, "", status ); + (void) astAnnul( *map ); + *map = bmap; + } + +/* Also return the list of output indices. */ + result = cout; + cout = NULL; + } + +/* Free remaining resources. */ + if( pmap ) pmap = astAnnul( pmap ); + } + outp = astFree( outp ); + inp = astFree( inp ); + cin = astFree( cin ); + cout = astFree( cout ); + } + +/* Loop to annul all the Mapping pointers in the list. */ + for ( i = 0; i < nmap; i++ ) map_list[ i ] = astAnnul( map_list[ i ] ); + +/* Free the dynamic arrays. */ + map_list = astFree( map_list ); + invert_list = astFree( invert_list ); + + } + +/* Mappings that have no outputs cannot be used. */ + if( !result && *map ) *map = astAnnul( *map ); + +/* If the above method failed to split the CmpMap, we attempt to split the + inverse transformation by selecting every possible sub-set of Mapping + outputs until one is found which is fed by the requested mapping inputs. */ + if( !result && !reentry ) result = MapSplit2( this_mapping, nin, in, map, + status ); + +/* Free returned resources if an error has occurred. */ + if( !astOK ) { + result = astFree( result ); + *map = astAnnul( *map ); + } + +/* Return the list of output indices. */ + return result; +} + +static int *MapSplit( AstMapping *this, int nin, const int *in, + AstMapping **map, int *status ){ +/* +* Name: +* MapSplit + +* Purpose: +* Create a Mapping representing a subset of the inputs of an existing +* CmpMap. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int *MapSplit( AstMapping *this, int nin, const int *in, +* AstMapping **map, int *status ) + +* Class Membership: +* CmpMap method (over-rides the protected astMapSplit method +* inherited from the Mapping class). + +* Description: +* This function is the main entry point for the astMapSplit method. +* It is a simple wrapper for MapSplit0 which calls MapSplit0 +* indicating that this is a top-level entry. + +* Parameters: +* this +* Pointer to the CmpMap to be split (the CmpMap is not actually +* modified by this function). +* nin +* The number of inputs to pick from "this". +* in +* Pointer to an array of indices (zero based) for the inputs which +* are to be picked. This array should have "nin" elements. If "Nin" +* is the number of inputs of the supplied CmpMap, then each element +* should have a value in the range zero to Nin-1. +* map +* Address of a location at which to return a pointer to the new +* Mapping. This Mapping will have "nin" inputs (the number of +* outputs may be different to "nin"). A NULL pointer will be +* returned if the supplied CmpMap has no subset of outputs which +* depend only on the selected inputs. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A pointer to a dynamically allocated array of ints. The number of +* elements in this array will equal the number of outputs for the +* returned Mapping. Each element will hold the index of the +* corresponding output in the supplied CmpMap. The array should be +* freed using astFree when no longer needed. A NULL pointer will +* be returned if no output Mapping can be created. + +* Notes: +* - If this function is invoked with the global error status set, +* or if it should fail for any reason, then NULL values will be +* returned as the function value and for the "map" pointer. +*/ + return MapSplit0( this, nin, in, map, 0, status ); +} + +static int PatternCheck( int val, int check, int **list, int *list_len, int *status ){ +/* +* Name: +* Looping + +* Purpose: +* Check for repeating patterns in a set of integer values. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* int PatternCheck( int val, int nmap, int **mlist, int **nlist, int *list_len ) + +* Class Membership: +* CmpMap member function. + +* Description: +* This function appends a supplied integer to a dynamic list, creating +* or expanding the list if necessary.It then optionally, check the +* list for evidence of repeating patterns. If such a pattern is +* found, its wavelength is returned. + +* Parameters: +* val +* The integer value to add to the list. +* check +* Should a check for reating patterns be performed? +* list +* Address of a location at which is stored a pointer to an array +* holding the values supplied on previous invocations of this +* function. If a NULL pointer is supplied a new array is allocated. +* On exit, the supplied value is appended to the end of the array. The +* array is extended as necessary. The returned pointer should be +* freed using astFree when no longer needed. +* list_len +* Address of a location at which is stored the number of elements +* in the "list" array. + +* Returned Value: +* A non-zero "wavelength" value is returned if there is a repeating +* pattern is found in the "list" array. Otherwise, zero is returned. +* The "wavelength" is the number of integer values which constitute a +* single instance of the pattern. + +* Notes: +* - A value of 1 is returned if this function is invoked with the AST +* error status set, or if it should fail for any reason. +*/ + +/* Local Variables: */ + int *wave[ 30 ]; /* Pointers to start of waves */ + int iat; /* Index of elements added by this invocation */ + int jat; /* Index of element condiered next */ + int jlo; /* Earliest "mlist" entry to consider */ + int k; /* Index of element within pattern */ + int mxwave; /* Max pattern length to consider */ + int iwave; /* Index of current wave */ + int nwave; /* Number of waves required to mark a pattern */ + int result; /* Returned flag */ + int wavelen; /* Current pattern length */ + +/* Check the global status. */ + if ( !astOK ) return 1; + +/* Initialise */ + result = 0; + +/* If no array has been supplied, create a new array. */ + if( !(*list) ) { + *list = astMalloc( 100*sizeof( int ) ); + *list_len = 0; + } + +/* Store the new value in the array, extending it if necessary. */ + iat = (*list_len)++; + *list = astGrow( *list, *list_len, sizeof( int ) ); + if( astOK ) { + (*list)[ iat ] = val; + +/* If required, determine the maximum "wavelength" for looping patterns to be + checked, and store the earliest list entry to consider. We take 3 complete + patterns as evidence of looping, but we only do the check when the + list length is at least 30. */ + if( check && *list_len > 29 ){ + mxwave = iat/3; + if( mxwave > 50 ) mxwave = 50; + jlo = iat - 3*mxwave; + +/* Search backwards from the end of "list" looking for the most recent + occurence of the supplied "val" value. Limit the search to + wavelengths of no more than the above limit. */ + jat = iat - 1; + while( jat >= jlo ) { + if( (*list)[ jat ] == val ) { + +/* When an earlier occurrence of "val" is found, see if the values + which precede it are the same as the values which precede the new + element if "list" added by this invocation. We use 3 complete + patterns as evidence of looping, unless the wavelength is 1 in which + case we use 30 patterns (this is because wavelengths of 1 can occur + in short sequences legitamately). */ + wavelen = iat - jat; + + if( wavelen == 1 ) { + nwave = 30; + if( nwave > iat ) nwave = iat; + } else { + nwave = 3; + } + + if( nwave*wavelen <= *list_len ) { + result = wavelen; + wave[ 0 ] = *list + *list_len - wavelen; + for( iwave = 1; iwave < nwave; iwave++ ) { + wave[ iwave ] = wave[ iwave - 1 ] - wavelen; + } + + for( k = 0; k < wavelen; k++ ) { + for( iwave = 1; iwave < nwave; iwave++ ) { + if( *wave[ iwave ] != *wave[ 0 ] ) { + result = 0; + break; + } + wave[ iwave ]++; + } + wave[ 0 ]++; + } + } + +/* Break if we have found a repeating pattern. */ + if( result ) break; + + } + jat--; + } + } + } + + if( !astOK ) result= 1; + +/* Return the result.*/ + return result; +} + +static double Rate( AstMapping *this, double *at, int ax1, int ax2, int *status ){ +/* +* Name: +* Rate + +* Purpose: +* Calculate the rate of change of a Mapping output. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* result = Rate( AstMapping *this, double *at, int ax1, int ax2, int *status ) + +* Class Membership: +* CmpMap member function (overrides the astRate method inherited +* from the Mapping class ). + +* Description: +* This function returns the rate of change of a specified output of +* the supplied Mapping with respect to a specified input, at a +* specified input position. + +* Parameters: +* this +* Pointer to the Mapping to be applied. +* at +* The address of an array holding the axis values at the position +* at which the rate of change is to be evaluated. The number of +* elements in this array should equal the number of inputs to the +* Mapping. +* ax1 +* The index of the Mapping output for which the rate of change is to +* be found (output numbering starts at 0 for the first output). +* ax2 +* The index of the Mapping input which is to be varied in order to +* find the rate of change (input numbering starts at 0 for the first +* input). +* status +* Pointer to the inherited status variable. + +* Returned Value: +* The rate of change of Mapping output "ax1" with respect to input +* "ax2", evaluated at "at", or AST__BAD if the value cannot be +* calculated. + +*/ + +/* Local Variables: */ + AstMapping *c1; + AstMapping *c2; + AstCmpMap *map; + double result; + int old_inv1; + int old_inv2; + int nin1; + int nin2; + double *at2; + double r1; + double r2; + int nout1; + int i; + +/* Check inherited status */ + if( !astOK ) return AST__BAD; + +/* Get a pointer to the CmpMap structure. */ + map = (AstCmpMap *) this; + +/* Note the current Invert flags of the two component Mappings. */ + old_inv1 = astGetInvert( map->map1 ); + old_inv2 = astGetInvert( map->map2 ); + +/* Temporarily reset them to the values they had when the CmpMap was + created. */ + astSetInvert( map->map1, map->invert1 ); + astSetInvert( map->map2, map->invert2 ); + +/* If the CmpMap itself has been inverted, invert the component Mappings. + Also note the order in which the Mappings should be applied if in series. */ + if( !astGetInvert( this ) ) { + c1 = map->map1; + c2 = map->map2; + } else { + c1 = map->map2; + c2 = map->map1; + astInvert( c1 ); + astInvert( c2 ); + } + +/* First deal with Mappings in series. */ + if( map->series ) { + +/* Get the number of inputs to the two component Mappings. */ + nin1 = astGetNin( c1 ); + nin2 = astGetNin( c2 ); + +/* Allocate workspace to hold the result of transforming the supplied "at" + position using the first component. */ + at2 = astMalloc( sizeof( double )*(size_t) nin2 ); + +/* Transform the supplied "at" position using the first component. */ + astTranN( c1, 1, nin1, 1, at, 1, nin2, 1, at2 ); + +/* The required rate of change is the sum of the products of the rate of + changes of the two component mappings, summed over all the output axes + of the first componment. */ + result = 0.0; + for( i = 0; i < nin2; i++ ) { + +/* Find the rate of change of output "i" of the first component with + respect to input "ax2" at the supplied "at" position. */ + r1 = astRate( c1, at, i, ax2 ); + +/* Find the rate of change of output "ax1" of the second component with + respect to input "i" at the transformed "at2" position. */ + r2 = astRate( c2, at2, ax1, i ); + +/* If both are good, increment the ryunning total by the product of the + two rates. Otherwise, break. */ + if( r1 != AST__BAD && r2 != AST__BAD ) { + result += r1*r2; + } else { + result = AST__BAD; + break; + } + } + +/* Free the workspace. */ + at2 = astFree( at2 ); + +/* Now deal with Mappings in parallel. */ + } else { + +/* Get the number of inputs and outputs for the lower component Mappings. */ + nin1 = astGetNin( map->map1 ); + nout1 = astGetNout( map->map1 ); + +/* If both input and output relate to the lower component Mappings, use its + astRate method. */ + if( ax1 < nout1 && ax2 < nin1 ) { + result = astRate( map->map1, at, ax1, ax2 ); + +/* If both input and output relate to the upper component Mappings, use its + astRate method. */ + } else if( ax1 >= nout1 && ax2 >= nin1 ) { + result = astRate( map->map2, at + nin1, ax1 - nout1, ax2 - nin1 ); + +/* If input and output relate to different component Mappings, return + zero. */ + } else { + result = 0.0; + } + } + +/* Reinstate the original Invert flags of the component Mappings .*/ + astSetInvert( map->map1, old_inv1 ); + astSetInvert( map->map2, old_inv2 ); + +/* Return the result. */ + return result; +} + +static AstMapping *RemoveRegions( AstMapping *this_mapping, int *status ) { +/* +* Name: +* RemoveRegions + +* Purpose: +* Remove any Regions from a Mapping. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* AstMapping *RemoveRegions( AstMapping *this, int *status ) + +* Class Membership: +* CmpMap method (over-rides the astRemoveRegions method inherited +* from the Mapping class). + +* Description: +* This function searches the supplied Mapping (which may be a +* compound Mapping such as a CmpMap) for any component Mappings +* that are instances of the AST Region class. It then creates a new +* Mapping from which all Regions have been removed. If a Region +* cannot simply be removed (for instance, if it is a component of a +* parallel CmpMap), then it is replaced with an equivalent UnitMap +* in the returned Mapping. +* +* The implementation provided by the CmpMap class invokes the +* astRemoveRegions method on the two component Mappings, and joins +* the results together into a new CmpMap. + +* Parameters: +* this +* Pointer to the original Region. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A pointer to the modified mapping. + +* Notes: +* - A NULL pointer value will be returned if this function is +* invoked with the AST error status set, or if it should fail for +* any reason. +*/ + +/* Local Variables: */ + AstCmpMap *new; /* Pointer to new CmpMap */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + AstMapping *newmap1; /* New first component Mapping */ + AstMapping *newmap2; /* New second component Mapping */ + AstMapping *result; /* Result pointer to return */ + int nax; /* Number of Frame axes */ + int unit1; /* Is new first Mapping a UnitMap? */ + int unit2; /* Is new second Mapping a UnitMap? */ + +/* Initialise. */ + result = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Get a pointer to the CmpMap. */ + this = (AstCmpMap *) this_mapping; + +/* Invoke the astRemoveRegions method on the two component Mappings. */ + newmap1 = astRemoveRegions( this->map1 ); + newmap2 = astRemoveRegions( this->map2 ); + +/* If neither component was modified, just return a clone of the supplied + pointer. */ + if( this->map1 == newmap1 && this->map2 == newmap2 ) { + result = astClone( this ); + +/* Otherwise, we need to create a new Mapping to return. */ + } else { + +/* The implementation of the astRemoveRegions method provided by the + Region class returns a Frame rather than a UnitMap. But we need + Mappings here, not Frames. So if either of these new Mappings is + a Frame, replace it with an equivalent UnitMap. Also, get flags + indicating if either Mapping is a UnitMap.*/ + if( astIsAFrame( newmap1 ) ) { + nax = astGetNin( newmap1 ); + (void) astAnnul( newmap1 ); + newmap1 = (AstMapping *) astUnitMap( nax, " ", status ); + unit1 = 1; + } else { + unit1 = astIsAUnitMap( newmap1 ); + } + + if( astIsAFrame( newmap2 ) ) { + nax = astGetNin( newmap2 ); + (void) astAnnul( newmap2 ); + newmap2 = (AstMapping *) astUnitMap( nax, " ", status ); + unit2 = 1; + } else { + unit2 = astIsAUnitMap( newmap2 ); + } + +/* First handle series CmpMaps. */ + if( this->series ) { + +/* Otherwise, if the second new Mapping is a UnitMap, return a copy of the + first new Mapping (with the original Invert attribute) since the second + one will have no effect. */ + if( unit1 ) { + result = astCopy( newmap2 ); + astSetInvert( result, this->invert2 ); + if( astGetInvert( this ) ) astInvert( result ); + +/* Otherwise, if the second new Mapping is a UnitMap, return a copy of the + first new Mapping (with the original Invert attribute) since the second + one will have no effect. */ + } else if( unit2 ) { + result = astCopy( newmap1 ); + astSetInvert( result, this->invert1 ); + if( astGetInvert( this ) ) astInvert( result ); + +/* If neither of the new Mappings is a UnitMap, return a new CmpMap + containing the two new Mappings. We take a deep copy of the supplied + CmpMap and then modify the Mappings os that we retain any extra + information (such as invert flags) in the supplied CmpMap. */ + } else { + new = astCopy( this ); + (void) astAnnul( new->map1 ); + (void) astAnnul( new->map2 ); + new->map1 = astClone( newmap1 ); + new->map2 = astClone( newmap2 ); + result = (AstMapping *) new; + } + +/* Now handle parallel CmpMaps. */ + } else { + +/* If both new Mappings are UnitMaps, return an equivalent UnitMap. */ + if( unit1 && unit2 ) { + result = (AstMapping *) astUnitMap( astGetNin( newmap1 ) + + astGetNin( newmap2 ), " ", + status ); + +/* Otherwise, return a new CmpMap containing the two new Mappings. */ + } else { + new = astCopy( this ); + (void) astAnnul( new->map1 ); + (void) astAnnul( new->map2 ); + new->map1 = astClone( newmap1 ); + new->map2 = astClone( newmap2 ); + result = (AstMapping *) new; + } + } + } + +/* Free resources. */ + newmap1 = astAnnul( newmap1 ); + newmap2 = astAnnul( newmap2 ); + +/* Annul the returned Mapping if an error has occurred. */ + if( !astOK ) result = astAnnul( result ); + +/* Return the result. */ + return result; +} + +static AstMapping *Simplify( AstMapping *this_mapping, int *status ) { +/* +* Name: +* Simplify + +* Purpose: +* Simplify a Mapping. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* AstMapping *Simplify( AstMapping *this, int *status ) + +* Class Membership: +* CmpMap method (over-rides the astSimplify method inherited from +* the Mapping class). + +* Description: +* This function simplifies a CmpMap to eliminate redundant +* computational steps, or to merge separate steps which can be +* performed more efficiently in a single operation. + +* Parameters: +* this +* Pointer to the original Mapping. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* A new pointer to the (possibly simplified) Mapping. + +* Notes: +* - A NULL pointer value will be returned if this function is +* invoked with the AST error status set, or if it should fail for +* any reason. +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstCmpMap *this; /* Pointer to CmpMap structure */ + AstMapping **map_list; /* Mapping array pointer */ + AstMapping *map; /* Pointer to cloned Mapping pointer */ + AstMapping *result; /* Result pointer to return */ + AstMapping *tmp; /* Temporary Mapping pointer */ + int *invert_list; /* Invert array pointer */ + int *mlist; /* Point to list of modified Mapping indices */ + int *nlist; /* Point to list of Mapping counts */ + int i; /* Loop counter for Mappings */ + int improved; /* Simplification achieved? */ + int invert; /* Invert attribute value */ + int invert_n; /* Invert value for final Mapping */ + int mlist_len; /* No. of entries in mlist */ + int nlist_len; /* No. of entries in nlist */ + int modified; /* Index of first modified Mapping */ + int nmap; /* Mapping count */ + int nominated; /* Index of nominated Mapping */ + int set; /* Invert attribute set? */ + int set_n; /* Invert set for final Mapping? */ + int simpler; /* Simplification possible? */ + int t; /* Temporary storage */ + int wlen1; /* Pattern wavelength for "modified" values */ + int wlen2; /* Pattern wavelength for "nmap" values */ + +/* Initialise. */ + result = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(this_mapping); + +/* It is possible for the astSimplify method to be called recursively from + within astSimplify. It is also possible that the Mapping being + simplified by the current invocation is the same as the Mapping being + simplified by some recursive invocation higher up the call stack. If + this happens we will get into an infinite loop, since we already know + that simplifying the supplied Mapping will involve (eventually) a + recursive call to astSimplify with the same Mapping. To avoid this + looping, we note the Mappings supplied at each depth and first compare + the supplied Mapping with the Mappings which are currently being + simplified higher up the call stack. If the supplied Mapping is + already being simplified at a higher level, then we return immediately + without doing any simplification. Otherwise, we record the supplied + Mapping pointer in a static list so that it is available to subsequent + recursive invocations of this function. First compare the supplied + Mapping with the Mappingsbeing simpliied higher up. Return without + action if a match is found. */ + for( i = 0; i < simplify_depth; i++ ) { + if( astEqual( this_mapping, simplify_stackmaps[ i ] ) ) { + return astClone( this_mapping ); + } + } + +/* We have further work to do, so increment the recursion depth, extend + the simplify_stackmaps array, and store the new Mapping in it for future use. */ + simplify_depth++; + simplify_stackmaps = astGrow( simplify_stackmaps, simplify_depth, sizeof( AstMapping * ) ); + if( astOK ) { + simplify_stackmaps[ simplify_depth - 1 ] = astClone( this_mapping ); + } + +/* Obtain a pointer to the CmpMap structure. */ + this = (AstCmpMap *) this_mapping; + +/* Initialise dynamic arrays of Mapping pointers and associated Invert + flags. */ + nmap = 0; + map_list = NULL; + invert_list = NULL; + +/* Decompose the CmpMap into a sequence of Mappings to be applied in + series or parallel, as appropriate, and an associated list of + Invert flags. If any inverted CmpMaps are found in the Mapping, then + we can at least simplify the returned Mapping by swapping and + inverting the components. Set "simpler" to indicate this. */ + simpler = astMapList( this_mapping, this->series, astGetInvert( this ), &nmap, + &map_list, &invert_list ); + +/* Each Mapping has a flag that indicates if the mapping is frozen (i.e. cannot + be nominated for simplification). Mappings become frozen if nominating them + would create an infinite loop in which neighbouring mappings argue as to + their form. Freezing a mapping prevents the frozen mapping contributing any + further to the argument, so the other Mapping "wins" the argument. + Ensure no Mappings are frozen to begin with. */ + for( i = 0; i < nmap; i++ ) { + map_list[ i ]->flags &= ~AST__FROZEN_FLAG; + } + +/* Initialise pointers to memory used to hold lists of the modified + Mapping index and the number of mappings after each call of + astMapMerge. */ + mlist = NULL; + nlist = NULL; + +/* Loop to simplify the sequence until a complete pass through it has + been made without producing any improvement. */ + improved = 1; + while ( astOK && improved ) { + improved = 0; + +/* Loop to nominate each Mapping in the sequence in turn. */ + nominated = 0; + while ( astOK && ( nominated < nmap ) ) { + +/* If the current nominated mapping has been frozen, then we do not allow + it to suggest changes to the mapping sequence. Instead, just increment + the index of the next mapping to be checked and continue on to the next + pass round the while loop. */ + if( map_list[ nominated ]->flags & AST__FROZEN_FLAG ) { + nominated++; + continue; + } + +/* Clone a pointer to the nominated Mapping and attempt to merge it + with its neighbours. Annul the cloned pointer afterwards. */ + map = astClone( map_list[ nominated ] ); + modified = astMapMerge( map, nominated, this->series, + &nmap, &map_list, &invert_list ); + map = astAnnul( map ); + +/* Move on to nominate the next Mapping in the sequence. */ + nominated++; + +/* Note if any simplification occurred above. */ + if( modified >= 0 && astOK ) { + +/* Append the index of the first modified Mapping in the list and and check + that there is no repreating pattern in the list. If there is, we are + probably in a loop where one mapping class is making a change, and another + is undoing the change. The Looping function returns the "wavelength" + of any pattern found. If a pattern was discovered, we ignore it unless + there is also a pattern in the "nmap" values - the wavelengths of the + two patterns must be related by a integer factor. */ + wlen1 = PatternCheck( modified, 1, &mlist, &mlist_len, status ); + wlen2 = PatternCheck( nmap, wlen1, &nlist, &nlist_len, status ); + if( wlen1 && wlen2 ) { + +/* Ensure wlen2 is larger than or equal to wlen1. */ + if( wlen1 > wlen2 ) { + t = wlen1; + wlen1 = wlen2; + wlen2 = t; + } + +/* See if wlen2 is an integer multiple of wlen1. If not, ignore the + patterns. */ + if( ( wlen2 % wlen1 ) != 0 ) wlen1 = 0; + } + +/* If a repeating pattern is occurring, set the frozen flag in order to + prevent the modified mapping from being modified any more. */ + if( wlen1 > 0 ) { + map_list[ modified ]->flags |= AST__FROZEN_FLAG; + +/* Otherwise, indicate we have improved the mapping and go round to test + the next nominated mapping. */ + } else { + improved = 1; + simpler = 1; + +/* If the simplification resulted in modification of an earlier + Mapping than would normally be considered next, then go back to + consider the modified one first. */ + if ( modified < nominated ) nominated = modified; + } + } + } + } + +/* Free resources */ + mlist = astFree( mlist ); + nlist = astFree( nlist ); + +/* Construct the output Mapping. */ +/* ============================= */ +/* If no simplification occurred above, then simply clone a pointer to + the original Mapping. */ + if ( astOK ) { + if ( !simpler ) { + result = astClone( this ); + +/* Otherwise, we must construct the result from the contents of the + Mapping list. */ + } else { + +/* If the simplified Mapping list has only a single element, then the + output Mapping will not be a CmpMap. In this case, we cannot + necessarily set the Invert flag of the Mapping to the value we want + (because we must not modify the Mapping itself. */ + if ( nmap == 1 ) { + +/* We must make a copy. Cloning is no good (even if the Mapping already + has the Invert attribute value we want), since we want the returned + Mapping to be independent of the original component Mappings, so that + if user code inverts a component Mapping (via some other pre-existing + pointer), the returned simplified Mapping is not affected. */ + result = astCopy( map_list[ 0 ] ); + +/* Either clear the copy's Invert attribute, or set it to 1, as + required. */ + if ( invert_list[ 0 ] ) { + astSetInvert( result, 1 ); + } else { + astClearInvert( result ); + } + +/* If the simplified Mapping sequence has more than one element, the + output Mapping will be a CmpMap. In this case, we can set each + individual Mapping element to have the Invert attribute value we + want, so long as we return these attribute values to their original + state again afterwards (once a Mapping is encapsulated inside a + CmpMap, further external changes to its Invert attribute do not + affect the behaviour of the CmpMap). */ + } else { + +/* Determine if the Invert attribute for the last Mapping is set, and + obtain its value. */ + set_n = astTestInvert( map_list[ nmap - 1 ] ); + invert_n = astGetInvert( map_list[ nmap - 1 ] ); + +/* Set this attribute to the value we want. */ + astSetInvert( map_list[ nmap - 1 ], invert_list[ nmap - 1 ] ); + +/* Loop through the Mapping sequence in reverse to merge it into an + equivalent CmpMap. */ + for ( i = nmap - 1; i >= 0; i-- ) { + +/* Simply clone the pointer to the last Mapping in the sequence (which + will be encountered first). */ + if ( !result ) { + result = astClone( map_list[ i ] ); + +/* For subsequent Mappings, test if the Invert attribute is set and + save its value. */ + } else { + set = astTestInvert( map_list[ i ] ); + invert = astGetInvert( map_list[ i ] ); + +/* Set this attribute to the value required. */ + astSetInvert( map_list[ i ], invert_list[ i ] ); + +/* Combine the Mapping with the CmpMap formed so far and replace the + result pointer with the new pointer this produces, annulling the + previous pointer. */ + tmp = (AstMapping *) astCmpMap( map_list[ i ], result, + this->series, "", status ); + (void) astAnnul( result ); + result = tmp; + +/* Restore the Invert attribute of the Mapping to its original + state. */ + if ( !set ) { + astClearInvert( map_list[ i ] ); + } else { + astSetInvert( map_list[ i ], invert ); + } + } + } + +/* When all the Mappings have been merged into the CmpMap, restore the + state of the Invert attribute for the final Mapping in the + sequence. */ + if ( !set_n ) { + astClearInvert( map_list[ nmap - 1 ] ); + } else { + astSetInvert( map_list[ nmap - 1 ], invert_n ); + } + } + } + } + +/* Clean up. */ +/* ========= */ +/* Loop to annul all the Mapping pointers in the simplified list. */ + for ( i = 0; i < nmap; i++ ) map_list[ i ] = astAnnul( map_list[ i ] ); + +/* Free the dynamic arrays. */ + map_list = astFree( map_list ); + invert_list = astFree( invert_list ); + +/* Decrement the recursion depth and free the pointer to the supplied + Mapping currently stored at the end of the simplify_stackmaps array. */ + simplify_depth--; + if( astOK ) { + simplify_stackmaps[ simplify_depth ] = astAnnul( simplify_stackmaps[ simplify_depth ] ); + } + +/* If we are now at depth zero, free the simplify_stackmaps array. */ + if( simplify_depth == 0 ) simplify_stackmaps = astFree( simplify_stackmaps ); + +/* If an error occurred, annul the returned Mapping. */ + if ( !astOK ) result = astAnnul( result ); + +/* Return the result. */ + return result; +} + +static AstPointSet *Transform( AstMapping *this, AstPointSet *in, + int forward, AstPointSet *out, int *status ) { +/* +* Name: +* Transform + +* Purpose: +* Apply a CmpMap to transform a set of points. + +* Type: +* Private function. + +* Synopsis: +* #include "cmpmap.h" +* AstPointSet *Transform( AstMapping *this, AstPointSet *in, +* int forward, AstPointSet *out, int *status ) + +* Class Membership: +* CmpMap member function (over-rides the astTransform method inherited +* from the Mapping class). + +* Description: +* This function takes a CmpMap and a set of points encapsulated in a +* PointSet and transforms the points so as to apply the required Mapping. +* This implies applying each of the CmpMap's component Mappings in turn, +* either in series or in parallel. + +* Parameters: +* this +* Pointer to the CmpMap. +* in +* Pointer to the PointSet associated with the input coordinate values. +* forward +* A non-zero value indicates that the forward coordinate transformation +* should be applied, while a zero value requests the inverse +* transformation. +* out +* Pointer to a PointSet which will hold the transformed (output) +* coordinate values. A NULL value may also be given, in which case a +* new PointSet will be created by this function. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* Pointer to the output (possibly new) PointSet. + +* Notes: +* - A null pointer will be returned if this function is invoked with the +* global error status set, or if it should fail for any reason. +* - The number of coordinate values per point in the input PointSet must +* match the number of coordinates for the CmpMap being applied. +* - If an output PointSet is supplied, it must have space for sufficient +* number of points and coordinate values per point to accommodate the +* result. Any excess space will be ignored. +*/ + +/* Local Variables: */ + AstCmpMap *map; /* Pointer to CmpMap to be applied */ + AstPointSet *result; /* Pointer to output PointSet */ + AstPointSet *temp1; /* Pointer to temporary PointSet */ + AstPointSet *temp2; /* Pointer to temporary PointSet */ + AstPointSet *temp; /* Pointer to temporary PointSet */ + int forward1; /* Use forward direction for Mapping 1? */ + int forward2; /* Use forward direction for Mapping 2? */ + int ipoint1; /* Index of first point in batch */ + int ipoint2; /* Index of last point in batch */ + int nin1; /* No. input coordinates for Mapping 1 */ + int nin2; /* No. input coordinates for Mapping 2 */ + int nin; /* No. input coordinates supplied */ + int nout1; /* No. output coordinates for Mapping 1 */ + int nout2; /* No. output coordinates for Mapping 2 */ + int nout; /* No. output coordinates supplied */ + int np; /* Number of points in batch */ + int npoint; /* Number of points to be transformed */ + +/* Local Constants: */ + const int nbatch = 2048; /* Maximum points in a batch */ + +/* Check the global error status. */ + if ( !astOK ) return NULL; + +/* Obtain a pointer to the CmpMap. */ + map = (AstCmpMap *) this; + +/* Apply the parent Mapping using the stored pointer to the Transform member + function inherited from the parent Mapping class. This function validates + all arguments and generates an output PointSet if necessary, but does not + actually transform any coordinate values. */ + result = (*parent_transform)( this, in, forward, out, status ); + +/* We now extend the parent astTransform method by applying the component + Mappings of the CmpMap to generate the output coordinate values. */ + +/* Determine whether to apply the forward or inverse Mapping, according to the + direction specified and whether the Mapping has been inverted. */ + if ( astGetInvert( map ) ) forward = !forward; + +/* Check if either component Mapping's inversion flag has changed since it was + used to construct the CmpMap. Set a "forward" flag for each Mapping to + change the direction we will use, to compensate if necessary. (Such changes + may have occurred if other pointers to the component Mappings are in + circulation). */ + forward1 = forward; + forward2 = forward; + if ( map->invert1 != astGetInvert( map->map1 ) ) forward1 = !forward1; + if ( map->invert2 != astGetInvert( map->map2 ) ) forward2 = !forward2; + +/* Determine the number of points being transformed. */ + npoint = astGetNpoint( in ); + +/* Mappings in series. */ +/* ------------------- */ +/* If required, use the two component Mappings in series. To do this, we must + apply one Mapping followed by the other, which means storing an intermediate + result. Since this function may be invoked recursively and have to store an + intermediate result on each occasion, the memory required may become + excessive when transforming large numbers of points. To overcome this, we + split the points up into smaller batches. */ + if ( astOK ) { + if ( map->series ) { + +/* Obtain the numbers of input and output coordinates. */ + nin = astGetNcoord( in ); + nout = astGetNcoord( result ); + +/* Loop to process all the points in batches, of maximum size nbatch points. */ + for ( ipoint1 = 0; ipoint1 < npoint; ipoint1 += nbatch ) { + +/* Calculate the index of the final point in the batch and deduce the number of + points (np) to be processed in this batch. */ + ipoint2 = ipoint1 + nbatch - 1; + if ( ipoint2 > npoint - 1 ) ipoint2 = npoint - 1; + np = ipoint2 - ipoint1 + 1; + +/* Create temporary PointSets to describe the input and output points for this + batch. */ + temp1 = astPointSet( np, nin, "", status ); + temp2 = astPointSet( np, nout, "", status ); + +/* Associate the required subsets of the input and output coordinates with the + two PointSets. */ + astSetSubPoints( in, ipoint1, 0, temp1 ); + astSetSubPoints( result, ipoint1, 0, temp2 ); + +/* Apply the two Mappings in sequence and in the required order and direction. + Store the intermediate result in a temporary PointSet (temp) which is + created by the first Mapping applied. */ + if ( forward ) { + temp = astTransform( map->map1, temp1, forward1, NULL ); + (void) astTransform( map->map2, temp, forward2, temp2 ); + } else { + temp = astTransform( map->map2, temp1, forward2, NULL ); + (void) astTransform( map->map1, temp, forward1, temp2 ); + } + +/* Delete the temporary PointSets after processing each batch of points. */ + temp = astDelete( temp ); + temp1 = astDelete( temp1 ); + temp2 = astDelete( temp2 ); + +/* Quit processing batches if an error occurs. */ + if ( !astOK ) break; + } + +/* Mappings in parallel. */ +/* --------------------- */ +/* If required, use the two component Mappings in parallel. Since we do not + need to allocate any memory to hold intermediate coordinate values here, + there is no need to process the points in batches. */ + } else { + +/* Get the effective number of input and output coordinates per point for each + Mapping (taking account of the direction in which each will be used to + transform points). */ + nin1 = forward1 ? astGetNin( map->map1 ) : astGetNout( map->map1 ); + nout1 = forward1 ? astGetNout( map->map1 ) : astGetNin( map->map1 ); + nin2 = forward2 ? astGetNin( map->map2 ) : astGetNout( map->map2 ); + nout2 = forward2 ? astGetNout( map->map2 ) : astGetNin( map->map2 ); + +/* Create temporary PointSets to describe the input and output coordinates for + the first Mapping. */ + temp1 = astPointSet( npoint, nin1, "", status ); + temp2 = astPointSet( npoint, nout1, "", status ); + +/* Associate the required subsets of the input and output coordinates with + these PointSets. */ + astSetSubPoints( in, 0, 0, temp1 ); + astSetSubPoints( result, 0, 0, temp2 ); + +/* Use the astTransform method to apply the coordinate transformation described + by the first Mapping. */ + (void) astTransform( map->map1, temp1, forward1, temp2 ); + +/* Delete the temporary PointSets. */ + temp1 = astDelete( temp1 ); + temp2 = astDelete( temp2 ); + +/* Create a new pair of temporary PointSets to describe the input and output + coordinates for the second Mapping, and associate the required subsets of + the input and output coordinates with these PointSets. */ + temp1 = astPointSet( npoint, nin2, "", status ); + temp2 = astPointSet( npoint, nout2, "", status ); + astSetSubPoints( in, 0, nin1, temp1 ); + astSetSubPoints( result, 0, nout1, temp2 ); + +/* Apply the coordinate transformation described by the second Mapping. */ + (void) astTransform( map->map2, temp1, forward2, temp2 ); + +/* Delete the two temporary PointSets. */ + temp1 = astDelete( temp1 ); + temp2 = astDelete( temp2 ); + } + } + +/* If an error occurred, clean up by deleting the output PointSet (if + allocated by this function) and setting a NULL result pointer. */ + if ( !astOK ) { + if ( !out ) result = astDelete( result ); + result = NULL; + } + +/* Return a pointer to the output PointSet. */ + return result; +} + +/* Copy constructor. */ +/* ----------------- */ +static void Copy( const AstObject *objin, AstObject *objout, int *status ) { +/* +* Name: +* Copy + +* Purpose: +* Copy constructor for CmpMap objects. + +* Type: +* Private function. + +* Synopsis: +* void Copy( const AstObject *objin, AstObject *objout, int *status ) + +* Description: +* This function implements the copy constructor for CmpMap objects. + +* Parameters: +* objin +* Pointer to the object to be copied. +* objout +* Pointer to the object being constructed. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* void + +* Notes: +* - This constructor makes a deep copy, including a copy of the component +* Mappings within the CmpMap. +*/ + +/* Local Variables: */ + AstCmpMap *in; /* Pointer to input CmpMap */ + AstCmpMap *out; /* Pointer to output CmpMap */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Obtain pointers to the input and output CmpMaps. */ + in = (AstCmpMap *) objin; + out = (AstCmpMap *) objout; + +/* For safety, start by clearing any references to the input component + Mappings from the output CmpMap. */ + out->map1 = NULL; + out->map2 = NULL; + +/* Make copies of these Mappings and store pointers to them in the output + CmpMap structure. */ + out->map1 = astCopy( in->map1 ); + out->map2 = astCopy( in->map2 ); +} + +/* Destructor. */ +/* ----------- */ +static void Delete( AstObject *obj, int *status ) { +/* +* Name: +* Delete + +* Purpose: +* Destructor for CmpMap objects. + +* Type: +* Private function. + +* Synopsis: +* void Delete( AstObject *obj, int *status ) + +* Description: +* This function implements the destructor for CmpMap objects. + +* Parameters: +* obj +* Pointer to the object to be deleted. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* void + +* Notes: +* This function attempts to execute even if the global error status is +* set. +*/ + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to CmpMap */ + +/* Obtain a pointer to the CmpMap structure. */ + this = (AstCmpMap *) obj; + +/* Annul the pointers to the component Mappings. */ + this->map1 = astAnnul( this->map1 ); + this->map2 = astAnnul( this->map2 ); + +/* Clear the remaining CmpMap variables. */ + this->invert1 = 0; + this->invert2 = 0; + this->series = 0; +} + +/* Dump function. */ +/* -------------- */ +static void Dump( AstObject *this_object, AstChannel *channel, int *status ) { +/* +* Name: +* Dump + +* Purpose: +* Dump function for CmpMap objects. + +* Type: +* Private function. + +* Synopsis: +* void Dump( AstObject *this, AstChannel *channel, int *status ) + +* Description: +* This function implements the Dump function which writes out data +* for the CmpMap class to an output Channel. + +* Parameters: +* this +* Pointer to the CmpMap whose data are being written. +* channel +* Pointer to the Channel to which the data are being written. +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + AstCmpMap *this; /* Pointer to the CmpMap structure */ + int ival; /* Integer value */ + int set; /* Attribute value set? */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Obtain a pointer to the CmpMap structure. */ + this = (AstCmpMap *) this_object; + +/* Write out values representing the instance variables for the CmpMap + class. Accompany these with appropriate comment strings, possibly + depending on the values being written.*/ + +/* In the case of attributes, we first use the appropriate (private) + Test... member function to see if they are set. If so, we then use + the (private) Get... function to obtain the value to be written + out. + + For attributes which are not set, we use the astGet... method to + obtain the value instead. This will supply a default value + (possibly provided by a derived class which over-rides this method) + which is more useful to a human reader as it corresponds to the + actual default attribute value. Since "set" will be zero, these + values are for information only and will not be read back. */ + +/* Series. */ +/* ------- */ + ival = this->series; + set = ( ival == 0 ); + astWriteInt( channel, "Series", set, 0, ival, + ival ? "Component Mappings applied in series" : + "Component Mappings applied in parallel" ); + +/* First Invert flag. */ +/* ------------------ */ + ival = this->invert1; + set = ( ival != 0 ); + astWriteInt( channel, "InvA", set, 0, ival, + ival ? "First Mapping used in inverse direction" : + "First Mapping used in forward direction" ); + +/* Second Invert flag. */ +/* ------------------- */ + ival = this->invert2; + set = ( ival != 0 ); + astWriteInt( channel, "InvB", set, 0, ival, + ival ? "Second Mapping used in inverse direction" : + "Second Mapping used in forward direction" ); + +/* First Mapping. */ +/* -------------- */ + astWriteObject( channel, "MapA", 1, 1, this->map1, + "First component Mapping" ); + +/* Second Mapping. */ +/* --------------- */ + astWriteObject( channel, "MapB", 1, 1, this->map2, + "Second component Mapping" ); +} + +/* Standard class functions. */ +/* ========================= */ +/* Implement the astIsACmpMap and astCheckCmpMap functions using the + macros defined for this purpose in the "object.h" header file. */ +astMAKE_ISA(CmpMap,Mapping) +astMAKE_CHECK(CmpMap) + +AstCmpMap *astCmpMap_( void *map1_void, void *map2_void, int series, + const char *options, int *status, ...) { +/* +*+ +* Name: +* astCmpMap + +* Purpose: +* Create a CmpMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "cmpmap.h" +* AstCmpMap *astCmpMap( AstMapping *map1, AstMapping *map2, int series, +* const char *options, ... ) + +* Class Membership: +* CmpMap constructor. + +* Description: +* This function creates a new CmpMap and optionally initialises its +* attributes. + +* Parameters: +* map1 +* Pointer to the first Mapping. +* map2 +* Pointer to the second Mapping. +* series +* If a non-zero value is given, the two Mappings will be connected +* together in series. A zero value requests that they be connected in +* parallel. +* options +* Pointer to a null terminated string containing an optional +* comma-separated list of attribute assignments to be used for +* initialising the new CmpMap. The syntax used is the same as for the +* astSet method and may include "printf" format specifiers identified +* by "%" symbols in the normal way. +* ... +* If the "options" string contains "%" format specifiers, then an +* optional list of arguments may follow it in order to supply values to +* be substituted for these specifiers. The rules for supplying these +* are identical to those for the astSet method (and for the C "printf" +* function). + +* Returned Value: +* A pointer to the new CmpMap. + +* Notes: +* - A null pointer will be returned if this function is invoked +* with the global error status set, or if it should fail for any +* reason. +*- + +* Implementation Notes: +* - This function implements the basic CmpMap constructor which is +* available via the protected interface to the CmpMap class. A +* public interface is provided by the astCmpMapId_ function. +* - Because this function has a variable argument list, it is +* invoked by a macro that evaluates to a function pointer (not a +* function invocation) and no checking or casting of arguments is +* performed before the function is invoked. Because of this, the +* "map1" and "map2" parameters are of type (void *) and are +* converted and validated within the function itself. +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstCmpMap *new; /* Pointer to new CmpMap */ + AstMapping *map1; /* Pointer to first Mapping structure */ + AstMapping *map2; /* Pointer to second Mapping structure */ + va_list args; /* Variable argument list */ + +/* Initialise. */ + new = NULL; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Check the global status. */ + if ( !astOK ) return new; + +/* Obtain and validate pointers to the Mapping structures provided. */ + map1 = astCheckMapping( map1_void ); + map2 = astCheckMapping( map2_void ); + if ( astOK ) { + +/* Initialise the CmpMap, allocating memory and initialising the + virtual function table as well if necessary. */ + new = astInitCmpMap( NULL, sizeof( AstCmpMap ), !class_init, &class_vtab, + "CmpMap", map1, map2, series ); + +/* If successful, note that the virtual function table has been + initialised. */ + if ( astOK ) { + class_init = 1; + +/* Obtain the variable argument list and pass it along with the + options string to the astVSet method to initialise the new CmpMap's + attributes. */ + va_start( args, status ); + astVSet( new, options, NULL, args ); + va_end( args ); + +/* If an error occurred, clean up by deleting the new object. */ + if ( !astOK ) new = astDelete( new ); + } + } + +/* Return a pointer to the new CmpMap. */ + return new; +} + +AstCmpMap *astCmpMapId_( void *map1_void, void *map2_void, int series, + const char *options, ... ) { +/* +*++ +* Name: +c astCmpMap +f AST_CMPMAP + +* Purpose: +* Create a CmpMap. + +* Type: +* Public function. + +* Synopsis: +c #include "cmpmap.h" +c AstCmpMap *astCmpMap( AstMapping *map1, AstMapping *map2, int series, +c const char *options, ... ) +f RESULT = AST_CMPMAP( MAP1, MAP2, SERIES, OPTIONS, STATUS ) + +* Class Membership: +* CmpMap constructor. + +* Description: +* This function creates a new CmpMap and optionally initialises +* its attributes. +* +* A CmpMap is a compound Mapping which allows two component +* Mappings (of any class) to be connected together to form a more +* complex Mapping. This connection may either be "in series" +* (where the first Mapping is used to transform the coordinates of +* each point and the second mapping is then applied to the +* result), or "in parallel" (where one Mapping transforms the +* earlier coordinates for each point and the second Mapping +* simultaneously transforms the later coordinates). +* +* Since a CmpMap is itself a Mapping, it can be used as a +* component in forming further CmpMaps. Mappings of arbitrary +* complexity may be built from simple individual Mappings in this +* way. + +* Parameters: +c map1 +f MAP1 = INTEGER (Given) +* Pointer to the first component Mapping. +c map2 +f MAP2 = INTEGER (Given) +* Pointer to the second component Mapping. +c series +f SERIES = LOGICAL (Given) +c If a non-zero value is given for this parameter, the two +c component Mappings will be connected in series. A zero +c value requests that they are connected in parallel. +f If a .TRUE. value is given for this argument, the two +f component Mappings will be connected in series. A +f .FALSE. value requests that they are connected in parallel. +c options +f OPTIONS = CHARACTER * ( * ) (Given) +c Pointer to a null-terminated string containing an optional +c comma-separated list of attribute assignments to be used for +c initialising the new CmpMap. The syntax used is identical to +c that for the astSet function and may include "printf" format +c specifiers identified by "%" symbols in the normal way. +f A character string containing an optional comma-separated +f list of attribute assignments to be used for initialising the +f new CmpMap. The syntax used is identical to that for the +f AST_SET routine. +c ... +c If the "options" string contains "%" format specifiers, then +c an optional list of additional arguments may follow it in +c order to supply values to be substituted for these +c specifiers. The rules for supplying these are identical to +c those for the astSet function (and for the C "printf" +c function). +f STATUS = INTEGER (Given and Returned) +f The global status. + +* Returned Value: +c astCmpMap() +f AST_CMPMAP = INTEGER +* A pointer to the new CmpMap. + +* Notes: +* - If the component Mappings are connected in series, then using +* the resulting CmpMap to transform coordinates will cause the +* first Mapping to be applied, followed by the second Mapping. If +* the inverse CmpMap transformation is requested, the two +* component Mappings will be applied in both the reverse order and +* the reverse direction. +* - When connecting two component Mappings in series, the number +* of output coordinates generated by the first Mapping (its Nout +* attribute) must equal the number of input coordinates accepted +* by the second Mapping (its Nin attribute). +* - If the component Mappings of a CmpMap are connected in +* parallel, then the first Mapping will be used to transform the +* earlier input coordinates for each point (and to produce the +* earlier output coordinates) and the second Mapping will be used +* simultaneously to transform the remaining input coordinates (to +* produce the remaining output coordinates for each point). If the +* inverse transformation is requested, each Mapping will still be +* applied to the same coordinates, but in the reverse direction. +* - When connecting two component Mappings in parallel, there is +* no restriction on the number of input and output coordinates for +* each Mapping. +c - Note that the component Mappings supplied are not copied by +c astCmpMap (the new CmpMap simply retains a reference to +c them). They may continue to be used for other purposes, but +c should not be deleted. If a CmpMap containing a copy of its +c component Mappings is required, then a copy of the CmpMap should +c be made using astCopy. +f - Note that the component Mappings supplied are not copied by +f AST_CMPMAP (the new CmpMap simply retains a reference to +f them). They may continue to be used for other purposes, but +f should not be deleted. If a CmpMap containing a copy of its +f component Mappings is required, then a copy of the CmpMap should +f be made using AST_COPY. +* - A null Object pointer (AST__NULL) will be returned if this +c function is invoked with the AST error status set, or if it +f function is invoked with STATUS set to an error value, or if it +* should fail for any reason. +*-- + +* Implementation Notes: +* - This function implements the external (public) interface to +* the astCmpMap constructor function. It returns an ID value +* (instead of a true C pointer) to external users, and must be +* provided because astCmpMap_ has a variable argument list which +* cannot be encapsulated in a macro (where this conversion would +* otherwise occur). +* - Because no checking or casting of arguments is performed +* before the function is invoked, the "map1" and "map2" parameters +* are of type (void *) and are converted from an ID value to a +* pointer and validated within the function itself. +* - The variable argument list also prevents this function from +* invoking astCmpMap_ directly, so it must be a re-implementation +* of it in all respects, except for the conversions between IDs +* and pointers on input/output of Objects. +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstCmpMap *new; /* Pointer to new CmpMap */ + AstMapping *map1; /* Pointer to first Mapping structure */ + AstMapping *map2; /* Pointer to second Mapping structure */ + va_list args; /* Variable argument list */ + + int *status; /* Pointer to inherited status value */ + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Initialise. */ + new = NULL; + +/* Get a pointer to the inherited status value. */ + status = astGetStatusPtr; + +/* Check the global status. */ + if ( !astOK ) return new; + +/* Obtain the Mapping pointers from the ID's supplied and validate the + pointers to ensure they identify valid Mappings. */ + map1 = astVerifyMapping( astMakePointer( map1_void ) ); + map2 = astVerifyMapping( astMakePointer( map2_void ) ); + if ( astOK ) { + +/* Initialise the CmpMap, allocating memory and initialising the + virtual function table as well if necessary. */ + new = astInitCmpMap( NULL, sizeof( AstCmpMap ), !class_init, &class_vtab, + "CmpMap", map1, map2, series ); + +/* If successful, note that the virtual function table has been initialised. */ + if ( astOK ) { + class_init = 1; + +/* Obtain the variable argument list and pass it along with the + options string to the astVSet method to initialise the new CmpMap's + attributes. */ + va_start( args, options ); + astVSet( new, options, NULL, args ); + va_end( args ); + +/* If an error occurred, clean up by deleting the new object. */ + if ( !astOK ) new = astDelete( new ); + } + } + +/* Return an ID value for the new CmpMap. */ + return astMakeId( new ); +} + +AstCmpMap *astInitCmpMap_( void *mem, size_t size, int init, + AstCmpMapVtab *vtab, const char *name, + AstMapping *map1, AstMapping *map2, int series, int *status ) { +/* +*+ +* Name: +* astInitCmpMap + +* Purpose: +* Initialise a CmpMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "cmpmap.h" +* AstCmpMap *astInitCmpMap( void *mem, size_t size, int init, +* AstCmpMapVtab *vtab, const char *name, +* AstMapping *map1, AstMapping *map2, +* int series ) + +* Class Membership: +* CmpMap initialiser. + +* Description: +* This function is provided for use by class implementations to initialise +* a new CmpMap object. It allocates memory (if necessary) to +* accommodate the CmpMap plus any additional data associated with the +* derived class. It then initialises a CmpMap structure at the start +* of this memory. If the "init" flag is set, it also initialises the +* contents of a virtual function table for a CmpMap at the start of +* the memory passed via the "vtab" parameter. + +* Parameters: +* mem +* A pointer to the memory in which the CmpMap is to be initialised. +* This must be of sufficient size to accommodate the CmpMap data +* (sizeof(CmpMap)) plus any data used by the derived class. If a +* value of NULL is given, this function will allocate the memory itself +* using the "size" parameter to determine its size. +* size +* The amount of memory used by the CmpMap (plus derived class +* data). This will be used to allocate memory if a value of NULL is +* given for the "mem" parameter. This value is also stored in the +* CmpMap structure, so a valid value must be supplied even if not +* required for allocating memory. +* init +* A logical flag indicating if the CmpMap's virtual function table +* is to be initialised. If this value is non-zero, the virtual function +* table will be initialised by this function. +* vtab +* Pointer to the start of the virtual function table to be associated +* with the new CmpMap. +* name +* Pointer to a constant null-terminated character string which contains +* the name of the class to which the new object belongs (it is this +* pointer value that will subsequently be returned by the Object +* astClass function). +* map1 +* Pointer to the first Mapping. +* map2 +* Pointer to the second Mapping. +* series +* If a non-zero value is given, the two Mappings will be connected +* together in series. A zero value requests that they be connected in +* parallel. + +* Returned Value: +* A pointer to the new CmpMap. + +* Notes: +* - A null pointer will be returned if this function is invoked with the +* global error status set, or if it should fail for any reason. +*- +*/ + +/* Local Variables: */ + AstCmpMap *new; /* Pointer to new CmpMap */ + int map_f; /* Forward transformation defined? */ + int map_i; /* Inverse transformation defined? */ + int nin2; /* No. input coordinates for Mapping 2 */ + int nin; /* No. input coordinates for CmpMap */ + int nout1; /* No. output coordinates for Mapping 1 */ + int nout; /* No. output coordinates for CmpMap */ + +/* Check the global status. */ + if ( !astOK ) return NULL; + +/* If necessary, initialise the virtual function table. */ + if ( init ) astInitCmpMapVtab( vtab, name ); + +/* Initialise. */ + new = NULL; + +/* Determine in which directions each component Mapping is able to transform + coordinates. Combine these results to obtain a result for the overall + CmpMap. */ + map_f = astGetTranForward( map1 ) && astGetTranForward( map2 ); + map_i = astGetTranInverse( map1 ) && astGetTranInverse( map2 ); + if ( astOK ) { + +/* If connecting the Mappings in series, check that the number of coordinates + are compatible and report an error if they are not. */ + if ( series ) { + nout1 = astGetNout( map1 ); + nin2 = astGetNin( map2 ); + if ( astOK && ( nout1 != nin2 ) ) { + astError( AST__INNCO, "astInitCmpMap(%s): The number of output " + "coordinates per point (%d) for the first Mapping " + "supplied does not match the number of input " + "coordinates (%d) for the second Mapping.", status, name, nout1, + nin2 ); + } + } + } + +/* If OK, determine the total number of input and output coordinates per point + for the CmpMap. */ + if ( astOK ) { + if ( series ) { + nin = astGetNin( map1 ); + nout = astGetNout( map2 ); + } else { + nin = astGetNin( map1 ) + astGetNin( map2 ); + nout = astGetNout( map1 ) + astGetNout( map2 ); + } + + } else { + nin = 0; + nout = 0; + } + +/* Initialise a Mapping structure (the parent class) as the first component + within the CmpMap structure, allocating memory if necessary. Specify + the number of input and output coordinates and in which directions the + Mapping should be defined. */ + if ( astOK ) { + new = (AstCmpMap *) astInitMapping( mem, size, 0, + (AstMappingVtab *) vtab, name, + nin, nout, map_f, map_i ); + + if ( astOK ) { + +/* Initialise the CmpMap data. */ +/* --------------------------- */ +/* Store pointers to the component Mappings. Extract Mappings if + FrameSets are provided. */ + if( astIsAFrameSet( map1 ) ) { + new->map1 = astGetMapping( (AstFrameSet *) map1, AST__BASE, + AST__CURRENT ); + } else { + new->map1 = astClone( map1 ); + } + + if( astIsAFrameSet( map2 ) ) { + new->map2 = astGetMapping( (AstFrameSet *) map2, AST__BASE, + AST__CURRENT ); + } else { + new->map2 = astClone( map2 ); + } + + +/* Save the initial values of the inversion flags for these Mappings. */ + new->invert1 = astGetInvert( new->map1 ); + new->invert2 = astGetInvert( new->map2 ); + +/* Note whether the Mappings are joined in series (instead of in parallel), + constraining this flag to be 0 or 1. */ + new->series = ( series != 0 ); + +/* If an error occurred, clean up by annulling the Mapping pointers and + deleting the new object. */ + if ( !astOK ) { + new->map1 = astAnnul( new->map1 ); + new->map2 = astAnnul( new->map2 ); + new = astDelete( new ); + } + } + } + +/* Return a pointer to the new object. */ + return new; +} + +AstCmpMap *astLoadCmpMap_( void *mem, size_t size, + AstCmpMapVtab *vtab, const char *name, + AstChannel *channel, int *status ) { +/* +*+ +* Name: +* astLoadCmpMap + +* Purpose: +* Load a CmpMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "cmpmap.h" +* AstCmpMap *astLoadCmpMap( void *mem, size_t size, +* AstCmpMapVtab *vtab, const char *name, +* AstChannel *channel ) + +* Class Membership: +* CmpMap loader. + +* Description: +* This function is provided to load a new CmpMap using data read +* from a Channel. It first loads the data used by the parent class +* (which allocates memory if necessary) and then initialises a +* CmpMap structure in this memory, using data read from the input +* Channel. +* +* If the "init" flag is set, it also initialises the contents of a +* virtual function table for a CmpMap at the start of the memory +* passed via the "vtab" parameter. + + +* Parameters: +* mem +* A pointer to the memory into which the CmpMap is to be +* loaded. This must be of sufficient size to accommodate the +* CmpMap data (sizeof(CmpMap)) plus any data used by derived +* classes. If a value of NULL is given, this function will +* allocate the memory itself using the "size" parameter to +* determine its size. +* size +* The amount of memory used by the CmpMap (plus derived class +* data). This will be used to allocate memory if a value of +* NULL is given for the "mem" parameter. This value is also +* stored in the CmpMap structure, so a valid value must be +* supplied even if not required for allocating memory. +* +* If the "vtab" parameter is NULL, the "size" value is ignored +* and sizeof(AstCmpMap) is used instead. +* vtab +* Pointer to the start of the virtual function table to be +* associated with the new CmpMap. If this is NULL, a pointer to +* the (static) virtual function table for the CmpMap class is +* used instead. +* name +* Pointer to a constant null-terminated character string which +* contains the name of the class to which the new object +* belongs (it is this pointer value that will subsequently be +* returned by the astGetClass method). +* +* If the "vtab" parameter is NULL, the "name" value is ignored +* and a pointer to the string "CmpMap" is used instead. + +* Returned Value: +* A pointer to the new CmpMap. + +* Notes: +* - A null pointer will be returned if this function is invoked +* with the global error status set, or if it should fail for any +* reason. +*- +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstCmpMap *new; /* Pointer to the new CmpMap */ + +/* Initialise. */ + new = NULL; + +/* Check the global error status. */ + if ( !astOK ) return new; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(channel); + +/* If a NULL virtual function table has been supplied, then this is + the first loader to be invoked for this CmpMap. In this case the + CmpMap belongs to this class, so supply appropriate values to be + passed to the parent class loader (and its parent, etc.). */ + if ( !vtab ) { + size = sizeof( AstCmpMap ); + vtab = &class_vtab; + name = "CmpMap"; + +/* If required, initialise the virtual function table for this class. */ + if ( !class_init ) { + astInitCmpMapVtab( vtab, name ); + class_init = 1; + } + } + +/* Invoke the parent class loader to load data for all the ancestral + classes of the current one, returning a pointer to the resulting + partly-built CmpMap. */ + new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name, + channel ); + + if ( astOK ) { + +/* Read input data. */ +/* ================ */ +/* Request the input Channel to read all the input data appropriate to + this class into the internal "values list". */ + astReadClassData( channel, "CmpMap" ); + +/* Now read each individual data item from this list and use it to + initialise the appropriate instance variable(s) for this class. */ + +/* In the case of attributes, we first read the "raw" input value, + supplying the "unset" value as the default. If a "set" value is + obtained, we then use the appropriate (private) Set... member + function to validate and set the value properly. */ + +/* Series. */ +/* ------- */ + new->series = astReadInt( channel, "series", 1 ); + new->series = ( new->series != 0 ); + +/* First Invert flag. */ +/* ------------------ */ + new->invert1 = astReadInt( channel, "inva", 0 ); + new->invert1 = ( new->invert1 != 0 ); + +/* Second Invert flag. */ +/* ------------------- */ + new->invert2 = astReadInt( channel, "invb", 0 ); + new->invert2 = ( new->invert2 != 0 ); + +/* First Mapping. */ +/* -------------- */ + new->map1 = astReadObject( channel, "mapa", NULL ); + +/* Second Mapping. */ +/* --------------- */ + new->map2 = astReadObject( channel, "mapb", NULL ); + +/* If an error occurred, clean up by deleting the new CmpMap. */ + if ( !astOK ) new = astDelete( new ); + } + +/* Return the new CmpMap pointer. */ + return new; +} + +/* Virtual function interfaces. */ +/* ============================ */ +/* These provide the external interface to the virtual functions defined by + this class. Each simply checks the global error status and then locates and + executes the appropriate member function, using the function pointer stored + in the object's virtual function table (this pointer is located using the + astMEMBER macro defined in "object.h"). + + Note that the member function may not be the one defined here, as it may + have been over-ridden by a derived class. However, it should still have the + same interface. */ + +/* None. */ + + + + + + + + |