diff options
Diffstat (limited to 'tcl8.6/libtommath/tommath.h')
-rw-r--r-- | tcl8.6/libtommath/tommath.h | 579 |
1 files changed, 0 insertions, 579 deletions
diff --git a/tcl8.6/libtommath/tommath.h b/tcl8.6/libtommath/tommath.h deleted file mode 100644 index cb3435f..0000000 --- a/tcl8.6/libtommath/tommath.h +++ /dev/null @@ -1,579 +0,0 @@ -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * The library is free for all purposes without any express - * guarantee it works. - * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com - */ -#ifndef BN_H_ -#define BN_H_ - -#include <stdio.h> -#include <string.h> -#include <stdlib.h> -#include <ctype.h> -#include <limits.h> - -#include <tommath_class.h> - -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -#ifndef MAX -# define MAX(x,y) ((x)>(y)?(x):(y)) -#endif - -#ifdef __cplusplus -extern "C" { - -/* C++ compilers don't like assigning void * to mp_digit * */ -#define OPT_CAST(x) (x *) - -#else - -/* C on the other hand doesn't care */ -#define OPT_CAST(x) - -#endif - - -/* detect 64-bit mode if possible */ -#if defined(__x86_64__) -# if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) -# define MP_64BIT -# endif -#endif - -/* some default configurations. - * - * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits - * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits - * - * At the very least a mp_digit must be able to hold 7 bits - * [any size beyond that is ok provided it doesn't overflow the data type] - */ -#ifdef MP_8BIT - typedef unsigned char mp_digit; - typedef unsigned short mp_word; -#elif defined(MP_16BIT) - typedef unsigned short mp_digit; - typedef unsigned long mp_word; -#elif defined(MP_64BIT) - /* for GCC only on supported platforms */ -#ifndef CRYPT - typedef unsigned long long ulong64; - typedef signed long long long64; -#endif - - typedef unsigned long mp_digit; - typedef unsigned long mp_word __attribute__ ((mode(TI))); - -# define DIGIT_BIT 60 -#else - /* this is the default case, 28-bit digits */ - - /* this is to make porting into LibTomCrypt easier :-) */ -#ifndef CRYPT -# if defined(_MSC_VER) || defined(__BORLANDC__) - typedef unsigned __int64 ulong64; - typedef signed __int64 long64; -# else - typedef unsigned long long ulong64; - typedef signed long long long64; -# endif -#endif - - typedef unsigned long mp_digit; - typedef ulong64 mp_word; - -#ifdef MP_31BIT - /* this is an extension that uses 31-bit digits */ -# define DIGIT_BIT 31 -#else - /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ -# define DIGIT_BIT 28 -# define MP_28BIT -#endif -#endif - -/* define heap macros */ -#ifndef CRYPT - /* default to libc stuff */ -# ifndef XMALLOC -# define XMALLOC malloc -# define XFREE free -# define XREALLOC realloc -# define XCALLOC calloc -# else - /* prototypes for our heap functions */ - extern void *XMALLOC(size_t n); - extern void *XREALLOC(void *p, size_t n); - extern void *XCALLOC(size_t n, size_t s); - extern void XFREE(void *p); -# endif -#endif - - -/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ -#ifndef DIGIT_BIT -# define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ -#endif - -#define MP_DIGIT_BIT DIGIT_BIT -#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) -#define MP_DIGIT_MAX MP_MASK - -/* equalities */ -#define MP_LT -1 /* less than */ -#define MP_EQ 0 /* equal to */ -#define MP_GT 1 /* greater than */ - -#define MP_ZPOS 0 /* positive integer */ -#define MP_NEG 1 /* negative */ - -#define MP_OKAY 0 /* ok result */ -#define MP_MEM -2 /* out of mem */ -#define MP_VAL -3 /* invalid input */ -#define MP_RANGE MP_VAL - -#define MP_YES 1 /* yes response */ -#define MP_NO 0 /* no response */ - -/* Primality generation flags */ -#define LTM_PRIME_BBS 0x0001 /* BBS style prime */ -#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ -#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ - -typedef int mp_err; - -/* you'll have to tune these... */ -extern int KARATSUBA_MUL_CUTOFF, - KARATSUBA_SQR_CUTOFF, - TOOM_MUL_CUTOFF, - TOOM_SQR_CUTOFF; - -/* define this to use lower memory usage routines (exptmods mostly) */ -/* #define MP_LOW_MEM */ - -/* default precision */ -#ifndef MP_PREC -# ifndef MP_LOW_MEM -# define MP_PREC 32 /* default digits of precision */ -# else -# define MP_PREC 8 /* default digits of precision */ -# endif -#endif - -/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) - -/* the infamous mp_int structure */ -typedef struct { - int used, alloc, sign; - mp_digit *dp; -} mp_int; - -/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ -typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); - - -#define USED(m) ((m)->used) -#define DIGIT(m,k) ((m)->dp[(k)]) -#define SIGN(m) ((m)->sign) - -/* error code to char* string */ -char *mp_error_to_string(int code); - -/* ---> init and deinit bignum functions <--- */ -/* init a bignum */ -int mp_init(mp_int *a); - -/* free a bignum */ -void mp_clear(mp_int *a); - -/* init a null terminated series of arguments */ -int mp_init_multi(mp_int *mp, ...); - -/* clear a null terminated series of arguments */ -void mp_clear_multi(mp_int *mp, ...); - -/* exchange two ints */ -void mp_exch(mp_int *a, mp_int *b); - -/* shrink ram required for a bignum */ -int mp_shrink(mp_int *a); - -/* grow an int to a given size */ -int mp_grow(mp_int *a, int size); - -/* init to a given number of digits */ -int mp_init_size(mp_int *a, int size); - -/* ---> Basic Manipulations <--- */ -#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) -#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) - -/* set to zero */ -void mp_zero(mp_int *a); - -/* set to a digit */ -void mp_set(mp_int *a, mp_digit b); - -/* set a 32-bit const */ -int mp_set_int(mp_int *a, unsigned long b); - -/* get a 32-bit value */ -unsigned long mp_get_int(mp_int * a); - -/* initialize and set a digit */ -int mp_init_set (mp_int * a, mp_digit b); - -/* initialize and set 32-bit value */ -int mp_init_set_int (mp_int * a, unsigned long b); - -/* copy, b = a */ -int mp_copy(const mp_int *a, mp_int *b); - -/* inits and copies, a = b */ -int mp_init_copy(mp_int *a, mp_int *b); - -/* trim unused digits */ -void mp_clamp(mp_int *a); - -/* ---> digit manipulation <--- */ - -/* right shift by "b" digits */ -void mp_rshd(mp_int *a, int b); - -/* left shift by "b" digits */ -int mp_lshd(mp_int *a, int b); - -/* c = a / 2**b */ -int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); - -/* b = a/2 */ -int mp_div_2(mp_int *a, mp_int *b); - -/* c = a * 2**b */ -int mp_mul_2d(const mp_int *a, int b, mp_int *c); - -/* b = a*2 */ -int mp_mul_2(mp_int *a, mp_int *b); - -/* c = a mod 2**d */ -int mp_mod_2d(const mp_int *a, int b, mp_int *c); - -/* computes a = 2**b */ -int mp_2expt(mp_int *a, int b); - -/* Counts the number of lsbs which are zero before the first zero bit */ -int mp_cnt_lsb(const mp_int *a); - -/* I Love Earth! */ - -/* makes a pseudo-random int of a given size */ -int mp_rand(mp_int *a, int digits); - -/* ---> binary operations <--- */ -/* c = a XOR b */ -int mp_xor(mp_int *a, mp_int *b, mp_int *c); - -/* c = a OR b */ -int mp_or(mp_int *a, mp_int *b, mp_int *c); - -/* c = a AND b */ -int mp_and(mp_int *a, mp_int *b, mp_int *c); - -/* ---> Basic arithmetic <--- */ - -/* b = -a */ -int mp_neg(const mp_int *a, mp_int *b); - -/* b = |a| */ -int mp_abs(mp_int *a, mp_int *b); - -/* compare a to b */ -int mp_cmp(const mp_int *a, const mp_int *b); - -/* compare |a| to |b| */ -int mp_cmp_mag(const mp_int *a, const mp_int *b); - -/* c = a + b */ -int mp_add(mp_int *a, mp_int *b, mp_int *c); - -/* c = a - b */ -int mp_sub(mp_int *a, mp_int *b, mp_int *c); - -/* c = a * b */ -int mp_mul(mp_int *a, mp_int *b, mp_int *c); - -/* b = a*a */ -int mp_sqr(mp_int *a, mp_int *b); - -/* a/b => cb + d == a */ -int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); - -/* c = a mod b, 0 <= c < b */ -int mp_mod(mp_int *a, mp_int *b, mp_int *c); - -/* ---> single digit functions <--- */ - -/* compare against a single digit */ -int mp_cmp_d(const mp_int *a, mp_digit b); - -/* c = a + b */ -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); - -/* c = a - b */ -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); - -/* c = a * b */ -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); - -/* a/b => cb + d == a */ -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); - -/* a/3 => 3c + d == a */ -int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); - -/* c = a**b */ -int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); - -/* c = a mod b, 0 <= c < b */ -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); - -/* ---> number theory <--- */ - -/* d = a + b (mod c) */ -int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); - -/* d = a - b (mod c) */ -int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); - -/* d = a * b (mod c) */ -int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); - -/* c = a * a (mod b) */ -int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); - -/* c = 1/a (mod b) */ -int mp_invmod(mp_int *a, mp_int *b, mp_int *c); - -/* c = (a, b) */ -int mp_gcd(mp_int *a, mp_int *b, mp_int *c); - -/* produces value such that U1*a + U2*b = U3 */ -int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); - -/* c = [a, b] or (a*b)/(a, b) */ -int mp_lcm(mp_int *a, mp_int *b, mp_int *c); - -/* finds one of the b'th root of a, such that |c|**b <= |a| - * - * returns error if a < 0 and b is even - */ -int mp_n_root(mp_int *a, mp_digit b, mp_int *c); - -/* special sqrt algo */ -int mp_sqrt(mp_int *arg, mp_int *ret); - -/* is number a square? */ -int mp_is_square(mp_int *arg, int *ret); - -/* computes the jacobi c = (a | n) (or Legendre if b is prime) */ -int mp_jacobi(mp_int *a, mp_int *n, int *c); - -/* used to setup the Barrett reduction for a given modulus b */ -int mp_reduce_setup(mp_int *a, mp_int *b); - -/* Barrett Reduction, computes a (mod b) with a precomputed value c - * - * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely - * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. - */ -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); - -/* setups the montgomery reduction */ -int mp_montgomery_setup(mp_int *a, mp_digit *mp); - -/* computes a = B**n mod b without division or multiplication useful for - * normalizing numbers in a Montgomery system. - */ -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); - -/* computes x/R == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); - -/* returns 1 if a is a valid DR modulus */ -int mp_dr_is_modulus(mp_int *a); - -/* sets the value of "d" required for mp_dr_reduce */ -void mp_dr_setup(mp_int *a, mp_digit *d); - -/* reduces a modulo b using the Diminished Radix method */ -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); - -/* returns true if a can be reduced with mp_reduce_2k */ -int mp_reduce_is_2k(mp_int *a); - -/* determines k value for 2k reduction */ -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); - -/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); - -/* returns true if a can be reduced with mp_reduce_2k_l */ -int mp_reduce_is_2k_l(mp_int *a); - -/* determines k value for 2k reduction */ -int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); - -/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); - -/* d = a**b (mod c) */ -int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); - -/* ---> Primes <--- */ - -/* number of primes */ -#ifdef MP_8BIT -# define PRIME_SIZE 31 -#else -# define PRIME_SIZE 256 -#endif - -/* table of first PRIME_SIZE primes */ -extern const mp_digit ltm_prime_tab[]; - -/* result=1 if a is divisible by one of the first PRIME_SIZE primes */ -int mp_prime_is_divisible(mp_int *a, int *result); - -/* performs one Fermat test of "a" using base "b". - * Sets result to 0 if composite or 1 if probable prime - */ -int mp_prime_fermat(mp_int *a, mp_int *b, int *result); - -/* performs one Miller-Rabin test of "a" using base "b". - * Sets result to 0 if composite or 1 if probable prime - */ -int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); - -/* This gives [for a given bit size] the number of trials required - * such that Miller-Rabin gives a prob of failure lower than 2^-96 - */ -int mp_prime_rabin_miller_trials(int size); - -/* performs t rounds of Miller-Rabin on "a" using the first - * t prime bases. Also performs an initial sieve of trial - * division. Determines if "a" is prime with probability - * of error no more than (1/4)**t. - * - * Sets result to 1 if probably prime, 0 otherwise - */ -int mp_prime_is_prime(mp_int *a, int t, int *result); - -/* finds the next prime after the number "a" using "t" trials - * of Miller-Rabin. - * - * bbs_style = 1 means the prime must be congruent to 3 mod 4 - */ -int mp_prime_next_prime(mp_int *a, int t, int bbs_style); - -/* makes a truly random prime of a given size (bytes), - * call with bbs = 1 if you want it to be congruent to 3 mod 4 - * - * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can - * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself - * so it can be NULL - * - * The prime generated will be larger than 2^(8*size). - */ -#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) - -/* makes a truly random prime of a given size (bits), - * - * Flags are as follows: - * - * LTM_PRIME_BBS - make prime congruent to 3 mod 4 - * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) - * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero - * LTM_PRIME_2MSB_ON - make the 2nd highest bit one - * - * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can - * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself - * so it can be NULL - * - */ -int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); - -/* ---> radix conversion <--- */ -int mp_count_bits(const mp_int *a); - -int mp_unsigned_bin_size(mp_int *a); -int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); - -int mp_signed_bin_size(mp_int *a); -int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); - -int mp_read_radix(mp_int *a, const char *str, int radix); -int mp_toradix(mp_int *a, char *str, int radix); -int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -int mp_radix_size(mp_int *a, int radix, int *size); - -int mp_fread(mp_int *a, int radix, FILE *stream); -int mp_fwrite(mp_int *a, int radix, FILE *stream); - -#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) -#define mp_raw_size(mp) mp_signed_bin_size(mp) -#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) -#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) -#define mp_mag_size(mp) mp_unsigned_bin_size(mp) -#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) - -#define mp_tobinary(M, S) mp_toradix((M), (S), 2) -#define mp_tooctal(M, S) mp_toradix((M), (S), 8) -#define mp_todecimal(M, S) mp_toradix((M), (S), 10) -#define mp_tohex(M, S) mp_toradix((M), (S), 16) - -/* lowlevel functions, do not call! */ -int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); -#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_sqr(mp_int *a, mp_int *b); -int s_mp_sqr(mp_int *a, mp_int *b); -int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_karatsuba_sqr(mp_int *a, mp_int *b); -int mp_toom_sqr(mp_int *a, mp_int *b); -int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); -void bn_reverse(unsigned char *s, int len); - -extern const char *mp_s_rmap; - -#ifdef __cplusplus -} -#endif - -#endif |