summaryrefslogtreecommitdiffstats
path: root/tk8.6/generic/tkCanvArc.c
diff options
context:
space:
mode:
Diffstat (limited to 'tk8.6/generic/tkCanvArc.c')
-rw-r--r--tk8.6/generic/tkCanvArc.c2119
1 files changed, 2119 insertions, 0 deletions
diff --git a/tk8.6/generic/tkCanvArc.c b/tk8.6/generic/tkCanvArc.c
new file mode 100644
index 0000000..d9f0461
--- /dev/null
+++ b/tk8.6/generic/tkCanvArc.c
@@ -0,0 +1,2119 @@
+/*
+ * tkCanvArc.c --
+ *
+ * This file implements arc items for canvas widgets.
+ *
+ * Copyright (c) 1992-1994 The Regents of the University of California.
+ * Copyright (c) 1994-1997 Sun Microsystems, Inc.
+ *
+ * See the file "license.terms" for information on usage and redistribution of
+ * this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ */
+
+#include "tkInt.h"
+#include "tkCanvas.h"
+
+/*
+ * The structure below defines the record for each arc item.
+ */
+
+typedef enum {
+ PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE
+} Style;
+
+typedef struct ArcItem {
+ Tk_Item header; /* Generic stuff that's the same for all
+ * types. MUST BE FIRST IN STRUCTURE. */
+ Tk_Outline outline; /* Outline structure */
+ double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding
+ * box for oval of which arc is a piece. */
+ double start; /* Angle at which arc begins, in degrees
+ * between 0 and 360. */
+ double extent; /* Extent of arc (angular distance from start
+ * to end of arc) in degrees between -360 and
+ * 360. */
+ double *outlinePtr; /* Points to (x,y) coordinates for points that
+ * define one or two closed polygons
+ * representing the portion of the outline
+ * that isn't part of the arc (the V-shape for
+ * a pie slice or a line-like segment for a
+ * chord). Malloc'ed. */
+ int numOutlinePoints; /* Number of points at outlinePtr. Zero means
+ * no space allocated. */
+ Tk_TSOffset tsoffset;
+ XColor *fillColor; /* Color for filling arc (used for drawing
+ * outline too when style is "arc"). NULL
+ * means don't fill arc. */
+ XColor *activeFillColor; /* Color for filling arc (used for drawing
+ * outline too when style is "arc" and state
+ * is "active"). NULL means use fillColor. */
+ XColor *disabledFillColor; /* Color for filling arc (used for drawing
+ * outline too when style is "arc" and state
+ * is "disabled". NULL means use fillColor */
+ Pixmap fillStipple; /* Stipple bitmap for filling item. */
+ Pixmap activeFillStipple; /* Stipple bitmap for filling item if state is
+ * active. */
+ Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state is
+ * disabled. */
+ Style style; /* How to draw arc: arc, chord, or
+ * pieslice. */
+ GC fillGC; /* Graphics context for filling item. */
+ double center1[2]; /* Coordinates of center of arc outline at
+ * start (see ComputeArcOutline). */
+ double center2[2]; /* Coordinates of center of arc outline at
+ * start+extent (see ComputeArcOutline). */
+} ArcItem;
+
+/*
+ * The definitions below define the sizes of the polygons used to display
+ * outline information for various styles of arcs:
+ */
+
+#define CHORD_OUTLINE_PTS 7
+#define PIE_OUTLINE1_PTS 6
+#define PIE_OUTLINE2_PTS 7
+
+/*
+ * Information used for parsing configuration specs:
+ */
+
+static int StyleParseProc(ClientData clientData, Tcl_Interp *interp,
+ Tk_Window tkwin, const char *value,
+ char *widgRec, int offset);
+static const char * StylePrintProc(ClientData clientData, Tk_Window tkwin,
+ char *widgRec, int offset, Tcl_FreeProc **freeProcPtr);
+
+static const Tk_CustomOption stateOption = {
+ TkStateParseProc, TkStatePrintProc, INT2PTR(2)
+};
+static const Tk_CustomOption styleOption = {
+ StyleParseProc, StylePrintProc, NULL
+};
+static const Tk_CustomOption tagsOption = {
+ Tk_CanvasTagsParseProc, Tk_CanvasTagsPrintProc, NULL
+};
+static const Tk_CustomOption dashOption = {
+ TkCanvasDashParseProc, TkCanvasDashPrintProc, NULL
+};
+static const Tk_CustomOption offsetOption = {
+ TkOffsetParseProc, TkOffsetPrintProc, INT2PTR(TK_OFFSET_RELATIVE)
+};
+static const Tk_CustomOption pixelOption = {
+ TkPixelParseProc, TkPixelPrintProc, NULL
+};
+
+static const Tk_ConfigSpec configSpecs[] = {
+ {TK_CONFIG_CUSTOM, "-activedash", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.activeDash),
+ TK_CONFIG_NULL_OK, &dashOption},
+ {TK_CONFIG_COLOR, "-activefill", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, activeFillColor), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_COLOR, "-activeoutline", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.activeColor), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_BITMAP, "-activeoutlinestipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.activeStipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_BITMAP, "-activestipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, activeFillStipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_CUSTOM, "-activewidth", NULL, NULL,
+ "0.0", Tk_Offset(ArcItem, outline.activeWidth),
+ TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
+ {TK_CONFIG_CUSTOM, "-dash", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.dash),
+ TK_CONFIG_NULL_OK, &dashOption},
+ {TK_CONFIG_PIXELS, "-dashoffset", NULL, NULL,
+ "0", Tk_Offset(ArcItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT, NULL},
+ {TK_CONFIG_CUSTOM, "-disableddash", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.disabledDash),
+ TK_CONFIG_NULL_OK, &dashOption},
+ {TK_CONFIG_COLOR, "-disabledfill", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, disabledFillColor), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_COLOR, "-disabledoutline", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.disabledColor), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_BITMAP, "-disabledoutlinestipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.disabledStipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_BITMAP, "-disabledstipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, disabledFillStipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_CUSTOM, "-disabledwidth", NULL, NULL,
+ "0.0", Tk_Offset(ArcItem, outline.disabledWidth),
+ TK_CONFIG_DONT_SET_DEFAULT, &pixelOption},
+ {TK_CONFIG_DOUBLE, "-extent", NULL, NULL,
+ "90", Tk_Offset(ArcItem, extent), TK_CONFIG_DONT_SET_DEFAULT, NULL},
+ {TK_CONFIG_COLOR, "-fill", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, fillColor), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_CUSTOM, "-offset", NULL, NULL,
+ "0,0", Tk_Offset(ArcItem, tsoffset),
+ TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
+ {TK_CONFIG_COLOR, "-outline", NULL, NULL,
+ "black", Tk_Offset(ArcItem, outline.color), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_CUSTOM, "-outlineoffset", NULL, NULL,
+ "0,0", Tk_Offset(ArcItem, outline.tsoffset),
+ TK_CONFIG_DONT_SET_DEFAULT, &offsetOption},
+ {TK_CONFIG_BITMAP, "-outlinestipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, outline.stipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_DOUBLE, "-start", NULL, NULL,
+ "0", Tk_Offset(ArcItem, start), TK_CONFIG_DONT_SET_DEFAULT, NULL},
+ {TK_CONFIG_CUSTOM, "-state", NULL, NULL,
+ NULL, Tk_Offset(Tk_Item, state), TK_CONFIG_NULL_OK, &stateOption},
+ {TK_CONFIG_BITMAP, "-stipple", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, fillStipple), TK_CONFIG_NULL_OK, NULL},
+ {TK_CONFIG_CUSTOM, "-style", NULL, NULL,
+ NULL, Tk_Offset(ArcItem, style), TK_CONFIG_DONT_SET_DEFAULT,
+ &styleOption},
+ {TK_CONFIG_CUSTOM, "-tags", NULL, NULL,
+ NULL, 0, TK_CONFIG_NULL_OK, &tagsOption},
+ {TK_CONFIG_CUSTOM, "-width", NULL, NULL,
+ "1.0", Tk_Offset(ArcItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT,
+ &pixelOption},
+ {TK_CONFIG_END, NULL, NULL, NULL, NULL, 0, 0, NULL}
+};
+
+/*
+ * Prototypes for functions defined in this file:
+ */
+
+static void ComputeArcBbox(Tk_Canvas canvas, ArcItem *arcPtr);
+static int ConfigureArc(Tcl_Interp *interp,
+ Tk_Canvas canvas, Tk_Item *itemPtr, int objc,
+ Tcl_Obj *const objv[], int flags);
+static int CreateArc(Tcl_Interp *interp,
+ Tk_Canvas canvas, struct Tk_Item *itemPtr,
+ int objc, Tcl_Obj *const objv[]);
+static void DeleteArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, Display *display);
+static void DisplayArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, Display *display, Drawable dst,
+ int x, int y, int width, int height);
+static int ArcCoords(Tcl_Interp *interp, Tk_Canvas canvas,
+ Tk_Item *itemPtr, int objc, Tcl_Obj *const objv[]);
+static int ArcToArea(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double *rectPtr);
+static double ArcToPoint(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double *coordPtr);
+static int ArcToPostscript(Tcl_Interp *interp,
+ Tk_Canvas canvas, Tk_Item *itemPtr, int prepass);
+static void ScaleArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double originX, double originY,
+ double scaleX, double scaleY);
+static void TranslateArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double deltaX, double deltaY);
+static int AngleInRange(double x, double y,
+ double start, double extent);
+static void ComputeArcOutline(Tk_Canvas canvas, ArcItem *arcPtr);
+static int HorizLineToArc(double x1, double x2,
+ double y, double rx, double ry,
+ double start, double extent);
+static int VertLineToArc(double x, double y1,
+ double y2, double rx, double ry,
+ double start, double extent);
+
+/*
+ * The structures below defines the arc item types by means of functions that
+ * can be invoked by generic item code.
+ */
+
+Tk_ItemType tkArcType = {
+ "arc", /* name */
+ sizeof(ArcItem), /* itemSize */
+ CreateArc, /* createProc */
+ configSpecs, /* configSpecs */
+ ConfigureArc, /* configureProc */
+ ArcCoords, /* coordProc */
+ DeleteArc, /* deleteProc */
+ DisplayArc, /* displayProc */
+ TK_CONFIG_OBJS, /* flags */
+ ArcToPoint, /* pointProc */
+ ArcToArea, /* areaProc */
+ ArcToPostscript, /* postscriptProc */
+ ScaleArc, /* scaleProc */
+ TranslateArc, /* translateProc */
+ NULL, /* indexProc */
+ NULL, /* icursorProc */
+ NULL, /* selectionProc */
+ NULL, /* insertProc */
+ NULL, /* dTextProc */
+ NULL, /* nextPtr */
+ NULL, 0, NULL, NULL
+};
+
+/*
+ *--------------------------------------------------------------
+ *
+ * CreateArc --
+ *
+ * This function is invoked to create a new arc item in a canvas.
+ *
+ * Results:
+ * A standard Tcl return value. If an error occurred in creating the
+ * item, then an error message is left in the interp's result; in this
+ * case itemPtr is left uninitialized, so it can be safely freed by the
+ * caller.
+ *
+ * Side effects:
+ * A new arc item is created.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+CreateArc(
+ Tcl_Interp *interp, /* Interpreter for error reporting. */
+ Tk_Canvas canvas, /* Canvas to hold new item. */
+ Tk_Item *itemPtr, /* Record to hold new item; header has been
+ * initialized by caller. */
+ int objc, /* Number of arguments in objv. */
+ Tcl_Obj *const objv[]) /* Arguments describing arc. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ int i;
+
+ if (objc == 0) {
+ Tcl_Panic("canvas did not pass any coords");
+ }
+
+ /*
+ * Carry out initialization that is needed in order to clean up after
+ * errors during the the remainder of this function.
+ */
+
+ Tk_CreateOutline(&(arcPtr->outline));
+ arcPtr->start = 0;
+ arcPtr->extent = 90;
+ arcPtr->outlinePtr = NULL;
+ arcPtr->numOutlinePoints = 0;
+ arcPtr->tsoffset.flags = 0;
+ arcPtr->tsoffset.xoffset = 0;
+ arcPtr->tsoffset.yoffset = 0;
+ arcPtr->fillColor = NULL;
+ arcPtr->activeFillColor = NULL;
+ arcPtr->disabledFillColor = NULL;
+ arcPtr->fillStipple = None;
+ arcPtr->activeFillStipple = None;
+ arcPtr->disabledFillStipple = None;
+ arcPtr->style = PIESLICE_STYLE;
+ arcPtr->fillGC = NULL;
+
+ /*
+ * Process the arguments to fill in the item record.
+ */
+
+ for (i = 1; i < objc; i++) {
+ const char *arg = Tcl_GetString(objv[i]);
+
+ if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) {
+ break;
+ }
+ }
+ if (ArcCoords(interp, canvas, itemPtr, i, objv) != TCL_OK) {
+ goto error;
+ }
+ if (ConfigureArc(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) {
+ return TCL_OK;
+ }
+
+ error:
+ DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
+ return TCL_ERROR;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ArcCoords --
+ *
+ * This function is invoked to process the "coords" widget command on
+ * arcs. See the user documentation for details on what it does.
+ *
+ * Results:
+ * Returns TCL_OK or TCL_ERROR, and sets the interp's result.
+ *
+ * Side effects:
+ * The coordinates for the given item may be changed.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+ArcCoords(
+ Tcl_Interp *interp, /* Used for error reporting. */
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item whose coordinates are to be read or
+ * modified. */
+ int objc, /* Number of coordinates supplied in objv. */
+ Tcl_Obj *const objv[]) /* Array of coordinates: x1, y1, x2, y2, ... */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+
+ if (objc == 0) {
+ Tcl_Obj *objs[4];
+
+ objs[0] = Tcl_NewDoubleObj(arcPtr->bbox[0]);
+ objs[1] = Tcl_NewDoubleObj(arcPtr->bbox[1]);
+ objs[2] = Tcl_NewDoubleObj(arcPtr->bbox[2]);
+ objs[3] = Tcl_NewDoubleObj(arcPtr->bbox[3]);
+ Tcl_SetObjResult(interp, Tcl_NewListObj(4, objs));
+ } else if ((objc == 1)||(objc == 4)) {
+ if (objc==1) {
+ if (Tcl_ListObjGetElements(interp, objv[0], &objc,
+ (Tcl_Obj ***) &objv) != TCL_OK) {
+ return TCL_ERROR;
+ } else if (objc != 4) {
+ Tcl_SetObjResult(interp, Tcl_ObjPrintf(
+ "wrong # coordinates: expected 4, got %d", objc));
+ Tcl_SetErrorCode(interp, "TK", "CANVAS", "COORDS", "ARC",
+ NULL);
+ return TCL_ERROR;
+ }
+ }
+ if ((Tk_CanvasGetCoordFromObj(interp, canvas, objv[0],
+ &arcPtr->bbox[0]) != TCL_OK)
+ || (Tk_CanvasGetCoordFromObj(interp, canvas, objv[1],
+ &arcPtr->bbox[1]) != TCL_OK)
+ || (Tk_CanvasGetCoordFromObj(interp, canvas, objv[2],
+ &arcPtr->bbox[2]) != TCL_OK)
+ || (Tk_CanvasGetCoordFromObj(interp, canvas, objv[3],
+ &arcPtr->bbox[3]) != TCL_OK)) {
+ return TCL_ERROR;
+ }
+ ComputeArcBbox(canvas, arcPtr);
+ } else {
+ Tcl_SetObjResult(interp, Tcl_ObjPrintf(
+ "wrong # coordinates: expected 0 or 4, got %d", objc));
+ Tcl_SetErrorCode(interp, "TK", "CANVAS", "COORDS", "ARC", NULL);
+ return TCL_ERROR;
+ }
+ return TCL_OK;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ConfigureArc --
+ *
+ * This function is invoked to configure various aspects of a arc item,
+ * such as its outline and fill colors.
+ *
+ * Results:
+ * A standard Tcl result code. If an error occurs, then an error message
+ * is left in the interp's result.
+ *
+ * Side effects:
+ * Configuration information, such as colors and stipple patterns, may be
+ * set for itemPtr.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+ConfigureArc(
+ Tcl_Interp *interp, /* Used for error reporting. */
+ Tk_Canvas canvas, /* Canvas containing itemPtr. */
+ Tk_Item *itemPtr, /* Arc item to reconfigure. */
+ int objc, /* Number of elements in objv. */
+ Tcl_Obj *const objv[], /* Arguments describing things to configure. */
+ int flags) /* Flags to pass to Tk_ConfigureWidget. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ XGCValues gcValues;
+ GC newGC;
+ unsigned long mask;
+ int i;
+ Tk_Window tkwin;
+ Tk_TSOffset *tsoffset;
+ XColor *color;
+ Pixmap stipple;
+ Tk_State state;
+
+ tkwin = Tk_CanvasTkwin(canvas);
+ if (TCL_OK != Tk_ConfigureWidget(interp, tkwin, configSpecs, objc,
+ (const char **) objv, (char *) arcPtr, flags|TK_CONFIG_OBJS)) {
+ return TCL_ERROR;
+ }
+
+ state = itemPtr->state;
+
+ /*
+ * A few of the options require additional processing, such as style and
+ * graphics contexts.
+ */
+
+ if (arcPtr->outline.activeWidth > arcPtr->outline.width ||
+ arcPtr->outline.activeDash.number != 0 ||
+ arcPtr->outline.activeColor != NULL ||
+ arcPtr->outline.activeStipple != None ||
+ arcPtr->activeFillColor != NULL ||
+ arcPtr->activeFillStipple != None) {
+ itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT;
+ } else {
+ itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT;
+ }
+
+ tsoffset = &arcPtr->outline.tsoffset;
+ flags = tsoffset->flags;
+ if (flags & TK_OFFSET_LEFT) {
+ tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
+ } else if (flags & TK_OFFSET_CENTER) {
+ tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
+ } else if (flags & TK_OFFSET_RIGHT) {
+ tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
+ }
+ if (flags & TK_OFFSET_TOP) {
+ tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
+ } else if (flags & TK_OFFSET_MIDDLE) {
+ tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
+ } else if (flags & TK_OFFSET_BOTTOM) {
+ tsoffset->yoffset = (int) (arcPtr->bbox[2] + 0.5);
+ }
+
+ i = (int) (arcPtr->start/360.0);
+ arcPtr->start -= i*360.0;
+ if (arcPtr->start < 0) {
+ arcPtr->start += 360.0;
+ }
+ i = (int) (arcPtr->extent/360.0);
+ arcPtr->extent -= i*360.0;
+
+ mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &(arcPtr->outline));
+ if (mask) {
+ gcValues.cap_style = CapButt;
+ mask |= GCCapStyle;
+ newGC = Tk_GetGC(tkwin, mask, &gcValues);
+ } else {
+ newGC = NULL;
+ }
+ if (arcPtr->outline.gc != NULL) {
+ Tk_FreeGC(Tk_Display(tkwin), arcPtr->outline.gc);
+ }
+ arcPtr->outline.gc = newGC;
+
+ if(state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+ if (state==TK_STATE_HIDDEN) {
+ ComputeArcBbox(canvas, arcPtr);
+ return TCL_OK;
+ }
+
+ color = arcPtr->fillColor;
+ stipple = arcPtr->fillStipple;
+ if (Canvas(canvas)->currentItemPtr == itemPtr) {
+ if (arcPtr->activeFillColor!=NULL) {
+ color = arcPtr->activeFillColor;
+ }
+ if (arcPtr->activeFillStipple!=None) {
+ stipple = arcPtr->activeFillStipple;
+ }
+ } else if (state==TK_STATE_DISABLED) {
+ if (arcPtr->disabledFillColor!=NULL) {
+ color = arcPtr->disabledFillColor;
+ }
+ if (arcPtr->disabledFillStipple!=None) {
+ stipple = arcPtr->disabledFillStipple;
+ }
+ }
+
+ if (arcPtr->style == ARC_STYLE) {
+ newGC = NULL;
+ } else if (color == NULL) {
+ newGC = NULL;
+ } else {
+ gcValues.foreground = color->pixel;
+ if (arcPtr->style == CHORD_STYLE) {
+ gcValues.arc_mode = ArcChord;
+ } else {
+ gcValues.arc_mode = ArcPieSlice;
+ }
+ mask = GCForeground|GCArcMode;
+ if (stipple != None) {
+ gcValues.stipple = stipple;
+ gcValues.fill_style = FillStippled;
+ mask |= GCStipple|GCFillStyle;
+ }
+ newGC = Tk_GetGC(tkwin, mask, &gcValues);
+ }
+ if (arcPtr->fillGC != NULL) {
+ Tk_FreeGC(Tk_Display(tkwin), arcPtr->fillGC);
+ }
+ arcPtr->fillGC = newGC;
+
+ tsoffset = &arcPtr->tsoffset;
+ flags = tsoffset->flags;
+ if (flags & TK_OFFSET_LEFT) {
+ tsoffset->xoffset = (int) (arcPtr->bbox[0] + 0.5);
+ } else if (flags & TK_OFFSET_CENTER) {
+ tsoffset->xoffset = (int) ((arcPtr->bbox[0]+arcPtr->bbox[2]+1)/2);
+ } else if (flags & TK_OFFSET_RIGHT) {
+ tsoffset->xoffset = (int) (arcPtr->bbox[2] + 0.5);
+ }
+ if (flags & TK_OFFSET_TOP) {
+ tsoffset->yoffset = (int) (arcPtr->bbox[1] + 0.5);
+ } else if (flags & TK_OFFSET_MIDDLE) {
+ tsoffset->yoffset = (int) ((arcPtr->bbox[1]+arcPtr->bbox[3]+1)/2);
+ } else if (flags & TK_OFFSET_BOTTOM) {
+ tsoffset->yoffset = (int) (arcPtr->bbox[3] + 0.5);
+ }
+
+ ComputeArcBbox(canvas, arcPtr);
+ return TCL_OK;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * DeleteArc --
+ *
+ * This function is called to clean up the data structure associated with
+ * an arc item.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Resources associated with itemPtr are released.
+ *
+ *--------------------------------------------------------------
+ */
+
+static void
+DeleteArc(
+ Tk_Canvas canvas, /* Info about overall canvas. */
+ Tk_Item *itemPtr, /* Item that is being deleted. */
+ Display *display) /* Display containing window for canvas. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+
+ Tk_DeleteOutline(display, &(arcPtr->outline));
+ if (arcPtr->numOutlinePoints != 0) {
+ ckfree(arcPtr->outlinePtr);
+ }
+ if (arcPtr->fillColor != NULL) {
+ Tk_FreeColor(arcPtr->fillColor);
+ }
+ if (arcPtr->activeFillColor != NULL) {
+ Tk_FreeColor(arcPtr->activeFillColor);
+ }
+ if (arcPtr->disabledFillColor != NULL) {
+ Tk_FreeColor(arcPtr->disabledFillColor);
+ }
+ if (arcPtr->fillStipple != None) {
+ Tk_FreeBitmap(display, arcPtr->fillStipple);
+ }
+ if (arcPtr->activeFillStipple != None) {
+ Tk_FreeBitmap(display, arcPtr->activeFillStipple);
+ }
+ if (arcPtr->disabledFillStipple != None) {
+ Tk_FreeBitmap(display, arcPtr->disabledFillStipple);
+ }
+ if (arcPtr->fillGC != NULL) {
+ Tk_FreeGC(display, arcPtr->fillGC);
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ComputeArcBbox --
+ *
+ * This function is invoked to compute the bounding box of all the pixels
+ * that may be drawn as part of an arc.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The fields x1, y1, x2, and y2 are updated in the header for itemPtr.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+static void
+ComputeArcBbox(
+ Tk_Canvas canvas, /* Canvas that contains item. */
+ ArcItem *arcPtr) /* Item whose bbox is to be recomputed. */
+{
+ double tmp, center[2], point[2];
+ double width;
+ Tk_State state = arcPtr->header.state;
+
+ if (state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+
+ width = arcPtr->outline.width;
+ if (width < 1.0) {
+ width = 1.0;
+ }
+ if (state==TK_STATE_HIDDEN) {
+ arcPtr->header.x1 = arcPtr->header.x2 =
+ arcPtr->header.y1 = arcPtr->header.y2 = -1;
+ return;
+ } else if (Canvas(canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
+ if (arcPtr->outline.activeWidth>width) {
+ width = arcPtr->outline.activeWidth;
+ }
+ } else if (state==TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledWidth>0) {
+ width = arcPtr->outline.disabledWidth;
+ }
+ }
+
+ /*
+ * Make sure that the first coordinates are the lowest ones.
+ */
+
+ if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
+ double tmp = arcPtr->bbox[3];
+
+ arcPtr->bbox[3] = arcPtr->bbox[1];
+ arcPtr->bbox[1] = tmp;
+ }
+ if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
+ double tmp = arcPtr->bbox[2];
+
+ arcPtr->bbox[2] = arcPtr->bbox[0];
+ arcPtr->bbox[0] = tmp;
+ }
+
+ ComputeArcOutline(canvas,arcPtr);
+
+ /*
+ * To compute the bounding box, start with the the bbox formed by the two
+ * endpoints of the arc. Then add in the center of the arc's oval (if
+ * relevant) and the 3-o'clock, 6-o'clock, 9-o'clock, and 12-o'clock
+ * positions, if they are relevant.
+ */
+
+ arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
+ arcPtr->header.y1 = arcPtr->header.y2 = (int) arcPtr->center1[1];
+ TkIncludePoint((Tk_Item *) arcPtr, arcPtr->center2);
+ center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2;
+ center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2;
+ if (arcPtr->style == PIESLICE_STYLE) {
+ TkIncludePoint((Tk_Item *) arcPtr, center);
+ }
+
+ tmp = -arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ point[0] = arcPtr->bbox[2];
+ point[1] = center[1];
+ TkIncludePoint((Tk_Item *) arcPtr, point);
+ }
+ tmp = 90.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ point[0] = center[0];
+ point[1] = arcPtr->bbox[1];
+ TkIncludePoint((Tk_Item *) arcPtr, point);
+ }
+ tmp = 180.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ point[0] = arcPtr->bbox[0];
+ point[1] = center[1];
+ TkIncludePoint((Tk_Item *) arcPtr, point);
+ }
+ tmp = 270.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ point[0] = center[0];
+ point[1] = arcPtr->bbox[3];
+ TkIncludePoint((Tk_Item *) arcPtr, point);
+ }
+
+ /*
+ * Lastly, expand by the width of the arc (if the arc's outline is being
+ * drawn) and add one extra pixel just for safety.
+ */
+
+ if (arcPtr->outline.gc == NULL) {
+ tmp = 1;
+ } else {
+ tmp = (int) ((width + 1.0)/2.0 + 1);
+ }
+ arcPtr->header.x1 -= (int) tmp;
+ arcPtr->header.y1 -= (int) tmp;
+ arcPtr->header.x2 += (int) tmp;
+ arcPtr->header.y2 += (int) tmp;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * DisplayArc --
+ *
+ * This function is invoked to draw an arc item in a given drawable.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * ItemPtr is drawn in drawable using the transformation information in
+ * canvas.
+ *
+ *--------------------------------------------------------------
+ */
+
+static void
+DisplayArc(
+ Tk_Canvas canvas, /* Canvas that contains item. */
+ Tk_Item *itemPtr, /* Item to be displayed. */
+ Display *display, /* Display on which to draw item. */
+ Drawable drawable, /* Pixmap or window in which to draw item. */
+ int x, int y, /* Describes region of canvas that must be */
+ int width, int height) /* redisplayed (not used). */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ short x1, y1, x2, y2;
+ int start, extent, dashnumber;
+ double lineWidth;
+ Tk_State state = itemPtr->state;
+ Pixmap stipple;
+
+ if (state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+ lineWidth = arcPtr->outline.width;
+ if (lineWidth < 1.0) {
+ lineWidth = 1.0;
+ }
+ dashnumber = arcPtr->outline.dash.number;
+ stipple = arcPtr->fillStipple;
+ if (Canvas(canvas)->currentItemPtr == itemPtr) {
+ if (arcPtr->outline.activeWidth>lineWidth) {
+ lineWidth = arcPtr->outline.activeWidth;
+ }
+ if (arcPtr->outline.activeDash.number != 0) {
+ dashnumber = arcPtr->outline.activeDash.number;
+ }
+ if (arcPtr->activeFillStipple != None) {
+ stipple = arcPtr->activeFillStipple;
+ }
+ } else if (state == TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledWidth > 0) {
+ lineWidth = arcPtr->outline.disabledWidth;
+ }
+ if (arcPtr->outline.disabledDash.number != 0) {
+ dashnumber = arcPtr->outline.disabledDash.number;
+ }
+ if (arcPtr->disabledFillStipple != None) {
+ stipple = arcPtr->disabledFillStipple;
+ }
+ }
+
+ /*
+ * Compute the screen coordinates of the bounding box for the item, plus
+ * integer values for the angles.
+ */
+
+ Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
+ &x1, &y1);
+ Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[2], arcPtr->bbox[3],
+ &x2, &y2);
+ if (x2 <= x1) {
+ x2 = x1+1;
+ }
+ if (y2 <= y1) {
+ y2 = y1+1;
+ }
+ start = (int) ((64*arcPtr->start) + 0.5);
+ extent = (int) ((64*arcPtr->extent) + 0.5);
+
+ /*
+ * Display filled arc first (if wanted), then outline. If the extent is
+ * zero then don't invoke XFillArc or XDrawArc, since this causes some
+ * window servers to crash and should be a no-op anyway.
+ */
+
+ if ((arcPtr->fillGC != NULL) && (extent != 0)) {
+ if (stipple != None) {
+ int w = 0;
+ int h = 0;
+ Tk_TSOffset *tsoffset = &arcPtr->tsoffset;
+ int flags = tsoffset->flags;
+
+ if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) {
+ Tk_SizeOfBitmap(display, stipple, &w, &h);
+ if (flags & TK_OFFSET_CENTER) {
+ w /= 2;
+ } else {
+ w = 0;
+ }
+ if (flags & TK_OFFSET_MIDDLE) {
+ h /= 2;
+ } else {
+ h = 0;
+ }
+ }
+ tsoffset->xoffset -= w;
+ tsoffset->yoffset -= h;
+ Tk_CanvasSetOffset(canvas, arcPtr->fillGC, tsoffset);
+ if (tsoffset) {
+ tsoffset->xoffset += w;
+ tsoffset->yoffset += h;
+ }
+ }
+ XFillArc(display, drawable, arcPtr->fillGC, x1, y1, (unsigned) (x2-x1),
+ (unsigned) (y2-y1), start, extent);
+ if (stipple != None) {
+ XSetTSOrigin(display, arcPtr->fillGC, 0, 0);
+ }
+ }
+ if (arcPtr->outline.gc != NULL) {
+ Tk_ChangeOutlineGC(canvas, itemPtr, &(arcPtr->outline));
+
+ if (extent != 0) {
+ XDrawArc(display, drawable, arcPtr->outline.gc, x1, y1,
+ (unsigned) (x2-x1), (unsigned) (y2-y1), start, extent);
+ }
+
+ /*
+ * If the outline width is very thin, don't use polygons to draw the
+ * linear parts of the outline (this often results in nothing being
+ * displayed); just draw lines instead. The same is done if the
+ * outline is dashed, because then polygons don't work.
+ */
+
+ if (lineWidth < 1.5 || dashnumber != 0) {
+ Tk_CanvasDrawableCoords(canvas, arcPtr->center1[0],
+ arcPtr->center1[1], &x1, &y1);
+ Tk_CanvasDrawableCoords(canvas, arcPtr->center2[0],
+ arcPtr->center2[1], &x2, &y2);
+
+ if (arcPtr->style == CHORD_STYLE) {
+ XDrawLine(display, drawable, arcPtr->outline.gc,
+ x1, y1, x2, y2);
+ } else if (arcPtr->style == PIESLICE_STYLE) {
+ short cx, cy;
+
+ Tk_CanvasDrawableCoords(canvas,
+ (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0,
+ (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0, &cx, &cy);
+ XDrawLine(display, drawable, arcPtr->outline.gc,
+ cx, cy, x1, y1);
+ XDrawLine(display, drawable, arcPtr->outline.gc,
+ cx, cy, x2, y2);
+ }
+ } else {
+ if (arcPtr->style == CHORD_STYLE) {
+ TkFillPolygon(canvas, arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
+ display, drawable, arcPtr->outline.gc, NULL);
+ } else if (arcPtr->style == PIESLICE_STYLE) {
+ TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
+ display, drawable, arcPtr->outline.gc, NULL);
+ TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
+ PIE_OUTLINE2_PTS, display, drawable,
+ arcPtr->outline.gc, NULL);
+ }
+ }
+
+ Tk_ResetOutlineGC(canvas, itemPtr, &(arcPtr->outline));
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ArcToPoint --
+ *
+ * Computes the distance from a given point to a given arc, in canvas
+ * units.
+ *
+ * Results:
+ * The return value is 0 if the point whose x and y coordinates are
+ * coordPtr[0] and coordPtr[1] is inside the arc. If the point isn't
+ * inside the arc then the return value is the distance from the point to
+ * the arc. If itemPtr is filled, then anywhere in the interior is
+ * considered "inside"; if itemPtr isn't filled, then "inside" means only
+ * the area occupied by the outline.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+static double
+ArcToPoint(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item to check against point. */
+ double *pointPtr) /* Pointer to x and y coordinates. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ double vertex[2], pointAngle, diff, dist, newDist;
+ double poly[8], polyDist, width, t1, t2;
+ int filled, angleInRange;
+ Tk_State state = itemPtr->state;
+
+ if (state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+
+ width = (double) arcPtr->outline.width;
+ if (Canvas(canvas)->currentItemPtr == itemPtr) {
+ if (arcPtr->outline.activeWidth>width) {
+ width = (double) arcPtr->outline.activeWidth;
+ }
+ } else if (state == TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledWidth>0) {
+ width = (double) arcPtr->outline.disabledWidth;
+ }
+ }
+
+ /*
+ * See if the point is within the angular range of the arc. Remember, X
+ * angles are backwards from the way we'd normally think of them. Also,
+ * compensate for any eccentricity of the oval.
+ */
+
+ vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
+ vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
+ t1 = arcPtr->bbox[3] - arcPtr->bbox[1];
+ if (t1 != 0.0) {
+ t1 = (pointPtr[1] - vertex[1]) / t1;
+ }
+ t2 = arcPtr->bbox[2] - arcPtr->bbox[0];
+ if (t2 != 0.0) {
+ t2 = (pointPtr[0] - vertex[0]) / t2;
+ }
+ if ((t1 == 0.0) && (t2 == 0.0)) {
+ pointAngle = 0;
+ } else {
+ pointAngle = -atan2(t1, t2)*180/PI;
+ }
+ diff = pointAngle - arcPtr->start;
+ diff -= ((int) (diff/360.0) * 360.0);
+ if (diff < 0) {
+ diff += 360.0;
+ }
+ angleInRange = (diff <= arcPtr->extent) ||
+ ((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));
+
+ /*
+ * Now perform different tests depending on what kind of arc we're dealing
+ * with.
+ */
+
+ if (arcPtr->style == ARC_STYLE) {
+ if (angleInRange) {
+ return TkOvalToPoint(arcPtr->bbox, width, 0, pointPtr);
+ }
+ dist = hypot(pointPtr[0] - arcPtr->center1[0],
+ pointPtr[1] - arcPtr->center1[1]);
+ newDist = hypot(pointPtr[0] - arcPtr->center2[0],
+ pointPtr[1] - arcPtr->center2[1]);
+ if (newDist < dist) {
+ return newDist;
+ }
+ return dist;
+ }
+
+ if ((arcPtr->fillGC != NULL) || (arcPtr->outline.gc == NULL)) {
+ filled = 1;
+ } else {
+ filled = 0;
+ }
+ if (arcPtr->outline.gc == NULL) {
+ width = 0.0;
+ }
+
+ if (arcPtr->style == PIESLICE_STYLE) {
+ if (width > 1.0) {
+ dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
+ pointPtr);
+ newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
+ PIE_OUTLINE2_PTS, pointPtr);
+ } else {
+ dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
+ newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
+ }
+ if (newDist < dist) {
+ dist = newDist;
+ }
+ if (angleInRange) {
+ newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
+ if (newDist < dist) {
+ dist = newDist;
+ }
+ }
+ return dist;
+ }
+
+ /*
+ * This is a chord-style arc. We have to deal specially with the
+ * triangular piece that represents the difference between a chord-style
+ * arc and a pie-slice arc (for small angles this piece is excluded here
+ * where it would be included for pie slices; for large angles the piece
+ * is included here but would be excluded for pie slices).
+ */
+
+ if (width > 1.0) {
+ dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
+ pointPtr);
+ } else {
+ dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
+ }
+ poly[0] = poly[6] = vertex[0];
+ poly[1] = poly[7] = vertex[1];
+ poly[2] = arcPtr->center1[0];
+ poly[3] = arcPtr->center1[1];
+ poly[4] = arcPtr->center2[0];
+ poly[5] = arcPtr->center2[1];
+ polyDist = TkPolygonToPoint(poly, 4, pointPtr);
+ if (angleInRange) {
+ if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)
+ || (polyDist > 0.0)) {
+ newDist = TkOvalToPoint(arcPtr->bbox, width, filled, pointPtr);
+ if (newDist < dist) {
+ dist = newDist;
+ }
+ }
+ } else {
+ if ((arcPtr->extent < -180.0) || (arcPtr->extent > 180.0)) {
+ if (filled && (polyDist < dist)) {
+ dist = polyDist;
+ }
+ }
+ }
+ return dist;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ArcToArea --
+ *
+ * This function is called to determine whether an item lies entirely
+ * inside, entirely outside, or overlapping a given area.
+ *
+ * Results:
+ * -1 is returned if the item is entirely outside the area given by
+ * rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given
+ * area.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+ /* ARGSUSED */
+static int
+ArcToArea(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item to check against arc. */
+ double *rectPtr) /* Pointer to array of four coordinates (x1,
+ * y1, x2, y2) describing rectangular area. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ double rx, ry; /* Radii for transformed oval: these define an
+ * oval centered at the origin. */
+ double tRect[4]; /* Transformed version of x1, y1, x2, y2, for
+ * coord. system where arc is centered on the
+ * origin. */
+ double center[2], width, angle, tmp;
+ double points[20], *pointPtr;
+ int numPoints, filled;
+ int inside; /* Non-zero means every test so far suggests
+ * that arc is inside rectangle. 0 means every
+ * test so far shows arc to be outside of
+ * rectangle. */
+ int newInside;
+ Tk_State state = itemPtr->state;
+
+ if(state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+ width = (double) arcPtr->outline.width;
+ if (Canvas(canvas)->currentItemPtr == itemPtr) {
+ if (arcPtr->outline.activeWidth>width) {
+ width = (double) arcPtr->outline.activeWidth;
+ }
+ } else if (state == TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledWidth>0) {
+ width = (double) arcPtr->outline.disabledWidth;
+ }
+ }
+
+ if ((arcPtr->fillGC != NULL) || (arcPtr->outline.gc == NULL)) {
+ filled = 1;
+ } else {
+ filled = 0;
+ }
+ if (arcPtr->outline.gc == NULL) {
+ width = 0.0;
+ }
+
+ /*
+ * Transform both the arc and the rectangle so that the arc's oval is
+ * centered on the origin.
+ */
+
+ center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
+ center[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
+ tRect[0] = rectPtr[0] - center[0];
+ tRect[1] = rectPtr[1] - center[1];
+ tRect[2] = rectPtr[2] - center[0];
+ tRect[3] = rectPtr[3] - center[1];
+ rx = arcPtr->bbox[2] - center[0] + width/2.0;
+ ry = arcPtr->bbox[3] - center[1] + width/2.0;
+
+ /*
+ * Find the extreme points of the arc and see whether these are all inside
+ * the rectangle (in which case we're done), partly in and partly out (in
+ * which case we're done), or all outside (in which case we have more work
+ * to do). The extreme points include the following, which are checked in
+ * order:
+ *
+ * 1. The outside points of the arc, corresponding to start and extent.
+ * 2. The center of the arc (but only in pie-slice mode).
+ * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc includes
+ * those angles).
+ */
+
+ pointPtr = points;
+ angle = -arcPtr->start*(PI/180.0);
+ pointPtr[0] = rx*cos(angle);
+ pointPtr[1] = ry*sin(angle);
+ angle += -arcPtr->extent*(PI/180.0);
+ pointPtr[2] = rx*cos(angle);
+ pointPtr[3] = ry*sin(angle);
+ numPoints = 2;
+ pointPtr += 4;
+
+ if ((arcPtr->style == PIESLICE_STYLE) && (arcPtr->extent < 180.0)) {
+ pointPtr[0] = 0.0;
+ pointPtr[1] = 0.0;
+ numPoints++;
+ pointPtr += 2;
+ }
+
+ tmp = -arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ pointPtr[0] = rx;
+ pointPtr[1] = 0.0;
+ numPoints++;
+ pointPtr += 2;
+ }
+ tmp = 90.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ pointPtr[0] = 0.0;
+ pointPtr[1] = -ry;
+ numPoints++;
+ pointPtr += 2;
+ }
+ tmp = 180.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ pointPtr[0] = -rx;
+ pointPtr[1] = 0.0;
+ numPoints++;
+ pointPtr += 2;
+ }
+ tmp = 270.0 - arcPtr->start;
+ if (tmp < 0) {
+ tmp += 360.0;
+ }
+ if ((tmp < arcPtr->extent) || ((tmp-360) > arcPtr->extent)) {
+ pointPtr[0] = 0.0;
+ pointPtr[1] = ry;
+ numPoints++;
+ }
+
+ /*
+ * Now that we've located the extreme points, loop through them all to see
+ * which are inside the rectangle.
+ */
+
+ inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
+ && (points[1] > tRect[1]) && (points[1] < tRect[3]);
+ for (pointPtr = points+2; numPoints > 1; pointPtr += 2, numPoints--) {
+ newInside = (pointPtr[0] > tRect[0]) && (pointPtr[0] < tRect[2])
+ && (pointPtr[1] > tRect[1]) && (pointPtr[1] < tRect[3]);
+ if (newInside != inside) {
+ return 0;
+ }
+ }
+
+ if (inside) {
+ return 1;
+ }
+
+ /*
+ * So far, oval appears to be outside rectangle, but can't yet tell for
+ * sure. Next, test each of the four sides of the rectangle against the
+ * bounding region for the arc. If any intersections are found, then
+ * return "overlapping". First, test against the polygon(s) forming the
+ * sides of a chord or pie-slice.
+ */
+
+ if (arcPtr->style == PIESLICE_STYLE) {
+ if (width >= 1.0) {
+ if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
+ rectPtr) != -1) {
+ return 0;
+ }
+ if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
+ PIE_OUTLINE2_PTS, rectPtr) != -1) {
+ return 0;
+ }
+ } else {
+ if ((TkLineToArea(center, arcPtr->center1, rectPtr) != -1) ||
+ (TkLineToArea(center, arcPtr->center2, rectPtr) != -1)) {
+ return 0;
+ }
+ }
+ } else if (arcPtr->style == CHORD_STYLE) {
+ if (width >= 1.0) {
+ if (TkPolygonToArea(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
+ rectPtr) != -1) {
+ return 0;
+ }
+ } else {
+ if (TkLineToArea(arcPtr->center1, arcPtr->center2,
+ rectPtr) != -1) {
+ return 0;
+ }
+ }
+ }
+
+ /*
+ * Next check for overlap between each of the four sides and the outer
+ * perimiter of the arc. If the arc isn't filled, then also check the
+ * inner perimeter of the arc.
+ */
+
+ if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
+ arcPtr->extent)
+ || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)
+ || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)
+ || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)) {
+ return 0;
+ }
+ if ((width > 1.0) && !filled) {
+ rx -= width;
+ ry -= width;
+ if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
+ arcPtr->extent)
+ || HorizLineToArc(tRect[0], tRect[2], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)
+ || VertLineToArc(tRect[0], tRect[1], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)
+ || VertLineToArc(tRect[2], tRect[1], tRect[3], rx, ry,
+ arcPtr->start, arcPtr->extent)) {
+ return 0;
+ }
+ }
+
+ /*
+ * The arc still appears to be totally disjoint from the rectangle, but
+ * it's also possible that the rectangle is totally inside the arc. Do one
+ * last check, which is to check one point of the rectangle to see if it's
+ * inside the arc. If it is, we've got overlap. If it isn't, the arc's
+ * really outside the rectangle.
+ */
+
+ if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
+ return 0;
+ }
+ return -1;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ScaleArc --
+ *
+ * This function is invoked to rescale an arc item.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The arc referred to by itemPtr is rescaled so that the following
+ * transformation is applied to all point coordinates:
+ * x' = originX + scaleX*(x-originX)
+ * y' = originY + scaleY*(y-originY)
+ *
+ *--------------------------------------------------------------
+ */
+
+static void
+ScaleArc(
+ Tk_Canvas canvas, /* Canvas containing arc. */
+ Tk_Item *itemPtr, /* Arc to be scaled. */
+ double originX, /* Origin about which to scale rect. */
+ double originY,
+ double scaleX, /* Amount to scale in X direction. */
+ double scaleY) /* Amount to scale in Y direction. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+
+ arcPtr->bbox[0] = originX + scaleX*(arcPtr->bbox[0] - originX);
+ arcPtr->bbox[1] = originY + scaleY*(arcPtr->bbox[1] - originY);
+ arcPtr->bbox[2] = originX + scaleX*(arcPtr->bbox[2] - originX);
+ arcPtr->bbox[3] = originY + scaleY*(arcPtr->bbox[3] - originY);
+ ComputeArcBbox(canvas, arcPtr);
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * TranslateArc --
+ *
+ * This function is called to move an arc by a given amount.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The position of the arc is offset by (xDelta, yDelta), and the
+ * bounding box is updated in the generic part of the item structure.
+ *
+ *--------------------------------------------------------------
+ */
+
+static void
+TranslateArc(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item that is being moved. */
+ double deltaX, /* Amount by which item is to be moved. */
+ double deltaY)
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+
+ arcPtr->bbox[0] += deltaX;
+ arcPtr->bbox[1] += deltaY;
+ arcPtr->bbox[2] += deltaX;
+ arcPtr->bbox[3] += deltaY;
+ ComputeArcBbox(canvas, arcPtr);
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ComputeArcOutline --
+ *
+ * This function creates a polygon describing everything in the outline
+ * for an arc except what's in the curved part. For a "pie slice" arc
+ * this is a V-shaped chunk, and for a "chord" arc this is a linear chunk
+ * (with cutaway corners). For "arc" arcs, this stuff isn't relevant.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The information at arcPtr->outlinePtr gets modified, and storage for
+ * arcPtr->outlinePtr may be allocated or freed.
+ *
+ *--------------------------------------------------------------
+ */
+
+static void
+ComputeArcOutline(
+ Tk_Canvas canvas, /* Information about overall canvas. */
+ ArcItem *arcPtr) /* Information about arc. */
+{
+ double sin1, cos1, sin2, cos2, angle, width, halfWidth;
+ double boxWidth, boxHeight;
+ double vertex[2], corner1[2], corner2[2];
+ double *outlinePtr;
+ Tk_State state = arcPtr->header.state;
+
+ /*
+ * Make sure that the outlinePtr array is large enough to hold either a
+ * chord or pie-slice outline.
+ */
+
+ if (arcPtr->numOutlinePoints == 0) {
+ arcPtr->outlinePtr = ckalloc(26 * sizeof(double));
+ arcPtr->numOutlinePoints = 22;
+ }
+ outlinePtr = arcPtr->outlinePtr;
+
+ if (state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+
+ /*
+ * First compute the two points that lie at the centers of the ends of the
+ * curved arc segment, which are marked with X's in the figure below:
+ *
+ *
+ * * * *
+ * * *
+ * * * * *
+ * * * * *
+ * * * * *
+ * X * * X
+ *
+ * The code is tricky because the arc can be ovular in shape. It computes
+ * the position for a unit circle, and then scales to fit the shape of the
+ * arc's bounding box.
+ *
+ * Also, watch out because angles go counter-clockwise like you might
+ * expect, but the y-coordinate system is inverted. To handle this, just
+ * negate the angles in all the computations.
+ */
+
+ boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
+ boxHeight = arcPtr->bbox[3] - arcPtr->bbox[1];
+ angle = -arcPtr->start*PI/180.0;
+ sin1 = sin(angle);
+ cos1 = cos(angle);
+ angle -= arcPtr->extent*PI/180.0;
+ sin2 = sin(angle);
+ cos2 = cos(angle);
+ vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
+ vertex[1] = (arcPtr->bbox[1] + arcPtr->bbox[3])/2.0;
+ arcPtr->center1[0] = vertex[0] + cos1*boxWidth/2.0;
+ arcPtr->center1[1] = vertex[1] + sin1*boxHeight/2.0;
+ arcPtr->center2[0] = vertex[0] + cos2*boxWidth/2.0;
+ arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;
+
+ /*
+ * Next compute the "outermost corners" of the arc, which are marked with
+ * X's in the figure below:
+ *
+ * * * *
+ * * *
+ * * * * *
+ * * * * *
+ * X * * X
+ * * *
+ *
+ * The code below is tricky because it has to handle eccentricity in the
+ * shape of the oval. The key in the code below is to realize that the
+ * slope of the line from arcPtr->center1 to corner1 is (boxWidth*sin1)
+ * divided by (boxHeight*cos1), and similarly for arcPtr->center2 and
+ * corner2. These formulas can be computed from the formula for the oval.
+ */
+
+ width = arcPtr->outline.width;
+ if (Canvas(canvas)->currentItemPtr == (Tk_Item *) arcPtr) {
+ if (arcPtr->outline.activeWidth>arcPtr->outline.width) {
+ width = arcPtr->outline.activeWidth;
+ }
+ } else if (state == TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledWidth>arcPtr->outline.width) {
+ width = arcPtr->outline.disabledWidth;
+ }
+ }
+ halfWidth = width/2.0;
+
+ if (((boxWidth*sin1) == 0.0) && ((boxHeight*cos1) == 0.0)) {
+ angle = 0.0;
+ } else {
+ angle = atan2(boxWidth*sin1, boxHeight*cos1);
+ }
+ corner1[0] = arcPtr->center1[0] + cos(angle)*halfWidth;
+ corner1[1] = arcPtr->center1[1] + sin(angle)*halfWidth;
+ if (((boxWidth*sin2) == 0.0) && ((boxHeight*cos2) == 0.0)) {
+ angle = 0.0;
+ } else {
+ angle = atan2(boxWidth*sin2, boxHeight*cos2);
+ }
+ corner2[0] = arcPtr->center2[0] + cos(angle)*halfWidth;
+ corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;
+
+ /*
+ * For a chord outline, generate a six-sided polygon with three points for
+ * each end of the chord. The first and third points for each end are butt
+ * points generated on either side of the center point. The second point
+ * is the corner point.
+ */
+
+ if (arcPtr->style == CHORD_STYLE) {
+ outlinePtr[0] = outlinePtr[12] = corner1[0];
+ outlinePtr[1] = outlinePtr[13] = corner1[1];
+ TkGetButtPoints(arcPtr->center2, arcPtr->center1,
+ width, 0, outlinePtr+10, outlinePtr+2);
+ outlinePtr[4] = arcPtr->center2[0] + outlinePtr[2]
+ - arcPtr->center1[0];
+ outlinePtr[5] = arcPtr->center2[1] + outlinePtr[3]
+ - arcPtr->center1[1];
+ outlinePtr[6] = corner2[0];
+ outlinePtr[7] = corner2[1];
+ outlinePtr[8] = arcPtr->center2[0] + outlinePtr[10]
+ - arcPtr->center1[0];
+ outlinePtr[9] = arcPtr->center2[1] + outlinePtr[11]
+ - arcPtr->center1[1];
+ } else if (arcPtr->style == PIESLICE_STYLE) {
+ /*
+ * For pie slices, generate two polygons, one for each side of the pie
+ * slice. The first arm has a shape like this, where the center of the
+ * oval is X, arcPtr->center1 is at Y, and corner1 is at Z:
+ *
+ * _____________________
+ * | \
+ * | \
+ * X Y Z
+ * | /
+ * |_____________________/
+ */
+
+ TkGetButtPoints(arcPtr->center1, vertex, width, 0,
+ outlinePtr, outlinePtr+2);
+ outlinePtr[4] = arcPtr->center1[0] + outlinePtr[2] - vertex[0];
+ outlinePtr[5] = arcPtr->center1[1] + outlinePtr[3] - vertex[1];
+ outlinePtr[6] = corner1[0];
+ outlinePtr[7] = corner1[1];
+ outlinePtr[8] = arcPtr->center1[0] + outlinePtr[0] - vertex[0];
+ outlinePtr[9] = arcPtr->center1[1] + outlinePtr[1] - vertex[1];
+ outlinePtr[10] = outlinePtr[0];
+ outlinePtr[11] = outlinePtr[1];
+
+ /*
+ * The second arm has a shape like this:
+ *
+ * ______________________
+ * / \
+ * / \
+ * Z Y X /
+ * \ /
+ * \______________________/
+ *
+ * Similar to above X is the center of the oval/circle, Y is
+ * arcPtr->center2, and Z is corner2. The extra jog out to the left of
+ * X is needed in or to produce a butted joint with the first arm; the
+ * corner to the right of X is one of the first two points of the
+ * first arm, depending on extent.
+ */
+
+ TkGetButtPoints(arcPtr->center2, vertex, width, 0,
+ outlinePtr+12, outlinePtr+16);
+ if ((arcPtr->extent > 180) ||
+ ((arcPtr->extent < 0) && (arcPtr->extent > -180))) {
+ outlinePtr[14] = outlinePtr[0];
+ outlinePtr[15] = outlinePtr[1];
+ } else {
+ outlinePtr[14] = outlinePtr[2];
+ outlinePtr[15] = outlinePtr[3];
+ }
+ outlinePtr[18] = arcPtr->center2[0] + outlinePtr[16] - vertex[0];
+ outlinePtr[19] = arcPtr->center2[1] + outlinePtr[17] - vertex[1];
+ outlinePtr[20] = corner2[0];
+ outlinePtr[21] = corner2[1];
+ outlinePtr[22] = arcPtr->center2[0] + outlinePtr[12] - vertex[0];
+ outlinePtr[23] = arcPtr->center2[1] + outlinePtr[13] - vertex[1];
+ outlinePtr[24] = outlinePtr[12];
+ outlinePtr[25] = outlinePtr[13];
+ }
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * HorizLineToArc --
+ *
+ * Determines whether a horizontal line segment intersects a given arc.
+ *
+ * Results:
+ * The return value is 1 if the given line intersects the infinitely-thin
+ * arc section defined by rx, ry, start, and extent, and 0 otherwise.
+ * Only the perimeter of the arc is checked: interior areas (e.g. chord
+ * or pie-slice) are not checked.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+HorizLineToArc(
+ double x1, double x2, /* X-coords of endpoints of line segment. X1
+ * must be <= x2. */
+ double y, /* Y-coordinate of line segment. */
+ double rx, double ry, /* These x- and y-radii define an oval
+ * centered at the origin. */
+ double start, double extent)/* Angles that define extent of arc, in the
+ * standard fashion for this module. */
+{
+ double tmp, x;
+ double tx, ty; /* Coordinates of intersection point in
+ * transformed coordinate system. */
+
+ /*
+ * Compute the x-coordinate of one possible intersection point between the
+ * arc and the line. Use a transformed coordinate system where the oval is
+ * a unit circle centered at the origin. Then scale back to get actual
+ * x-coordinate.
+ */
+
+ ty = y/ry;
+ tmp = 1 - ty*ty;
+ if (tmp < 0) {
+ return 0;
+ }
+ tx = sqrt(tmp);
+ x = tx*rx;
+
+ /*
+ * Test both intersection points.
+ */
+
+ if ((x >= x1) && (x <= x2) && AngleInRange(tx, ty, start, extent)) {
+ return 1;
+ }
+ if ((-x >= x1) && (-x <= x2) && AngleInRange(-tx, ty, start, extent)) {
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * VertLineToArc --
+ *
+ * Determines whether a vertical line segment intersects a given arc.
+ *
+ * Results:
+ * The return value is 1 if the given line intersects the infinitely-thin
+ * arc section defined by rx, ry, start, and extent, and 0 otherwise.
+ * Only the perimeter of the arc is checked: interior areas (e.g. chord
+ * or pie-slice) are not checked.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+VertLineToArc(
+ double x, /* X-coordinate of line segment. */
+ double y1, double y2, /* Y-coords of endpoints of line segment. Y1
+ * must be <= y2. */
+ double rx, double ry, /* These x- and y-radii define an oval
+ * centered at the origin. */
+ double start, double extent)/* Angles that define extent of arc, in the
+ * standard fashion for this module. */
+{
+ double tmp, y;
+ double tx, ty; /* Coordinates of intersection point in
+ * transformed coordinate system. */
+
+ /*
+ * Compute the y-coordinate of one possible intersection point between the
+ * arc and the line. Use a transformed coordinate system where the oval is
+ * a unit circle centered at the origin. Then scale back to get actual
+ * y-coordinate.
+ */
+
+ tx = x/rx;
+ tmp = 1 - tx*tx;
+ if (tmp < 0) {
+ return 0;
+ }
+ ty = sqrt(tmp);
+ y = ty*ry;
+
+ /*
+ * Test both intersection points.
+ */
+
+ if ((y > y1) && (y < y2) && AngleInRange(tx, ty, start, extent)) {
+ return 1;
+ }
+ if ((-y > y1) && (-y < y2) && AngleInRange(tx, -ty, start, extent)) {
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * AngleInRange --
+ *
+ * Determine whether the angle from the origin to a given point is within
+ * a given range.
+ *
+ * Results:
+ * The return value is 1 if the angle from (0,0) to (x,y) is in the range
+ * given by start and extent, where angles are interpreted in the
+ * standard way for ovals (meaning backwards from normal interpretation).
+ * Otherwise the return value is 0.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+AngleInRange(
+ double x, double y, /* Coordinate of point; angle measured from
+ * origin to here, relative to x-axis. */
+ double start, /* First angle, degrees, >=0, <=360. */
+ double extent) /* Size of arc in degrees >=-360, <=360. */
+{
+ double diff;
+
+ if ((x == 0.0) && (y == 0.0)) {
+ return 1;
+ }
+ diff = -atan2(y, x);
+ diff = diff*(180.0/PI) - start;
+ while (diff > 360.0) {
+ diff -= 360.0;
+ }
+ while (diff < 0.0) {
+ diff += 360.0;
+ }
+ if (extent >= 0) {
+ return diff <= extent;
+ }
+ return (diff-360.0) >= extent;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * ArcToPostscript --
+ *
+ * This function is called to generate Postscript for arc items.
+ *
+ * Results:
+ * The return value is a standard Tcl result. If an error occurs in
+ * generating Postscript then an error message is left in the interp's
+ * result, replacing whatever used to be there. If no error occurs, then
+ * Postscript for the item is appended to the result.
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+ArcToPostscript(
+ Tcl_Interp *interp, /* Leave Postscript or error message here. */
+ Tk_Canvas canvas, /* Information about overall canvas. */
+ Tk_Item *itemPtr, /* Item for which Postscript is wanted. */
+ int prepass) /* 1 means this is a prepass to collect font
+ * information; 0 means final Postscript is
+ * being created. */
+{
+ ArcItem *arcPtr = (ArcItem *) itemPtr;
+ double y1, y2, ang1, ang2;
+ XColor *color;
+ Pixmap stipple;
+ XColor *fillColor;
+ Pixmap fillStipple;
+ Tk_State state = itemPtr->state;
+ Tcl_Obj *psObj;
+ Tcl_InterpState interpState;
+
+ y1 = Tk_CanvasPsY(canvas, arcPtr->bbox[1]);
+ y2 = Tk_CanvasPsY(canvas, arcPtr->bbox[3]);
+ ang1 = arcPtr->start;
+ ang2 = ang1 + arcPtr->extent;
+ if (ang2 < ang1) {
+ ang1 = ang2;
+ ang2 = arcPtr->start;
+ }
+
+ if (state == TK_STATE_NULL) {
+ state = Canvas(canvas)->canvas_state;
+ }
+ color = arcPtr->outline.color;
+ stipple = arcPtr->outline.stipple;
+ fillColor = arcPtr->fillColor;
+ fillStipple = arcPtr->fillStipple;
+ if (Canvas(canvas)->currentItemPtr == itemPtr) {
+ if (arcPtr->outline.activeColor!=NULL) {
+ color = arcPtr->outline.activeColor;
+ }
+ if (arcPtr->outline.activeStipple!=None) {
+ stipple = arcPtr->outline.activeStipple;
+ }
+ if (arcPtr->activeFillColor!=NULL) {
+ fillColor = arcPtr->activeFillColor;
+ }
+ if (arcPtr->activeFillStipple!=None) {
+ fillStipple = arcPtr->activeFillStipple;
+ }
+ } else if (state == TK_STATE_DISABLED) {
+ if (arcPtr->outline.disabledColor!=NULL) {
+ color = arcPtr->outline.disabledColor;
+ }
+ if (arcPtr->outline.disabledStipple!=None) {
+ stipple = arcPtr->outline.disabledStipple;
+ }
+ if (arcPtr->disabledFillColor!=NULL) {
+ fillColor = arcPtr->disabledFillColor;
+ }
+ if (arcPtr->disabledFillStipple!=None) {
+ fillStipple = arcPtr->disabledFillStipple;
+ }
+ }
+
+ /*
+ * Make our working space.
+ */
+
+ psObj = Tcl_NewObj();
+ interpState = Tcl_SaveInterpState(interp, TCL_OK);
+
+ /*
+ * If the arc is filled, output Postscript for the interior region of the
+ * arc.
+ */
+
+ if (arcPtr->fillGC != NULL) {
+ Tcl_AppendPrintfToObj(psObj,
+ "matrix currentmatrix\n"
+ "%.15g %.15g translate %.15g %.15g scale\n",
+ (arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
+ (arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
+
+ if (arcPtr->style != CHORD_STYLE) {
+ Tcl_AppendToObj(psObj, "0 0 moveto ", -1);
+ }
+ Tcl_AppendPrintfToObj(psObj,
+ "0 0 1 %.15g %.15g arc closepath\nsetmatrix\n",
+ ang1, ang2);
+
+ Tcl_ResetResult(interp);
+ if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+
+ if (fillStipple != None) {
+ Tcl_AppendToObj(psObj, "clip ", -1);
+
+ Tcl_ResetResult(interp);
+ if (Tk_CanvasPsStipple(interp, canvas, fillStipple) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+
+ if (arcPtr->outline.gc != NULL) {
+ Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
+ }
+ } else {
+ Tcl_AppendToObj(psObj, "fill\n", -1);
+ }
+ }
+
+ /*
+ * If there's an outline for the arc, draw it.
+ */
+
+ if (arcPtr->outline.gc != NULL) {
+ Tcl_AppendPrintfToObj(psObj,
+ "matrix currentmatrix\n"
+ "%.15g %.15g translate %.15g %.15g scale\n",
+ (arcPtr->bbox[0] + arcPtr->bbox[2])/2, (y1 + y2)/2,
+ (arcPtr->bbox[2] - arcPtr->bbox[0])/2, (y1 - y2)/2);
+ Tcl_AppendPrintfToObj(psObj,
+ "0 0 1 %.15g %.15g arc\nsetmatrix\n0 setlinecap\n",
+ ang1, ang2);
+
+ Tcl_ResetResult(interp);
+ if (Tk_CanvasPsOutline(canvas, itemPtr, &arcPtr->outline) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+
+ if (arcPtr->style != ARC_STYLE) {
+ Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
+
+ Tcl_ResetResult(interp);
+ if (arcPtr->style == CHORD_STYLE) {
+ Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
+ CHORD_OUTLINE_PTS);
+ } else {
+ Tk_CanvasPsPath(interp, canvas, arcPtr->outlinePtr,
+ PIE_OUTLINE1_PTS);
+ if (Tk_CanvasPsColor(interp, canvas, color) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+
+ if (stipple != None) {
+ Tcl_AppendToObj(psObj, "clip ", -1);
+
+ Tcl_ResetResult(interp);
+ if (Tk_CanvasPsStipple(interp, canvas, stipple) !=TCL_OK){
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+ } else {
+ Tcl_AppendToObj(psObj, "fill\n", -1);
+ }
+ Tcl_AppendToObj(psObj, "grestore gsave\n", -1);
+
+ Tcl_ResetResult(interp);
+ Tk_CanvasPsPath(interp, canvas,
+ arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
+ PIE_OUTLINE2_PTS);
+ }
+ if (Tk_CanvasPsColor(interp, canvas, color) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+
+ if (stipple != None) {
+ Tcl_AppendToObj(psObj, "clip ", -1);
+
+ Tcl_ResetResult(interp);
+ if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK) {
+ goto error;
+ }
+ Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp));
+ } else {
+ Tcl_AppendToObj(psObj, "fill\n", -1);
+ }
+ }
+ }
+
+ /*
+ * Plug the accumulated postscript back into the result.
+ */
+
+ (void) Tcl_RestoreInterpState(interp, interpState);
+ Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
+ Tcl_DecrRefCount(psObj);
+ return TCL_OK;
+
+ error:
+ Tcl_DiscardInterpState(interpState);
+ Tcl_DecrRefCount(psObj);
+ return TCL_ERROR;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * StyleParseProc --
+ *
+ * This function is invoked during option processing to handle the
+ * "-style" option.
+ *
+ * Results:
+ * A standard Tcl return value.
+ *
+ * Side effects:
+ * The state for a given item gets replaced by the state indicated in the
+ * value argument.
+ *
+ *--------------------------------------------------------------
+ */
+
+static int
+StyleParseProc(
+ ClientData clientData, /* some flags.*/
+ Tcl_Interp *interp, /* Used for reporting errors. */
+ Tk_Window tkwin, /* Window containing canvas widget. */
+ const char *value, /* Value of option. */
+ char *widgRec, /* Pointer to record for item. */
+ int offset) /* Offset into item. */
+{
+ int c;
+ size_t length;
+
+ register Style *stylePtr = (Style *) (widgRec + offset);
+
+ if (value == NULL || *value == 0) {
+ *stylePtr = PIESLICE_STYLE;
+ return TCL_OK;
+ }
+
+ c = value[0];
+ length = strlen(value);
+
+ if ((c == 'a') && (strncmp(value, "arc", length) == 0)) {
+ *stylePtr = ARC_STYLE;
+ return TCL_OK;
+ }
+ if ((c == 'c') && (strncmp(value, "chord", length) == 0)) {
+ *stylePtr = CHORD_STYLE;
+ return TCL_OK;
+ }
+ if ((c == 'p') && (strncmp(value, "pieslice", length) == 0)) {
+ *stylePtr = PIESLICE_STYLE;
+ return TCL_OK;
+ }
+
+ Tcl_SetObjResult(interp, Tcl_ObjPrintf(
+ "bad -style option \"%s\": must be arc, chord, or pieslice",
+ value));
+ Tcl_SetErrorCode(interp, "TK", "CANVAS", "ARC_STYLE", NULL);
+ *stylePtr = PIESLICE_STYLE;
+ return TCL_ERROR;
+}
+
+/*
+ *--------------------------------------------------------------
+ *
+ * StylePrintProc --
+ *
+ * This function is invoked by the Tk configuration code to produce a
+ * printable string for the "-style" configuration option.
+ *
+ * Results:
+ * The return value is a string describing the state for the item
+ * referred to by "widgRec". In addition, *freeProcPtr is filled in with
+ * the address of a function to call to free the result string when it's
+ * no longer needed (or NULL to indicate that the string doesn't need to
+ * be freed).
+ *
+ * Side effects:
+ * None.
+ *
+ *--------------------------------------------------------------
+ */
+
+static const char *
+StylePrintProc(
+ ClientData clientData, /* Ignored. */
+ Tk_Window tkwin, /* Ignored. */
+ char *widgRec, /* Pointer to record for item. */
+ int offset, /* Offset into item. */
+ Tcl_FreeProc **freeProcPtr) /* Pointer to variable to fill in with
+ * information about how to reclaim storage
+ * for return string. */
+{
+ register Style *stylePtr = (Style *) (widgRec + offset);
+
+ if (*stylePtr == ARC_STYLE) {
+ return "arc";
+ } else if (*stylePtr == CHORD_STYLE) {
+ return "chord";
+ } else {
+ return "pieslice";
+ }
+}
+
+/*
+ * Local Variables:
+ * mode: c
+ * c-basic-offset: 4
+ * fill-column: 78
+ * End:
+ */