summaryrefslogtreecommitdiffstats
path: root/tk8.6/library/demos/pendulum.tcl
diff options
context:
space:
mode:
Diffstat (limited to 'tk8.6/library/demos/pendulum.tcl')
-rw-r--r--tk8.6/library/demos/pendulum.tcl197
1 files changed, 197 insertions, 0 deletions
diff --git a/tk8.6/library/demos/pendulum.tcl b/tk8.6/library/demos/pendulum.tcl
new file mode 100644
index 0000000..6422c67
--- /dev/null
+++ b/tk8.6/library/demos/pendulum.tcl
@@ -0,0 +1,197 @@
+# pendulum.tcl --
+#
+# This demonstration illustrates how Tcl/Tk can be used to construct
+# simulations of physical systems.
+
+if {![info exists widgetDemo]} {
+ error "This script should be run from the \"widget\" demo."
+}
+
+package require Tk
+
+set w .pendulum
+catch {destroy $w}
+toplevel $w
+wm title $w "Pendulum Animation Demonstration"
+wm iconname $w "pendulum"
+positionWindow $w
+
+label $w.msg -font $font -wraplength 4i -justify left -text "This demonstration shows how Tcl/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas."
+pack $w.msg
+
+## See Code / Dismiss buttons
+set btns [addSeeDismiss $w.buttons $w]
+pack $btns -side bottom -fill x
+
+# Create some structural widgets
+pack [panedwindow $w.p] -fill both -expand 1
+$w.p add [labelframe $w.p.l1 -text "Pendulum Simulation"]
+$w.p add [labelframe $w.p.l2 -text "Phase Space"]
+
+# Create the canvas containing the graphical representation of the
+# simulated system.
+canvas $w.c -width 320 -height 200 -background white -bd 2 -relief sunken
+$w.c create text 5 5 -anchor nw -text "Click to Adjust Bob Start Position"
+# Coordinates of these items don't matter; they will be set properly below
+$w.c create line 0 25 320 25 -tags plate -fill grey50 -width 2
+$w.c create oval 155 20 165 30 -tags pivot -fill grey50 -outline {}
+$w.c create line 1 1 1 1 -tags rod -fill black -width 3
+$w.c create oval 1 1 2 2 -tags bob -fill yellow -outline black
+pack $w.c -in $w.p.l1 -fill both -expand true
+
+# Create the canvas containing the phase space graph; this consists of
+# a line that gets gradually paler as it ages, which is an extremely
+# effective visual trick.
+canvas $w.k -width 320 -height 200 -background white -bd 2 -relief sunken
+$w.k create line 160 200 160 0 -fill grey75 -arrow last -tags y_axis
+$w.k create line 0 100 320 100 -fill grey75 -arrow last -tags x_axis
+for {set i 90} {$i>=0} {incr i -10} {
+ # Coordinates of these items don't matter; they will be set properly below
+ $w.k create line 0 0 1 1 -smooth true -tags graph$i -fill grey$i
+}
+
+$w.k create text 0 0 -anchor ne -text "\u03b8" -tags label_theta
+$w.k create text 0 0 -anchor ne -text "\u03b4\u03b8" -tags label_dtheta
+pack $w.k -in $w.p.l2 -fill both -expand true
+
+# Initialize some variables
+set points {}
+set Theta 45.0
+set dTheta 0.0
+set pi 3.1415926535897933
+set length 150
+set home 160
+
+# This procedure makes the pendulum appear at the correct place on the
+# canvas. If the additional arguments "at $x $y" are passed (the 'at'
+# is really just syntactic sugar) instead of computing the position of
+# the pendulum from the length of the pendulum rod and its angle, the
+# length and angle are computed in reverse from the given location
+# (which is taken to be the centre of the pendulum bob.)
+proc showPendulum {canvas {at {}} {x {}} {y {}}} {
+ global Theta dTheta pi length home
+ if {$at eq "at" && ($x!=$home || $y!=25)} {
+ set dTheta 0.0
+ set x2 [expr {$x - $home}]
+ set y2 [expr {$y - 25}]
+ set length [expr {hypot($x2, $y2)}]
+ set Theta [expr {atan2($x2, $y2) * 180/$pi}]
+ } else {
+ set angle [expr {$Theta * $pi/180}]
+ set x [expr {$home + $length*sin($angle)}]
+ set y [expr {25 + $length*cos($angle)}]
+ }
+ $canvas coords rod $home 25 $x $y
+ $canvas coords bob \
+ [expr {$x-15}] [expr {$y-15}] [expr {$x+15}] [expr {$y+15}]
+}
+showPendulum $w.c
+
+# Update the phase-space graph according to the current angle and the
+# rate at which the angle is changing (the first derivative with
+# respect to time.)
+proc showPhase {canvas} {
+ global Theta dTheta points psw psh
+ lappend points [expr {$Theta+$psw}] [expr {-20*$dTheta+$psh}]
+ if {[llength $points] > 100} {
+ set points [lrange $points end-99 end]
+ }
+ for {set i 0} {$i<100} {incr i 10} {
+ set list [lrange $points end-[expr {$i-1}] end-[expr {$i-12}]]
+ if {[llength $list] >= 4} {
+ $canvas coords graph$i $list
+ }
+ }
+}
+
+# Set up some bindings on the canvases. Note that when the user
+# clicks we stop the animation until they release the mouse
+# button. Also note that both canvases are sensitive to <Configure>
+# events, which allows them to find out when they have been resized by
+# the user.
+bind $w.c <Destroy> {
+ after cancel $animationCallbacks(pendulum)
+ unset animationCallbacks(pendulum)
+}
+bind $w.c <1> {
+ after cancel $animationCallbacks(pendulum)
+ showPendulum %W at %x %y
+}
+bind $w.c <B1-Motion> {
+ showPendulum %W at %x %y
+}
+bind $w.c <ButtonRelease-1> {
+ showPendulum %W at %x %y
+ set animationCallbacks(pendulum) [after 15 repeat [winfo toplevel %W]]
+}
+bind $w.c <Configure> {
+ %W coords plate 0 25 %w 25
+ set home [expr {%w/2}]
+ %W coords pivot [expr {$home-5}] 20 [expr {$home+5}] 30
+}
+bind $w.k <Configure> {
+ set psh [expr {%h/2}]
+ set psw [expr {%w/2}]
+ %W coords x_axis 2 $psh [expr {%w-2}] $psh
+ %W coords y_axis $psw [expr {%h-2}] $psw 2
+ %W coords label_dtheta [expr {$psw-4}] 6
+ %W coords label_theta [expr {%w-6}] [expr {$psh+4}]
+}
+
+# This procedure is the "business" part of the simulation that does
+# simple numerical integration of the formula for a simple rotational
+# pendulum.
+proc recomputeAngle {} {
+ global Theta dTheta pi length
+ set scaling [expr {3000.0/$length/$length}]
+
+ # To estimate the integration accurately, we really need to
+ # compute the end-point of our time-step. But to do *that*, we
+ # need to estimate the integration accurately! So we try this
+ # technique, which is inaccurate, but better than doing it in a
+ # single step. What we really want is bound up in the
+ # differential equation:
+ # .. - sin theta
+ # theta + theta = -----------
+ # length
+ # But my math skills are not good enough to solve this!
+
+ # first estimate
+ set firstDDTheta [expr {-sin($Theta * $pi/180)*$scaling}]
+ set midDTheta [expr {$dTheta + $firstDDTheta}]
+ set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}]
+ # second estimate
+ set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}]
+ set midDTheta [expr {$dTheta + ($firstDDTheta + $midDDTheta)/2}]
+ set midTheta [expr {$Theta + ($dTheta + $midDTheta)/2}]
+ # Now we do a double-estimate approach for getting the final value
+ # first estimate
+ set midDDTheta [expr {-sin($midTheta * $pi/180)*$scaling}]
+ set lastDTheta [expr {$midDTheta + $midDDTheta}]
+ set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}]
+ # second estimate
+ set lastDDTheta [expr {-sin($lastTheta * $pi/180)*$scaling}]
+ set lastDTheta [expr {$midDTheta + ($midDDTheta + $lastDDTheta)/2}]
+ set lastTheta [expr {$midTheta + ($midDTheta + $lastDTheta)/2}]
+ # Now put the values back in our globals
+ set dTheta $lastDTheta
+ set Theta $lastTheta
+}
+
+# This method ties together the simulation engine and the graphical
+# display code that visualizes it.
+proc repeat w {
+ global animationCallbacks
+
+ # Simulate
+ recomputeAngle
+
+ # Update the display
+ showPendulum $w.c
+ showPhase $w.k
+
+ # Reschedule ourselves
+ set animationCallbacks(pendulum) [after 15 [list repeat $w]]
+}
+# Start the simulation after a short pause
+set animationCallbacks(pendulum) [after 500 [list repeat $w]]