diff options
Diffstat (limited to 'tkblt/generic/tkbltGrElemLineSpline.C')
-rw-r--r-- | tkblt/generic/tkbltGrElemLineSpline.C | 1086 |
1 files changed, 0 insertions, 1086 deletions
diff --git a/tkblt/generic/tkbltGrElemLineSpline.C b/tkblt/generic/tkbltGrElemLineSpline.C deleted file mode 100644 index 9224d53..0000000 --- a/tkblt/generic/tkbltGrElemLineSpline.C +++ /dev/null @@ -1,1086 +0,0 @@ -/* - * Smithsonian Astrophysical Observatory, Cambridge, MA, USA - * This code has been modified under the terms listed below and is made - * available under the same terms. - */ - -/* - * Copyright 2009 George A Howlett. - * - * Permission is hereby granted, free of charge, to any person obtaining - * a copy of this software and associated documentation files (the - * "Software"), to deal in the Software without restriction, including - * without limitation the rights to use, copy, modify, merge, publish, - * distribute, sublicense, and/or sell copies of the Software, and to - * permit persons to whom the Software is furnished to do so, subject to - * the following conditions: - * - * The above copyright notice and this permission notice shall be - * included in all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE - * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION - * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION - * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. - * - */ - -#include <float.h> -#include <stdlib.h> -#include <string.h> - -#include <cmath> - -#include "tkbltGrElemLine.h" - -using namespace Blt; - -typedef double TriDiagonalMatrix[3]; -typedef struct { - double b, c, d; -} Cubic2D; - -typedef struct { - double b, c, d, e, f; -} Quint2D; - -// Quadratic spline parameters -#define E1 param[0] -#define E2 param[1] -#define V1 param[2] -#define V2 param[3] -#define W1 param[4] -#define W2 param[5] -#define Z1 param[6] -#define Z2 param[7] -#define Y1 param[8] -#define Y2 param[9] - -/* - *--------------------------------------------------------------------------- - * - * Search -- - * - * Conducts a binary search for a value. This routine is called - * only if key is between x(0) and x(len - 1). - * - * Results: - * Returns the index of the largest value in xtab for which - * x[i] < key. - * - *--------------------------------------------------------------------------- - */ -static int Search(Point2d points[], int nPoints, double key, int *foundPtr) -{ - int low = 0; - int high = nPoints - 1; - - while (high >= low) { - int mid = (high + low) / 2; - if (key > points[mid].x) - low = mid + 1; - else if (key < points[mid].x) - high = mid - 1; - else { - *foundPtr = 1; - return mid; - } - } - *foundPtr = 0; - return low; -} - -/* - *--------------------------------------------------------------------------- - * - * QuadChoose -- - * - * Determines the case needed for the computation of the parame- - * ters of the quadratic spline. - * - * Results: - * Returns a case number (1-4) which controls how the parameters - * of the quadratic spline are evaluated. - * - *--------------------------------------------------------------------------- - */ -static int QuadChoose(Point2d* p, Point2d* q, double m1, double m2, - double epsilon) -{ - // Calculate the slope of the line joining P and Q - double slope = (q->y - p->y) / (q->x - p->x); - - if (slope != 0.0) { - double prod1 = slope * m1; - double prod2 = slope * m2; - - // Find the absolute values of the slopes slope, m1, and m2 - double mref = fabs(slope); - double mref1 = fabs(m1); - double mref2 = fabs(m2); - - // If the relative deviation of m1 or m2 from slope is less than - // epsilon, then choose case 2 or case 3. - double relerr = epsilon * mref; - if ((fabs(slope - m1) > relerr) && (fabs(slope - m2) > relerr) && - (prod1 >= 0.0) && (prod2 >= 0.0)) { - double prod = (mref - mref1) * (mref - mref2); - if (prod < 0.0) { - // l1, the line through (x1,y1) with slope m1, and l2, - // the line through (x2,y2) with slope m2, intersect - // at a point whose abscissa is between x1 and x2. - // The abscissa becomes a knot of the spline. - return 1; - } - if (mref1 > (mref * 2.0)) { - if (mref2 <= ((2.0 - epsilon) * mref)) - return 3; - } - else if (mref2 <= (mref * 2.0)) { - // Both l1 and l2 cross the line through - // (x1+x2)/2.0,y1 and (x1+x2)/2.0,y2, which is the - // midline of the rectangle formed by P and Q or both - // m1 and m2 have signs different than the sign of - // slope, or one of m1 and m2 has opposite sign from - // slope and l1 and l2 intersect to the left of x1 or - // to the right of x2. The point (x1+x2)/2. is a knot - // of the spline. - return 2; - } - else if (mref1 <= ((2.0 - epsilon) * mref)) { - // In cases 3 and 4, sign(m1)=sign(m2)=sign(slope). - // Either l1 or l2 crosses the midline, but not both. - // Choose case 4 if mref1 is greater than - // (2.-epsilon)*mref; otherwise, choose case 3. - return 3; - } - // If neither l1 nor l2 crosses the midline, the spline - // requires two knots between x1 and x2. - return 4; - } - else { - // The sign of at least one of the slopes m1 or m2 does not - // agree with the sign of *slope*. - if ((prod1 < 0.0) && (prod2 < 0.0)) { - return 2; - } - else if (prod1 < 0.0) { - if (mref2 > ((epsilon + 1.0) * mref)) - return 1; - else - return 2; - } - else if (mref1 > ((epsilon + 1.0) * mref)) - return 1; - else - return 2; - } - } - else if ((m1 * m2) >= 0.0) - return 2; - else - return 1; -} - -/* - *--------------------------------------------------------------------------- - * Computes the knots and other parameters of the spline on the - * interval PQ. - * On input-- - * P and Q are the coordinates of the points of interpolation. - * m1 is the slope at P. - * m2 is the slope at Q. - * ncase controls the number and location of the knots. - * On output-- - * - * (v1,v2),(w1,w2),(z1,z2), and (e1,e2) are the coordinates of - * the knots and other parameters of the spline on P. - * (e1,e2) and Q are used only if ncase=4. - *--------------------------------------------------------------------------- - */ -static void QuadCases(Point2d* p, Point2d* q, double m1, double m2, - double param[], int which) -{ - if ((which == 3) || (which == 4)) { - double c1 = p->x + (q->y - p->y) / m1; - double d1 = q->x + (p->y - q->y) / m2; - double h1 = c1 * 2.0 - p->x; - double j1 = d1 * 2.0 - q->x; - double mbar1 = (q->y - p->y) / (h1 - p->x); - double mbar2 = (p->y - q->y) / (j1 - q->x); - - if (which == 4) { - // Case 4 - Y1 = (p->x + c1) / 2.0; - V1 = (p->x + Y1) / 2.0; - V2 = m1 * (V1 - p->x) + p->y; - Z1 = (d1 + q->x) / 2.0; - W1 = (q->x + Z1) / 2.0; - W2 = m2 * (W1 - q->x) + q->y; - double mbar3 = (W2 - V2) / (W1 - V1); - Y2 = mbar3 * (Y1 - V1) + V2; - Z2 = mbar3 * (Z1 - V1) + V2; - E1 = (Y1 + Z1) / 2.0; - E2 = mbar3 * (E1 - V1) + V2; - } - else { - // Case 3 - double k1 = (p->y - q->y + q->x * mbar2 - p->x * mbar1) / (mbar2 - mbar1); - if (fabs(m1) > fabs(m2)) { - Z1 = (k1 + p->x) / 2.0; - } else { - Z1 = (k1 + q->x) / 2.0; - } - V1 = (p->x + Z1) / 2.0; - V2 = p->y + m1 * (V1 - p->x); - W1 = (q->x + Z1) / 2.0; - W2 = q->y + m2 * (W1 - q->x); - Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1); - } - } - else if (which == 2) { - // Case 2 - Z1 = (p->x + q->x) / 2.0; - V1 = (p->x + Z1) / 2.0; - V2 = p->y + m1 * (V1 - p->x); - W1 = (Z1 + q->x) / 2.0; - W2 = q->y + m2 * (W1 - q->x); - Z2 = (V2 + W2) / 2.0; - } - else { - // Case 1 - Z1 = (p->y - q->y + m2 * q->x - m1 * p->x) / (m2 - m1); - double ztwo = p->y + m1 * (Z1 - p->x); - V1 = (p->x + Z1) / 2.0; - V2 = (p->y + ztwo) / 2.0; - W1 = (Z1 + q->x) / 2.0; - W2 = (ztwo + q->y) / 2.0; - Z2 = V2 + (W2 - V2) / (W1 - V1) * (Z1 - V1); - } -} - -static int QuadSelect(Point2d* p, Point2d* q, double m1, double m2, - double epsilon, double param[]) -{ - int ncase = QuadChoose(p, q, m1, m2, epsilon); - QuadCases(p, q, m1, m2, param, ncase); - return ncase; -} - -static double QuadGetImage(double p1, double p2, double p3, double x1, - double x2, double x3) -{ - double A = x1 - x2; - double B = x2 - x3; - double C = x1 - x3; - - double y = (p1 * (A * A) + p2 * 2.0 * B * A + p3 * (B * B)) / (C * C); - return y; -} - -/* - *--------------------------------------------------------------------------- - * Finds the image of a point in x. - * On input - * x Contains the value at which the spline is evaluated. - * leftX, leftY - * Coordinates of the left-hand data point used in the - * evaluation of x values. - * rightX, rightY - * Coordinates of the right-hand data point used in the - * evaluation of x values. - * Z1, Z2, Y1, Y2, E2, W2, V2 - * Parameters of the spline. - * ncase Controls the evaluation of the spline by indicating - * whether one or two knots were placed in the interval - * (xtabs,xtabs1). - *--------------------------------------------------------------------------- - */ -static void QuadSpline(Point2d* intp, Point2d* left, Point2d* right, - double param[], int ncase) - -{ - double y; - - if (ncase == 4) { - // Case 4: More than one knot was placed in the interval. - // Determine the location of data point relative to the 1st knot. - if (Y1 > intp->x) - y = QuadGetImage(left->y, V2, Y2, Y1, intp->x, left->x); - else if (Y1 < intp->x) { - // Determine the location of the data point relative to the 2nd knot. - if (Z1 > intp->x) - y = QuadGetImage(Y2, E2, Z2, Z1, intp->x, Y1); - else if (Z1 < intp->x) - y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1); - else - y = Z2; - } - else - y = Y2; - } - else { - // Cases 1, 2, or 3: - // Determine the location of the data point relative to the knot. - if (Z1 < intp->x) - y = QuadGetImage(Z2, W2, right->y, right->x, intp->x, Z1); - else if (Z1 > intp->x) - y = QuadGetImage(left->y, V2, Z2, Z1, intp->x, left->x); - else - y = Z2; - } - - intp->y = y; -} - -/* - *--------------------------------------------------------------------------- - * Calculates the derivative at each of the data points. The - * slopes computed will insure that an osculatory quadratic - * spline will have one additional knot between two adjacent - * points of interpolation. Convexity and monotonicity are - * preserved wherever these conditions are compatible with the - * data. - *--------------------------------------------------------------------------- - */ -static void QuadSlopes(Point2d *points, double *m, int nPoints) -{ - double m1s =0; - double m2s =0; - double m1 =0; - double m2 =0; - int i, n, l; - for (l = 0, i = 1, n = 2; i < (nPoints - 1); l++, i++, n++) { - // Calculate the slopes of the two lines joining three - // consecutive data points. - double ydif1 = points[i].y - points[l].y; - double ydif2 = points[n].y - points[i].y; - m1 = ydif1 / (points[i].x - points[l].x); - m2 = ydif2 / (points[n].x - points[i].x); - if (i == 1) { - // Save slopes of starting point - m1s = m1; - m2s = m2; - } - // If one of the preceding slopes is zero or if they have opposite - // sign, assign the value zero to the derivative at the middle point. - if ((m1 == 0.0) || (m2 == 0.0) || ((m1 * m2) <= 0.0)) - m[i] = 0.0; - else if (fabs(m1) > fabs(m2)) { - // Calculate the slope by extending the line with slope m1. - double xbar = ydif2 / m1 + points[i].x; - double xhat = (xbar + points[n].x) / 2.0; - m[i] = ydif2 / (xhat - points[i].x); - } - else { - // Calculate the slope by extending the line with slope m2. - double xbar = -ydif1 / m2 + points[i].x; - double xhat = (points[l].x + xbar) / 2.0; - m[i] = ydif1 / (points[i].x - xhat); - } - } - - // Calculate the slope at the last point, x(n). - i = nPoints - 2; - n = nPoints - 1; - if ((m1 * m2) < 0.0) - m[n] = m2 * 2.0; - else { - double xmid = (points[i].x + points[n].x) / 2.0; - double yxmid = m[i] * (xmid - points[i].x) + points[i].y; - m[n] = (points[n].y - yxmid) / (points[n].x - xmid); - if ((m[n] * m2) < 0.0) - m[n] = 0.0; - } - - // Calculate the slope at the first point, x(0). - if ((m1s * m2s) < 0.0) - m[0] = m1s * 2.0; - else { - double xmid = (points[0].x + points[1].x) / 2.0; - double yxmid = m[1] * (xmid - points[1].x) + points[1].y; - m[0] = (yxmid - points[0].y) / (xmid - points[0].x); - if ((m[0] * m1s) < 0.0) - m[0] = 0.0; - } -} - -/* - *--------------------------------------------------------------------------- - * - * QuadEval -- - * - * QuadEval controls the evaluation of an osculatory quadratic - * spline. The user may provide his own slopes at the points of - * interpolation or use the subroutine 'QuadSlopes' to calculate - * slopes which are consistent with the shape of the data. - * - * ON INPUT-- - * intpPts must be a nondecreasing vector of points at which the - * spline will be evaluated. - * origPts contains the abscissas of the data points to be - * interpolated. xtab must be increasing. - * y contains the ordinates of the data points to be - * interpolated. - * m contains the slope of the spline at each point of - * interpolation. - * nPoints number of data points (dimension of xtab and y). - * numEval is the number of points of evaluation (dimension of - * xval and yval). - * epsilon is a relative error tolerance used in subroutine - * 'QuadChoose' to distinguish the situation m(i) or - * m(i+1) is relatively close to the slope or twice - * the slope of the linear segment between xtab(i) and - * xtab(i+1). If this situation occurs, roundoff may - * cause a change in convexity or monotonicity of the - * resulting spline and a change in the case number - * provided by 'QuadChoose'. If epsilon is not equal to zero, - * then epsilon should be greater than or equal to machine - * epsilon. - * ON OUTPUT-- - * yval contains the images of the points in xval. - * err is one of the following error codes: - * 0 - QuadEval ran normally. - * 1 - xval(i) is less than xtab(1) for at least one - * i or xval(i) is greater than xtab(num) for at - * least one i. QuadEval will extrapolate to provide - * function values for these abscissas. - * 2 - xval(i+1) < xval(i) for some i. - * - * - * QuadEval calls the following subroutines or functions: - * Search - * QuadCases - * QuadChoose - * QuadSpline - *--------------------------------------------------------------------------- - */ -static int QuadEval(Point2d origPts[], int nOrigPts, Point2d intpPts[], - int nIntpPts, double *m, double epsilon) -{ - double param[10]; - - // Initialize indices and set error result - int error = 0; - int l = nOrigPts - 1; - int p = l - 1; - int ncase = 1; - - // Determine if abscissas of new vector are non-decreasing. - for (int jj=1; jj<nIntpPts; jj++) { - if (intpPts[jj].x < intpPts[jj - 1].x) - return 2; - } - // Determine if any of the points in xval are LESS than the - // abscissa of the first data point. - int start; - for (start = 0; start < nIntpPts; start++) { - if (intpPts[start].x >= origPts[0].x) - break; - } - // Determine if any of the points in xval are GREATER than the - // abscissa of the l data point. - int end; - for (end = nIntpPts - 1; end >= 0; end--) { - if (intpPts[end].x <= origPts[l].x) - break; - } - - if (start > 0) { - // Set error value to indicate that extrapolation has occurred - error = 1; - - // Calculate the images of points of evaluation whose abscissas - // are less than the abscissa of the first data point. - ncase = QuadSelect(origPts, origPts + 1, m[0], m[1], epsilon, param); - for (int jj=0; jj<(start - 1); jj++) - QuadSpline(intpPts + jj, origPts, origPts + 1, param, ncase); - if (nIntpPts == 1) - return error; - } - int ii; - int nn; - if ((nIntpPts == 1) && (end != (nIntpPts - 1))) - goto noExtrapolation; - - // Search locates the interval in which the first in-range - // point of evaluation lies. - int found; - ii = Search(origPts, nOrigPts, intpPts[start].x, &found); - - nn = ii + 1; - if (nn >= nOrigPts) { - nn = nOrigPts - 1; - ii = nOrigPts - 2; - } - /* - * If the first in-range point of evaluation is equal to one - * of the data points, assign the appropriate value from y. - * Continue until a point of evaluation is found which is not - * equal to a data point. - */ - if (found) { - do { - intpPts[start].y = origPts[ii].y; - start++; - if (start >= nIntpPts) { - return error; - } - } while (intpPts[start - 1].x == intpPts[start].x); - - for (;;) { - if (intpPts[start].x < origPts[nn].x) { - break; /* Break out of for-loop */ - } - if (intpPts[start].x == origPts[nn].x) { - do { - intpPts[start].y = origPts[nn].y; - start++; - if (start >= nIntpPts) { - return error; - } - } while (intpPts[start].x == intpPts[start - 1].x); - } - ii++; - nn++; - } - } - /* - * Calculate the images of all the points which lie within - * range of the data. - */ - if ((ii > 0) || (error != 1)) - ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn], epsilon, param); - - for (int jj=start; jj<=end; jj++) { - // If xx(j) - x(n) is negative, do not recalculate - // the parameters for this section of the spline since - // they are already known. - if (intpPts[jj].x == origPts[nn].x) { - intpPts[jj].y = origPts[nn].y; - continue; - } - else if (intpPts[jj].x > origPts[nn].x) { - double delta; - - // Determine that the routine is in the correct part of the spline - do { - ii++; - nn++; - delta = intpPts[jj].x - origPts[nn].x; - } while (delta > 0.0); - - if (delta < 0.0) - ncase = QuadSelect(origPts+ii, origPts+nn, m[ii], m[nn], - epsilon, param); - else if (delta == 0.0) { - intpPts[jj].y = origPts[nn].y; - continue; - } - } - QuadSpline(intpPts+jj, origPts+ii, origPts+nn, param, ncase); - } - - if (end == (nIntpPts - 1)) - return error; - - if ((nn == l) && (intpPts[end].x != origPts[l].x)) - goto noExtrapolation; - - // Set error value to indicate that extrapolation has occurred - error = 1; - ncase = QuadSelect(origPts + p, origPts + l, m[p], m[l], epsilon, param); - - noExtrapolation: - // Calculate the images of the points of evaluation whose - // abscissas are greater than the abscissa of the last data point. - for (int jj=(end + 1); jj<nIntpPts; jj++) - QuadSpline(intpPts + jj, origPts + p, origPts + l, param, ncase); - - return error; -} - -/* - *--------------------------------------------------------------------------- - * - * Shape preserving quadratic splines - * by D.F.Mcallister & J.A.Roulier - * Coded by S.L.Dodd & M.Roulier - * N.C.State University - * - *--------------------------------------------------------------------------- - */ -/* - * Driver routine for quadratic spline package - * On input-- - * X,Y Contain n-long arrays of data (x is increasing) - * XM Contains m-long array of x values (increasing) - * eps Relative error tolerance - * n Number of input data points - * m Number of output data points - * On output-- - * work Contains the value of the first derivative at each data point - * ym Contains the interpolated spline value at each data point - */ -int LineElement::quadraticSpline(Point2d *origPts, int nOrigPts, - Point2d *intpPts, int nIntpPts) -{ - double* work = new double[nOrigPts]; - double epsilon = 0.0; - /* allocate space for vectors used in calculation */ - QuadSlopes(origPts, work, nOrigPts); - int result = QuadEval(origPts, nOrigPts, intpPts, nIntpPts, work, epsilon); - delete [] work; - if (result > 1) { - return 0; - } - return 1; -} - -/* - *--------------------------------------------------------------------------- - * Reference: - * Numerical Analysis, R. Burden, J. Faires and A. Reynolds. - * Prindle, Weber & Schmidt 1981 pp 112 - *--------------------------------------------------------------------------- - */ -int LineElement::naturalSpline(Point2d *origPts, int nOrigPts, - Point2d *intpPts, int nIntpPts) -{ - Point2d *ip, *iend; - double x, dy, alpha; - int isKnot; - int i, j, n; - - double* dx = new double[nOrigPts]; - /* Calculate vector of differences */ - for (i = 0, j = 1; j < nOrigPts; i++, j++) { - dx[i] = origPts[j].x - origPts[i].x; - if (dx[i] < 0.0) { - return 0; - } - } - n = nOrigPts - 1; /* Number of intervals. */ - TriDiagonalMatrix* A = new TriDiagonalMatrix[nOrigPts]; - if (!A) { - delete [] dx; - return 0; - } - /* Vectors to solve the tridiagonal matrix */ - A[0][0] = A[n][0] = 1.0; - A[0][1] = A[n][1] = 0.0; - A[0][2] = A[n][2] = 0.0; - - /* Calculate the intermediate results */ - for (i = 0, j = 1; j < n; j++, i++) { - alpha = 3.0 * ((origPts[j + 1].y / dx[j]) - (origPts[j].y / dx[i]) - - (origPts[j].y / dx[j]) + (origPts[i].y / dx[i])); - A[j][0] = 2 * (dx[j] + dx[i]) - dx[i] * A[i][1]; - A[j][1] = dx[j] / A[j][0]; - A[j][2] = (alpha - dx[i] * A[i][2]) / A[j][0]; - } - - Cubic2D* eq = new Cubic2D[nOrigPts]; - if (!eq) { - delete [] A; - delete [] dx; - return 0; - } - eq[0].c = eq[n].c = 0.0; - for (j = n, i = n - 1; i >= 0; i--, j--) { - eq[i].c = A[i][2] - A[i][1] * eq[j].c; - dy = origPts[i+1].y - origPts[i].y; - eq[i].b = (dy) / dx[i] - dx[i] * (eq[j].c + 2.0 * eq[i].c) / 3.0; - eq[i].d = (eq[j].c - eq[i].c) / (3.0 * dx[i]); - } - delete [] A; - delete [] dx; - - /* Now calculate the new values */ - for (ip = intpPts, iend = ip + nIntpPts; ip < iend; ip++) { - ip->y = 0.0; - x = ip->x; - - /* Is it outside the interval? */ - if ((x < origPts[0].x) || (x > origPts[n].x)) { - continue; - } - /* Search for the interval containing x in the point array */ - i = Search(origPts, nOrigPts, x, &isKnot); - if (isKnot) { - ip->y = origPts[i].y; - } else { - i--; - x -= origPts[i].x; - ip->y = origPts[i].y + x * (eq[i].b + x * (eq[i].c + x * eq[i].d)); - } - } - delete [] eq; - return 1; -} - -typedef struct { - double t; /* Arc length of interval. */ - double x; /* 2nd derivative of X with respect to T */ - double y; /* 2nd derivative of Y with respect to T */ -} CubicSpline; - -/* - * The following two procedures solve the special linear system which arise - * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the - * equations can be written as (i=0,1,...,n-1): - * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] . - * In matrix notation one gets A * x = b, where the matrix A is tridiagonal - * with additional elements in the upper right and lower left position: - * A[i][0] = A_{i,i-1} for i=1,2,...,n-1 and m[0][0] = A_{0,n-1} , - * A[i][1] = A_{i, i } for i=0,1,...,n-1 - * A[i][2] = A_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = A_{n-1,0}. - * A should be symmetric (A[i+1][0] == A[i][2]) and positive definite. - * The size of the system is given in n (n>=1). - * - * In the first procedure the Cholesky decomposition A = C^T * D * C - * (C is upper triangle with unit diagonal, D is diagonal) is calculated. - * Return TRUE if decomposition exist. - */ -static int SolveCubic1(TriDiagonalMatrix A[], int n) -{ - int i; - double m_ij, m_n, m_nn, d; - - if (n < 1) { - return 0; /* Dimension should be at least 1 */ - } - d = A[0][1]; /* D_{0,0} = A_{0,0} */ - if (d <= 0.0) { - return 0; /* A (or D) should be positive definite */ - } - m_n = A[0][0]; /* A_{0,n-1} */ - m_nn = A[n - 1][1]; /* A_{n-1,n-1} */ - for (i = 0; i < n - 2; i++) { - m_ij = A[i][2]; /* A_{i,1} */ - A[i][2] = m_ij / d; /* C_{i,i+1} */ - A[i][0] = m_n / d; /* C_{i,n-1} */ - m_nn -= A[i][0] * m_n; /* to get C_{n-1,n-1} */ - m_n = -A[i][2] * m_n; /* to get C_{i+1,n-1} */ - d = A[i + 1][1] - A[i][2] * m_ij; /* D_{i+1,i+1} */ - if (d <= 0.0) { - return 0; /* Elements of D should be positive */ - } - A[i + 1][1] = d; - } - if (n >= 2) { /* Complete last column */ - m_n += A[n - 2][2]; /* add A_{n-2,n-1} */ - A[n - 2][0] = m_n / d; /* C_{n-2,n-1} */ - A[n - 1][1] = d = m_nn - A[n - 2][0] * m_n; /* D_{n-1,n-1} */ - if (d <= 0.0) { - return 0; - } - } - return 1; -} - -/* - * The second procedure solves the linear system, with the Cholesky - * decomposition calculated above (in m[][]) and the right side b given - * in x[]. The solution x overwrites the right side in x[]. - */ -static void SolveCubic2(TriDiagonalMatrix A[], CubicSpline spline[], - int nIntervals) -{ - int n = nIntervals - 2; - int m = nIntervals - 1; - - // Division by transpose of C : b = C^{-T} * b - double x = spline[m].x; - double y = spline[m].y; - for (int ii=0; ii<n; ii++) { - spline[ii + 1].x -= A[ii][2] * spline[ii].x; /* C_{i,i+1} * x(i) */ - spline[ii + 1].y -= A[ii][2] * spline[ii].y; /* C_{i,i+1} * x(i) */ - x -= A[ii][0] * spline[ii].x; /* C_{i,n-1} * x(i) */ - y -= A[ii][0] * spline[ii].y; /* C_{i,n-1} * x(i) */ - } - if (n >= 0) { - // C_{n-2,n-1} * x_{n-1} - spline[m].x = x - A[n][0] * spline[n].x; - spline[m].y = y - A[n][0] * spline[n].y; - } - // Division by D: b = D^{-1} * b - for (int ii=0; ii<nIntervals; ii++) { - spline[ii].x /= A[ii][1]; - spline[ii].y /= A[ii][1]; - } - - // Division by C: b = C^{-1} * b - x = spline[m].x; - y = spline[m].y; - if (n >= 0) { - // C_{n-2,n-1} * x_{n-1} - spline[n].x -= A[n][0] * x; - spline[n].y -= A[n][0] * y; - } - for (int ii=(n - 1); ii>=0; ii--) { - // C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} - spline[ii].x -= A[ii][2] * spline[ii + 1].x + A[ii][0] * x; - spline[ii].y -= A[ii][2] * spline[ii + 1].y + A[ii][0] * y; - } -} - -/* - * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation - * through list of points (x_i,y_i). The parameter t is calculated as the - * length of the linear stroke. The number of points must be at least 3. - * Note: For CLOSED_CONTOURs the first and last point must be equal. - */ -static CubicSpline* CubicSlopes(Point2d points[], int nPoints, - int isClosed, double unitX, double unitY) -{ - CubicSpline *s1, *s2; - int n, i; - double norm, dx, dy; - - CubicSpline* spline = new CubicSpline[nPoints]; - if (!spline) - return NULL; - - TriDiagonalMatrix *A = new TriDiagonalMatrix[nPoints]; - if (!A) { - delete [] spline; - return NULL; - } - /* - * Calculate first differences in (dxdt2[i], y[i]) and interval lengths - * in dist[i]: - */ - s1 = spline; - for (i = 0; i < nPoints - 1; i++) { - s1->x = points[i+1].x - points[i].x; - s1->y = points[i+1].y - points[i].y; - - /* - * The Norm of a linear stroke is calculated in "normal coordinates" - * and used as interval length: - */ - dx = s1->x / unitX; - dy = s1->y / unitY; - s1->t = sqrt(dx * dx + dy * dy); - - s1->x /= s1->t; /* first difference, with unit norm: */ - s1->y /= s1->t; /* || (dxdt2[i], y[i]) || = 1 */ - s1++; - } - - /* - * Setup linear System: Ax = b - */ - n = nPoints - 2; /* Without first and last point */ - if (isClosed) { - /* First and last points must be equal for CLOSED_CONTOURs */ - spline[nPoints - 1].t = spline[0].t; - spline[nPoints - 1].x = spline[0].x; - spline[nPoints - 1].y = spline[0].y; - n++; /* Add last point (= first point) */ - } - s1 = spline, s2 = s1 + 1; - for (i = 0; i < n; i++) { - /* Matrix A, mainly tridiagonal with cyclic second index - ("j = j+n mod n") - */ - A[i][0] = s1->t; /* Off-diagonal element A_{i,i-1} */ - A[i][1] = 2.0 * (s1->t + s2->t); /* A_{i,i} */ - A[i][2] = s2->t; /* Off-diagonal element A_{i,i+1} */ - - /* Right side b_x and b_y */ - s1->x = (s2->x - s1->x) * 6.0; - s1->y = (s2->y - s1->y) * 6.0; - - /* - * If the linear stroke shows a cusp of more than 90 degree, - * the right side is reduced to avoid oscillations in the - * spline: - */ - /* - * The Norm of a linear stroke is calculated in "normal coordinates" - * and used as interval length: - */ - dx = s1->x / unitX; - dy = s1->y / unitY; - norm = sqrt(dx * dx + dy * dy) / 8.5; - if (norm > 1.0) { - /* The first derivative will not be continuous */ - s1->x /= norm; - s1->y /= norm; - } - s1++, s2++; - } - - if (!isClosed) { - /* Third derivative is set to zero at both ends */ - A[0][1] += A[0][0]; /* A_{0,0} */ - A[0][0] = 0.0; /* A_{0,n-1} */ - A[n-1][1] += A[n-1][2]; /* A_{n-1,n-1} */ - A[n-1][2] = 0.0; /* A_{n-1,0} */ - } - /* Solve linear systems for dxdt2[] and y[] */ - - if (SolveCubic1(A, n)) { /* Cholesky decomposition */ - SolveCubic2(A, spline, n); /* A * dxdt2 = b_x */ - } - else { /* Should not happen, but who knows ... */ - delete [] A; - delete [] spline; - return NULL; - } - /* Shift all second derivatives one place right and update the ends. */ - s2 = spline + n, s1 = s2 - 1; - for (/* empty */; s2 > spline; s2--, s1--) { - s2->x = s1->x; - s2->y = s1->y; - } - if (isClosed) { - spline[0].x = spline[n].x; - spline[0].y = spline[n].y; - } else { - /* Third derivative is 0.0 for the first and last interval. */ - spline[0].x = spline[1].x; - spline[0].y = spline[1].y; - spline[n + 1].x = spline[n].x; - spline[n + 1].y = spline[n].y; - } - delete [] A; - return spline; -} - -// Calculate interpolated values of the spline function (defined via p_cntr -// and the second derivatives dxdt2[] and dydt2[]). The number of tabulated -// values is n. On an equidistant grid n_intpol values are calculated. -static int CubicEval(Point2d *origPts, int nOrigPts, Point2d *intpPts, - int nIntpPts, CubicSpline *spline) -{ - double t, tSkip; - Point2d q; - int count; - - /* Sum the lengths of all the segments (intervals). */ - double tMax = 0.0; - for (int ii=0; ii<nOrigPts - 1; ii++) - tMax += spline[ii].t; - - /* Need a better way of doing this... */ - - /* The distance between interpolated points */ - tSkip = (1. - 1e-7) * tMax / (nIntpPts - 1); - - t = 0.0; /* Spline parameter value. */ - q = origPts[0]; - count = 0; - - intpPts[count++] = q; /* First point. */ - t += tSkip; - - for (int ii=0, jj=1; jj<nOrigPts; ii++, jj++) { - // Interval length - double d = spline[ii].t; - Point2d p = q; - q = origPts[ii+1]; - double hx = (q.x - p.x) / d; - double hy = (q.y - p.y) / d; - double dx0 = (spline[jj].x + 2 * spline[ii].x) / 6.0; - double dy0 = (spline[jj].y + 2 * spline[ii].y) / 6.0; - double dx01 = (spline[jj].x - spline[ii].x) / (6.0 * d); - double dy01 = (spline[jj].y - spline[ii].y) / (6.0 * d); - while (t <= spline[ii].t) { /* t in current interval ? */ - p.x += t * (hx + (t - d) * (dx0 + t * dx01)); - p.y += t * (hy + (t - d) * (dy0 + t * dy01)); - intpPts[count++] = p; - t += tSkip; - } - - // Parameter t relative to start of next interval - t -= spline[ii].t; - } - - return count; -} - -int LineElement::naturalParametricSpline(Point2d *origPts, int nOrigPts, - Region2d *extsPtr, int isClosed, - Point2d *intpPts, int nIntpPts) -{ - // Generate a cubic spline curve through the points (x_i,y_i) which are - // stored in the linked list p_cntr. - // The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the - // parameter t is the length of the linear stroke. - - if (nOrigPts < 3) - return 0; - - if (isClosed) { - origPts[nOrigPts].x = origPts[0].x; - origPts[nOrigPts].y = origPts[0].y; - nOrigPts++; - } - - // Width and height of the grid is used at unit length (2d-norm) - double unitX = extsPtr->right - extsPtr->left; - double unitY = extsPtr->bottom - extsPtr->top; - if (unitX < FLT_EPSILON) - unitX = FLT_EPSILON; - if (unitY < FLT_EPSILON) - unitY = FLT_EPSILON; - - /* Calculate parameters for cubic spline: - * t = arc length of interval. - * dxdt2 = second derivatives of x with respect to t, - * dydt2 = second derivatives of y with respect to t, - */ - CubicSpline* spline = CubicSlopes(origPts, nOrigPts, isClosed, unitX, unitY); - if (spline == NULL) - return 0; - - int result= CubicEval(origPts, nOrigPts, intpPts, nIntpPts, spline); - - delete [] spline; - return result; -} - -static void CatromCoeffs(Point2d* p, Point2d* a, Point2d* b, - Point2d* c, Point2d* d) -{ - a->x = -p[0].x + 3.0 * p[1].x - 3.0 * p[2].x + p[3].x; - b->x = 2.0 * p[0].x - 5.0 * p[1].x + 4.0 * p[2].x - p[3].x; - c->x = -p[0].x + p[2].x; - d->x = 2.0 * p[1].x; - a->y = -p[0].y + 3.0 * p[1].y - 3.0 * p[2].y + p[3].y; - b->y = 2.0 * p[0].y - 5.0 * p[1].y + 4.0 * p[2].y - p[3].y; - c->y = -p[0].y + p[2].y; - d->y = 2.0 * p[1].y; -} - -int LineElement::catromParametricSpline(Point2d* points, int nPoints, - Point2d* intpPts, int nIntpPts) -{ - // The spline is computed in screen coordinates instead of data points so - // that we can select the abscissas of the interpolated points from each - // pixel horizontally across the plotting area. - - Point2d* origPts = new Point2d[nPoints + 4]; - memcpy(origPts + 1, points, sizeof(Point2d) * nPoints); - - origPts[0] = origPts[1]; - origPts[nPoints + 2] = origPts[nPoints + 1] = origPts[nPoints]; - - for (int ii=0; ii<nIntpPts; ii++) { - int interval = (int)intpPts[ii].x; - double t = intpPts[ii].y; - Point2d a, b, c, d; - CatromCoeffs(origPts + interval, &a, &b, &c, &d); - intpPts[ii].x = (d.x + t * (c.x + t * (b.x + t * a.x))) / 2.0; - intpPts[ii].y = (d.y + t * (c.y + t * (b.y + t * a.y))) / 2.0; - } - - delete [] origPts; - return 1; -} |