/*
*class++
* Name:
* CmpFrame
* Purpose:
* Compound Frame.
* Constructor Function:
c astCmpFrame
f AST_CMPFRAME
* Description:
* A CmpFrame is a compound Frame which allows two component Frames
* (of any class) to be merged together to form a more complex
* Frame. The axes of the two component Frames then appear together
* in the resulting CmpFrame (those of the first Frame, followed by
* those of the second Frame).
*
* Since a CmpFrame is itself a Frame, it can be used as a
* component in forming further CmpFrames. Frames of arbitrary
* complexity may be built from simple individual Frames in this
* way.
*
* Also since a Frame is a Mapping, a CmpFrame can also be used as a
* Mapping. Normally, a CmpFrame is simply equivalent to a UnitMap,
* but if either of the component Frames within a CmpFrame is a Region
* (a sub-class of Frame), then the CmpFrame will use the Region as a
* Mapping when transforming values for axes described by the Region.
* Thus input axis values corresponding to positions which are outside the
* Region will result in bad output axis values.
* Inheritance:
* The CmpFrame class inherits from the Frame class.
* Attributes:
* The CmpFrame class does not define any new attributes beyond
* those which are applicable to all Frames. However, the attributes
* of the component Frames can be accessed as if they were attributes
* of the CmpFrame. For instance, if a CmpFrame contains a SpecFrame
* and a SkyFrame, then the CmpFrame will recognise the "Equinox"
* attribute and forward access requests to the component SkyFrame.
* Likewise, it will recognise the "RestFreq" attribute and forward
* access requests to the component SpecFrame. An axis index can
* optionally be appended to the end of any attribute name, in which
* case the request to access the attribute will be forwarded to the
* primary Frame defining the specified axis.
* Functions:
c The CmpFrame class does not define any new functions beyond those
f The CmpFrame class does not define any new routines beyond those
* which are applicable to all Frames.
* Copyright:
* Copyright (C) 1997-2006 Council for the Central Laboratory of the
* Research Councils
* Copyright (C) 2009 Science & Technology Facilities Council.
* All Rights Reserved.
* Licence:
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* License along with this program. If not, see
* .
* Authors:
* RFWS: R.F. Warren-Smith (Starlink)
* DSB: David S. Berry (Starlink)
* History:
* 4-MAR-1996 (RFWS):
* Original version.
* 27-FEB-1997 (RFWS):
* Improved public prologues.
* 25-FEB-1998 (RFWS):
* Over-ride the astUnformat method.
* 6-APR-1998 (RFWS):
* Fixed bug in returned value of GenAxisSelection.
* 22-SEP-1998 (RFWS):
* Fixed bug in Match function - was not checking Domain values
* for equality.
* 11-JUN-1999 (RFWS):
* Fixed bug in GenAxisSelection- some selections were being omitted.
* 5-FEB-2001 (DSB):
* Ensure that Title and Domain values appropriate to a CmpFrame
* are preserved if a CmpFrame result is generated by SubFrame.
* 27-FEB-2001 (DSB):
* Modified Match so that all the frames have some axes in order to
* match. Otherwise, null pointers are created (for zero axes),
* resulting in a seg vio.
* 21-JUN-2001 (DSB):
* Added astAngle.
* 7-SEP-2001 (DSB):
* Added astResolve.
* 26-SEP-2001 (DSB):
* Over-ride the astDecompose method.
* 20-DEC-2002 (DSB):
* Allows any attribute of a component frame to be accessed as though
* it were an attribute of the CmpFrame by including an axis index in
* the attribute name (e.g. "System(3)").
* 8-JAN-2003 (DSB):
* - Changed private InitVtab method to protected astInitCmpFrameVtab
* method.
* - Override astGetAttrib, astClearAttrib, astTestAttrib,
* astSetAttrib to allow attributes to be set for individual
* axes.
* - Override astGetEpoch astGetSystem, astGetAlignSystem.
* astValidateSystem, astSystemString, astSystemCode.
* 27-FEB-2003 (DSB):
* - Modify the default Domain name for a CmpFrame to be the
* domains of the two subFrames separated by a "-".
* 24-JAN-2004 (DSB):
* o Override the astFields method.
* o Added argument "fmt" to Abbrev.
* 24-MAR-2004 (DSB):
* Over-ride the astSimplify and astTransform methods.
* 8-SEP-2004 (DSB):
* Over-ride astResolvePoints method.
* 21-JAN-2005 (DSB):
* Over-ride the astGetActiveUnit and astSetActiveUnit methods.
* 23-FEB-2005 (DSB):
* Modify GetDomain to avoid over-writing the static "buff" array
* if called recursively.
* 29-MAR-2005 (DSB):
* Override astSetEpoch and astClearEpoch by implementations which
* propagate the changed epoch value to the component Frames.
* 5-APR-2005 (DSB):
* Correct error checking in Clear/Get/Set/TestAttrib.
* 12-MAY-2005 (DSB):
* Override astNormBox method.
* 12-AUG-2005 (DSB):
* Override astSetObsLat/Lon and astClearObslat/Lon by implementations
* which propagate the changed value to the component Frames.
* 14-FEB-2006 (DSB):
* Override astGetObjSize.
* 3-APR-2006 (DSB):
* Modify Match so that an attempt is made to align the target with
* each of the two component Frames if the target cannot be matched
* with the CmpFrame as a whole.
* 3-MAY-2006 (DSB):
* Fix bug in Match that could cause segvio when matching a target
* against the second component of a CmpFrame.
* 31-OCT-2006 (DSB):
* Over-ride the SetFrameFlags method.
* 1-NOV-2005 (DSB):
* Override astSetDut1, astGetDut1 and astClearDut1.
* 15-MAR-2007 (DSB):
* Override astClearAlignSystem by an implementation that clears
* AlignSystem in the component Frames.
* 7-FEB-2008 (DSB):
* Allow the MaxAxes and MinAxes attributes to be specified for a
* CmpFrame (rather than just being the sum of the attribute values
* in the component frames). This enables, for instance, a (detector
* index,mjd) frame to match with a ((velocity,detector index),mjd)
* frame.
* 5-MAY-2009 (DSB):
* In GetAttrib, if an index is included in the attribute name, attempt
* to use the GetAttrib method of the primary frame before using the
* parent GetAttrib method. This is because the Frame getattrib
* method will dissociate axes from their parent class. Thus, a
* SkyAxis attribute such as AsTime will come out wrong since its
* value is managed by the SkyFrame class rather than the SkyAxis
* class.
* 18-JUN-2009 (DSB):
* Override astSetObsAlt and astClearObsAlt.
* 29-SEP-2009 (DSB):
* Ensure the astMatch method provided by this class honours the
* PreserveAxes, MaxAxes and MinAxes attribute settings.
* 22-MAR-2011 (DSB):
* Override astFrameGrid method.
* 29-APR-2011 (DSB):
* Prevent astFindFrame from matching a subclass template against a
* superclass target.
* 10-FEB-2015 (DSB):
* When checking attribute settings for attribute names that end with
* an axis index, stop looking for the axis index when the first equals
* sign is encountered.
* 26-MAR-2015 (DSB):
* Increase size of "buf2" buffer in SetAttrib, and trap buffer overflow.
*class--
*/
/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
the header files that define class interfaces that they should make
"protected" symbols available. */
#define astCLASS CmpFrame
/* Define the first and last acceptable System values. */
#define FIRST_SYSTEM AST__COMP
#define LAST_SYSTEM AST__COMP
/* Define macros to implement member functions for accessing axis
attributes. */
/*
* Name:
* MAKE_CLEAR
* Purpose:
* Implement a function to clear an attribute value for a CmpFrame axis.
* Type:
* Private macro.
* Synopsis:
* #include "cmpframe.h"
* MAKE_CLEAR(attribute)
* Class Membership:
* Defined by the CmpFrame class.
* Description:
* This macro expands to an implementation of a private member
* function of the form:
*
* static void Clear( AstFrame *this, int axis )
*
* which clears an attribute value for a specified axis of a CmpFrame.
* Parameters:
* attribute
* The name of the attribute to be cleared, as it appears in the
* function name (e.g. Label in "ClearLabel").
* Notes:
* - This macro assumes the existence of a method of the form:
*
* void astClear( AstFrame *this, int axis )
*
* which clears the required attribute for a Frame object.
* - To avoid problems with some compilers, you should not leave
* any white space around the macro arguments.
*/
/* Define the macro. */
#define MAKE_CLEAR(attribute) \
static void Clear##attribute( AstFrame *this_frame, int axis, int *status ) { \
AstCmpFrame *this; /* Pointer to CmpFrame structure */ \
int naxes1; /* Number of axes in frame1 */ \
\
/* Check the global error status. */ \
if ( !astOK ) return; \
\
/* Obtain a pointer to the CmpFrame structure. */ \
this = (AstCmpFrame *) this_frame; \
\
/* Validate and alidateAxispermute the axis index supplied. */ \
axis = astValidateAxis( this, axis, 1, "astSet" #attribute ); \
\
/* Determine the number of axes in the first component Frame. */ \
naxes1 = astGetNaxes( this->frame1 ); \
if ( astOK ) { \
\
/* Decide which Frame contains the axis and invoke its astClear... method to \
clear the attribute value. */ \
if ( axis < naxes1 ) { \
astClear##attribute( this->frame1, axis ); \
} else { \
astClear##attribute( this->frame2, axis - naxes1 ); \
} \
} \
}
/*
* Name:
* MAKE_GET
* Purpose:
* Implement a function to get an attribute value for a CmpFrame axis.
* Type:
* Private macro.
* Synopsis:
# #include "cmpframe.h"
* MAKE_GET(attribute,type,bad_value,default,assign_default)
* Class Membership:
* Defined by the CmpFrame class.
* Description:
* This macro expands to an implementation of a private member
* function of the form:
*
* static Get( AstFrame *this, int axis )
*
* which gets an attribute value for a specified axis of a
* CmpFrame.
* Parameters:
* attribute
* The name of the attribute whose value is to be obtained, as
* it appears in the function name (e.g. Label in "GetLabel").
* type
* The C type of the attribute.
* bad_value
* A constant value to return if the global error status is set,
* or if the function fails.
* default
* A boolean (int) value that indicates whether a new default
* value should be returned if the requested attribute has not
* been set for the appropriate axis of the appropriate
* component Frame. If this value is zero, the component Frame's
* default (for the appropriate axis) will be used instead.
* assign_default
* An expression that evaluates to the new default value to be
* assigned. This value is ignored if "default" is zero, but a
* valid (e.g. constant) value should nevertheless be supplied.
* Notes:
* - This macro assumes the existence of a method of the form:
*
* astGet( AstFrame *this, int axis )
*
* which gets the required attribute for a Frame object.
* - To avoid problems with some compilers, you should not leave
* any white space around the macro arguments.
*/
/* Define the macro. */
#define MAKE_GET(attribute,type,bad_value,default,assign_default) \
static type Get##attribute( AstFrame *this_frame, int axis, int *status ) { \
astDECLARE_GLOBALS /* Declare the thread specific global data */ \
AstCmpFrame *this; /* Pointer to CmpFrame structure */ \
AstFrame *frame; /* Pointer to Frame containing axis */\
int axis_p; /* Permuted axis index */ \
int naxes1; /* Number of axes in frame1 */ \
int set; /* Digits attribute set? */ \
type result; /* Result value to return */ \
\
/* Initialise. */ \
result = (bad_value); \
\
/* Check the global error status. */ \
if ( !astOK ) return result; \
\
/* Get a pointer to the structure holding thread-specific global data. */ \
astGET_GLOBALS(this_frame); \
\
/* Obtain a pointer to the CmpFrame structure. */ \
this = (AstCmpFrame *) this_frame; \
\
/* Validate and permute the axis index supplied. */ \
axis_p = astValidateAxis( this, axis, 1, "astGet" #attribute ); \
\
/* Determine the number of axes in the first component Frame. */ \
naxes1 = astGetNaxes( this->frame1 ); \
if ( astOK ) { \
\
/* Decide which Frame contains the axis and adjust the axis index if \
necessary. */ \
frame = ( axis_p < naxes1 ) ? this->frame1 : this->frame2; \
axis_p = ( axis_p < naxes1 ) ? axis_p : axis_p - naxes1; \
\
/* Since the component Frame is "managed" by the enclosing CmpFrame, we next \
test if any Frame attributes which may affect the result are undefined \
(i.e. have not been explicitly set). If so, we over-ride them, giving \
them temporary values dictated by the CmpFrame. Only the Digits attribute \
is relevant here. */ \
set = astTestDigits( frame ); \
if ( !set ) astSetDigits( frame, astGetDigits( this ) ); \
\
/* If the default value is to be over-ridden, test if the Frame's axis \
attribute has been set. Then, if required, obtain the attribute value from \
the Frame. */ \
if ( !(default) || astTest##attribute( frame, axis_p ) ) { \
result = astGet##attribute( frame, axis_p ); \
\
/* If required, assign the new default value. */ \
} else { \
result = (assign_default); \
} \
\
/* Clear Frame attributes which were temporarily over-ridden. */ \
if ( !set ) astClearDigits( frame ); \
} \
\
/* If an error occurred, clear the result value. */ \
if ( !astOK ) result = (bad_value); \
\
/* Return the result. */ \
return result; \
}
/*
* Name:
* MAKE_SET
* Purpose:
* Implement a function to set an attribute value for a CmpFrame axis.
* Type:
* Private macro.
* Synopsis:
* #include "cmpframe.h"
* MAKE_SET(attribute,type)
* Class Membership:
* Defined by the CmpFrame class.
* Description:
* This macro expands to an implementation of a private member
* function of the form:
*
* static void Set( AstFrame *this, int axis, value )
*
* which sets an attribute value for a specified axis of a CmpFrame.
* Parameters:
* attribute
* The name of the attribute to be set, as it appears in the
* function name (e.g. Label in "SetLabel").
* type
* The C type of the attribute.
* Notes:
* - This macro assumes the existence of a method of the form:
*
* void astSet( AstFrame *this, int axis, value )
*
* which sets the required attribute for a Frame object.
* - To avoid problems with some compilers, you should not leave
* any white space around the macro arguments.
*/
/* Define the macro. */
#define MAKE_SET(attribute,type) \
static void Set##attribute( AstFrame *this_frame, int axis, type value, int *status ) { \
AstCmpFrame *this; /* Pointer to CmpFrame structure */ \
int naxes1; /* Number of axes in frame1 */ \
\
/* Check the global error status. */ \
if ( !astOK ) return; \
\
/* Obtain a pointer to the CmpFrame structure. */ \
this = (AstCmpFrame *) this_frame; \
\
/* Validate and permute the axis index supplied. */ \
axis = astValidateAxis( this, axis, 1, "astSet" #attribute ); \
\
/* Determine the number of axes in the first component Frame. */ \
naxes1 = astGetNaxes( this->frame1 ); \
if ( astOK ) { \
\
/* Decide which Frame contains the axis and invoke its astSet... method to \
set the attribute value. */ \
if ( axis < naxes1 ) { \
astSet##attribute( this->frame1, axis, value ); \
} else { \
astSet##attribute( this->frame2, axis - naxes1, value ); \
} \
} \
}
/*
* Name:
* MAKE_TEST
* Purpose:
* Implement a function to test if an attribute is set for a CmpFrame axis.
* Type:
* Private macro.
* Synopsis:
* #include "cmpframe.h"
* MAKE_TEST(attribute)
* Class Membership:
* Defined by the CmpFrame class.
* Description:
* This macro expands to an implementation of a private member
* function of the form:
*
* static int Test( AstFrame *this, int axis )
*
* which tests whether an attribute value is set for a specified
* axis of a CmpFrame.
* Parameters:
* attribute
* The name of the attribute to be tested, as it appears in the
* function name (e.g. Label in "TestLabel").
* Notes:
* - This macro assumes the existence of a method of the form:
*
* int astTest( AstFrame *this, int axis )
*
* which tests the required attribute for a Frame object.
* - To avoid problems with some compilers, you should not leave
* any white space around the macro arguments.
*/
/* Define the macro. */
#define MAKE_TEST(attribute) \
static int Test##attribute( AstFrame *this_frame, int axis, int *status ) { \
AstCmpFrame *this; /* Pointer to CmpFrame structure */ \
int naxes1; /* Number of axes in frame1 */ \
int result; /* Result value to return */ \
\
/* Initialise. */ \
result = 0; \
\
/* Check the global error status. */ \
if ( !astOK ) return result; \
\
/* Obtain a pointer to the CmpFrame structure. */ \
this = (AstCmpFrame *) this_frame; \
\
/* Validate and permute the axis index supplied. */ \
axis = astValidateAxis( this, axis, 1, "astSet" #attribute ); \
\
/* Determine the number of axes in the first component Frame. */ \
naxes1 = astGetNaxes( this->frame1 ); \
if ( astOK ) { \
\
/* Decide which Frame contains the axis and invoke its astTest... method to \
test the attribute. */ \
if ( axis < naxes1 ) { \
result = astTest##attribute( this->frame1, axis ); \
} else { \
result = astTest##attribute( this->frame2, axis - naxes1 ); \
} \
} \
\
/* Return the result. */ \
return result; \
}
/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */
#include "globals.h" /* Thread-safe global data access */
#include "error.h" /* Error reporting facilities */
#include "memory.h" /* Memory allocation facilities */
#include "pointset.h" /* Sets of points */
#include "object.h" /* Base Object class */
#include "mapping.h" /* Coordinate Mappings */
#include "unitmap.h" /* Unit Mappings */
#include "permmap.h" /* Coordinate permutation Mappings */
#include "cmpmap.h" /* Compound Mappings */
#include "axis.h" /* Coordinate axes */
#include "frame.h" /* Parent Frame class */
#include "cmpframe.h" /* Interface definition for this class */
#include "globals.h" /* Thread-safe global data access */
/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h" /* AST error codes */
/* C header files. */
/* --------------- */
#include
#include
#include
#include
#include
#include
#include
#include
/* Module Variables. */
/* ================= */
/* Address of this static variable is used as a unique identifier for
member of this class. */
static int class_check;
/* Pointers to parent class methods which are extended by this class. */
static AstSystemType (* parent_getalignsystem)( AstFrame *, int * );
static AstSystemType (* parent_getsystem)( AstFrame *, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static const char *(* parent_getdomain)( AstFrame *, int * );
static const char *(* parent_gettitle)( AstFrame *, int * );
static double (* parent_angle)( AstFrame *, const double[], const double[], const double[], int * );
static double (* parent_getdut1)( AstFrame *, int * );
static double (* parent_getepoch)( AstFrame *, int * );
static double (* parent_getobsalt)( AstFrame *, int * );
static double (* parent_getobslat)( AstFrame *, int * );
static double (* parent_getobslon)( AstFrame *, int * );
static int (* parent_getactiveunit)( AstFrame *, int * );
static int (* parent_getmaxaxes)( AstFrame *, int * );
static int (* parent_getminaxes)( AstFrame *, int * );
static int (* parent_getobjsize)( AstObject *, int * );
static int (* parent_getusedefs)( AstObject *, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static void (* parent_clearalignsystem)( AstFrame *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_cleardut1)( AstFrame *, int * );
static void (* parent_clearepoch)( AstFrame *, int * );
static void (* parent_clearobsalt)( AstFrame *, int * );
static void (* parent_clearobslat)( AstFrame *, int * );
static void (* parent_clearobslon)( AstFrame *, int * );
static void (* parent_overlay)( AstFrame *, const int *, AstFrame *, int * );
static void (* parent_setactiveunit)( AstFrame *, int, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );
static void (* parent_setdut1)( AstFrame *, double, int * );
static void (* parent_setepoch)( AstFrame *, double, int * );
static void (* parent_setframeflags)( AstFrame *, int, int * );
static void (* parent_setobsalt)( AstFrame *, double, int * );
static void (* parent_setobslat)( AstFrame *, double, int * );
static void (* parent_setobslon)( AstFrame *, double, int * );
#if defined(THREAD_SAFE)
static int (* parent_managelock)( AstObject *, int, int, AstObject **, int * );
#endif
/* Define macros for accessing each item of thread specific global data. */
#ifdef THREAD_SAFE
/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
globals->Class_Init = 0; \
globals->Label_Buff[ 0 ] = 0; \
globals->Symbol_Buff[ 0 ] = 0; \
globals->GetDomain_Buff[ 0 ] = 0; \
globals->GetTitle_Buff[ 0 ] = 0;
/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(CmpFrame)
/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(CmpFrame,Class_Init)
#define class_vtab astGLOBAL(CmpFrame,Class_Vtab)
#define getdomain_buff astGLOBAL(CmpFrame,GetDomain_Buff)
#define gettitle_buff astGLOBAL(CmpFrame,GetTitle_Buff)
#define label_buff astGLOBAL(CmpFrame,Label_Buff)
#define symbol_buff astGLOBAL(CmpFrame,Symbol_Buff)
#define qsort_axes astGLOBAL(CmpFrame,qsort_axes)
/* If thread safety is not needed, declare and initialise globals at static
variables. */
#else
/* Pointer to axis index array accessed by "qsort". */
static int *qsort_axes;
/* Default Label string buffer */
static char label_buff[ 101 ];
/* Default Symbol buffer */
static char symbol_buff[ 51 ];
/* Buffer for returned domain name in GetDomain */
static char getdomain_buff[ 101 ];
/* Buffer for returned title in GetTitle */
static char gettitle_buff[ 101 ];
/* Define the class virtual function table and its initialisation flag
as static variables. */
static AstCmpFrameVtab class_vtab; /* Virtual function table */
static int class_init = 0; /* Virtual function table initialised? */
#endif
/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
protected prototypes), so we must provide local prototypes for use
within this module. */
AstCmpFrame *astCmpFrameId_( void *, void *, const char *, ... );
/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstAxis *GetAxis( AstFrame *, int, int * );
static AstMapping *RemoveRegions( AstMapping *, int * );
static AstMapping *Simplify( AstMapping *, int * );
static AstObject *Cast( AstObject *, AstObject *, int * );
static AstPointSet *FrameGrid( AstFrame *, int, const double *, const double *, int * );
static AstPointSet *ResolvePoints( AstFrame *, const double [], const double [], AstPointSet *, AstPointSet *, int * );
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static AstSystemType GetAlignSystem( AstFrame *, int * );
static AstSystemType GetSystem( AstFrame *, int * );
static AstSystemType SystemCode( AstFrame *, const char *, int * );
static AstSystemType ValidateSystem( AstFrame *, AstSystemType, const char *, int * );
static const char *Abbrev( AstFrame *, int, const char *, const char *, const char *, int * );
static const char *Format( AstFrame *, int, double, int * );
static const char *GetDomain( AstFrame *, int * );
static const char *GetFormat( AstFrame *, int, int * );
static const char *GetLabel( AstFrame *, int, int * );
static const char *GetSymbol( AstFrame *, int, int * );
static const char *GetTitle( AstFrame *, int * );
static const char *GetUnit( AstFrame *, int, int * );
static const char *SystemString( AstFrame *, AstSystemType, int * );
static const int *GetPerm( AstFrame *, int * );
static double Angle( AstFrame *, const double[], const double[], const double[], int * );
static double Distance( AstFrame *, const double[], const double[], int * );
static double Centre( AstFrame *, int, double, double, int * );
static double Gap( AstFrame *, int, double, int *, int * );
static int ComponentMatch( AstCmpFrame *, AstFrame *, int, int, int **, int **, AstMapping **, AstFrame **, int * );
static int Fields( AstFrame *, int, const char *, const char *, int, char **, int *, double *, int * );
static int GenAxisSelection( int, int, int [], int * );
static int GetActiveUnit( AstFrame *, int * );
static int GetDirection( AstFrame *, int, int * );
static int GetMaxAxes( AstFrame *, int * );
static int GetMinAxes( AstFrame *, int * );
static int GetNaxes( AstFrame *, int * );
static int GetObjSize( AstObject *, int * );
static int GetUseDefs( AstObject *, int * );
static int GoodPerm( int, const int [], int, const int [], int * );
static int IsUnitFrame( AstFrame *, int * );
static int Match( AstFrame *, AstFrame *, int, int **, int **, AstMapping **, AstFrame **, int * );
static int PartMatch( AstCmpFrame *, AstFrame *, int, int, const int [], int, const int [], int **, int **, AstMapping **, AstFrame **, int * );
static int QsortCmpAxes( const void *, const void * );
static int SubFrame( AstFrame *, AstFrame *, int, const int *, const int *, AstMapping **, AstFrame **, int * );
static int TestDirection( AstFrame *, int, int * );
static int TestFormat( AstFrame *, int, int * );
static int TestLabel( AstFrame *, int, int * );
static int TestSymbol( AstFrame *, int, int * );
static int TestUnit( AstFrame *, int, int * );
static int Unformat( AstFrame *, int, const char *, double *, int * );
static void AddExtraAxes( int, int [], int, int, int, int * );
static void ClearDirection( AstFrame *, int, int * );
static void ClearFormat( AstFrame *, int, int * );
static void ClearLabel( AstFrame *, int, int * );
static void ClearSymbol( AstFrame *, int, int * );
static void ClearUnit( AstFrame *, int, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Decompose( AstMapping *, AstMapping **, AstMapping **, int *, int *, int *, int * );
static void Delete( AstObject *, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void MatchAxesX( AstFrame *, AstFrame *, int *, int * );
static void Norm( AstFrame *, double [], int * );
static void NormBox( AstFrame *, double[], double[], AstMapping *, int * );
static void Offset( AstFrame *, const double [], const double [], double, double [], int * );
static void Overlay( AstFrame *, const int *, AstFrame *, int * );
static void PartitionSelection( int, const int [], const int [], int, int, int [], int, int * );
static void PermAxes( AstFrame *, const int[], int * );
static void PrimaryFrame( AstFrame *, int, AstFrame **, int *, int * );
static void RenumberAxes( int, int [], int * );
static void Resolve( AstFrame *, const double [], const double [], const double [], double [], double *, double *, int * );
static void SetActiveUnit( AstFrame *, int, int * );
static void SetAxis( AstFrame *, int, AstAxis *, int * );
static void SetDirection( AstFrame *, int, int, int * );
static void SetFormat( AstFrame *, int, const char *, int * );
static void SetFrameFlags( AstFrame *, int, int * );
static void SetLabel( AstFrame *, int, const char *, int * );
static void SetSymbol( AstFrame *, int, const char *, int * );
static void SetUnit( AstFrame *, int, const char *, int * );
static const char *GetAttrib( AstObject *, const char *, int * );
static int TestAttrib( AstObject *, const char *, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void SetAttrib( AstObject *, const char *, int * );
static double GetEpoch( AstFrame *, int * );
static void ClearEpoch( AstFrame *, int * );
static void SetEpoch( AstFrame *, double, int * );
static double GetDut1( AstFrame *, int * );
static void ClearDut1( AstFrame *, int * );
static void SetDut1( AstFrame *, double, int * );
static double GetObsLon( AstFrame *, int * );
static void ClearObsLon( AstFrame *, int * );
static void SetObsLon( AstFrame *, double, int * );
static double GetObsLat( AstFrame *, int * );
static void ClearObsLat( AstFrame *, int * );
static void SetObsLat( AstFrame *, double, int * );
static double GetObsAlt( AstFrame *, int * );
static void ClearObsAlt( AstFrame *, int * );
static void SetObsAlt( AstFrame *, double, int * );
static void ClearAlignSystem( AstFrame *, int * );
#if defined(THREAD_SAFE)
static int ManageLock( AstObject *, int, int, AstObject **, int * );
#endif
/* Member functions. */
/* ================= */
static const char *Abbrev( AstFrame *this_frame, int axis, const char *fmt,
const char *str1, const char *str2, int *status ) {
/*
* Name:
* Abbrev
* Purpose:
* Abbreviate a formatted CmpFrame axis value by skipping leading fields.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const char *Abbrev( AstFrame *this, int axis, const char *fmt,
* const char *str1, const char *str2, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astAbbrev
* method inherited from the Frame class).
* Description:
* This function compares two CmpFrame axis values that have been
* formatted (using astFormat) and determines if they have any
* redundant leading fields (i.e. leading fields in common which
* can be suppressed when tabulating the values or plotting them on
* the axis of a graph).
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the CmpFrame axis for which the values have
* been formatted (axis numbering starts at zero for the first
* axis).
* fmt
* Pointer to a constant null-terminated string containing the
* format specification used to format the two values.
* str1
* Pointer to a constant null-terminated string containing the
* first formatted value. If this is null, the returned pointer
* points to the start of the final field in str2.
* str2
* Pointer to a constant null-terminated string containing the
* second formatted value.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer into the "str2" string which locates the first
* character in the first field that differs between the two
* formatted values.
*
* If the two values have no leading fields in common, the returned
* value will point at the start of string "str2". If the two
* values are equal, it will point at the terminating null at the
* end of this string.
* Notes:
* - This function assumes that the format specification used was
* the same when both values were formatted and that they both
* apply to the same CmpFrame axis.
* - A pointer to the start of "str2" will be returned if this
* function is invoked with the global error status set, or if it
* should fail for any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
const char *result; /* Pointer value to return */
int naxes1; /* Number of axes in frame1 */
int set; /* Digits attribute set? */
/* Initialise. */
result = str2;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astAbbrev" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Since the component Frame is "managed" by the enclosing CmpFrame,
we next test if any Frame attributes which may affect the result
are undefined (i.e. have not been explicitly set). If so, we
over-ride them, giving them temporary values dictated by the
CmpFrame. Only the Digits attribute is relevant here. */
set = astTestDigits( frame );
if ( !set ) astSetDigits( frame, astGetDigits( this ) );
/* Invoke the Frame's astAbbrev method to perform the processing. */
result = astAbbrev( frame, axis, fmt, str1, str2 );
/* Clear Frame attributes which were temporarily over-ridden. */
if ( !set ) astClearDigits( frame );
}
/* If an error occurred, clear the returned value. */
if ( !astOK ) result = str2;
/* Return the result. */
return result;
}
static void AddExtraAxes( int naxes, int axes[], int i1, int i2,
int following, int *status ) {
/*
* Name:
* AddExtraAxes
* Purpose:
* Add extra axis indices in place of missing ones.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void AddExtraAxes( int naxes, int axes[], int i1, int i2,
* int following, int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function takes an array of axis indices that refer to the
* axes of a Frame, and which may have values missing (denoted by
* an index of -1). It replaces each occurrence of -1 by a new axis
* index (and re-numbers the others to avoid duplication) in such a
* way that the new indices introduced are "associated" with
* certain of the pre-existing indices, by virtue of being numbered
* consecutively with them.
*
* The purpose of this operation is to establish the relative
* location of new axes in relation to the pre-existing ones.
*
* Normally, each new axis will be associated with (i.e. numbered
* one more than) the pre-existing index which precedes
* it. However, if the "following" parameter is non-zero, it will
* instead be associated with (numbered one less than) the one
* which follows it. If there is no preceding (or following)
* pre-existing index, the following (or preceding) one is used
* instead. If several adjacent occurrences of -1 must be replaced,
* they are numbered consecutively in their order of occurrence.
* Parameters:
* naxes
* The number of axis indices in the array.
* axes
* The array containing the axis indices.
* i1
* Index of the first element of the array to be processed.
* i2
* Index of the last element of the array to be processed.
* following
* Boolean flag to determine if new indices are associated with
* the preceding index (if zero) or the following index (if
* non-zero).
* status
* Pointer to the inherited status variable.
* Notes:
* - The values of "i1" and "i2" dictate the range of array
* elements where values of -1 will be replaced, but all array
* elements are candidates for renumbering in order to avoid
* duplicate axis indices.
* - This function aims to establish the location of new axes only
* by means of the relative numerical value of the indices assigned
* to them. It does not constrain the actual indices assigned in
* any further way.
* - Because axis indices are always incremented (never
* decremented) in order to avoid duplicates, where a number of new
* indices have been introduced, the maximum index present in the
* result array may exceed the original maximum.
* - Some axis indices may remain unused (i.e. not present) in the
* result array.
*/
/* Local Variables: */
int end; /* Loop termination value */
int extra; /* Index to apply to next "extra" axis */
int found; /* Default value found? */
int i; /* Main loop counter */
int inc; /* Loop increment value */
int j; /* Loop counter for eliminating duplicates */
int start; /* Loop starting value */
/* Check the global error status. */
if ( !astOK ) return;
/* Initialise the default index of the next extra axis to add. This
will apply only if there are no valid axis indices from which to
obtain a better default. */
extra = 0;
/* Initialise loop parameters so as to scan the axis indices provided
in either the forward or reverse direction, according to the value
of "following". Start with the section of the array being processed,
but continue looking for a default right up to the end of the array
(this prevents the current section being numbered inconsistently
with respect to adjacent ones that may already have been
processed). */
start = following ? i2 : i1;
end = following ? -1 : naxes;
inc = following ? -1 : 1;
/* Search for the first (in whichever direction this is) valid axis
index and use it to set a new default index for the next extra axis
to add. If scanning forward, use the valid axis index (causing any
preceding extra axis to displace it upwards). If scanning
backwards, use one more than the valid axis index (causing any
following extra axis to tag on the end). */
found = 0;
for ( i = start; i != end; i += inc ) {
if ( axes[ i ] != -1 ) {
found = 1;
extra = axes[ i ] + ( following ? 1 : 0 );
break;
}
}
/* If no default has yet been found, repeat the above process by
scanning in the opposite direction (by inverting the "following"
value used). Again, this prevents inconsistency with neighbouring
regions. This time a default must be found unless the entire array
is filled with -1's (in which case a default of zero is used). */
if ( !found ) {
start = !following ? i2 : i1;
end = !following ? -1 : naxes;
inc = !following ? -1 : 1;
for ( i = start; i != end; i += inc ) {
if ( axes[ i ] != -1 ) {
extra = axes[ i ] + ( !following ? 1 : 0 );
break;
}
}
}
/* Reset the loop parameters to scan just the region of interest in
the original (correct) direction. */
start = following ? i2 : i1;
end = following ? i1 - 1 : i2 + 1;
inc = following ? -1 : 1;
/* Identify those indices which are not valid. */
for ( i = start; i != end; i += inc ) {
if ( axes[ i ] == -1 ) {
/* We wish to assign the value "extra" in place of this invalid axis
index. However, this may duplicate an index already present, so
increment by one all valid indices which are not less than the new
index. This eliminates any possibility duplication, although it may
leave an axis index value unused (if no duplication would actually
have occurred). */
for ( j = 0; j < naxes; j++ ) {
if ( axes[ j ] != -1 ) {
if ( axes[ j ] >= extra ) axes[ j ]++;
}
}
/* We can now assign the new axis index. */
axes[ i ] = extra;
/* Assign the value to be used for the next extra axis index. If
scanning forward, this will be one more than the last one used (so
it will follow it). If scanning backwards, it is equal to the last
one (so that it will displace the last one upwards). */
extra += ( following ? 0 : 1 );
/* When a valid axis index is encountered, reset the value to be used
for the next extra axis index. If scanning forward, this is one
more than the last valid index (so the extra axis will follow
it). If scanning backwards, it is equal to the last valid index (so
it will displace the valid index upwards). */
} else {
extra = axes[ i ] + ( following ? 0 : 1 );
}
}
}
static double Angle( AstFrame *this_frame, const double a[],
const double b[], const double c[], int *status ) {
/*
* Name:
* Angle
* Purpose:
* Calculate the angle subtended by two points at a third point.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double Angle( AstFrame *this_frame, const double a[],
* const double b[], const double c[], int *status )
* Class Membership:
* CmpFrame member function (over-rides the astAngle method
* inherited from the Frame class).
* Description:
* This function finds the angle at point B between the line joining
* points A and B, and the line joining points C and B, in the context
* of a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* a
* An array of double, with one element for each CmpFrame axis,
* containing the coordinates of the first point.
* b
* An array of double, with one element for each CmpFrame axis,
* containing the coordinates of the second point.
* c
* An array of double, with one element for each CmpFrame axis,
* containing the coordinates of the third point.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The required angle, or AST__BAD if the angle is undefined.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstFrame *pframe; /* Pointer to the primary Frame for an axis */
const int *perm; /* Pointer to axis permutation array */
double *pa; /* Permuted coordinates for point a */
double *pb; /* Permuted coordinates for point b */
double *pc; /* Permuted coordinates for point c */
double ang1; /* Angle between input points in frame1 */
double ang2; /* Angle between input points in frame2 */
double result; /* Required angle */
int axis; /* Loop counter for axes */
int iscart; /* Is the CmpFrame a Cartesian system? */
int naxes1; /* Number of axes in frame1 */
int naxes; /* Total number of axes in CmpFrame */
int paxis; /* Axis index within primary Frame */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain the number of axes in the CmpFrame. */
naxes = astGetNaxes( this );
/* See if all axes within the CmpFrame belong to a simple Frame, in which
case we assume that the CmpFrame describes a Cartesian coordinate system. */
iscart = 1;
for( axis = 0; axis < naxes; axis++ ){
PrimaryFrame( this_frame, axis, &pframe, &paxis, status );
if( strcmp( astGetClass( pframe ), "Frame" ) ) {
iscart = 0;
pframe = astAnnul( pframe );
break;
}
pframe = astAnnul( pframe );
}
/* If the CmpFrame describes a Cartesian coordinate system, we can use the
Angle method from the parent Frame class. */
if( iscart ) {
result = (*parent_angle)( this_frame, a, b, c, status );
/* If the CmpFrame is not Cartesian... */
} else {
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Get workspace. */
pa = (double *) astMalloc( sizeof(double)*naxes );
pb = (double *) astMalloc( sizeof(double)*naxes );
pc = (double *) astMalloc( sizeof(double)*naxes );
/* If OK, apply the axis permutation array to obtain the coordinates in the
required order. */
if( astOK ) {
for( axis = 0; axis < naxes; axis++ ) {
pa[ perm[ axis ] ] = a[ axis ];
pb[ perm[ axis ] ] = b[ axis ];
pc[ perm[ axis ] ] = c[ axis ];
}
/* Obtain the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
/* Project the two input points into the two component Frames and
determine the angle between the points in each Frame. */
ang1 = astAngle( this->frame1, pa, pb, pc );
ang2 = astAngle( this->frame2, pa + naxes1, pb + naxes1,
pc + naxes1 );
/* The required angle is defined if one and only one of the two component
frames gives a defined angle between the two points. */
if( ang1 == AST__BAD ) {
result = ang2;
} else if( ang2 == AST__BAD ) {
result = ang1;
}
}
/* Free the workspace */
pa = (double *) astFree( (void *) pa );
pb = (double *) astFree( (void *) pb );
pc = (double *) astFree( (void *) pc );
}
/* Return the result. */
return result;
}
static AstObject *Cast( AstObject *this_object, AstObject *obj, int *status ) {
/*
* Name:
* Cast
* Purpose:
* Cast an Object into an instance of a sub-class.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstObject *Cast( AstObject *this, AstObject *obj, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astCast
* method inherited from the Frame class).
* Description:
* This function returns a deep copy of an ancestral component of the
* supplied object. The required class of the ancestral component is
* specified by another object. Specifically, if "this" and "new" are
* of the same class, a copy of "this" is returned. If "this" is an
* instance of a subclass of "obj", then a copy of the component
* of "this" that matches the class of "obj" is returned. Otherwise,
* a NULL pointer is returned without error.
* Parameters:
* this
* Pointer to the Object to be cast.
* obj
* Pointer to an Object that defines the class of the returned Object.
* The returned Object will be of the same class as "obj".
* Returned Value:
* A pointer to the new Object. NULL if "this" is not a sub-class of
* "obj", or if an error occurs.
* Notes:
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables; */
AstAxis *newaxis;
AstFrame *cfrm;
AstFrame *this;
AstObject *new;
astDECLARE_GLOBALS
int generation_gap;
int i;
int naxes;
/* Initialise */
new = NULL;
/* Check inherited status */
if( !astOK ) return new;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* See how many steps up the class inheritance ladder it is from "obj"
to this class (CmpFrame). A positive value is returned if CmpFrame
is a sub-class of "obj". A negative value is returned if "obj" is
a sub-class of CmpFrame. Zero is returned if "obj" is a CmpFrame.
AST__COUSIN is returned if "obj" is not on the same line of descent
as CmpFrame. */
generation_gap = astClassCompare( (AstObjectVtab *) &class_vtab,
astVTAB( obj ) );
/* If "obj" is a CmpFrame or a sub-class of CmpFrame, we can cast by
truncating the vtab for "this" so that it matches the vtab of "obJ",
and then taking a deep copy of "this". */
if( generation_gap <= 0 && generation_gap != AST__COUSIN ) {
new = astCastCopy( this_object, obj );
/* If "obj" is not a CmpFrame or a sub-class of CmpFrame (e.g. it's a
Frame), we create a basic Frame containing the same axes and attributes
as the CmpFrame, and then attempt to cast this Frame into the class
indicated by "obj". */
} else {
this = (AstFrame *) this_object;
/* Create a basic Frame with the right number of axes. */
naxes = astGetNaxes( this );
cfrm = astFrame( naxes, " ", status );
/* Replace the Axis structures in the basic Frame with those in the
CmpFrame. */
for( i = 0; i < naxes; i++ ) {
newaxis = astGetAxis( this, i );
astSetAxis( cfrm, i, newaxis );
newaxis = astAnnul( newaxis );
}
/* Overlay the properties of the CmpFrame onto the basic Frame. */
astOverlay( this, NULL, cfrm );
/* Try to cast the basic Frame to the class of "obj". */
new = astCast( cfrm, obj );
/* Annull the basic Frame. */
cfrm = astAnnul( cfrm );
}
/* Return the new pointer. */
return new;
}
static double Centre( AstFrame *this_frame, int axis, double value, double gap, int *status ) {
/*
* Name:
* Centre
* Purpose:
* Find a "nice" central value for tabulating CmpFrame axis values.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double Centre( AstFrame *this_frame, int axis, double value,
* double gap, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astCentre method
* inherited from the Frame class).
* Description:
* This function returns an axis value which produces a nice formatted
* value suitable for a major tick mark on a plot axis, close to the
* supplied axis value.
* Parameters:
* this
* Pointer to the Frame.
* axis
* The number of the axis (zero-based) for which a central value
* is to be found.
* value
* An arbitrary axis value in the section that is being plotted.
* gap
* The gap size.
* Returned Value:
* The nice central axis value.
* Notes:
* - A value of zero is returned if the supplied gap size is zero.
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
double result; /* Result value to return */
int naxes1; /* Number of axes in frame1 */
int set1; /* Digits attribute set? */
int set2; /* Format attribute set? */
/* Initialise. */
result = 0.0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astCentre" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Since the component Frame is "managed" by the enclosing CmpFrame,
we next test if any Frame attributes which may affect the result
are undefined (i.e. have not been explicitly set). If so, we
over-ride them, giving them temporary values dictated by the
CmpFrame. Only the Digits and Format attributes are relevant here. */
set1 = astTestDigits( frame );
if ( !set1 ) astSetDigits( frame, astGetDigits( this ) );
set2 = astTestFormat( frame, axis );
if ( !set2 ) astSetFormat( frame, axis, astGetFormat( this, axis ) );
/* Invoke the Frame's astCentre method to find the central value. */
result = astCentre( frame, axis, value, gap );
/* Clear Frame attributes which were temporarily over-ridden. */
if ( !set1 ) astClearDigits( frame );
if ( !set2 ) astClearFormat( frame, axis );
}
/* If an error occurred, clear the returned value. */
if ( !astOK ) result = 0.0;
/* Return the result. */
return result;
}
static void ClearAlignSystem( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearAlignSystem
* Purpose:
* Clear the value of the AlignSystem attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearAlignSystem( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearAlignSystem method
* inherited from the Frame class).
* Description:
* This function clears the AlignSystem value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame AlignSystem value. */
(*parent_clearalignsystem)( this_frame, status );
/* Now clear the AlignSystem attribute in the two component Frames. */
astClearAlignSystem( this->frame1 );
astClearAlignSystem( this->frame2 );
}
static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* ClearAttrib
* Purpose:
* Clear an attribute value for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearAttrib protected
* method inherited from the Frame class).
* Description:
* This function clears the value of a specified attribute for a
* CmpFrame, so that the default value will subsequently be used.
* Parameters:
* this
* Pointer to the CmpFrame.
* attrib
* Pointer to a null terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
* Notes:
* - This function uses one-based axis numbering so that it is
* suitable for external (public) use.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstFrame *pfrm; /* Pointer to primary Frame containing axis */
char buf1[80]; /* For for un-indexed attribute name */
char buf2[80]; /* For for indexed attribute name */
int axis; /* Sipplied (1-based) axis index */
int len; /* Length of attrib string */
int nc; /* Number of characters used so dar */
int oldrep; /* Original error reporting state */
int paxis; /* Index of primary Frame axis */
int ok; /* Has the attribute been accessed succesfully? */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Obtain the length of the "attrib" string. */
len = strlen( attrib );
/* Indicate we have not yet acessed the attribute succesfully. */
ok = 0;
/* First check the supplied attribute name against each of the attribute
names defined by this class. In fact there is nothing to do here
since the CmpFrame class currently defines no extra attributes, but
this may change in the future. */
if( 0 ) {
/* If the attribute is not a CmpFrame specific attribute... */
} else if( astOK ) {
/* We want to allow easy access to the attributes of the component Frames.
That is, we do not want it to be necessary to extract a Frame from
its parent CmpFrame in order to access its attributes. For this reason
we first temporarily switch off error reporting so that if an attempt
to access the attribute fails, we can try a different approach. */
oldrep = astReporting( 0 );
/* Our first attempt is to see if the attribute is recognised by the parent
class (Frame). */
(*parent_clearattrib)( this_object, attrib, status );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise, clear the error condition so that we can try a different
approach. */
} else {
astClearStatus;
/* If the attribute is qualified by an axis index, try accessing it as an
attribute of the primary Frame containing the specified index. */
if ( nc = 0,
( 2 == astSscanf( attrib, "%[^(](%d)%n", buf1, &axis, &nc ) )
&& ( nc >= len ) ) {
/* Find the primary Frame containing the specified axis. */
astPrimaryFrame( this, axis - 1, &pfrm, &paxis );
if( astOK ) {
/* astPrimaryFrame returns the original - unpermuted - axis index within
the primary Frame. So we need to take into account any axis permutation
which has been applied to the primary Frame when forming the attribute name
to use below. Find the permuted (external) axis index which corresponds to
the internal (unpermuted) axis index "paxis". */
paxis = astValidateAxis( pfrm, paxis, 0, "astClear" );
/* Create a new attribute with the same name but with the axis index
appropriate to the primary Frame. */
sprintf( buf2, "%s(%d)", buf1, paxis + 1 );
/* Attempt to access the attribute. */
astClearAttrib( pfrm, buf2 );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise clear the status value, and try again without any axis index. */
} else {
astClearStatus;
astClearAttrib( pfrm, buf1 );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
/* Free the primary frame pointer. */
pfrm = astAnnul( pfrm );
}
/* If the attribute is not qualified by an axis index, try accessing it
using the primary Frame of each axis in turn. */
} else {
/* Loop round all axes attribute. */
for( axis = 0; axis < astGetNaxes( this ); axis++ ) {
/* Get the primary Frame containing this axis. */
astPrimaryFrame( this, axis, &pfrm, &paxis );
/* Attempt to access the attribute as an attribute of the primary Frame. */
astClearAttrib( pfrm, attrib );
/* Free the primary Frame pointer. */
pfrm = astAnnul( pfrm );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
}
}
/* Re-instate the original error reporting state. */
astReporting( oldrep );
}
/* Report an error if the attribute could not be accessed. */
if( !ok && astOK ) {
astError( AST__BADAT, "astClear: The %s given does not have an attribute "
"called \"%s\".", status, astGetClass( this ), attrib );
}
}
static void ClearDut1( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearDut1
* Purpose:
* Clear the value of the Dut1 attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearDut1( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearDut1 method
* inherited from the Frame class).
* Description:
* This function clears the Dut1 value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame Dut1 value. */
(*parent_cleardut1)( this_frame, status );
/* Now clear the Dut1 attribute in the two component Frames. */
astClearDut1( this->frame1 );
astClearDut1( this->frame2 );
}
static void ClearEpoch( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearEpoch
* Purpose:
* Clear the value of the Epoch attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearEpoch( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearEpoch method
* inherited from the Frame class).
* Description:
* This function clears the Epoch value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame epoch. */
(*parent_clearepoch)( this_frame, status );
/* Now clear the Epoch attribute in the two component Frames. */
astClearEpoch( this->frame1 );
astClearEpoch( this->frame2 );
}
static void ClearObsAlt( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearObsAlt
* Purpose:
* Clear the value of the ObsAlt attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearObsAlt( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearObsAlt method
* inherited from the Frame class).
* Description:
* This function clears the ObsAlt value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame ObsAlt. */
(*parent_clearobsalt)( this_frame, status );
/* Now clear the ObsAlt attribute in the two component Frames. */
astClearObsAlt( this->frame1 );
astClearObsAlt( this->frame2 );
}
static void ClearObsLat( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearObsLat
* Purpose:
* Clear the value of the ObsLat attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearObsLat( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearObsLat method
* inherited from the Frame class).
* Description:
* This function clears the ObsLat value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame ObsLat. */
(*parent_clearobslat)( this_frame, status );
/* Now clear the ObsLat attribute in the two component Frames. */
astClearObsLat( this->frame1 );
astClearObsLat( this->frame2 );
}
static void ClearObsLon( AstFrame *this_frame, int *status ) {
/*
* Name:
* ClearObsLon
* Purpose:
* Clear the value of the ObsLon attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void ClearObsLon( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astClearObsLon method
* inherited from the Frame class).
* Description:
* This function clears the ObsLon value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to clear the CmpFrame ObsLon. */
(*parent_clearobslon)( this_frame, status );
/* Now clear the ObsLon attribute in the two component Frames. */
astClearObsLon( this->frame1 );
astClearObsLon( this->frame2 );
}
static int ComponentMatch( AstCmpFrame *template, AstFrame *target, int matchsub,
int icomp, int **template_axes, int **target_axes,
AstMapping **map, AstFrame **result, int *status ) {
/*
* Name:
* ComponentMatch
* Purpose:
* Determine if conversion is possible between a component Frame in a
* template CmpFrame and another target Frame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int ComponentMatch( AstCmpFrame *template, AstFrame *target, int matchsub,
* int icomp, int **template_axes, int **target_axes,
* AstMapping **map, AstFrame **result, int *status )
* Class Membership:
* CmpFrame member function
* Description:
* This function is like astMatch, but it compares the supplied target
* Frame with a specified component Frame of the supplied template
* CmpFrame, rather than with the entire template CmpFrame. If a match
* is found, the returned Mapping, Frame and axis lists are adjusted so
* that they refer to the entire template CmpFrame.
* Parameters:
* template
* Pointer to the template CmpFrame. This describes the
* coordinate system (or set of possible coordinate systems)
* into which we wish to convert our coordinates.
* target
* Pointer to the target Frame. This describes the coordinate
* system in which we already have coordinates.
* matchsub
* If zero then a match only occurs if the template is of the same
* class as the target, or of a more specialised class. If non-zero
* then a match can occur even if this is not the case (i.e. if the
* target is of a more specialised class than the template). In
* this latter case, the target is cast down to the class of the
* template.
* icomp
* The index of the component Frame to use within the template
* CmpFrame; 0 or 1.
* template_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* template CmpFrame axis from which it is derived. If it is not
* derived from any template axis, a value of -1 will be
* returned instead.
* target_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* target Frame axis from which it is derived. If it is not
* derived from any target axis, a value of -1 will be returned
* instead.
* map
* Address of a location where a pointer to a new Mapping will
* be returned if the requested coordinate conversion is
* possible. If returned, the forward transformation of this
* Mapping may be used to convert coordinates between the
* "target" Frame and the "result" Frame (see below) and the
* inverse transformation will convert in the opposite
* direction.
* result
* Address of a location where a pointer to a new Frame will be
* returned if the requested coordinate conversion is
* possible. If returned, this Frame describes the coordinate
* system that results from applying the returned Mapping
* (above) to the "target" coordinate system. In general, this
* Frame will combine attributes from (and will therefore be
* more specific than) both the target Frame and the template
* CmpFrame. In particular, when the template allows the
* possibility of transformaing to any one of a set of
* alternative coordinate systems, the "result" Frame will
* indicate which of the alternatives was used.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A non-zero value is returned if the requested coordinate
* conversion is possible. Otherwise zero is returned (this will
* not in itself result in an error condition).
* Notes:
* - By default, the "result" Frame will have its number of axes
* and axis order determined by the "template" CmpFrame. However,
* if the PreserveAxes attribute of the template CmpFrame is
* non-zero, then the axis count and axis order of the "target"
* Frame will be used instead.
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstFrame *ctemplate;
AstFrame *fother;
AstFrame *fresult;
AstMapping *fmap;
AstPermMap *pm;
const int *perm;
int *ftarget_axes;
int *ftemplate_axes;
int *inperm;
int *operm;
int *outperm;
int axis;
int match;
int nax1;
int nax2;
int naxr;
int prax;
int praxo;
int result_naxes;
int template_naxes;
/* Initialise the returned values. */
*template_axes = NULL;
*target_axes = NULL;
*map = NULL;
*result = NULL;
match = 0;
/* Check the global error status. */
if ( !astOK ) return match;
/* Get a pointer to the requested component Frame of the template CmpFrame. */
ctemplate = icomp ? template->frame2 :template->frame1;
/* Temporarily set the component Frame PreserveAxes value to that of the
template CmpFrame. PreserveAxes determines whether astMatch returns a
result Frame that looks like the template or the target. */
if( astTestPreserveAxes( ctemplate ) ) {
praxo = astGetPreserveAxes( ctemplate ) ? 1 : 0;
} else {
praxo = -1;
}
prax = astGetPreserveAxes( template );
astSetPreserveAxes( ctemplate, prax );
/* Attempt to find a match between the axes of the supplied target Frame
and the axes of the selected component Frame in the template. */
match = astMatch( ctemplate, target, matchsub, &ftemplate_axes, &ftarget_axes,
&fmap, &fresult );
/* Restore the original PreserveAxes value in the component template
Frame. */
if( praxo == -1 ) {
astClearPreserveAxes( ctemplate );
} else {
astSetPreserveAxes( ctemplate, praxo );
}
/* If a match was found, we need to adjust the Mapping, Frame and axis
lists returned by the above call to astMatch so that they refer to the
full template CmpFrame or target (depending on PreserveAxes). */
if( match ) {
/* Get the number of axes in each component Frame and the total number of
axes in the template CmpFrame. */
nax1 = astGetNaxes( template->frame1 );
nax2 = astGetNaxes( template->frame2 );
template_naxes = nax1 + nax2;
/* Get the axis permutation array from the template and get its inverse.
The "perm" array holds the internal axis index at each external axis
index. The "operm" array holds the external axis index at each
internal axis index. */
perm = astGetPerm( template );
operm = astMalloc( sizeof( int )*(size_t)template_naxes );
if( astOK) {
for( axis = 0; axis < template_naxes; axis++ ) {
operm[ perm[ axis ] ] = axis;
}
/* The PreserveAxes attribute is used by astMatch to decide whether the
result Frame should inherit its axes from the target frame or the
template frame. First deal with cases where the order and count of axes
in the result frame is the same as the target. */
if( prax ) {
/* Return the result Frame and Mapping unchanged since they already refer
to the full target Frame used in the above call to astMatch. */
*result = astClone( fresult );
*map = astClone( fmap );
/* Also return the lists of target axes unchanged. */
*target_axes = ftarget_axes;
/* The values in the template axes list refer to the component template
Frame, but we want to return values that refer to the full template
CmpFrame. This involve sup to two setps 1) for the second component
Frame only, increase the axis numbers by the number of axes in the
first component Frame, and 2) take account of any axis permutation in
the template. First allocate memory for the returned list (which,
because PreserveAxes is zero, will have an entry for each template axis). */
*template_axes = astMalloc( sizeof( int )*template_naxes );
/* Now, if the second component of the template has been selected, increment
the template axes so that they give the internal axis indices of the
second component Frame within the CmpFrame. The first component axes
will be unchanged. */
result_naxes = astGetNaxes( fresult );
if( icomp ) {
for( axis = 0; axis < result_naxes; axis++ ) {
ftemplate_axes[ axis ] += nax1;
}
}
/* Now copy the internal axis value into the returned array, modifying them
in the process from internal to external axis ordering. */
for( axis = 0; axis < result_naxes; axis++ ) {
(*template_axes)[ axis ] = operm[ ftemplate_axes[ axis ] ];
}
/* If the order and count of axes in the result frame is the same as the
template CmpFrame... */
} else {
/* We need to adjust the Mapping, Frame and axis lists returned by the
above call to astMatch so that they refer to the supplied template
CmpFrame rather than to the selected component Frame. Get the number
of axes in the result Frame returned by astMatch (naxr) and the number
in the result Frame returned by this function (result-naxes). */
naxr = astGetNaxes( fresult );
result_naxes = ( icomp ? nax1 : nax2 ) + naxr;
/* Create the full result Frame by combining the partial result Frame
returned by astMatch above with the other component Frame from the
template. */
if( icomp ) {
fother = astCopy( template->frame1 );
*result = (AstFrame *) astCmpFrame( fother, fresult, "", status );
} else {
fother = astCopy( template->frame2 );
*result = (AstFrame *) astCmpFrame( fresult, fother, "", status );
}
fother = astAnnul( fother );
/* Modify the Mapping returned by the above call to astMatch so that it
produces positions within the full result Frame created above. */
if( icomp ) {
inperm = astMalloc( sizeof( int )*(size_t) naxr );
outperm = astMalloc( sizeof( int )*(size_t) result_naxes );
if( astOK ) {
for( axis = 0; axis < nax1; axis++ ) outperm[ axis ] = -1;
for( axis = 0; axis < naxr; axis++ ) {
outperm[ axis + nax1 ] = axis;
inperm[ axis ] = axis + nax1;
}
}
} else {
inperm = NULL;
outperm = NULL;
}
pm = astPermMap( naxr, inperm, result_naxes, outperm, NULL, "", status );
*map = (AstMapping *) astCmpMap( fmap, pm, 1, "", status );
/* Free resources. */
pm = astAnnul( pm );
if( inperm ) inperm = astFree( inperm );
if( outperm ) outperm = astFree( outperm );
/* Allocate memory for the returned list of axes. */
*template_axes = astMalloc( sizeof( int )*(size_t)result_naxes );
*target_axes = astMalloc( sizeof( int )*(size_t)result_naxes );
/* The axis indices returned by astMatch above will refer to the selected
component Frame rather than the permuted (i.e. external) axis indices for
the template CmpFrame. Change the template axes list so that they describe
the axes in the full result Frame in terms of the external template axis
numbering. This involves shifting the indices for the second component
Frame to leave room for the axes of the first component Frame, and
also permuting the axis indices from internal to external order. */
if( icomp ) {
for( axis = 0; axis < nax1; axis++ ) {
(*template_axes)[ axis ] = operm[ axis ];
}
for( ; axis < result_naxes; axis++ ) {
(*template_axes)[ axis ] = operm[ nax1 + ftemplate_axes[ axis - nax1 ] ];
}
} else {
for( axis = 0; axis < nax1; axis++ ) {
(*template_axes)[ axis ] = operm[ ftemplate_axes[ axis ] ];
}
for( ; axis < result_naxes; axis++ ) {
(*template_axes)[ axis ] = operm[ axis ];
}
}
/* Change the target axes list so that they describe the axes in the
full result Frame (this just means padding with -1 to indicate that
the extra axes do not correspond to any axis in the target). */
for( axis = 0; axis < naxr; axis++ ) {
(*target_axes)[ axis ] = ftarget_axes[ axis ];
}
for( ; axis < result_naxes; axis++ ) {
(*target_axes)[ axis ] = -1;
}
/* Free resources */
ftarget_axes = astFree( ftarget_axes );
}
}
operm = astFree( operm );
ftemplate_axes = astFree( ftemplate_axes );
fmap = astAnnul( fmap );
fresult = astAnnul( fresult );
}
/* If an error occurred, free all allocated memory, annul the result
Object pointers and clear all returned values. */
if ( !astOK ) {
*template_axes = astFree( *template_axes );
*target_axes = astFree( *target_axes );
*map = astAnnul( *map );
*result = astAnnul( *result );
match = 0;
}
/* Return the result. */
return match;
}
static void Decompose( AstMapping *this_cmpframe, AstMapping **map1,
AstMapping **map2, int *series, int *invert1,
int *invert2, int *status ) {
/*
*
* Name:
* Decompose
* Purpose:
* Decompose a CmpFrame into two component CmpFrames.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* void Decompose( AstMapping *this, AstMapping **map1,
* AstMapping **map2, int *series,
* int *invert1, int *invert2, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astDecompose
* method inherited from the Mapping class).
* Description:
* This function returns pointers to two Mappings which, when applied
* either in series or parallel, are equivalent to the supplied Mapping.
*
* Since the Frame class inherits from the Mapping class, Frames can
* be considered as special types of Mappings and so this method can
* be used to decompose either CmpMaps or CmpFrames.
* Parameters:
* this
* Pointer to the Mapping.
* map1
* Address of a location to receive a pointer to first component
* Mapping.
* map2
* Address of a location to receive a pointer to second component
* Mapping.
* series
* Address of a location to receive a value indicating if the
* component Mappings are applied in series or parallel. A non-zero
* value means that the supplied Mapping is equivalent to applying map1
* followed by map2 in series. A zero value means that the supplied
* Mapping is equivalent to applying map1 to the lower numbered axes
* and map2 to the higher numbered axes, in parallel.
* invert1
* The value of the Invert attribute to be used with map1.
* invert2
* The value of the Invert attribute to be used with map2.
* status
* Pointer to the inherited status variable.
* Notes:
* - Any changes made to the component rames using the returned
* pointers will be reflected in the supplied CmpFrame.
*-
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpMap structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpMap structure. */
this = (AstCmpFrame *) this_cmpframe;
/* The components Frames of a CmpFrame are considered to be parallel
Mappings. */
if( series ) *series = 0;
/* The Frames are returned in their original order whether or not the
CmpFrame has been inverted. */
if( map1 ) *map1 = astClone( this->frame1 );
if( map2 ) *map2 = astClone( this->frame2 );
/* If the CmpFrame has been inverted, return inverted Invert flags. */
if( astGetInvert( this ) ) {
if( invert1 ) *invert1 = astGetInvert( this->frame1 ) ? 0 : 1;
if( invert2 ) *invert2 = astGetInvert( this->frame2 ) ? 0 : 1;
/* If the CmpFrame has not been inverted, return the current Invert flags. */
} else {
if( invert1 ) *invert1 = astGetInvert( this->frame1 );
if( invert2 ) *invert2 = astGetInvert( this->frame2 );
}
}
static double Distance( AstFrame *this_frame,
const double point1[], const double point2[], int *status ) {
/*
* Name:
* Distance
* Purpose:
* Calculate the distance between two points.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double Distance( AstFrame *this,
* const double point1[], const double point2[], int *status )
* Class Membership:
* CmpFrame member function (over-rides the astDistance method
* inherited from the Frame class).
* Description:
* This function finds the distance between two points whose
* CmpFrame coordinates are given. The distance calculated is that
* along the geodesic curve that joins the two points. This is
* computed as the Cartesian sum of the distances between the
* points when their coordinates are projected into each of the
* CmpFrame's component Frames.
* Parameters:
* this
* Pointer to the CmpFrame.
* point1
* An array of double, with one element for each CmpFrame axis,
* containing the coordinates of the first point.
* point2
* An array of double, with one element for each CmpFrame axis,
* containing the coordinates of the second point.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The distance between the two points.
* Notes:
* - This function will return a "bad" result value (AST__BAD) if
* any of the input coordinates has this value.
* - A "bad" value will also be returned if this function is
* invoked with the AST error status set or if it should fail for
* any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
const int *perm; /* Axis permutation array */
double *p1; /* Pointer to permuted point1 coordinates */
double *p2; /* Pointer to permuted point2 coordinates */
double dist1; /* Distance in frame1 */
double dist2; /* Distance in frame2 */
double result; /* Value to return */
int axis; /* Loop counter for axes */
int naxes1; /* Number of axes in frame1 */
int naxes; /* Number of axes in CmpFrame */
int ok; /* No "bad" coordinates found? */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Obtain the number of axes in the CmpFrame and in the first
component Frame. */
naxes = astGetNaxes( this );
naxes1 = astGetNaxes( this->frame1 );
/* Allocate memory to hold the permuted coordinates of each point. */
p1 = astMalloc( sizeof( double ) * (size_t) naxes );
p2 = astMalloc( sizeof( double ) * (size_t) naxes );
if ( astOK ) {
/* Examine the coordinates of both points and note if any coordinate
value is "bad". */
ok = 1;
for ( axis = 0; axis < naxes; axis++ ) {
if ( ( point1[ axis ] == AST__BAD ) ||
( point2[ axis ] == AST__BAD ) ) {
ok = 0;
break;
/* Permute good coordinates using the CmpFrame's axis permutation
array to put them into the order required internally (i.e. by the
two component Frames). */
} else {
p1[ perm[ axis ] ] = point1[ axis ];
p2[ perm[ axis ] ] = point2[ axis ];
}
}
/* If no "bad" coordinates were found, obtain the distance between the
two points when their coordinates are projected into each component
Frame. */
if ( ok ) {
dist1 = astDistance( this->frame1, p1, p2 );
dist2 = astDistance( this->frame2, p1 + naxes1, p2 + naxes1 );
/* If the distances found were OK, compute the distance between the
two points as the Cartesian sum of the two component distances. */
if ( astOK && ( dist1 != AST__BAD ) && ( dist2 != AST__BAD ) ) {
result = sqrt( ( dist1 * dist1 ) + ( dist2 * dist2 ) );
}
}
}
/* Free the memory used for the permuted coordinates. */
p1 = astFree( p1 );
p2 = astFree( p2 );
/* If an error occurred, clear the result value. */
if ( !astOK ) result = AST__BAD;
/* Return the result. */
return result;
}
static int Fields( AstFrame *this_frame, int axis, const char *fmt,
const char *str, int maxfld, char **fields,
int *nc, double *val, int *status ) {
/*
*+
* Name:
* astFields
* Purpose:
* Identify numerical fields within a formatted CmpFrame axis value.
* Type:
* Protected virtual function.
* Synopsis:
* #include "cmpframe.h"
* int astFields( AstFrame *this, int axis, const char *fmt,
* const char *str, int maxfld, char **fields,
* int *nc, double *val )
* Class Membership:
* CmpFrame member function (over-rides the protected astFields
* method inherited from the Frame class).
* Description:
* This function identifies the numerical fields within a CmpFrame axis
* value that has been formatted using astAxisFormat. It assumes that
* the value was formatted using the supplied format string. It also
* returns the equivalent floating point value.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the CmpFrame axis for which the values have been
* formatted (axis numbering starts at zero for the first axis).
* fmt
* Pointer to a constant null-terminated string containing the
* format used when creating "str".
* str
* Pointer to a constant null-terminated string containing the
* formatted value.
* maxfld
* The maximum number of fields to identify within "str".
* fields
* A pointer to an array of at least "maxfld" character pointers.
* Each element is returned holding a pointer to the start of the
* corresponding field in "str" (in the order in which they occur
* within "str"), or NULL if no corresponding field can be found.
* nc
* A pointer to an array of at least "maxfld" integers. Each
* element is returned holding the number of characters in the
* corresponding field, or zero if no corresponding field can be
* found.
* val
* Pointer to a location at which to store the value
* equivalent to the returned field values. If this is NULL,
* it is ignored.
* Returned Value:
* The number of fields succesfully identified and returned.
* Notes:
* - Leading and trailing spaces are ignored.
* - If the formatted value is not consistent with the supplied format
* string, then a value of zero will be returned, "fields" will be
* returned holding NULLs, "nc" will be returned holding zeros, and
* "val" is returned holding VAL__BAD.
* - Fields are counted from the start of the formatted string. If the
* string contains more than "maxfld" fields, then trailing fields are
* ignored.
* - If this function is invoked with the global error status set, or
* if it should fail for any reason, then a value of zero will be returned
* as the function value, and "fields", "nc" and "val" will be returned
* holding their supplied values
*-
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
int naxes1; /* Number of axes in frame1 */
int result; /* Result field count to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astFields" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Invoke the Frame's astFields method to perform the processing. */
result = astFields( frame, axis, fmt, str, maxfld, fields,
nc, val );
}
/* If an error occurred, clear the returned value. */
if ( !astOK ) result = 0;
/* Return the result. */
return result;
}
static const char *Format( AstFrame *this_frame, int axis, double value, int *status ) {
/*
* Name:
* Format
* Purpose:
* Format a coordinate value for a CmpFrame axis.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const char *Format( AstFrame *this, int axis, double value, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astFormat method
* inherited from the Frame class).
* Description:
* This function returns a pointer to a string containing the
* formatted (character) version of a coordinate value for a
* CmpFrame axis. The formatting applied is that specified by a
* previous invocation of the astSetFormat method (or a default
* format appropriate to the axis in question).
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the axis (zero-based) for which formatting is
* to be performed.
* value
* The coordinate value to be formatted.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to a null-terminated string containing the formatted
* value.
* Notes:
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
const char *result; /* Pointer value to return */
int naxes1; /* Number of axes in frame1 */
int set; /* Digits attribute set? */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astFormat" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Since the component Frame is "managed" by the enclosing CmpFrame,
we next test if any Frame attributes which may affect the result
are undefined (i.e. have not been explicitly set). If so, we
over-ride them, giving them temporary values dictated by the
CmpFrame. Only the Digits attribute is relevant here. */
set = astTestDigits( frame );
if ( !set ) astSetDigits( frame, astGetDigits( this ) );
/* Invoke the Frame's astFormat method to format the value. */
result = astFormat( frame, axis, value );
/* Clear Frame attributes which were temporarily over-ridden. */
if ( !set ) astClearDigits( frame );
}
/* If an error occurred, clear the result value. */
if ( !astOK ) result = NULL;
/* Return the result. */
return result;
}
static AstPointSet *FrameGrid( AstFrame *this_object, int size, const double *lbnd,
const double *ubnd, int *status ){
/*
* Name:
* FrameGrid
* Purpose:
* Return a grid of points covering a rectangular area of a Frame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstPointSet *FrameGrid( AstFrame *this_frame, int size,
* const double *lbnd, const double *ubnd,
* int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astFrameGrid
* method inherited from the Frame class).
* Description:
* This function returns a PointSet containing positions spread
* approximately evenly throughtout a specified rectangular area of
* the Frame.
* Parameters:
* this
* Pointer to the Frame.
* size
* The preferred number of points in the returned PointSet. The
* actual number of points in the returned PointSet may be
* different, but an attempt is made to stick reasonably closely to
* the supplied value.
* lbnd
* Pointer to an array holding the lower bound of the rectangular
* area on each Frame axis. The array should have one element for
* each Frame axis.
* ubnd
* Pointer to an array holding the upper bound of the rectangular
* area on each Frame axis. The array should have one element for
* each Frame axis.
* Returned Value:
* A pointer to a new PointSet holding the grid of points.
* Notes:
* - A NULL pointer is returned if an error occurs.
*/
/* Local Variables: */
AstCmpFrame *this;
AstPointSet *ps1;
AstPointSet *ps2;
AstPointSet *result;
const int *perm;
double **ptr1;
double **ptr2;
double **ptr;
double *lbnd1;
double *lbnd2;
double *p;
double *ubnd1;
double *ubnd2;
double v;
int axis;
int iax1;
int iax2;
int iaxis;
int ip1;
int ip2;
int nax1;
int nax2;
int naxes;
int npoint1;
int npoint2;
int npoint;
int size1;
int size2;
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Get the number of axes in each component Frame, and the total number
of axes. */
nax1 = astGetNaxes( this->frame1 );
nax2 = astGetNaxes( this->frame2 );
naxes = nax1 + nax2;
/* Allocate memory to hold bounds for each component Frame */
lbnd1 = astMalloc( nax1*sizeof( double ) );
ubnd1 = astMalloc( nax1*sizeof( double ) );
lbnd2 = astMalloc( nax2*sizeof( double ) );
ubnd2 = astMalloc( nax2*sizeof( double ) );
/* Obtain a pointer to the CmpFrame's axis permutation array. This array
holds the original axis index for each current Frame axis index. */
perm = astGetPerm( this );
/* Check pointers can be used safely, and check the supplied size value
is good. */
if( astOK && size > 0 ) {
/* Copy the supplied bounds into the work arrays, permuting them in the
process so that they use the internal axis numbering of the two
component Frames. */
for( axis = 0; axis < naxes; axis++ ) {
iaxis = perm[ axis ];
if( iaxis < nax1 ) {
lbnd1[ iaxis ] = lbnd[ axis ];
ubnd1[ iaxis ] = ubnd[ axis ];
} else {
iaxis -= nax1;
lbnd2[ iaxis ] = lbnd[ axis ];
ubnd2[ iaxis ] = ubnd[ axis ];
}
}
/* Get the target number of points to be used in the grid that covers the
first Frame. */
size1 = (int)( pow( size, (double)nax1/(double)naxes ) + 0.5 );
/* Get the target number of points to be used in the grid that covers the
second Frame. */
size2 = (int)( (double)size/(double)size1 + 0.5 );
/* Get the grids covering the two component Frames, and get the actual sizes
of the resulting PointSets. */
ps1 = astFrameGrid( this->frame1, size1, lbnd1, ubnd1 );
ptr1 = astGetPoints( ps1 );
npoint1 = astGetNpoint( ps1 );
ps2 = astFrameGrid( this->frame2, size2, lbnd2, ubnd2 );
ptr2 = astGetPoints( ps2 );
npoint2 = astGetNpoint( ps2 );
/* Get the number of points in the returned FrameSet, and then create a
PointSet large enough to hold them. */
npoint = npoint1*npoint2;
result = astPointSet( npoint, naxes, " ", status );
ptr = astGetPoints( result );
if( astOK ) {
/* For every point in the first Frame's PointSet, duplicate the second
Frame's entire PointSet, using the first Frame's axis values. */
for( ip1 = 0; ip1 < npoint1; ip1++ ) {
for( iax1 = 0; iax1 < nax1; iax1++ ) {
p = ptr[ iax1 ];
v = ptr1[ iax1 ][ ip1 ];
for( ip2 = 0; ip2 < npoint2; ip2++ ) {
*(p++) = v;
}
ptr[ iax1 ] = p;
}
for( iax2 = 0; iax2 < nax2; iax2++ ) {
memcpy( ptr[ iax2 + nax1 ], ptr2[ iax2 ], npoint2*sizeof( double ) );
ptr[ iax2 + nax1 ] += npoint2*sizeof( double );
}
}
/* Permute the returned PointSet so that it uses external axis numbering. */
astPermPoints( result, 1, perm );
}
/* Free resources. */
ps1 = astAnnul( ps1 );
ps2 = astAnnul( ps2 );
/* Report error if supplied values were bad. */
} else if( astOK ) {
astError( AST__ATTIN, "astFrameGrid(%s): The supplied grid "
"size (%d) is invalid (programming error).",
status, astGetClass( this ), size );
}
/* Free resources. */
lbnd1 = astFree( lbnd1 );
ubnd1 = astFree( ubnd1 );
lbnd2 = astFree( lbnd2 );
ubnd2 = astFree( ubnd2 );
/* Annul the returned PointSet if an error has occurred. */
if( !astOK ) result = astAnnul( result );
/* Return the PointSet holding the grid. */
return result;
}
static double Gap( AstFrame *this_frame, int axis, double gap, int *ntick, int *status ) {
/*
* Name:
* Gap
* Purpose:
* Find a "nice" gap for tabulating CmpFrame axis values.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double Gap( AstFrame *this, int axis, double gap, int *ntick, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astGap method
* inherited from the Frame class).
* Description:
* This function returns a gap size which produces a nicely spaced
* series of formatted values for a CmpFrame axis, the returned gap
* size being as close as possible to the supplied target gap
* size. It also returns a convenient number of divisions into
* which the gap can be divided.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the axis (zero-based) for which a gap is to be found.
* gap
* The target gap size.
* ntick
* Address of an int in which to return a convenient number of
* divisions into which the gap can be divided.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The nice gap size.
* Notes:
* - A value of zero is returned if the target gap size is zero.
* - A negative gap size is returned if the supplied gap size is negative.
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
double result; /* Result value to return */
int naxes1; /* Number of axes in frame1 */
int set; /* Digits attribute set? */
/* Initialise. */
result = 0.0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astGap" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Since the component Frame is "managed" by the enclosing CmpFrame,
we next test if any Frame attributes which may affect the result
are undefined (i.e. have not been explicitly set). If so, we
over-ride them, giving them temporary values dictated by the
CmpFrame. Only the Digits attribute is relevant here. */
set = astTestDigits( frame );
if ( !set ) astSetDigits( frame, astGetDigits( this ) );
/* Invoke the Frame's astGap method to find the gap size. */
result = astGap( frame, axis, gap, ntick );
/* Clear Frame attributes which were temporarily over-ridden. */
if ( !set ) astClearDigits( frame );
}
/* If an error occurred, clear the returned value. */
if ( !astOK ) result = 0.0;
/* Return the result. */
return result;
}
static int GetObjSize( AstObject *this_object, int *status ) {
/*
* Name:
* GetObjSize
* Purpose:
* Return the in-memory size of an Object.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetObjSize( AstObject *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetObjSize protected
* method inherited from the parent class).
* Description:
* This function returns the in-memory size of the supplied CmpFrame,
* in bytes.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The Object size, in bytes.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointers to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Invoke the GetObjSize method inherited from the parent class, and then
add on any components of the class structure defined by thsi class
which are stored in dynamically allocated memory. */
result = (*parent_getobjsize)( this_object, status );
result += astGetObjSize( this->frame1 );
result += astGetObjSize( this->frame2 );
result += astTSizeOf( this->perm );
/* If an error occurred, clear the result value. */
if ( !astOK ) result = 0;
/* Return the result, */
return result;
}
static AstSystemType GetAlignSystem( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetAlignSystem
* Purpose:
* Obtain the AlignSystem attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstSystemType GetAlignSystem( AstFrame *this_frame, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetAlignSystem protected
* method inherited from the Frame class).
* Description:
* This function returns the AlignSystem attribute for a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The AlignSystem value.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstSystemType result; /* Value to return */
/* Initialise. */
result = AST__BADSYSTEM;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a AlignSystem attribute has been set, invoke the parent method to obtain
it. */
if ( astTestAlignSystem( this ) ) {
result = (*parent_getalignsystem)( this_frame, status );
/* Otherwise, provide a suitable default. */
} else {
result = AST__COMP;
}
/* Return the result. */
return result;
}
static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* GetAttrib
* Purpose:
* Get the value of a specified attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "CmpFrame.h"
* const char *GetAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astGetAttrib
* method inherited from the Frame class).
* Description:
* This function returns a pointer to the value of a specified
* attribute for a CmpFrame, formatted as a character string.
* Parameters:
* this
* Pointer to the CmpFrame.
* attrib
* Pointer to a null-terminated string containing the name of
* the attribute whose value is required. This name should be in
* lower case, with all white space removed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* - Pointer to a null-terminated string containing the attribute
* value.
* Notes:
* - This function uses one-based axis numbering so that it is
* suitable for external (public) use.
* - The returned string pointer may point at memory allocated
* within the CmpFrame, or at static memory. The contents of the
* string may be over-written or the pointer may become invalid
* following a further invocation of the same function or any
* modification of the CmpFrame. A copy of the string should
* therefore be made if necessary.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstFrame *pfrm; /* Pointer to primary Frame containing axis */
char buf1[80]; /* For for un-indexed attribute name */
char buf2[80]; /* For for indexed attribute name */
const char *result; /* Pointer value to return */
int axis; /* Supplied (1-base) axis index */
int len; /* Length of attrib string */
int nc; /* Length of string used so far */
int ok; /* Has the attribute been accessed succesfully? */
int oldrep; /* Original error reporting state */
int paxis; /* Index of primary Frame axis */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Obtain the length of the attrib string. */
len = strlen( attrib );
/* Indicate we have not yet acessed the attribute succesfully. */
ok = 0;
/* First check the supplied attribute name against each of the attribute
names defined by this class. In fact there is nothing to do here
since the CmpFrame class currently defines no extra attributes, but
this may change in the future. */
if( 0 ) {
/* If the attribute is not a CmpFrame specific attribute... */
} else if( astOK ) {
/* We want to allow easy access to the attributes of the component Frames.
That is, we do not want it to be necessary to extract a Frame from
its parent CmpFrame in order to access its attributes. For this reason
we first temporarily switch off error reporting so that if an attempt
to access the attribute fails, we can try a different approach. */
oldrep = astReporting( 0 );
/* If the attribute is qualified by an axis index, try accessing it as an
attribute of the primary Frame containing the specified index. */
if ( nc = 0,
( 2 == astSscanf( attrib, "%[^(](%d)%n", buf1, &axis, &nc ) )
&& ( nc >= len ) ) {
/* Find the primary Frame containing the specified axis. */
astPrimaryFrame( this, axis - 1, &pfrm, &paxis );
if( astOK ) {
/* astPrimaryFrame returns the original - unpermuted - axis index within
the primary Frame. So we need to take into account any axis permutation
which has been applied to the primary Frame when forming the attribute name
to use below. Find the permuted (external) axis index which corresponds to
the internal (unpermuted) axis index "paxis". */
paxis = astValidateAxis( pfrm, paxis, 0, "astGet" );
/* Create a new attribute with the same name but with the axis index
appropriate to the primary Frame. */
sprintf( buf2, "%s(%d)", buf1, paxis + 1 );
/* Attempt to access the attribute. */
result = astGetAttrib( pfrm, buf2 );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise clear the status value, and try again without any axis index. */
} else {
astClearStatus;
result = astGetAttrib( pfrm, buf1 );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
/* Free the primary frame pointer. */
pfrm = astAnnul( pfrm );
}
/* If the attribute is not qualified by an axis index, try accessing it
using the parent Frame method. */
} else if( astOK ){
result = (*parent_getattrib)( this_object, attrib, status );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise, clear the error condition so that we can try a different
approach. */
} else {
astClearStatus;
/* Next try accessing it using the primary Frame of each axis in turn.
Loop round all axes, until one is found which defines the specified
attribute. */
for( axis = 0; axis < astGetNaxes( this ) && !ok; axis++ ) {
/* Get the primary Frame containing this axis. */
astPrimaryFrame( this, axis, &pfrm, &paxis );
/* Attempt to access the attribute as an attribute of the primary Frame. */
result = astGetAttrib( pfrm, attrib );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
/* Free the primary Frame pointer. */
pfrm = astAnnul( pfrm );
}
}
}
/* Re-instate the original error reporting state. */
astReporting( oldrep );
}
/* Report an error if the attribute could not be accessed. */
if( !ok && astOK ) {
astError( AST__BADAT, "astGet: The %s given does not have an attribute "
"called \"%s\".", status, astGetClass( this ), attrib );
}
/* Return the result. */
return result;
}
static int GenAxisSelection( int naxes, int nselect, int axes[], int *status ) {
/*
* Name:
* GenAxisSelection
* Purpose:
* Generate a sequence of axis selections.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GenAxisSelection( int naxes, int nselect, int axes[], int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function generates a sequence of axis selections covering
* all possible ways of selecting a specified number of axes from a
* Frame.
* Parameters:
* naxes
* The number of axes in the Frame.
* nselect
* The number of axes to be selected (between zero and "naxes").
* axes
* An array with "nselect" elements. On entry it should contain
* the (zero-based) indices of the initial set of distinct axes
* to be selected, in increasing order (initiallly this should
* just be the sequence [0,1,...nselect-1]). On exit, these
* indices will be updated to identify the next possible axis
* selection.
*
* By invoking the function repeatedly, and passing this array
* each time, all possible selections will be covered.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if a new axis selection has been returned. Zero if all
* possible selections have already been returned (in which case
* the selection returned this time is not valid and should not be
* used).
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
int i; /* Loop counter for axes */
int iselect; /* Selection index */
/* Check the global error status. */
if ( !astOK ) return 0;
/* Start with the first axis index and loop until the selection has
been updated. */
iselect = 0;
while ( 1 ) {
/* Increment the current axis index if it is the final one or it can
be incremented without equalling the one which follows (this ensures
the indices remain in increasing order). */
if ( ( iselect == ( nselect - 1 ) ) ||
( axes[ iselect + 1 ] > ( axes[ iselect ] + 1 ) ) ) {
axes[ iselect ]++;
/* After incrementing an index, reset all previous indices to their
starting values. */
for ( i = 0; i < iselect; i++ ) axes[ i ] = i;
break;
/* If this axis index can't be incremented, consider the next one.
Quit if we go beyond the end of the selection array. */
} else if ( ++iselect >= nselect ) {
break;
}
}
/* Return a result to indicate if we've reached the final selection
(when the final axis index goes out of range). */
return ( nselect > 0 ) && ( axes[ nselect - 1 ] < naxes );
}
static AstAxis *GetAxis( AstFrame *this_frame, int axis, int *status ) {
/*
* Name:
* GetAxis
* Purpose:
* Obtain a pointer to a specified Axis from a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstAxis *GetAxis( AstFrame *this, int axis, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetAxis method
* inherited from the Frame class).
* Description:
* This function returns a pointer to the Axis object associated
* with one of the axes of a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the axis (zero-based) for which an Axis pointer
* is required.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to the requested Axis object.
* Notes:
* - The reference count of the requested Axis object will be
* incremented by one to reflect the additional pointer returned by
* this function.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Vaiables: */
AstAxis *result; /* Pointer value to return */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int naxes1; /* Number of axes for frame1 */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astGetAxis" );
/* Obtain the number of axes for frame1. */
naxes1 = astGetNaxes( this->frame1 );
/* Decide which Frame the axis belongs to and obtain the required
Axis pointer. */
if ( axis < naxes1 ) {
result = astGetAxis( this->frame1, axis );
} else {
result = astGetAxis( this->frame2, axis - naxes1 );
}
/* Return the result. */
return result;
}
static const char *GetDomain( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetDomain
* Purpose:
* Obtain a pointer to the Domain attribute string for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const char *GetDomain( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetDomain protected
* method inherited from the Frame class).
* Description:
* This function returns a pointer to the Domain attribute string
* for a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to a constant null-terminated string containing the
* Domain value.
* Notes:
* - The returned pointer or the string it refers to may become
* invalid following further invocation of this function or
* modification of the CmpFrame.
* - A NULL pointer is returned if this function is invoked with
* the global error status set or if it should fail for any reason.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Declare the thread specific global data */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
char *dom1; /* Pointer to first sub domain */
char *dom2; /* Pointer to second sub domain */
const char *result; /* Pointer value to return */
const char *t; /* Temporary pointer */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Get a pointer to the structure holding thread-specific global data. */
astGET_GLOBALS(this_frame);
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a Domain attribute string has been set, invoke the parent method
to obtain a pointer to it. */
if ( astTestDomain( this ) ) {
result = (*parent_getdomain)( this_frame, status );
/* Otherwise, provide a pointer to a suitable default string. */
} else {
/* Get the Domain value for the two component Frames and store new
copies of them. This is necessary because the component Frames may
themselves be CmpFrames, resulting in this function being called
recursively and so causing the static "getdomain_buff" array to be used in
multiple contexts. */
t = astGetDomain( this->frame1 );
dom1 = t ? astStore( NULL, t, strlen(t) + 1 ) : NULL;
t = astGetDomain( this->frame2 );
dom2 = t ? astStore( NULL, t, strlen(t) + 1 ) : NULL;
if( dom2 ) {
if( strlen( dom1 ) > 0 || strlen( dom2 ) > 0 ) {
sprintf( (char *) getdomain_buff, "%s-%s", dom1, dom2 );
result = getdomain_buff;
} else {
result = "CMP";
}
}
dom1 = astFree( dom1 );
dom2 = astFree( dom2 );
}
/* Return the result. */
return result;
}
static int GetMaxAxes( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetMaxAxes
* Purpose:
* Get a value for the MaxAxes attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetMaxAxes( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetMaxAxes method
* inherited from the Frame class).
* Description:
* This function returns a value for the MaxAxes attribute of a
* CmpFrame. A large default value is supplied that is much larger
* than the maximum likely number of axes in a Frame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The MaxAxes attribute value.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a value has been set explicitly for the CmpFrame, return it.
Otherwise returned a large default value. */
if( astTestMaxAxes( this ) ) {
result = (*parent_getmaxaxes)( this_frame, status );
} else {
result = 1000000;
}
/* Return the result. */
return result;
}
static int GetMinAxes( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetMinAxes
* Purpose:
* Get a value for the MinAxes attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetMinAxes( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetMinAxes method
* inherited from the Frame class).
* Description:
* This function returns a value for the MinAxes attribute of a
* CmpFrame. A default value of zero is used.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The MinAxes attribute value.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a value has been set explicitly for the CmpFrame, return it.
Otherwise returned a default value of zero. */
if( astTestMinAxes( this ) ) {
result = (*parent_getminaxes)( this_frame, status );
} else {
result = 0;
}
/* Return the result. */
return result;
}
static double GetDut1( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetDut1
* Purpose:
* Get a value for the Dut1 attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double GetDut1( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetDut1 method
* inherited from the Frame class).
* Description:
* This function returns a value for the Dut1 attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The Dut1 attribute value.
* Notes:
* - A value of AST__BAD will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
double result; /* Result value to return */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If an Dut1 attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestDut1( this ) ) {
result = (*parent_getdut1)( this_frame, status );
/* Otherwise, if the Dut1 value is set in the first component Frame,
return it. */
} else if( astTestDut1( this->frame1 ) ){
result = astGetDut1( this->frame1 );
/* Otherwise, if the Dut1 value is set in the second component Frame,
return it. */
} else if( astTestDut1( this->frame2 ) ){
result = astGetDut1( this->frame2 );
/* Otherwise, return the default Dut1 value from the first component
Frame. */
} else {
result = astGetDut1( this->frame1 );
}
/* Return the result. */
return result;
}
static double GetEpoch( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetEpoch
* Purpose:
* Get a value for the Epoch attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double GetEpoch( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetEpoch method
* inherited from the Frame class).
* Description:
* This function returns a value for the Epoch attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The Epoch attribute value.
* Notes:
* - A value of AST__BAD will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
double result; /* Result value to return */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If an Epoch attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestEpoch( this ) ) {
result = (*parent_getepoch)( this_frame, status );
/* Otherwise, if the Epoch value is set in the first component Frame,
return it. */
} else if( astTestEpoch( this->frame1 ) ){
result = astGetEpoch( this->frame1 );
/* Otherwise, if the Epoch value is set in the second component Frame,
return it. */
} else if( astTestEpoch( this->frame2 ) ){
result = astGetEpoch( this->frame2 );
/* Otherwise, return the default Epoch value from the first component
Frame. */
} else {
result = astGetEpoch( this->frame1 );
}
/* Return the result. */
return result;
}
static double GetObsAlt( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetObsAlt
* Purpose:
* Get a value for the ObsAlt attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double GetObsAlt( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetObsAlt method
* inherited from the Frame class).
* Description:
* This function returns a value for the ObsAlt attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The ObsAlt attribute value.
* Notes:
* - A value of AST__BAD will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
double result; /* Result value to return */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If an ObsAlt attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestObsAlt( this ) ) {
result = (*parent_getobsalt)( this_frame, status );
/* Otherwise, if the ObsAlt value is set in the first component Frame,
return it. */
} else if( astTestObsAlt( this->frame1 ) ){
result = astGetObsAlt( this->frame1 );
/* Otherwise, if the ObsAlt value is set in the second component Frame,
return it. */
} else if( astTestObsAlt( this->frame2 ) ){
result = astGetObsAlt( this->frame2 );
/* Otherwise, return the default ObsAlt value from the first component
Frame. */
} else {
result = astGetObsAlt( this->frame1 );
}
/* Return the result. */
return result;
}
static double GetObsLat( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetObsLat
* Purpose:
* Get a value for the ObsLat attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double GetObsLat( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetObsLat method
* inherited from the Frame class).
* Description:
* This function returns a value for the ObsLat attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The ObsLat attribute value.
* Notes:
* - A value of AST__BAD will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
double result; /* Result value to return */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If an ObsLat attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestObsLat( this ) ) {
result = (*parent_getobslat)( this_frame, status );
/* Otherwise, if the ObsLat value is set in the first component Frame,
return it. */
} else if( astTestObsLat( this->frame1 ) ){
result = astGetObsLat( this->frame1 );
/* Otherwise, if the ObsLat value is set in the second component Frame,
return it. */
} else if( astTestObsLat( this->frame2 ) ){
result = astGetObsLat( this->frame2 );
/* Otherwise, return the default ObsLat value from the first component
Frame. */
} else {
result = astGetObsLat( this->frame1 );
}
/* Return the result. */
return result;
}
static double GetObsLon( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetObsLon
* Purpose:
* Get a value for the ObsLon attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* double GetObsLon( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetObsLon method
* inherited from the Frame class).
* Description:
* This function returns a value for the ObsLon attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The ObsLon attribute value.
* Notes:
* - A value of AST__BAD will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
double result; /* Result value to return */
/* Initialise. */
result = AST__BAD;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If an ObsLon attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestObsLon( this ) ) {
result = (*parent_getobslon)( this_frame, status );
/* Otherwise, if the ObsLon value is set in the first component Frame,
return it. */
} else if( astTestObsLon( this->frame1 ) ){
result = astGetObsLon( this->frame1 );
/* Otherwise, if the ObsLon value is set in the second component Frame,
return it. */
} else if( astTestObsLon( this->frame2 ) ){
result = astGetObsLon( this->frame2 );
/* Otherwise, return the default ObsLon value from the first component
Frame. */
} else {
result = astGetObsLon( this->frame1 );
}
/* Return the result. */
return result;
}
static int GetNaxes( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetNaxes
* Purpose:
* Determine how many axes a CmpFrame has.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetNaxes( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetNaxes method
* inherited from the Frame class).
* Description:
* This function returns the number of axes for a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The number of CmpFrame axes.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int naxes1; /* Number of axes for frame1 */
int naxes2; /* Number of axes for frame2 */
int result; /* Number of CmpFrame axes */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain the number of axes for each component Frame. */
naxes1 = astGetNaxes( this->frame1 );
naxes2 = astGetNaxes( this->frame2 );
/* If OK, calculate the total number of axes. */
if ( astOK ) result = naxes1 + naxes2;
/* Return the result. */
return result;
}
static const int *GetPerm( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetPerm
* Purpose:
* Access the axis permutation array for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const int *astGetPerm( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astGetPerm
* method inherited from the Frame class).
* Description:
* This function returns a pointer to the axis permutation array
* for a CmpFrame. This array constitutes a lookup-table that
* converts between an axis number supplied externally and the
* corresponding index in the CmpFrame's internal data.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to the CmpFrame's axis permutation array (a constant
* array of int). Each element of this contains the (zero-based)
* internal axis index to be used in place of the external index
* which is used to address the permutation array. If the CmpFrame
* has zero axes, this pointer will be NULL.
* Notes:
* - This protected method is provided to assist class
* implementations which need to implement axis-dependent
* extensions to CmpFrame methods, and which therefore need to know
* how a CmpFrames's external axis index is converted for internal
* use.
* - The pointer returned by this function gives direct access to
* data internal to the CmpFrame object. It remains valid only so
* long as the CmpFrame exists. The permutation array contents may
* be modified by other functions which operate on the CmpFrame and
* this may render the returned pointer invalid.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
* Implementation Notes:
* - This function performs essentially the same operation as the
* Frame member function which it over-rides. However, it returns a
* pointer to the "perm" array held in the CmpFrame structure
* (rather than the one in the parent Frame structure). This
* duplication of the array is necessary because the one in the
* Frame structure is of zero length, the number of axes in the
* Frame structure having been set to zero to prevent unnecessary
* allocation of Axis objects which are not needed by the CmpFrame.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Return a pointer to the axis permutation array. */
return this->perm;
}
static AstSystemType GetSystem( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetSystem
* Purpose:
* Obtain the System attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstSystemType GetSystem( AstFrame *this_frame, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetSystem protected
* method inherited from the Frame class).
* Description:
* This function returns the System attribute for a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The System value.
* Notes:
* - AST__BADSYSTEM is returned if this function is invoked with
* the global error status set or if it should fail for any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstSystemType result; /* Value to return */
/* Initialise. */
result = AST__BADSYSTEM;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a System attribute has been set, invoke the parent method to obtain
it. */
if ( astTestSystem( this ) ) {
result = (*parent_getsystem)( this_frame, status );
/* Otherwise, provide a suitable default. */
} else {
result = AST__COMP;
}
/* Return the result. */
return result;
}
static const char *GetTitle( AstFrame *this_frame, int *status ) {
/*
* Name:
* GetTitle
* Purpose:
* Obtain a pointer to the Title attribute string for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const char *GetTitle( AstFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetTitle protected
* method inherited from the Frame class).
* Description:
* This function returns a pointer to the Title attribute string for
* a CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to a constant null-terminated string containing the
* Title value.
* Notes:
* - The returned pointer or the string it refers to may become
* invalid following further invocation of this function or
* modification of the CmpFrame.
* - A NULL pointer is returned if this function is invoked with
* the global error status set or if it should fail for any reason.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Declare the thread specific global data */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
const char *result; /* Pointer value to return */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Get a pointer to the structure holding thread-specific global data. */
astGET_GLOBALS(this_frame);
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* If a Title attribute string has been set, invoke the parent method
to obtain a pointer to it. */
if ( astTestTitle( this ) ) {
result = (*parent_gettitle)( this_frame, status );
/* Otherwise, create a suitable default string and return a pointer to
this. */
} else {
(void) sprintf( gettitle_buff, "%d-d compound coordinate system",
astGetNaxes( this ) );
if ( astOK ) result = gettitle_buff;
}
/* Return the result. */
return result;
}
static int GetUseDefs( AstObject *this_object, int *status ) {
/*
* Name:
* GetUseDefs
* Purpose:
* Get a value for the UseDefs attribute of a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetUseDefs( AstCmpFrame *this, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetUseDefs method
* inherited from the Frame class).
* Description:
* This function returns a value for the UseDefs attribute of a
* CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The UseDefs attribute value.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int result; /* Result value to return */
/* Initialise. */
result = 1;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* If an UseDefs attribute value has been set, invoke the parent method
to obtain it. */
if ( astTestUseDefs( this ) ) {
result = (*parent_getusedefs)( this_object, status );
/* Otherwise, use the UseDefs value in the first component Frame as the
default. */
} else {
result = (*parent_getusedefs)( (AstObject *) this->frame1, status );
}
/* Return the result. */
return result;
}
static int GoodPerm( int ncoord_in, const int inperm[],
int ncoord_out, const int outperm[], int *status ) {
/*
* Name:
* GoodPerm
* Purpose:
* Test if a PermMap will be non-null.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GoodPerm( int ncoord_in, const int inperm[],
* int ncoord_out, const int outperm[], int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function tests if a pair of permutation arrays will, when
* used to create a PermMap, result in a PermMap which has a
* non-null effect (i.e. one which is not simply equivalent to a
* unit Mapping).
* Parameters:
* ncoord_in
* The number of input coordinates for the PermMap.
* inperm
* The input permutation array for the PermMap (with "ncoord_in"
* elements).
* ncoord_out
* The number of output coordinates for the PermMap.
* outperm
* The output permutation array for the PermMap (with
* "ncoord_out" elements).
* status
* Pointer to the inherited status variable.
* Returned Value:
* Zero if the PermMap would be equivalent to a unit Mapping,
* otherwise one.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set or if it should fail for any
* reason.
*/
/* Local Variables: */
int axis; /* Loop counter for axes */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* First test if the number of input and output coordinates are
different. */
result = ( ncoord_in != ncoord_out );
/* If they are not, examine the contents of the "inperm" array. */
if ( !result ) {
for ( axis = 0; axis < ncoord_in; axis++ ) {
/* We have a non-null Mapping if any element of this array selects an
output axis with a different index to the input axis (or selects an
invalid axis or a constant). */
if ( inperm[ axis ] != axis ) {
result = 1;
break;
}
}
}
/* If the Mapping still appears to be null, also examine the "outperm"
array in the same way. */
if ( !result ) {
for ( axis = 0; axis < ncoord_out; axis++ ) {
if ( outperm[ axis ] != axis ) {
result = 1;
break;
}
}
}
/* Return the result. */
return result;
}
void astInitCmpFrameVtab_( AstCmpFrameVtab *vtab, const char *name, int *status ) {
/*
*+
* Name:
* astInitCmpFrameVtab
* Purpose:
* Initialise a virtual function table for a CmpFrame.
* Type:
* Protected function.
* Synopsis:
* #include "cmpframe.h"
* void astInitCmpFrameVtab( AstCmpFrameVtab *vtab, const char *name )
* Class Membership:
* CmpFrame vtab initialiser.
* Description:
* This function initialises the component of a virtual function
* table which is used by the CmpFrame class.
* Parameters:
* vtab
* Pointer to the virtual function table. The components used by
* all ancestral classes will be initialised if they have not already
* been initialised.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the virtual function table belongs (it
* is this pointer value that will subsequently be returned by the Object
* astClass function).
*-
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstObjectVtab *object; /* Pointer to Object component of Vtab */
AstFrameVtab *frame; /* Pointer to Frame component of Vtab */
AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */
/* Check the local error status. */
if ( !astOK ) return;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Initialize the component of the virtual function table used by the
parent class. */
astInitFrameVtab( (AstFrameVtab *) vtab, name );
/* Store a unique "magic" value in the virtual function table. This
will be used (by astIsACmpFrame) to determine if an object belongs
to this class. We can conveniently use the address of the (static)
class_check variable to generate this unique value. */
vtab->id.check = &class_check;
vtab->id.parent = &(((AstFrameVtab *) vtab)->id);
/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that
provide virtual methods for this class. */
/* Save the inherited pointers to methods that will be extended, and
replace them with pointers to the new member functions. */
object = (AstObjectVtab *) vtab;
frame = (AstFrameVtab *) vtab;
parent_getobjsize = object->GetObjSize;
object->GetObjSize = GetObjSize;
mapping = (AstMappingVtab *) vtab;
parent_clearattrib = object->ClearAttrib;
object->ClearAttrib = ClearAttrib;
parent_getattrib = object->GetAttrib;
object->GetAttrib = GetAttrib;
parent_setattrib = object->SetAttrib;
object->SetAttrib = SetAttrib;
parent_testattrib = object->TestAttrib;
object->TestAttrib = TestAttrib;
parent_getusedefs = object->GetUseDefs;
object->GetUseDefs = GetUseDefs;
#if defined(THREAD_SAFE)
parent_managelock = object->ManageLock;
object->ManageLock = ManageLock;
#endif
mapping->RemoveRegions = RemoveRegions;
mapping->Simplify = Simplify;
mapping->Transform = Transform;
parent_getdomain = frame->GetDomain;
frame->GetDomain = GetDomain;
parent_gettitle = frame->GetTitle;
frame->GetTitle = GetTitle;
parent_getepoch = frame->GetEpoch;
frame->GetEpoch = GetEpoch;
parent_setepoch = frame->SetEpoch;
frame->SetEpoch = SetEpoch;
parent_clearepoch = frame->ClearEpoch;
frame->ClearEpoch = ClearEpoch;
parent_getdut1 = frame->GetDut1;
frame->GetDut1 = GetDut1;
parent_setdut1 = frame->SetDut1;
frame->SetDut1 = SetDut1;
parent_cleardut1 = frame->ClearDut1;
frame->ClearDut1 = ClearDut1;
parent_getobslon = frame->GetObsLon;
frame->GetObsLon = GetObsLon;
parent_setobslon = frame->SetObsLon;
frame->SetObsLon = SetObsLon;
parent_clearobslon = frame->ClearObsLon;
frame->ClearObsLon = ClearObsLon;
parent_getobslat = frame->GetObsLat;
frame->GetObsLat = GetObsLat;
parent_setobslat = frame->SetObsLat;
frame->SetObsLat = SetObsLat;
parent_clearobslat = frame->ClearObsLat;
frame->ClearObsLat = ClearObsLat;
parent_getobsalt = frame->GetObsAlt;
frame->GetObsAlt = GetObsAlt;
parent_setobsalt = frame->SetObsAlt;
frame->SetObsAlt = SetObsAlt;
parent_clearobsalt = frame->ClearObsAlt;
frame->ClearObsAlt = ClearObsAlt;
parent_angle = frame->Angle;
frame->Angle = Angle;
parent_getsystem = frame->GetSystem;
frame->GetSystem = GetSystem;
parent_getalignsystem = frame->GetAlignSystem;
frame->GetAlignSystem = GetAlignSystem;
parent_clearalignsystem = frame->ClearAlignSystem;
frame->ClearAlignSystem = ClearAlignSystem;
parent_overlay = frame->Overlay;
frame->Overlay = Overlay;
parent_setactiveunit = frame->SetActiveUnit;
frame->SetActiveUnit = SetActiveUnit;
parent_getactiveunit = frame->GetActiveUnit;
frame->GetActiveUnit = GetActiveUnit;
parent_setframeflags = frame->SetFrameFlags;
frame->SetFrameFlags = SetFrameFlags;
parent_getmaxaxes = frame->GetMaxAxes;
frame->GetMaxAxes = GetMaxAxes;
parent_getminaxes = frame->GetMinAxes;
frame->GetMinAxes = GetMinAxes;
/* Store replacement pointers for methods which will be over-ridden by
new member functions implemented here. */
object->Cast = Cast;
mapping->Decompose = Decompose;
frame->Abbrev = Abbrev;
frame->ClearDirection = ClearDirection;
frame->ClearFormat = ClearFormat;
frame->ClearLabel = ClearLabel;
frame->ClearSymbol = ClearSymbol;
frame->ClearUnit = ClearUnit;
frame->Distance = Distance;
frame->Fields = Fields;
frame->Format = Format;
frame->FrameGrid = FrameGrid;
frame->Centre = Centre;
frame->Gap = Gap;
frame->GetAxis = GetAxis;
frame->GetDirection = GetDirection;
frame->GetFormat = GetFormat;
frame->GetLabel = GetLabel;
frame->GetNaxes = GetNaxes;
frame->GetPerm = GetPerm;
frame->GetSymbol = GetSymbol;
frame->GetUnit = GetUnit;
frame->IsUnitFrame = IsUnitFrame;
frame->Match = Match;
frame->Norm = Norm;
frame->NormBox = NormBox;
frame->Offset = Offset;
frame->PermAxes = PermAxes;
frame->PrimaryFrame = PrimaryFrame;
frame->Resolve = Resolve;
frame->ResolvePoints = ResolvePoints;
frame->SetAxis = SetAxis;
frame->SetDirection = SetDirection;
frame->SetFormat = SetFormat;
frame->SetLabel = SetLabel;
frame->SetSymbol = SetSymbol;
frame->SetUnit = SetUnit;
frame->SubFrame = SubFrame;
frame->TestDirection = TestDirection;
frame->TestFormat = TestFormat;
frame->TestLabel = TestLabel;
frame->TestSymbol = TestSymbol;
frame->TestUnit = TestUnit;
frame->Unformat = Unformat;
frame->ValidateSystem = ValidateSystem;
frame->SystemString = SystemString;
frame->SystemCode = SystemCode;
frame->MatchAxesX = MatchAxesX;
/* Declare the copy constructor, destructor and class dump
function. */
astSetCopy( vtab, Copy );
astSetDelete( vtab, Delete );
astSetDump( vtab, Dump, "CmpFrame",
"Compound coordinate system description" );
/* If we have just initialised the vtab for the current class, indicate
that the vtab is now initialised, and store a pointer to the class
identifier in the base "object" level of the vtab. */
if( vtab == &class_vtab ) {
class_init = 1;
astSetVtabClassIdentifier( vtab, &(vtab->id) );
}
}
static int IsUnitFrame( AstFrame *this_frame, int *status ){
/*
* Name:
* IsUnitFrame
* Purpose:
* Is this Frame equivalent to a UnitMap?
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int IsUnitFrame( AstFrame *this, int *status )
* Class Membership:
* Region member function (over-rides the protected astIsUnitFrame
* method inherited from the Frame class).
* Description:
* This function returns a flag indicating if the supplied Frame is
* equivalent to a UnitMap when treated as a Mapping (note, the Frame
* class inherits from Mapping and therefore every Frame is also a Mapping).
* Parameters:
* this
* Pointer to the Frame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A non-zero value is returned if the supplied Frame is equivalent to
* a UnitMap when treated as a Mapping.
*-
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return 0;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Return the result. */
return astIsUnitFrame( this->frame1 ) && astIsUnitFrame( this->frame2 );
}
#if defined(THREAD_SAFE)
static int ManageLock( AstObject *this_object, int mode, int extra,
AstObject **fail, int *status ) {
/*
* Name:
* ManageLock
* Purpose:
* Manage the thread lock on an Object.
* Type:
* Private function.
* Synopsis:
* #include "object.h"
* AstObject *ManageLock( AstObject *this, int mode, int extra,
* AstObject **fail, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astManageLock protected
* method inherited from the parent class).
* Description:
* This function manages the thread lock on the supplied Object. The
* lock can be locked, unlocked or checked by this function as
* deteremined by parameter "mode". See astLock for details of the way
* these locks are used.
* Parameters:
* this
* Pointer to the Object.
* mode
* An integer flag indicating what the function should do:
*
* AST__LOCK: Lock the Object for exclusive use by the calling
* thread. The "extra" value indicates what should be done if the
* Object is already locked (wait or report an error - see astLock).
*
* AST__UNLOCK: Unlock the Object for use by other threads.
*
* AST__CHECKLOCK: Check that the object is locked for use by the
* calling thread (report an error if not).
* extra
* Extra mode-specific information.
* fail
* If a non-zero function value is returned, a pointer to the
* Object that caused the failure is returned at "*fail". This may
* be "this" or it may be an Object contained within "this". Note,
* the Object's reference count is not incremented, and so the
* returned pointer should not be annulled. A NULL pointer is
* returned if this function returns a value of zero.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A local status value:
* 0 - Success
* 1 - Could not lock or unlock the object because it was already
* locked by another thread.
* 2 - Failed to lock a POSIX mutex
* 3 - Failed to unlock a POSIX mutex
* 4 - Bad "mode" value supplied.
* Notes:
* - This function attempts to execute even if an error has already
* occurred.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
int result; /* Returned status value */
/* Initialise */
result = 0;
/* Check the supplied pointer is not NULL. */
if( !this_object ) return result;
/* Obtain a pointers to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Invoke the ManageLock method inherited from the parent class. */
if( !result ) result = (*parent_managelock)( this_object, mode, extra,
fail, status );
/* Invoke the astManageLock method on any Objects contained within
the supplied Object. */
if( !result ) result = astManageLock( this->frame1, mode, extra, fail );
if( !result ) result = astManageLock( this->frame2, mode, extra, fail );
return result;
}
#endif
static int Match( AstFrame *template_frame, AstFrame *target, int matchsub,
int **template_axes, int **target_axes,
AstMapping **map, AstFrame **result, int *status ) {
/*
* Name:
* Match
* Purpose:
* Determine if conversion is possible between two coordinate systems.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int Match( AstFrame *template, AstFrame *target, int matchsub,
* int **template_axes, int **target_axes,
* AstMapping **map, AstFrame **result, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astMatch
* method inherited from the Frame class).
* Description:
* This function matches a "template" CmpFrame to a "target" Frame
* and determines whether it is possible to convert coordinates
* between them. If it is, a Mapping that performs the
* transformation is returned along with a new Frame that describes
* the coordinate system that results when this Mapping is applied
* to the "target" coordinate system. In addition, information is
* returned to allow the axes in this "result" Frame to be
* associated with the corresponding axes in the "target" Frame and
* "template" CmpFrame from which they are derived.
* Parameters:
* template
* Pointer to the template CmpFrame. This describes the
* coordinate system (or set of possible coordinate systems)
* into which we wish to convert our coordinates.
* target
* Pointer to the target Frame. This describes the coordinate
* system in which we already have coordinates.
* matchsub
* If zero then a match only occurs if the template is of the same
* class as the target, or of a more specialised class. If non-zero
* then a match can occur even if this is not the case (i.e. if the
* target is of a more specialised class than the template). In
* this latter case, the target is cast down to the class of the
* template. NOTE, this argument is handled by the global method
* wrapper function "astMatch_", rather than by the class-specific
* implementations of this method.
* template_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* template CmpFrame axis from which it is derived. If it is not
* derived from any template axis, a value of -1 will be
* returned instead.
* target_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* target Frame axis from which it is derived. If it is not
* derived from any target axis, a value of -1 will be returned
* instead.
* map
* Address of a location where a pointer to a new Mapping will
* be returned if the requested coordinate conversion is
* possible. If returned, the forward transformation of this
* Mapping may be used to convert coordinates between the
* "target" Frame and the "result" Frame (see below) and the
* inverse transformation will convert in the opposite
* direction.
* result
* Address of a location where a pointer to a new Frame will be
* returned if the requested coordinate conversion is
* possible. If returned, this Frame describes the coordinate
* system that results from applying the returned Mapping
* (above) to the "target" coordinate system. In general, this
* Frame will combine attributes from (and will therefore be
* more specific than) both the target Frame and the template
* CmpFrame. In particular, when the template allows the
* possibility of transformaing to any one of a set of
* alternative coordinate systems, the "result" Frame will
* indicate which of the alternatives was used.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A non-zero value is returned if the requested coordinate
* conversion is possible. Otherwise zero is returned (this will
* not in itself result in an error condition).
* Notes:
* - By default, the "result" Frame will have its number of axes
* and axis order determined by the "template" CmpFrame. However,
* if the PreserveAxes attribute of the template CmpFrame is
* non-zero, then the axis count and axis order of the "target"
* Frame will be used instead.
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *template; /* Pointer to template CmpFrame structure */
char *template_domain; /* Pointer to copy of template domain */
const char *ptr; /* Pointer to domain string */
const char *target_domain; /* Pointer to target domain string */
int *axes1; /* Pointer to axis selection 1 */
int *axes2; /* Pointer to axis selection 2 */
int *used; /* Pointer to flags array */
int axis2; /* Index for axis selection 2 */
int axis; /* Index for axis arrays */
int last_target; /* Last target axis association */
int last_template; /* Last template axis associateion */
int match; /* Match obtained (returned result)? */
int maxax1; /* MaxAxes attribute for component 1 */
int maxax2; /* MaxAxes attribute for component 2 */
int maxax; /* Max axes that can be matched by template */
int minax1; /* MinAxes attribute for component 1 */
int minax2; /* MinAxes attribute for component 2 */
int minax; /* Min axes that can be matched by template */
int naxes1; /* Number of axes assigned to component 1 */
int naxes2; /* Number of axes assigned to component 2 */
int naxes; /* Total number of target axes */
int naxes_max1; /* First estimate of naxes_max */
int naxes_max2; /* Second estimate of naxes_max */
int naxes_max; /* Max number of axes to match component 1 */
int naxes_min1; /* First estimate of naxes_min */
int naxes_min2; /* Second estimate of naxes_min */
int naxes_min; /* Min number of axes to match component 1 */
int permute; /* Permute attribute for template */
int result_naxes; /* Number of result Frame axes */
/* Initialise the returned values. */
*template_axes = NULL;
*target_axes = NULL;
*map = NULL;
*result = NULL;
match = 0;
/* Check the global error status. */
if ( !astOK ) return match;
/* Obtain a pointer to the template CmpFrame structure. */
template = (AstCmpFrame *) template_frame;
/* Further initialisation to avoid compiler warnings. */
naxes_min = 0;
naxes_max = 0;
/* Obtain the maximum number of axes that the template CmpFrame, and each
component Frame of the template CmpFrame, can match. If the MaxAxes
attribute is set for the template, use it and assume that each
component Frame can match any number of axes. */
if( astTestMaxAxes( template ) ) {
maxax = astGetMaxAxes( template );
maxax1 = 100000;
maxax2 = 100000;
} else {
maxax1 = astGetMaxAxes( template->frame1 );
maxax2 = astGetMaxAxes( template->frame2 );
maxax = maxax1 + maxax2;
}
/* Do the same for the minimum number of axes that can be matched by the
template CmpFrame. */
if( astTestMinAxes( template ) ) {
minax = astGetMinAxes( template );
minax1 = 1;
minax2 = 1;
} else {
minax1 = astGetMinAxes( template->frame1 );
minax2 = astGetMinAxes( template->frame2 );
minax = minax1 + minax2;
}
/* Obtain the number of axes in the target Frame and test to see if it
is possible for the template to match it on the basis of axis
counts. */
naxes = astGetNaxes( target );
match = ( naxes >= minax && naxes <= maxax );
/* The next requirement is that all the frames have some axes. */
if( naxes == 0 || maxax1 == 0 || maxax2 == 0 ) match = 0;
/* The next requirement is that if the template CmpFrame has its
Domain attribute defined, then the target Frame must also have the
same Domain (although it need not be set - the default will
do). First check if the template has a domain. */
if ( astOK && match ) {
if ( astTestDomain( template ) ) {
/* Obtain a pointer to the template domain. Then allocate memory and
make a copy of it (this is necessary as we will next inquire the
domain of the target and may over-write the buffer holding the
template's domain). */
ptr = astGetDomain( template );
if ( astOK ) {
template_domain = astStore( NULL, ptr,
strlen( ptr ) + (size_t) 1 );
/* Obtain a pointer to the target domain. */
target_domain = astGetDomain( target );
/* Compare the domain strings for equality. Then free the memory
allocated above. */
match = astOK && !strcmp( template_domain, target_domain );
template_domain = astFree( template_domain );
}
}
}
/* If a match still appears possible, determine the minimum number of
target axes that will have to match the first component Frame of
the template CmpFrame. */
if ( astOK && match ) {
naxes_min1 = minax1;
naxes_min2 = naxes - maxax2;
naxes_min = ( naxes_min1 > naxes_min2 ) ? naxes_min1 : naxes_min2;
/* Also determine the maximum number of target axes that may match
this component of the template. */
naxes_max1 = maxax1;
naxes_max2 = naxes - minax2;
naxes_max = ( naxes_max1 < naxes_max2 ) ? naxes_max1 : naxes_max2;
/* No match possible if the number of axes are inconsistent. */
if( naxes_min > naxes_max ) match = 0;
}
/* If a match is still possible, allocate workspace. */
if( match ) {
axes1 = astMalloc( sizeof( int ) * (size_t) naxes );
axes2 = astMalloc( sizeof( int ) * (size_t) naxes );
used = astMalloc( sizeof( int ) * (size_t) naxes );
/* Obtain the value of the template's Permute attribute. */
permute = astGetPermute( template );
if ( astOK ) {
/* Loop to consider all possible choices of the number of template
axes that might match the first component Frame of the template,
and derive the corresponding number of axes that must match the
second component at the same time. */
for ( naxes1 = naxes_max; naxes1 >= naxes_min; naxes1-- ) {
naxes2 = naxes - naxes1;
/* Initialise the selection of target axes that we will attempt to
match against the first template component (to [0,1,2,...]). */
for ( axis = 0; axis < naxes1; axis++ ) axes1[ axis ] = axis;
/* Loop to consider all possible selections with this number of axes,
until a match is found. */
while ( 1 ) {
/* Initialise an array of flags to zero for each target axis. Then set
the flag to 1 for each axis which is in the first selection.*/
for ( axis = 0; axis < naxes; axis++ ) used[ axis ] = 0;
for( axis = 0; axis < naxes1; axis++ ) {
used[ axes1[ axis ] ] = 1;
}
/* Generate the second selection by including all target axes that are
not in the first selection. */
axis2 = 0;
for ( axis = 0; axis < naxes; axis++ ) {
if ( !used[ axis ] ) axes2[ axis2++ ] = axis;
}
/* Attempt to match the target axes partitioned in this way to the two
template components. */
match = PartMatch( template, target, matchsub,
naxes1, axes1, naxes2, axes2,
template_axes, target_axes, map, result, status );
/* If a match was obtained but the template's Permute attribute is zero,
then we must check to see if the match involves permuting the target
axes. */
if ( astOK && match && !permute ) {
/* Obtain the number of result Frame axes. */
result_naxes = astGetNaxes( *result );
/* Loop to check the target and template axis associations for all the
result Frame axes. The match will only be accepted if both of these
are monotonically increasing (indicating no axis permutation) after
allowing for any absent associations . */
last_template = -1;
last_target = -1;
for ( axis = 0; axis < result_naxes; axis++ ) {
/* Check the template axis association against the previous value,
omitting any axes witout valid associations. */
if ( ( *template_axes )[ axis ] != -1 ) {
if ( ( *template_axes )[ axis ] <= last_template ) {
match = 0;
break;
/* Update the previous association value. */
} else {
last_template = ( *template_axes )[ axis ];
}
}
/* Repeat this process for the target axis associations. */
if ( ( *target_axes )[ axis ] != -1 ) {
if ( ( *target_axes )[ axis ] <= last_target ) {
match = 0;
break;
} else {
last_target = ( *target_axes )[ axis ];
}
}
}
/* If the match was rejected because it involves an axis permutation,
then free the allocated memory and annul the Object pointers
associated with the match. */
if ( !match ) {
*template_axes = astFree( *template_axes );
*target_axes = astFree( *target_axes );
*map = astAnnul( *map );
*result = astAnnul( *result );
}
}
/* If an error occurred or a match was found, quit searching,
otherwise generate the next axis selection and try that
instead. Quit if there are no more selections to try. */
if ( !astOK || match ||
!GenAxisSelection( naxes, naxes1, axes1, status ) ) break;
}
/* Quit the outer loop if an error occurs or a match is found. */
if ( !astOK || match ) break;
}
}
/* Free the workspace arrays. */
axes1 = astFree( axes1 );
axes2 = astFree( axes2 );
used = astFree( used );
}
/* If the target did not match the supplied template CmpFrame, see if it
will match either of the component Frames. First try matching it against
the first component Frame. */
if( !match ) match = ComponentMatch( template, target, matchsub, 0,
template_axes, target_axes, map, result,
status );
/* If we still dont have a mcth, try matching it against the second
component Frame. */
if( !match ) match = ComponentMatch( template, target, matchsub, 1,
template_axes, target_axes, map,
result, status );
/* If an error occurred, free all allocated memory, annul the result
Object pointers and clear all returned values. */
if ( !astOK ) {
*template_axes = astFree( *template_axes );
*target_axes = astFree( *target_axes );
*map = astAnnul( *map );
*result = astAnnul( *result );
match = 0;
}
/* Return the result. */
return match;
}
static void MatchAxesX( AstFrame *frm2_frame, AstFrame *frm1, int *axes,
int *status ) {
/*
* Name:
* MatchAxesX
* Purpose:
* Find any corresponding axes in two Frames.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void MatchAxesX( AstFrame *frm2, AstFrame *frm1, int *axes )
* int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astMatchAxesX
* method inherited from the Frame class).
* Description:
* This function looks for corresponding axes within two supplied
* Frames. An array of integers is returned that contains an element
* for each axis in the second supplied Frame. An element in this array
* will be set to zero if the associated axis within the second Frame
* has no corresponding axis within the first Frame. Otherwise, it
* will be set to the index (a non-zero positive integer) of the
* corresponding axis within the first supplied Frame.
* Parameters:
* frm2
* Pointer to the second Frame.
* frm1
* Pointer to the first Frame.
* axes
* Pointer to an integer array in which to return the indices of
* the axes (within the first Frame) that correspond to each axis
* within the second Frame. Axis indices start at 1. A value of zero
* will be stored in the returned array for each axis in the second
* Frame that has no corresponding axis in the first Frame.
*
* The number of elements in this array must be greater than or
* equal to the number of axes in the second Frame.
* status
* Pointer to inherited status value.
* Notes:
* - Corresponding axes are identified by the fact that a Mapping
* can be found between them using astFindFrame or astConvert. Thus,
* "corresponding axes" are not necessarily identical. For instance,
* SkyFrame axes in two Frames will match even if they describe
* different celestial coordinate systems
*/
/* Local Variables: */
AstCmpFrame *frm2;
const int *perm;
int *work;
int i;
int nax2;
int nax1;
int nax;
/* Check the global error status. */
if ( !astOK ) return;
/* Get a pointer to the CmpFrame. */
frm2 = (AstCmpFrame *) frm2_frame;
/* Get the number of axes in the two component Frames, and the total
number of axes in the CmpFrame. */
nax2 = astGetNaxes( frm2->frame1 );
nax1 = astGetNaxes( frm2->frame2 );
nax = nax2 + nax1;
/* Allocate a work array to hold the unpermuted axis indices */
work = astMalloc( sizeof( int )*nax );
if( astOK ) {
/* Use the astMatchAxes method to match axes in the first component Frame
within CmpFrame "frm2". Write the associated axis indices into the first
part of the work array. */
astMatchAxes( frm1, frm2->frame1, work );
/* Use the MatchAxes method to match axes in the second component
Frame. Write the associated axis indices into the work array
following the end of the values already in there. */
astMatchAxes( frm1, frm2->frame2, work + nax2 );
/* Obtain a pointer to the CmpFrame's axis permutation array. The index
into "perm" represents the external axis index, and the value held in
each element of "perm" represents the corresponding internal axis index. */
perm = astGetPerm( frm2 );
if( astOK ) {
/* Copy the frm2 axis indices from the work array into the returned "axes"
array, permuting their order into the external axis order of the
CmpFrame. */
for( i = 0; i < nax; i++ ) axes[ i ] = work[ perm[ i ] ];
}
/* Free resources */
work = astFree( work );
}
}
static void Norm( AstFrame *this_frame, double value[], int *status ) {
/*
* Name:
* Norm
* Purpose:
* Normalise a set of CmpFrame coordinates.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void Norm( AstAxis *this, double value[], int *status )
* Class Membership:
* CmpFrame member function (over-rides the astNorm method
* inherited from the Frame class).
* Description:
* This function converts a set of CmpFrame coordinate values,
* which might potentially be unsuitable for display to a user (for
* instance, may lie outside the expected range of values) into a
* set of acceptable alternative values suitable for display.
* Parameters:
* this
* Pointer to the CmpFrame.
* value
* An array of double, with one element for each CmpFrame axis.
* This should contain the initial set of coordinate values,
* which will be modified in place.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
const int *perm; /* Axis permutation array */
double *v; /* Pointer to permuted coordinates */
int axis; /* Loop counter for axes */
int naxes1; /* Number of axes in frame1 */
int naxes; /* Number of axes in CmpFrame */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Obtain the number of axes in the CmpFrame and in the first
component Frame. */
naxes = astGetNaxes( this );
naxes1 = astGetNaxes( this->frame1 );
/* Allocate memory to hold the permuted coordinates. */
v = astMalloc( sizeof( double ) * (size_t) naxes );
if ( astOK ) {
/* Permute the coordinates using the CmpFrame's axis permutation array
to put them into the order required internally (i.e. by the two
component Frames). */
for ( axis = 0; axis < naxes; axis++ ) v[ perm[ axis ] ] = value[ axis ];
/* Invoke the astNorm method of both component Frames, passing the
relevant (permuted) coordinate values for normalisation. */
astNorm( this->frame1, v );
astNorm( this->frame2, v + naxes1 );
/* Copy the normalised values back into the original coordinate array,
un-permuting them in the process. */
for ( axis = 0; axis < naxes; axis++ ) value[ axis ] = v[ perm[ axis ] ];
}
/* Free the memory used for the permuted coordinates. */
v = astFree( v );
}
static void NormBox( AstFrame *this_frame, double lbnd[], double ubnd[],
AstMapping *reg, int *status ) {
/*
* Name:
* NormBox
* Purpose:
* Extend a box to include effect of any singularities in the Frame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void astNormBox( AstFrame *this, double lbnd[], double ubnd[],
* AstMapping *reg, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astNormBox method inherited
* from the Frame class).
* Description:
* This function modifies a supplied box to include the effect of any
* singularities in the co-ordinate system represented by the Frame.
* For a normal Cartesian coordinate system, the box will be returned
* unchanged. Other classes of Frame may do other things. For instance,
* a SkyFrame will check to see if the box contains either the north
* or south pole and extend the box appropriately.
* Parameters:
* this
* Pointer to the Frame.
* lbnd
* An array of double, with one element for each Frame axis
* (Naxes attribute). Initially, this should contain a set of
* lower axis bounds for the box. They will be modified on exit
* to include the effect of any singularities within the box.
* ubnd
* An array of double, with one element for each Frame axis
* (Naxes attribute). Initially, this should contain a set of
* upper axis bounds for the box. They will be modified on exit
* to include the effect of any singularities within the box.
* reg
* A Mapping which should be used to test if any singular points are
* inside or outside the box. The Mapping should leave an input
* position unchanged if the point is inside the box, and should
* set all bad if the point is outside the box.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this;
AstCmpMap *m1;
AstCmpMap *m2;
AstCmpMap *m3;
AstCmpMap *m4;
AstCmpMap *m5;
AstCmpMap *m6;
AstPermMap *pm1;
AstPermMap *pm2;
AstPermMap *pm3;
const int *perm;
double *vl;
double *vu;
int *inperm;
int axis;
int naxes1;
int naxes;
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Obtain the number of axes in the CmpFrame and in the first
component Frame. */
naxes = astGetNaxes( this );
naxes1 = astGetNaxes( this->frame1 );
/* Allocate memory to hold the permuted coordinates. */
vl = astMalloc( sizeof( double ) * (size_t) naxes );
vu = astMalloc( sizeof( double ) * (size_t) naxes );
inperm = astMalloc( sizeof( int ) * (size_t) naxes );
if( inperm ) {
/* Permute the coordinates using the CmpFrame's axis permutation array
to put them into the order required internally (i.e. by the two
component Frames). */
for ( axis = 0; axis < naxes; axis++ ) {
vl[ perm[ axis ] ] = lbnd[ axis ];
vu[ perm[ axis ] ] = ubnd[ axis ];
}
/* Create a PermMap with a forward transformation which reorders a position
which uses internal axis ordering into a position which uses external axis
ordering. */
pm1 = astPermMap( naxes, NULL, naxes, perm, NULL, "", status );
/* Put it in front of the supplied Mapping. The combination transforms an
input internal position into an output external position. */
m1 = astCmpMap( pm1, reg, 1, "", status );
/* Invert it and add it to the end. This combination now transforms an
input internal position into an output internal position. */
astInvert( pm1 );
m2 = astCmpMap( m1, pm1, 1, "", status );
/* Create a PermMap with a forward transformation which copies the lower
naxes1 inputs to the same outputs, and supplies AST__BAD for the other
outputs. */
for( axis = 0; axis < naxes1; axis++ ) inperm[ axis ] = axis;
pm2 = astPermMap( naxes1, inperm, naxes, NULL, NULL, "", status );
/* Put it in front of the Mapping created above, then invert it and add
it at the end. */
m3 = astCmpMap( pm2, m2, 1, "", status );
astInvert( pm2 );
m4 = astCmpMap( m3, pm2, 1, "", status );
/* Invoke the astNormBox method of the first component Frame, passing the
relevant (permuted) coordinate values for normalisation. */
astNormBox( this->frame1, vl, vu, m4 );
/* Create a PermMap with a forward transformation which copies the upper
inputs to the same outputs, and supplied AST__BAD for the other
outputs. */
for( axis = 0; axis < naxes - naxes1; axis++ ) inperm[ axis ] = naxes1 + axis;
pm3 = astPermMap( naxes1, inperm, naxes, NULL, NULL, "", status );
/* Put it in front of the Mapping created above, then invert it and add
it at the end. */
m5 = astCmpMap( pm3, m2, 1, "", status );
astInvert( pm3 );
m6 = astCmpMap( m5, pm3, 1, "", status );
/* Invoke the astNormBox method of the seond component Frame, passing the
relevant (permuted) coordinate values for normalisation. */
astNormBox( this->frame2, vl + naxes1, vu + naxes1, m6 );
/* Copy the normalised values back into the original coordinate array,
un-permuting them in the process. */
for ( axis = 0; axis < naxes; axis++ ) {
lbnd[ axis ] = vl[ perm[ axis ] ];
ubnd[ axis ] = vu[ perm[ axis ] ];
}
/* Free resources. */
pm1 = astAnnul( pm1 );
pm2 = astAnnul( pm2 );
pm3 = astAnnul( pm3 );
m1 = astAnnul( m1 );
m2 = astAnnul( m2 );
m3 = astAnnul( m3 );
m4 = astAnnul( m4 );
m5 = astAnnul( m5 );
m6 = astAnnul( m6 );
}
inperm = astFree( inperm );
vl = astFree( vl );
vu = astFree( vu );
}
static void Offset( AstFrame *this_frame, const double point1[],
const double point2[], double offset, double point3[], int *status ) {
/*
* Name:
* Offset
* Purpose:
* Calculate an offset along a geodesic curve.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void Offset( AstFrame *this,
* const double point1[], const double point2[],
* double offset, double point3[], int *status )
* Class Membership:
* CmpFrame member function (over-rides the astOffset method
* inherited from the Frame class).
* Description:
* This function finds the CmpFrame coordinate values of a point
* which is offset a specified distance along the geodesic curve
* between two other points.
* Parameters:
* this
* Pointer to the CmpFrame.
* point1
* An array of double, with one element for each CmpFrame axis.
* This should contain the coordinates of the point marking the
* start of the geodesic curve.
* point2
* An array of double, with one element for each CmpFrame axis.
* This should contain the coordinates of the point marking the
* end of the geodesic curve.
* offset
* The required offset from the first point along the geodesic
* curve. If this is positive, it will be towards the second
* point. If it is negative, it will be in the opposite
* direction. This offset need not imply a position lying
* between the two points given, as the curve will be
* extrapolated if necessary.
* point3
* An array of double, with one element for each CmpFrame axis
* in which the coordinates of the required point will be
* returned.
* status
* Pointer to the inherited status variable.
* Notes:
* - The geodesic curve used by this function is the path of
* shortest distance between two points, as defined by the
* astDistance function.
* - This function will return "bad" coordinate values (AST__BAD)
* if any of the input coordinates has this value.
* - "Bad" coordinate values will also be returned if the two
* points supplied are coincident (or otherwise fail to uniquely
* specify a geodesic curve) but the requested offset is non-zero.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
const int *perm; /* Pointer to axis permutation array */
double *p1; /* Permuted coordinates for point1 */
double *p2; /* Permuted coordinates for point2 */
double *p3; /* Permuted coordinates for point3 */
double dist1; /* Distance between input points in frame1 */
double dist2; /* Distance between input points in frame2 */
double dist; /* Total distance between input points */
double offset1; /* Offset distance required in frame1 */
double offset2; /* Offset distance required in frame2 */
int axis; /* Loop counter for axes */
int bad; /* Set bad output coordinates? */
int naxes1; /* Number of axes in frame1 */
int naxes; /* Total number of axes in CmpFrame */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain the number of axes in the CmpFrame. */
naxes = astGetNaxes( this );
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Allocate workspace. */
p1 = astMalloc( sizeof( double ) * (size_t) naxes );
p2 = astMalloc( sizeof( double ) * (size_t) naxes );
p3 = astMalloc( sizeof( double ) * (size_t) naxes );
/* Initialise variables to avoid compiler warnings. */
dist1 = 0.0;
dist2 = 0.0;
offset1 = 0.0;
offset2 = 0.0;
naxes1 = 0;
/* Initialise a flag to indicate whether "bad" coordinates should be
returned. */
bad = 0;
/* Check that all the coordinates of both input points are OK. If not,
set the "bad" flag and quit checking. */
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) {
if ( ( point1[ axis ] == AST__BAD ) ||
( point2[ axis ] == AST__BAD ) ) {
bad = 1;
break;
/* If the coordinates are OK, apply the axis permutation array to
obtain them in the required order. */
} else {
p1[ perm[ axis ] ] = point1[ axis ];
p2[ perm[ axis ] ] = point2[ axis ];
}
}
}
/* If OK, obtain the number of axes in the first component Frame. */
if ( astOK && !bad ) {
naxes1 = astGetNaxes( this->frame1 );
/* Project the two input points into the two component Frames and
determine the distance between the points in each Frame. */
dist1 = astDistance( this->frame1, p1, p2 );
dist2 = astDistance( this->frame2, p1 + naxes1, p2 + naxes1 );
/* Check that the returned distances are not bad. */
if ( astOK ) bad = ( ( dist1 == AST__BAD ) || ( dist2 == AST__BAD ) );
}
/* If OK, calculate the total distance between the two points. */
if ( astOK && !bad ) {
dist = sqrt( dist1 * dist1 + dist2 * dist2 );
/* If the points are co-incident, but "offset" is non-zero, then set
the "bad" flag. */
if ( dist == 0.0 ) {
if ( offset != 0.0 ) {
bad = 1;
/* Otherwise, set the offset distance required in each Frame to
zero. */
} else {
offset1 = 0.0;
offset2 = 0.0;
}
/* If the points are not co-incident, divide the total offset required
between each component Frame in such a way that the path being
followed will pass through the second point. */
} else {
offset1 = offset * dist1 / dist;
offset2 = offset * dist2 / dist;
}
}
/* If OK, apply the separate offsets to each component Frame. */
if ( astOK && !bad ) {
astOffset( this->frame1, p1, p2, offset1, p3 );
astOffset( this->frame2, p1 + naxes1, p2 + naxes1, offset2,
p3 + naxes1 );
/* Copy the resulting coordinates into the output array "point3",
permuting them back into the required order. */
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) {
point3[ axis ] = p3[ perm[ axis ] ];
/* If any of the result coordinates is bad, set the "bad" flag and
quit copying. */
if ( point3[ axis ] == AST__BAD ) {
bad = 1;
break;
}
}
}
}
/* Free the workspace arrays. */
p1 = astFree( p1 );
p2 = astFree( p2 );
p3 = astFree( p3 );
/* If no error has occurred, but bad coordinates must be returned,
then set these in the output array. */
if ( astOK && bad ) {
for ( axis = 0; axis < naxes; axis++ ) point3[ axis ] = AST__BAD;
}
}
static void Overlay( AstFrame *template_frame, const int *template_axes,
AstFrame *result, int *status ) {
/*
* Name:
* Overlay
* Purpose:
* Overlay the attributes of a template CmpFrame on to another Frame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void Overlay( AstFrame *template, const int *template_axes,
* AstFrame *result, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astOverlay
* method inherited from the Frame class).
* Description:
* This function overlays attributes from a CmpFrame on to another Frame,
* so as to over-ride selected attributes of that second Frame. Normally
* only those attributes which have been specifically set in the template
* will be transferred. This implements a form of defaulting, in which
* a Frame acquires attributes from the template, but retains its
* original attributes (as the default) if new values have not previously
* been explicitly set in the template.
* Parameters:
* template
* Pointer to the template CmpFrame, for whose current Frame
* values should have been explicitly set for any attribute
* which is to be transferred.
* template_axes
* Pointer to an array of int, with one element for each axis of
* the "result" Frame (see below). For each axis in the result
* frame, the corresponding element of this array should contain
* the (zero-based) index of the axis in the current Frame of
* the template CmpFrame to which it corresponds. This array is
* used to establish from which template Frame axis any
* axis-dependent attributes should be obtained.
*
* If any axis in the result Frame is not associated with a
* template Frame axis, the corresponding element of this array
* should be set to -1.
*
* If a NULL pointer is supplied, the template and result axis
* indices are assumed to be identical.
* result
* Pointer to the Frame which is to receive the new attribute values.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *res; /* Pointer to the result CmpFrame structure */
AstCmpFrame *template; /* Pointer to the template CmpFrame structure */
AstFrame *sub1; /* Template subframe for 1st result subframe */
AstFrame *sub2; /* Template subframe for 2nd result subframe */
const int *perm; /* Template axis permutation array */
const int *rperm; /* Result axis permutation array */
int *axes1; /* Axis associations with template frame1 */
int *axes2; /* Axis associations with template frame2 */
int done; /* Have attributes been overlayed yet? */
int i; /* Index of result axis */
int icmp; /* Internal template axis number */
int isfirst; /* Res. subframe -> 1st template subframe? */
int issecond; /* Res. subframe -> 2nd template subframe? */
int j; /* Index of template axis */
int nc1; /* Number of axes in template frame1 */
int nres1; /* Number of axes in first result subframe */
int nres2; /* Number of axes in second result subframe */
int nres; /* Number of axes in result Frame */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
template = (AstCmpFrame *) template_frame;
/* Get the axis permutation array for the template CmpFrame. */
perm = astGetPerm( template );
/* Get the number of axes in the first component Frame in the template
CmpFrame. */
nc1 = astGetNaxes( template->frame1 );
/* Indicate we have not yet overlayed any attributes. */
done = 0;
/* If the result Frame is a CmpFrame... */
if( astIsACmpFrame( result ) ) {
/* Get the number of axes in the two component Frames of the result CmpFrame. */
res = (AstCmpFrame *) result;
nres1 = astGetNaxes( res->frame1 );
nres2 = astGetNaxes( res->frame2 );
/* Get the total number of axes in the result CmpFrame. */
nres = nres1 + nres2;
/* Get the axis permutation array for the result CmpFrame. */
rperm = astGetPerm( result );
/* Allocate memory for two new axes arrays, one for each result sub-frame. */
axes1 = astMalloc( sizeof(int)*(size_t)nres1 );
axes2 = astMalloc( sizeof(int)*(size_t)nres2 );
if( astOK ) {
/* Assume that there is a 1-to-1 correspondence between axes in the
subframes of the result and template CmpFrame. That is, all the axes
in each result sub-frame are overlayed from the same template sub-frame. */
done = 1;
/* Loop round each axis in the first result sub-frame. */
isfirst = 0;
issecond = 0;
for( i = 0; i < nres1; i++ ) {
/* Find the external result CmpFrame axis index (j) for internal axis i. */
for( j = 0; j < nres; j++ ) {
if( rperm[ j ] == i ) break;
}
/* Get the internal axis number within the template CmpFrame which
provides attribute values for the current result axis. */
icmp = perm[ template_axes ? template_axes[ j ] : j ];
/* If this template axis is in the first template subframe, store the
corresponding internal frame axis index in "axes1" and set a flag
indicating that the first result subframe corresponds to the first
template subframe. If the correspondance has already been established,
but is broken by this axis, then set "done" false and exit the axis
loop. */
if( icmp < nc1 ) {
if( issecond ) {
done = 0;
break;
} else {
isfirst = 1;
axes1[ i ] = icmp;
}
} else {
if( isfirst ) {
done = 0;
break;
} else {
issecond = 1;
axes1[ i ] = icmp - nc1;
}
}
}
/* Save a pointer to the template subframe which is associated with the first
result subframe.*/
sub1 = isfirst ? template->frame1 :template->frame2;
/* Now do the same for the axes in the second result sub-frame. */
isfirst = 0;
issecond = 0;
for( i = 0; i < nres2; i++ ) {
for( j = 0; j < nres; j++ ) {
if( rperm[ j ] == i + nres1 ) break;
}
icmp = perm[ template_axes ? template_axes[ j ] : j ];
if( icmp < nc1 ) {
if( issecond ) {
done = 0;
break;
} else {
isfirst = 1;
axes2[ i ] = icmp;
}
} else {
if( isfirst ) {
done = 0;
break;
} else {
issecond = 1;
axes2[ i ] = icmp - nc1;
}
}
}
/* Save a pointer to the template subframe which is associated with the
second result subframe.*/
sub2 = isfirst ? template->frame1 :template->frame2;
/* If the two used template subframes are the same, something has gone
wrong. */
if( sub1 == sub2 ) done = 0;
/* If all axes within each result subframe are associated with the same
template subframe we continue to use the subframe astOverlay methods. */
if( done ) {
/* Overlay the first result subframe. */
astOverlay( sub1, axes1, res->frame1 );
astOverlay( sub2, axes2, res->frame2 );
}
}
/* Free the axes arrays. */
axes1 = astFree( axes1 );
axes2 = astFree( axes2 );
}
/* If we have not yet overlayed any attributes... */
if( !done ) {
/* Get the number of axes in the result Frame. */
nres = astGetNaxes( result );
/* Allocate memory for two new template_axes arrays. */
axes1 = astMalloc( sizeof(int)*(size_t)nres );
axes2 = astMalloc( sizeof(int)*(size_t)nres );
if( astOK ) {
/* Set elements to -1 in "axes1" if they do not refer to the first component
Frame in the template CmpFrame. Likewise, set elements to -1 in "axes2" if
they do not refer to the second component Frame in the template CmpFrame. */
for( i = 0; i < nres; i++ ) {
/* Get the internal axis number within the template CmpFrame which
provides attribute values for the current results axis. */
icmp = perm[ template_axes ? template_axes[ i ] : i ];
/* If this template axis is in the first component Frame, store the
corresponding internal frame axis index in "axes1" and set "axis2" to
-1. */
if( icmp < nc1 ) {
axes1[ i ] = icmp;
axes2[ i ] = -1;
/* If this template axis is in the second component Frame, store the
corresponding internal frame axis index in "axes2" and set "axis1" to
-1. */
} else {
axes1[ i ] = -1;
axes2[ i ] = icmp - nc1;
}
}
/* Now use the astOverlay methods of the two component Frames to overlay
attributes onto the appropriate axes of the results Frame. */
astOverlay( template->frame1, axes1, result );
astOverlay( template->frame2, axes2, result );
}
/* Free the axes arrays. */
axes1 = astFree( axes1 );
axes2 = astFree( axes2 );
}
}
static void PartitionSelection( int nselect, const int select[],
const int perm[], int naxes1, int naxes2,
int iframe[], int following, int *status ) {
/*
* Name:
* PartitionSelection
* Purpose:
* Partition a CmpFrame axis selection into two component Frame selections.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void PartitionSelection( int nselect, const int select[],
* const int perm[], int naxes1, int naxes2,
* int iframe[], int following, int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function accepts an array containing the indices of axes
* which are to be selected from a CmpFrame, and partitions these
* indices to indicate which must be selected from each of the
* CmpFrame's two component Frames.
*
* This operation is trivial if all the axis indices supplied refer
* to valid CmpFrame axes. However, if some of them do not (these
* should generally be set to -1), this function assigns these
* "extra" axes to one or other of the component Frames by
* associating them with the axes selected immediately before (or
* after). Allowance is made for the possibility that several
* consecutive selected axes may be "extra" ones, or even that they
* may all be. The CmpFrame's axis permutation array is also taken
* into account.
* Parameters:
* nselect
* The number of axes to be selected.
* select
* An array containing the (zero-based) indices of the CmpFrame
* axes to be selected, or -1 where "extra" axes are required.
* perm
* The CmpFrame's axis permutation array.
* naxes1
* The number of axes in the CmpFrame's first component Frame.
* naxes2
* The number of axes in the CmpFrame's second component Frame.
* iframe
* An array with "nselect" elements in which to return a number
* (either 1 or 2) to indicate to which component Frame (frame1
* or frame2) each selected axis belongs.
* following
* If this is zero, "extra" axes will be associated with the
* preceding normal selected axis which appears in the "select"
* array (if any), otherwise they will be associated with the
* following normal selected axis.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
int end; /* Loop termination value */
int ifr; /* Choice of Frame for next "extra" axis */
int inc; /* Loop increment value */
int iselect; /* Loop counter for axis selections */
int naxes; /* Total number of CmpFrame axes */
int start; /* Loop starting value */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain the total number of CmpFrame axes. */
naxes = naxes1 + naxes2;
/* Loop through each axis selection and identify those which refer to
valid CmpFrame axes. */
for ( iselect = 0; iselect < nselect; iselect++ ) {
if ( ( select[ iselect ] >= 0 ) && ( select[ iselect ] < naxes ) ) {
/* For these selections (only), enter a flag into the "iframe" array
which indicates which component Frame the selected axis resides
in. Permute each axis index before deciding this. */
iframe[ iselect ] = 1 + ( perm[ select[ iselect ] ] >= naxes1 );
}
}
/* Set up a start, end, and increment value for looping through the
array of axis selections forward (if "following" is 0) or backwards
(otherwise). */
start = following ? nselect - 1 : 0;
end = following ? -1 : nselect;
inc = following ? -1 : 1;
/* Set the default choice of component Frame. This will be used if
there are no normal axis selections to guide the choice at all. */
ifr = following ? 2 : 1;
/* Search for the first normal axis selection so that we can replace
this default, if possible. (Here, "first" actually means "last" if
"following" is set, because we will then be scanning the array of
selections in reverse.) */
for ( iselect = start; iselect != end; iselect += inc ) {
/* Identify normal axis selections and obtain the choice of component
Frame for the first one found. The resulting value "ifr" will be
used for initial (or final, if "following" is set) "extra"
selections for which no earlier normal selection exists - see
below. */
if ( ( select[ iselect ] >= 0 ) && ( select[ iselect ] < naxes ) ) {
ifr = iframe[ iselect ];
break;
}
}
/* Loop through the selections again to allocate a choice of Frame to
the "extra" selected axes. */
for ( iselect = start; iselect != end; iselect += inc ) {
/* Remember the component Frame used by the most recently encountered
normal axis selection. */
if ( ( select[ iselect ] >= 0 ) && ( select[ iselect ] < naxes ) ) {
ifr = iframe[ iselect ];
/* For "extra" axes, allocate the most recent Frame choice. The
default choice (found above) will apply if no "most recent" choice
has been encountered. */
} else {
iframe[ iselect ] = ifr;
}
}
}
static int PartMatch( AstCmpFrame *template, AstFrame *target,
int matchsub, int naxes1, const int axes1[],
int naxes2, const int axes2[],
int **template_axes, int **target_axes,
AstMapping **map, AstFrame **result, int *status ) {
/*
* Name:
* PartMatch
* Purpose:
* Match a CmpFrame template to partitioned target axes.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int PartMatch( AstCmpFrame *template, AstFrame *target,
* int matchsub, int naxes1, const int axes1[],
* int naxes2, const int axes2[],
* int **template_axes, int **target_axes,
* AstMapping **map, AstFrame **result, int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function matches a "template" CmpFrame to a "target" Frame
* and determines whether it is possible to convert coordinates
* between them. If it is, a Mapping that performs the
* transformation is returned along with a new Frame that describes
* the coordinate system that results when this Mapping is applied
* to the "target" coordinate system. In addition, information is
* returned to allow the axes in this "result" Frame to be
* associated with the corresponding axes in the "target" Frame and
* "template" CmpFrame from which they are derived.
*
* To simplify the matching process for a CmpFrame template, this
* function requires the caller to specify how the axes of the
* target Frame should be partitioned between the two component
* Frames of the template. The function attempts to find a match
* using this axis partitioning only. In general, the way in which
* the target axes must be partitioned is not known in advance, so
* this function must be invoked several times with alternative
* partitioning before a match will be found.
* Parameters:
* template
* Pointer to the template CmpFrame. This describes the
* coordinate system (or set of possible coordinate systems)
* into which we wish to convert our coordinates.
* target
* Pointer to the target Frame. This describes the coordinate
* system in which we already have coordinates.
* matchsub
* If zero then a match only occurs if the template is of the same
* class as the target, or of a more specialised class. If non-zero
* then a match can occur even if this is not the case (i.e. if the
* target is of a more specialised class than the template). In
* this latter case, the target is cast down to the class of the
* template.
* naxes1
* The number of target axes to be matched against the first
* component Frame of the template CmpFrame.
* axes1
* An array with "naxes1" elements containing the (zero-based)
* indices of the target axes to be matched against the first
* component Frame. Order is not significant.
* naxes2
* The number of target axes to be matched against the second
* component Frame of the template CmpFrame.
* axes2
* An array with "naxes2" elements containing the (zero-based)
* indices of the target axes to be matched against the second
* component Frame. Order is not significant.
* template_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* template CmpFrame axis from which it is derived. If it is not
* derived from any template axis, a value of -1 will be
* returned instead.
* target_axes
* Address of a location where a pointer to int will be returned
* if the requested coordinate conversion is possible. This
* pointer will point at a dynamically allocated array of
* integers with one element for each axis of the "result" Frame
* (see below). It must be freed by the caller (using astFree)
* when no longer required.
*
* For each axis in the result Frame, the corresponding element
* of this array will return the (zero-based) index of the
* target Frame axis from which it is derived. If it is not
* derived from any target Frame axis, a value of -1 will be
* returned instead.
* map
* Address of a location where a pointer to a new Mapping will
* be returned if the requested coordinate conversion is
* possible. If returned, the forward transformation of this
* Mapping may be used to convert coordinates between the
* "target" Frame and the "result" Frame (see below) and the
* inverse transformation will convert in the opposite
* direction.
* result
* Address of a location where a pointer to a new Frame will be
* returned if the requested coordinate conversion is
* possible. If returned, this Frame describes the coordinate
* system that results from applying the returned Mapping
* (above) to the "target" coordinate system. In general, this
* Frame will combine attributes from (and will therefore be
* more specific than) both the target Frame and the template
* CmpFrame. In particular, when the template allows the
* possibility of transformaing to any one of a set of
* alternative coordinate systems, the "result" Frame will
* indicate which of the alternatives was used.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A non-zero value is returned if the requested coordinate
* conversion is possible. Otherwise zero is returned (this will
* not in itself result in an error condition).
* Notes:
* - The "axes1" and "axes2" arrays should not contain any axis
* indices in common and should, taken together, list all the axes
* of the target Frame.
* - By default, the "result" Frame will have its number of axes
* and axis order determined by the "template" CmpFrame. However,
* if the PreserveAxes attribute of the template is non-zero, then
* the axis count and axis order of the "target" Frame will be used
* instead.
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstFrame *frame1; /* Pointer to first sub-Frame from target */
AstFrame *frame2; /* Pointer to second sub-Frame from target */
AstFrame *result1; /* Result Frame pointer from first match */
AstFrame *result2; /* Result Frame pointer from second match */
AstFrame *tmp_frame; /* Temporary Frame pointer */
AstMapping *junk_map; /* Mapping pointer returned by astSubFrame */
AstMapping *map1; /* Mapping pointer from first match */
AstMapping *map2; /* Mapping pointer from second match */
AstMapping *permmap; /* Pointer to PermMap */
AstMapping *tmp_map; /* Temporary Mapping pointer */
const int *perm; /* Template axis permutation array pointer */
int *inperm; /* Pointer to temporary permutation array */
int *invperm; /* Inverse axis permutation array pointer */
int *outperm; /* Pointer to temporary permutation array */
int *pick; /* Pointer to array of axis selections */
int *result_order; /* Relative result axis order array pointer */
int *result_perm; /* Result axis permutation array pointer */
int *target_assoc; /* Target axis association array pointer */
int *target_axes1; /* Target axis associations from 1st match */
int *target_axes2; /* Target axis associations from 2nd match */
int *template_assoc; /* Template axis association array pointer */
int *template_axes1; /* Template axis associations, 1st match */
int *template_axes2; /* Template axis associations, 2nd match */
int first; /* Axis in 1st component? */
int full_axis; /* Result Frame axis index, before sub-set */
int match1; /* First match successful? */
int match2; /* Second match successful? */
int match; /* Both matches successful? (result) */
int match_end1; /* MatchEnd attribute for component 1 */
int match_end2; /* MatchEnd attribute for component 2 */
int match_end; /* MatchEnd attribute for template */
int match_end_set; /* Component MatchEnd attribute set? */
int output_axis; /* Output axis index */
int part_result_axis; /* Result Frame component axis index */
int part_target_axis; /* Target Frame component axis index */
int part_template_axis; /* Template CmpFrame component axis index */
int permute_set; /* Component Permute attribute set? */
int permute_value; /* Component Permute attribute value */
int preserve_axes; /* Template PreserveAxes attribute value */
int preserve_axes_set; /* Component PreserveAxes attribute set? */
int ref_naxes; /* Number of reference Frame axes */
int result_axis; /* Result Frame axis index */
int result_naxes1; /* Number of result Frame axes, component 1 */
int result_naxes2; /* Number of result Frame axes, component 2 */
int result_naxes; /* Total number of result Frame axes */
int target_axis; /* Target Frame axis index */
int target_naxes; /* Number of target Frame axes */
int template_axis; /* Template CmpFrame axis index */
int template_naxes1; /* Number of template axes, component 1 */
int template_naxes; /* Total number of template axes */
/* Initialise the returned values. */
*template_axes = NULL;
*target_axes = NULL;
*map = NULL;
*result = NULL;
match = 0;
/* Check the global error status. */
if ( !astOK ) return match;
/* Initialise other variables to avoid compiler errors. */
ref_naxes = 0;
/* Select the required sub-Frames from the target. */
/* ----------------------------------------------- */
/* We first create two sub-Frames (that can be matched against the two
template component Frames) by selecting the two specified sets of
axes from the target. This is done without overlaying any template
attributes. Annul the Mappings produced by this process, as these
are not needed. */
frame1 = NULL;
junk_map = NULL;
(void) astSubFrame( target, NULL, naxes1, axes1, NULL, &junk_map, &frame1 );
if( junk_map ) junk_map = astAnnul( junk_map );
frame2 = NULL;
junk_map = NULL;
(void) astSubFrame( target, NULL, naxes2, axes2, NULL, &junk_map, &frame2 );
if( junk_map ) junk_map = astAnnul( junk_map );
/* Match the sub-Frames with the template component Frames. */
/* -------------------------------------------------------- */
/* We now have two sub-Frames obtained from the target, and will
attempt to match these with the component Frames contained within
the template CmpFrame. */
/* Before using each template component Frame, see whether any of its
attributes that control matching is "un-set". If so, over-ride it
with the attribute value of the template CmpFrame as a whole. */
match_end_set = astTestMatchEnd( template->frame1 );
if ( !match_end_set ) {
astSetMatchEnd( template->frame1, astGetMatchEnd( template ) );
}
preserve_axes_set = astTestPreserveAxes( template->frame1 );
if ( !preserve_axes_set ) {
astSetPreserveAxes( template->frame1, astGetPreserveAxes( template ) );
}
/* We must also temporarily set the Permute attribute to 1 (this is
normally the default, but might have been set otherwise). This is
needed so that permutations of the target axes will be considered.
Without this, the order in which the axes are presented is
significant and we would have to test all the permutations. If the
Permute attribute of the template CmpFrame as a whole is zero, then
the resulting match may still have to be rejected, but this must be
done at a higher level. */
permute_set = astTestPermute( template->frame1 );
permute_value = ( permute_set ) ? astGetPermute( template->frame1 ) : 0;
astSetPermute( template->frame1, 1 );
/* Test for a match with the first template component Frame. */
match1 = astMatch( template->frame1, frame1, matchsub,
&template_axes1, &target_axes1, &map1, &result1 );
/* Clear the attribute values again afterwards if necessary. */
if ( !match_end_set ) astClearMatchEnd( template->frame1 );
if ( !preserve_axes_set ) astClearPreserveAxes( template->frame1 );
/* Also restore the original Permute attribute setting. */
if ( permute_set ) {
astSetPermute( template->frame1, permute_value );
} else {
astClearPermute( template->frame1 );
}
/* Repeat the whole process for the second component Frame. */
match_end_set = astTestMatchEnd( template->frame2 );
if ( !match_end_set ) {
astSetMatchEnd( template->frame2, astGetMatchEnd( template ) );
}
preserve_axes_set = astTestPreserveAxes( template->frame2 );
if ( !preserve_axes_set ) {
astSetPreserveAxes( template->frame2, astGetPreserveAxes( template ) );
}
permute_set = astTestPermute( template->frame2 );
if ( permute_set ) permute_value = astGetPermute( template->frame2 );
astSetPermute( template->frame2, 1 );
match2 = astMatch( template->frame2, frame2, matchsub,
&template_axes2, &target_axes2, &map2, &result2 );
if ( !match_end_set ) astClearMatchEnd( template->frame2 );
if ( !preserve_axes_set ) astClearPreserveAxes( template->frame2 );
if ( permute_set ) {
astSetPermute( template->frame2, permute_value );
} else {
astClearPermute( template->frame2 );
}
/* See if both matches were successful. */
if ( astOK && match1 && match2 ) {
match = 1;
/* Obtain the number of target axes. */
target_naxes = astGetNaxes( target );
/* Obtain the number of axes in each of the result Frames produced by
the matching operation. */
result_naxes1 = astGetNaxes( result1 );
result_naxes2 = astGetNaxes( result2 );
/* Obtain the number of axes in the first template component Frame and
in the template CmpFrame as a whole. */
template_naxes1 = astGetNaxes( template->frame1 );
template_naxes = astGetNaxes( template );
/* Obtain the value of the MatchEnd attribute for each of the
template's component Frames and for the template CmpFrame as a
whole. */
match_end1 = astGetMatchEnd( template->frame1 );
match_end2 = astGetMatchEnd( template->frame2 );
match_end = astGetMatchEnd( template );
/* Obtain a pointer to the template CmpFrame's axis permutation
array. Allocate space for a further array and fill it with the
inverse of this axis permutation. */
perm = astGetPerm( template );
invperm = astMalloc( sizeof( int ) * (size_t) template_naxes );
if ( astOK ) {
for ( template_axis = 0; template_axis < template_naxes;
template_axis++ ) {
invperm[ perm[ template_axis ] ] = template_axis;
}
}
/* Generate template and target axis associations. */
/* ----------------------------------------------- */
/* We now construct two arrays which identify the axis associations
between the result axes (in the order obtained from the matching
process above) and the axes of the template and target. This
involves tracing back through several steps. */
/* First calculate the total number of result axes and allocate memory
for the association arrays. */
result_naxes = result_naxes1 + result_naxes2;
template_assoc = astMalloc( sizeof( int ) * (size_t) result_naxes );
target_assoc = astMalloc( sizeof( int ) * (size_t) result_naxes );
if ( astOK ) {
/* Produce associations for each result axis in turn. */
for ( result_axis = 0; result_axis < result_naxes; result_axis++ ) {
/* Decide whether this result axis is contained in the first (or
second) individual result Frame. */
first = ( result_axis < result_naxes1 );
/* Obtain the index of the axis within the individual result Frame.
This involves adjusting for the axis numbering offset of the second
result Frame if necessary. */
part_result_axis = first ? result_axis :
result_axis - result_naxes1;
/* Find the template and target axis associations for this axis by
looking them up in the association arrays returned from the
matching process. This gives axis indices that apply to the
individual template/target Frames supplied as input to the matching
process. */
part_template_axis = first ? template_axes1[ part_result_axis ] :
template_axes2[ part_result_axis ];
part_target_axis = first ? target_axes1[ part_result_axis ] :
target_axes2[ part_result_axis ];
/* Check that the resulting template association identifies a valid
template axis. */
if ( part_template_axis != -1 ) {
/* If so, obtain the template axis index. This involves adjusting for
the axis numbering offset of the second template component Frame
(if necessary) and then applying the inverse template axis
permutation to convert to the external template axis
numbering. Store the result in the template association array. */
template_assoc[ result_axis ] =
invperm[ first ? part_template_axis :
part_template_axis + template_naxes1 ];
/* Indicate if there is no template axis association by storing an
index of -1. */
} else {
template_assoc[ result_axis ] = -1;
}
/* Similarly, check that the target association identifies a valid
target axis. */
if ( part_target_axis != -1 ) {
/* If so, obtain the target axis index. This simply involves using the
axis selection arrays provided by the caller to look up which
target axes were involved in the matching process. */
target_assoc[ result_axis ] =
first ? axes1[ part_target_axis ] :
axes2[ part_target_axis ];
/* Indicate if there is no target axis association by storing an index
of -1. */
} else {
target_assoc[ result_axis ] = -1;
}
}
}
/* Free the inverse axis permutation array. */
invperm = astFree( invperm );
/* Create the output Frame. */
/* ------------------------ */
/* Initialise. */
result_order = NULL;
result_perm = NULL;
/* Construct the basis of the final result Frame by combining the two
individual result Frames (from the matching process) using a
CmpFrame. */
if ( astOK ) {
*result = (AstFrame *) astCmpFrame( result1, result2, "", status );
/* The next step is to permute the result Frame's axis order so that
it corresponds with the axis order of the "reference Frame". The
reference Frame is either the template or the target, depending on
whether the template's PreserveAxes attribute is non-zero. Obtain
the value of this attribute. */
preserve_axes = astGetPreserveAxes( template );
/* Decide how many axes the reference Frame contains. */
ref_naxes = preserve_axes ? target_naxes : template_naxes;
/* Make a copy of the axis association array that refers to the
reference Frame. */
result_order = astStore( NULL,
preserve_axes ? target_assoc :
template_assoc,
sizeof( int ) * (size_t) result_naxes );
/* The intention is to use this axis association array to permute the
result axes into the same order as the reference Frame's axes. It
is not that simple, however, because some of the axis associations
may be null (i.e. result axes may exist that are not associated
with reference axes) and they may also be incomplete (i.e. not
every reference axis may be associated with a result axis).
This prevents us from permuting the result axis order using this
array directly, essentially because we haven't yet defined where
any "extra" result axes (those with no association) should appear
in the final axis order. */
/* To overcome this, we replace all the null (-1) entries in the
"result_order" array with new values which define their position
relative to the other entries. This also involves re-numbering
other entries to avoid clashes. The new numbers assigned depend on
the MatchEnd attribute for each of the template component Frames,
so we handle the associations for each of these components
separately. */
AddExtraAxes( result_naxes, result_order,
0, result_naxes1 - 1, match_end1, status );
AddExtraAxes( result_naxes, result_order,
result_naxes1, result_naxes - 1, match_end2, status );
/* There may now be some reference Frame axes which are not referenced
in this array, so we renumber the entries starting at zero (but
preserving their relative order) so that there are no missing
values due to these. */
RenumberAxes( result_naxes, result_order, status );
/* The resulting "result_order" array no longer describes the original
reference Frame axis associations, but is now suitable for
permuting the result axes into the required order. However, we
require the inverse of this permutation, so allocate an array and
fill it with the inverse. */
result_perm = astMalloc( sizeof( int ) * (size_t) result_naxes );
if ( astOK ) {
for ( result_axis = 0; result_axis < result_naxes;
result_axis++ ) {
result_perm[ result_order[ result_axis ] ] = result_axis;
}
}
/* Apply the inverse permutation to the result CmpFrame to put its
axes into the required order. */
astPermAxes( *result, result_perm );
/* Check if the number of result Frame axes differs from the number of
reference axes. This can arise if the PreserveAxes attribute of
either template component Frame is set to a value that differs from
that of the template CmpFrame as a whole. If this is the case, we
must select a sub-set (or super-set) of the result axes, so that we
end up with the same number of axes as the reference Frame. */
if ( ref_naxes != result_naxes ) {
/* Allocate an array to hold the indices of the axes required. */
pick = astMalloc( sizeof( int ) * (size_t) ref_naxes );
if ( astOK ) {
/* Generate the axis indices, using the template CmpFrame's MatchEnd
attribute to decide which ones to use. */
for ( output_axis = 0; output_axis < ref_naxes;
output_axis++ ) {
full_axis =
match_end ? output_axis + ( result_naxes - ref_naxes ) :
output_axis;
/* If the index is valid (i.e. the required axis is available), store
it. Otherwise, use an index of -1, which requests that new
(default) axes be supplied where needed. */
if ( ( full_axis >= 0 ) && ( full_axis < result_naxes ) ) {
pick[ output_axis ] = full_axis;
} else {
pick[ output_axis ] = -1;
}
}
}
/* Pick the required axes from the result Frame and replace it with
the new one. */
tmp_frame = astPickAxes( *result, ref_naxes, pick, NULL );
*result = astAnnul( *result );
*result = tmp_frame;
/* Free the array of axis indices. */
pick = astFree( pick );
}
}
/* Create output axis association arrays. */
/* -------------------------------------- */
/* We now construct the two arrays that are returned to identify which
template and target axes (if any) are associated with each final
result Frame axis. Allocate memory for these arrays. */
if ( astOK ) {
*target_axes = astMalloc( sizeof( int ) * (size_t) ref_naxes );
*template_axes = astMalloc( sizeof( int ) * (size_t) ref_naxes );
if ( astOK ) {
/* For each output axis, obtain the original result axis index (before
any sub-set or super-set of the output axes was selected). */
for ( output_axis = 0; output_axis < ref_naxes; output_axis++ ) {
full_axis =
match_end ? output_axis + ( result_naxes - ref_naxes ) :
output_axis;
/* Derive the result axis index before the axes were permuted into
their final order. */
if ( ( full_axis >= 0 ) && ( full_axis < result_naxes ) ) {
result_axis = result_perm[ full_axis ];
/* Use this axis index and the axis association arrays generated
earlier to obtain the required associations, and store these in the
output arrays. */
( *template_axes )[ output_axis ] =
template_assoc[ result_axis ];
( *target_axes )[ output_axis ] =
target_assoc[ result_axis ];
/* Store a value of -1 if there is no association. */
} else {
( *template_axes )[ output_axis ] = -1;
( *target_axes )[ output_axis ] = -1;
}
}
}
}
/* Free the original (un-permuted) axis association arrays. */
template_assoc = astFree( template_assoc );
target_assoc = astFree( target_assoc );
/* Create the output Mapping. */
/* -------------------------- */
/* Construct the basis of the final output Mapping by combining the
Mappings produced by the individual matching processes in parallel,
using a CmpMap. */
*map = (AstMapping *) astCmpMap( map1, map2, 0, "", status );
/* It is now necessary to prefix and suffix this CmpMap with two
PermMaps, which correct the input and output axis order to
correspond with the target and result Frame axes.
At the target end, this reflects the partitioning of the target
axes into two groups, as specified by the caller. At the result
end, it reflects the axis permutation applied (above) to put the
final result Frame axes into the required order, together with the
selection of any sub-set or super-set of these axes. */
/* Allocate memory for permutation arrays to describe the prefix
PermMap. */
inperm = astMalloc( sizeof( int ) * (size_t) target_naxes );
outperm = astMalloc( sizeof( int ) * (size_t) target_naxes );
if ( astOK ) {
/* Consider the target axes in the order that they were supplied to
the matching processes (i.e. the order that corresponds with the
input coordinates of the CmpMap produced above). */
for ( target_axis = 0; target_axis < target_naxes; target_axis++ ) {
/* Decide whether each axis belongs to the first (or second) selected
group of target axes. */
first = ( target_axis < naxes1 );
/* Obtain the index of the target axis within the group. This involves
allowing for the numbering offset of the second group if
necessary. */
part_target_axis = first ? target_axis :
target_axis - naxes1;
/* Obtain the original target axis index by looking up the axis in the
appropriate axis selection array provided by the caller. */
outperm[ target_axis ] = first ? axes1[ part_target_axis ] :
axes2[ part_target_axis ];
/* Fill the "inperm" array with the inverse of this permutation. */
inperm[ outperm[ target_axis ] ] = target_axis;
}
}
/* If the permutation is not null, use these permutation arrays to
construct the required prefix PermMap. */
if ( GoodPerm( target_naxes, inperm, target_naxes, outperm, status ) ) {
permmap = (AstMapping *) astPermMap( target_naxes, inperm,
target_naxes, outperm,
NULL, "", status );
/* Add the PermMap as a prefix to the result Mapping and then annul
the original Mapping pointers. */
tmp_map = (AstMapping *) astCmpMap( permmap, *map, 1, "", status );
(void) astAnnul( *map );
*map = tmp_map;
permmap = astAnnul( permmap );
}
/* Free the permutation arrays. */
inperm = astFree( inperm );
outperm = astFree( outperm );
/* Allocate memory for permutation arrays to describe the suffix
PermMap. */
inperm = astMalloc( sizeof( int ) * (size_t) result_naxes );
outperm = astMalloc( sizeof( int ) * (size_t) ref_naxes );
if ( astOK ) {
/* Initialise the "inperm" array. */
for ( result_axis = 0; result_axis < result_naxes; result_axis++ ) {
inperm[ result_axis ] = -1;
}
/* For each output axis, obtain the index of the corresponding result
axis before any sub-set or super-set was selected. */
for ( output_axis = 0; output_axis < ref_naxes; output_axis++ ) {
full_axis =
match_end ? output_axis + ( result_naxes - ref_naxes ) :
output_axis;
/* Store the axis index before the result axes were permuted, and also
construct the inverse permutation. */
if ( ( full_axis >= 0 ) && ( full_axis < result_naxes ) ) {
outperm[ output_axis ] = result_perm[ full_axis ];
inperm[ outperm[ output_axis ] ] = output_axis;
/* Note which output axes do not exist in the result Frame
(e.g. because a super-set was selected). */
} else {
outperm[ output_axis ] = -1;
}
}
}
/* If the permutation is not null, use these permutation arrays to
construct the required suffix PermMap. */
if ( GoodPerm( target_naxes, inperm, target_naxes, outperm, status ) ) {
permmap = (AstMapping *) astPermMap( result_naxes, inperm,
ref_naxes, outperm,
NULL, "", status );
/* Add the PermMap as a suffix to the result Mapping and then annul
the original Mapping pointers. */
tmp_map = (AstMapping *) astCmpMap( *map, permmap, 1, "", status );
(void) astAnnul( *map );
*map = tmp_map;
permmap = astAnnul( permmap );
}
/* Free the permutation arrays. */
inperm = astFree( inperm );
outperm = astFree( outperm );
/* Free the result axis permutation arrays. */
result_order = astFree( result_order );
result_perm = astFree( result_perm );
}
/* If necessary, free the results of the first matching process. */
if ( match1 ) {
template_axes1 = astFree( template_axes1 );
target_axes1 = astFree( target_axes1 );
map1 = astAnnul( map1 );
result1 = astAnnul( result1 );
}
/* If necessary, free the results of the second matching process. */
if ( match2 ) {
template_axes2 = astFree( template_axes2 );
target_axes2 = astFree( target_axes2 );
map2 = astAnnul( map2 );
result2 = astAnnul( result2 );
}
/* Annul the pointers to the sub-Frames selected from the target. */
frame1 = astAnnul( frame1 );
frame2 = astAnnul( frame2 );
/* If an error occurred, free all allocated memory, annul the result
Object pointers and clear all returned values. */
if ( !astOK ) {
*template_axes = astFree( *template_axes );
*target_axes = astFree( *target_axes );
*map = astAnnul( *map );;
*result = astAnnul( *result );
match = 0;
}
/* Return the result. */
return match;
}
static void PermAxes( AstFrame *this_frame, const int perm[], int *status ) {
/*
* Name:
* PermAxes
* Purpose:
* Permute the order of a CmpFrame's axes.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void astPermAxes( AstFrame *this, const int perm[], int *status )
* Class Membership:
* CmpFrame member function (over-rides the astPermAxes method
* inherited from the Frame class).
* Description:
* This function permutes the order in which a CmpFrame's axes occur.
* Parameters:
* this
* Pointer to the CmpFrame.
* perm
* An array of int (with one element for each axis of the
* CmpFrame) which lists the axes in their new order. Each
* element of this array should be a (zero-based) axis index
* identifying the axes according to their old (un-permuted)
* order.
* status
* Pointer to the inherited status variable.
* Notes:
* - Only genuine permutations of the axis order are permitted, so
* each axis must be referenced exactly once in the "perm" array.
* - If more than one axis permutation is applied to a CmpFrame,
* the effects are cumulative.
* Implementation Notes:
* - This function performs essentially the same operation as the
* Frame member function which it over-rides. However, it operates
* on a "perm" array held in the CmpFrame structure (rather than
* the one in the parent Frame structure). This duplication of the
* array is necessary because the one in the Frame structure is of
* zero length, the number of axes in the Frame structure having
* been set to zero to prevent unnecessary allocation of Axis
* objects which are not needed by the CmpFrame.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
int *old; /* Pointer to copy of old permutation array */
int axis; /* Loop counter for CmpFrame axes */
int naxes; /* Number of CmpFrame axes */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate the permutation array, to check that it describes a
genuine permutation. */
astCheckPerm( this, perm, "astPermAxes" );
/* Obtain the number of CmpFrame axes. */
naxes = astGetNaxes( this );
/* Allocate memory and use it to store a copy of the old permutation
array for the CmpFrame. */
old = astStore( NULL, this->perm, sizeof( int ) * (size_t) naxes );
/* Apply the new axis permutation cumulatively to the old one and
store the result in the CmpFrame. */
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) {
this->perm[ axis ] = old[ perm[ axis ] ];
}
}
/* Free the temporary copy of the old array. */
old = astFree( old );
}
static void PrimaryFrame( AstFrame *this_frame, int axis1,
AstFrame **frame, int *axis2, int *status ) {
/*
* Name:
* PrimaryFrame
* Purpose:
* Uniquely identify a primary Frame and one of its axes.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void astPrimaryFrame( AstFrame *this, int axis1, AstFrame **frame,
* int *axis2, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected
* astPrimaryFrame method inherited from the Frame class).
* Description:
* This function returns information about the underlying (primary)
* Frame corresponding to a specified CmpFrame axis.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis1
* An axis index (zero-based) identifying the CmpFrame axis for
* which information is required.
* frame
* Address of a location to receive a pointer to the underlying
* (primary) Frame to which the requested axis belongs
* (i.e. this will not be a compound Frame).
* axis2
* Pointer to an int which is to receive the (zero-based) axis
* index within "frame" which identifies the axis being referred
* to, using the axis order that applied when the primary Frame
* was originally constructed (i.e. this function undoes all
* subsequent axis pemutations and the effects of combining
* Frames, in order to reveal the original underlying axis
* order).
* status
* Pointer to the inherited status variable.
* Notes:
* - This protected method is provided so that class
* implementations can distinguish the axes of Frames from one
* another (e.g. can distinguish a longitude axis as being
* different from a latitide axis) even after their order has been
* permuted and they have been combined with axes from other
* Frames.
* - The reference count of the primary Frame will be incremented
* by one to reflect the new pointer returned.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
int naxes1; /* Number of axes in frame1 */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis1 = astValidateAxis( this, axis1, 1, "astPrimaryFrame" );
/* Obtain the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which Frame contains the axis and invoke its astPrimaryFrame
method to obtain the required information. */
if ( axis1 < naxes1 ) {
astPrimaryFrame( this->frame1, axis1, frame, axis2 );
} else {
astPrimaryFrame( this->frame2, axis1 - naxes1, frame, axis2 );
}
}
}
static int QsortCmpAxes( const void *a, const void *b ) {
/*
* Name:
* QsortCmpAxes
* Purpose:
* Compare two axis indices for "qsort".
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int QsortCmpAxes( const void *a, const void *b )
* Class Membership:
* CmpFrame member function.
* Description:
* This is a service function for the C RTL routine "qsort". It
* takes the two values supplied and interprets them as integer
* indices into the static "qsort_axes" array. It compares the
* values of these two array elements and returns the result
* required by "qsort".
*
* This function is used when sorting an array of indices so that
* they access the "qsort_axes" array in ascending order.
* Parameters:
* As required by "qsort".
* Returned Value:
* As required by "qsort".
*/
/* Local Variables. */
astDECLARE_GLOBALS /* Declare the thread specific global data */
int result; /* Result value to return */
int val_a; /* First axis index */
int val_b; /* Second axis index */
/* Get a pointer to the structure holding thread-specific global data. */
astGET_GLOBALS(NULL);
/* Convert the values passed by "qsort" into integer array indices and
use these to access the "qsort_axes" array (this pointer to the
array being assigned by the caller of "qsort"). Extract the two
values being compared. */
val_a = qsort_axes[ *( (const int *) a ) ];
val_b = qsort_axes[ *( (const int *) b ) ];
/* Compare the two values as required by "qsort". */
if ( val_a < val_b ) {
result = -1;
} else if ( val_a == val_b ) {
result = 0;
} else {
result = 1;
}
/* Return the result. */
return result;
}
static AstMapping *RemoveRegions( AstMapping *this_mapping, int *status ) {
/*
* Name:
* RemoveRegions
* Purpose:
* Remove any Regions from a Mapping.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstMapping *RemoveRegions( AstMapping *this, int *status )
* Class Membership:
* CmpFrame method (over-rides the astRemoveRegions method inherited
* from the Frame class).
* Description:
* This function searches the supplied Mapping (which may be a
* compound Mapping such as a CmpMap) for any component Mappings
* that are instances of the AST Region class. It then creates a new
* Mapping from which all Regions have been removed. If a Region
* cannot simply be removed (for instance, if it is a component of a
* parallel CmpMap), then it is replaced with an equivalent UnitMap
* in the returned Mapping.
*
* The implementation provided by the CmpFrame class invokes the
* astRemoveRegions method on the two component Frames, and joins
* the results together into a new CmpFrame. This replaces any Regions
* with their equivalent Frames.
* Parameters:
* this
* Pointer to the original Region.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to the modified mapping.
* Notes:
* - A NULL pointer value will be returned if this function is
* invoked with the AST error status set, or if it should fail for
* any reason.
*/
/* Local Variables: */
AstCmpFrame *new; /* Pointer to new CmpFrame */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *newfrm1; /* New first component Frame */
AstFrame *newfrm2; /* New second component Frame */
AstMapping *result; /* Result pointer to return */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Get a pointer to the CmpFrame. */
this = (AstCmpFrame *) this_mapping;
/* Invoke the astRemoveRegions method on the two component Frames. */
newfrm1 = astRemoveRegions( this->frame1 );
newfrm2 = astRemoveRegions( this->frame2 );
/* If neither component was modified, just return a clone of the supplied
pointer. */
if( this->frame1 == newfrm1 && this->frame2 == newfrm2 ) {
result = astClone( this );
/* Annul new new Frame pointers. */
newfrm1 = astAnnul( newfrm1 );
newfrm2 = astAnnul( newfrm2 );
/* Otherwise, we need to create a new CmpFrame to return. */
} else {
/* Make a copy of the supplied CmpFrame so that the new CmpFrame retains
any attribute settings of the supplied CmpFrame. */
new = astCopy( this );
result = (AstMapping *) new;
/* Replace the two component Frames with the simplified Frames. */
(void) astAnnul( new->frame1 );
(void) astAnnul( new->frame2 );
new->frame1 = (AstFrame *) newfrm1;
new->frame2 = (AstFrame *) newfrm2;
}
/* Annul the returned Mapping if an error has occurred. */
if( !astOK ) result = astAnnul( result );
/* Return the result. */
return result;
}
static void RenumberAxes( int naxes, int axes[], int *status ) {
/*
* Name:
* RenumberAxes
* Purpose:
* Renumber axis indices to eliminate missing ones.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void RenumberAxes( int naxes, int axes[], int *status )
* Class Membership:
* CmpFrame member function.
* Description:
* This function takes an array containing a list of (zero-based)
* axis indices referring to the axes of a Frame, some of whose
* axes may not be referenced. It renumbers the axis indices, to
* eliminate any which are missing (i.e. not referenced), while
* preserving the original order. It does this by replacing each
* axis index by its rank (starting at zero) when the indices are
* sorted into ascending order.
* Parameters:
* naxes
* The number of axis indices present.
* axes
* An array, with "naxes" elements, containing the indices. This
* is modified by this function to contain the new indices.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Declare the thread specific global data */
int *work; /* Pointer to workspace array */
int i; /* Loop counter */
/* Check the global error status. */
if ( !astOK ) return;
/* Get a pointer to the structure holding thread-specific global data. */
astGET_GLOBALS(NULL);
/* Allocate workspace. */
work = astMalloc( sizeof( int ) * (size_t) naxes );
if ( astOK ) {
/* Fill the workspace with indices which address the axis index values
in their natural order. */
for ( i = 0; i < naxes; i++ ) work[ i ] = i;
/* Make the "axes" values available to the C RTL function "qsort" via
the static "qsort_axes" pointer. Then use "qsort" to permute the
contents of "work" so that it addresses the axis indices in
ascending order. */
qsort_axes = axes;
qsort( work, (size_t) naxes, sizeof( int ), QsortCmpAxes );
/* Use the result to replace each axis index by its rank when sorted
into ascending order (starting with zero). */
for ( i = 0; i < naxes; i++ ) axes[ work[ i ] ] = i;
}
/* Free the workspace array. */
work = astFree( work );
}
static void Resolve( AstFrame *this_frame, const double point1[],
const double point2[], const double point3[],
double point4[], double *d1, double *d2, int *status ){
/*
* Name:
* Resolve
* Purpose:
* Resolve a vector into two orthogonal components
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void Resolve( AstFrame *this, const double point1[],
* const double point2[], const double point3[],
* double point4[], double *d1, double *d2, int *status );
* Class Membership:
* CmpFrame member function (over-rides the astOffset method
* inherited from the Frame class).
* Description:
* This function resolves a vector into two perpendicular components.
* The vector from point 1 to point 2 is used as the basis vector.
* The vector from point 1 to point 3 is resolved into components
* parallel and perpendicular to this basis vector. The lengths of the
* two components are returned, together with the position of closest
* aproach of the basis vector to point 3.
* Parameters:
* this
* Pointer to the Frame.
* point1
* An array of double, with one element for each Frame axis
* (Naxes attribute). This marks the start of the basis vector,
* and of the vector to be resolved.
* point2
* An array of double, with one element for each Frame axis
* (Naxes attribute). This marks the end of the basis vector.
* point3
* An array of double, with one element for each Frame axis
* (Naxes attribute). This marks the end of the vector to be
* resolved.
* point4
* An array of double, with one element for each Frame axis
* in which the coordinates of the point of closest approach of the
* basis vector to point 3 will be returned.
* d1
* The address of a location at which to return the distance from
* point 1 to point 4 (that is, the length of the component parallel
* to the basis vector). Positive values are in the same sense as
* movement from point 1 to point 2.
* d2
* The address of a location at which to return the distance from
* point 4 to point 3 (that is, the length of the component
* perpendicular to the basis vector). The returned value is always
* positive.
* status
* Pointer to the inherited status variable.
* Notes:
* - Each vector used in this function is the path of
* shortest distance between two points, as defined by the
* astDistance function.
* - This function will return "bad" coordinate values (AST__BAD)
* if any of the input coordinates has this value, or if the required
* output values are undefined.
*--
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
const int *perm; /* Pointer to axis permutation array */
double *p1; /* Permuted coordinates for point1 */
double *p2; /* Permuted coordinates for point2 */
double *p3; /* Permuted coordinates for point3 */
double *p4; /* Permuted coordinates for point4 */
double d1a; /* Parallel distance in frame1 */
double d1b; /* Parallel distance in frame2 */
double d2a; /* Perpendicular distance in frame1 */
double d2b; /* Perpendicular distance in frame2 */
double d; /* Total length of basis vector */
double da; /* Length of basis vector in frame1 */
double db; /* Length of basis vector in frame2 */
int axis; /* Loop counter for axes */
int bad; /* Set bad output coordinates? */
int naxes1; /* Number of axes in frame1 */
int naxes; /* Total number of axes in CmpFrame */
/* Check the global error status. */
*d1 = AST__BAD;
*d2 = AST__BAD;
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain the number of axes in the CmpFrame. */
naxes = astGetNaxes( this );
/* Obtain a pointer to the CmpFrame's axis permutation array. */
perm = astGetPerm( this );
/* Allocate workspace. */
p1 = astMalloc( sizeof( double ) * (size_t) naxes );
p2 = astMalloc( sizeof( double ) * (size_t) naxes );
p3 = astMalloc( sizeof( double ) * (size_t) naxes );
p4 = astMalloc( sizeof( double ) * (size_t) naxes );
/* Initialise a flag to indicate whether "bad" coordinates should be
returned. */
bad = 0;
/* Initialise ther variables to avoid compiler warnings. */
da = 0.0;
db = 0.0;
/* Check that all the coordinates of both input points are OK. If not,
set the "bad" flag and quit checking. */
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) {
if ( ( point1[ axis ] == AST__BAD ) ||
( point2[ axis ] == AST__BAD ) ||
( point3[ axis ] == AST__BAD ) ) {
bad = 1;
break;
/* If the coordinates are OK, apply the axis permutation array to
obtain them in the required order. */
} else {
p1[ perm[ axis ] ] = point1[ axis ];
p2[ perm[ axis ] ] = point2[ axis ];
p3[ perm[ axis ] ] = point3[ axis ];
}
}
}
/* If OK, obtain the number of axes in the first component Frame. */
if ( astOK && !bad ) {
naxes1 = astGetNaxes( this->frame1 );
/* Find the projection of the required parallel distance into each of the
two Frames. */
astResolve( this->frame1, p1, p2, p3, p4, &d1a, &d2a );
astResolve( this->frame2, p1 + naxes1, p2 + naxes1, p3 + naxes1,
p4 + naxes1, &d1b, &d2b );
/* Project the first two input points into the two component Frames and
determine the length of the basis vector in each Frame. */
da = astDistance( this->frame1, p1, p2 );
db = astDistance( this->frame2, p1 + naxes1, p2 + naxes1 );
/* Check that the returned distances are not bad. */
if ( astOK ) bad = ( bad || ( da == AST__BAD ) || ( db == AST__BAD ) );
/* We can tolerate a bad parallel distance within a sub-Frame if the
basis vector has zero length in the sub-Frame, because the bad
parallel distance will have zero weight in the calculation. Set such
bad parallel distanced arbitrarily to zero. */
if( d1a == AST__BAD && da == 0.0 ) d1a = 0.0;
if( d1b == AST__BAD && db == 0.0 ) d1b = 0.0;
/* Check that the final parallel distances are not bad. */
if ( astOK ) bad = ( bad || ( d1a == AST__BAD ) || ( d1b == AST__BAD ) );
}
/* If OK, calculate the total distance between the two points. */
if ( astOK && !bad ) {
d = sqrt( da * da + db * db );
/* If the points are co-incident, then set the "bad" flag. */
if ( d == 0.0 ) {
bad = 1;
/* If the points are not co-incident, combine the parallel distances for
the individual Frames into a single parallel distance for the entire
CmpFrame. */
} else {
*d1 = ( da*d1a + db*d1b )/d;
/* Offset this distance away from point 1 towards point 2 to get point 4. */
astOffset( this, point1, point2, *d1, point4 );
/* Now find the perpendicular distance (the distance between point4 and
point3). */
*d2 = astDistance( this, point4, point3 );
}
}
/* Free the workspace arrays. */
p1 = astFree( p1 );
p2 = astFree( p2 );
p3 = astFree( p3 );
p4 = astFree( p4 );
/* If no error has occurred, but bad coordinates must be returned,
then set these in the output array. */
if ( astOK && bad ) {
*d1 = AST__BAD;
*d2 = AST__BAD;
for ( axis = 0; axis < naxes; axis++ ) point4[ axis ] = AST__BAD;
}
}
static AstPointSet *ResolvePoints( AstFrame *this_frame, const double point1[],
const double point2[], AstPointSet *in,
AstPointSet *out, int *status ) {
/*
* Name:
* ResolvePoints
* Purpose:
* Resolve a set of vectors into orthogonal components
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstPointSet *ResolvePoints( AstFrame *this, const double point1[],
* const double point2[], AstPointSet *in,
* AstPointSet *out )
* Class Membership:
* CmpFrame member function (over-rides the astResolvePoints method
* inherited from the Frame class).
* Description:
* This function takes a CmpFrame and a set of vectors encapsulated
* in a PointSet, and resolves each one into two orthogonal components,
* returning these two components in another PointSet.
*
* This is exactly the same as the public astResolve method, except
* that this method allows many vectors to be processed in a single call,
* thus reducing the computational cost of overheads of many
* individual calls to astResolve.
* Parameters:
* this
* Pointer to the CmpFrame.
* point1
* An array of double, with one element for each Frame axis
* (Naxes attribute). This marks the start of the basis vector,
* and of the vectors to be resolved.
* point2
* An array of double, with one element for each Frame axis
* (Naxes attribute). This marks the end of the basis vector.
* in
* Pointer to the PointSet holding the ends of the vectors to be
* resolved.
* out
* Pointer to a PointSet which will hold the length of the two
* resolved components. A NULL value may also be given, in which
* case a new PointSet will be created by this function.
* Returned Value:
* Pointer to the output (possibly new) PointSet. The first axis will
* hold the lengths of the vector components parallel to the basis vector.
* These values will be signed (positive values are in the same sense as
* movement from point 1 to point 2. The second axis will hold the lengths
* of the vector components perpendicular to the basis vector. These
* values will always be positive.
* Notes:
* - The number of coordinate values per point in the input
* PointSet must match the number of axes in the supplied Frame.
* - If an output PointSet is supplied, it must have space for
* sufficient number of points and 2 coordinate values per point.
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstPointSet *in1; /* Pointer to input PointSet for frame1 */
AstPointSet *in2; /* Pointer to input PointSet for frame2 */
AstPointSet *out1; /* Pointer to output PointSet for frame1 */
AstPointSet *out2; /* Pointer to output PointSet for frame2 */
AstPointSet *result; /* Pointer to output PointSet */
const int *perm; /* Pointer to axis permutation array */
double **ptr_in; /* Pointers to input axis values */
double **ptr_out1; /* Pointers to frame1 component lengths */
double **ptr_out2; /* Pointers to frame2 component lengths */
double **ptr_out; /* Pointers to returned component lengths */
double *d1; /* Pointer to next parallel component value */
double *d1_1; /* arallel distance in frame1 */
double *d1_2; /* Parallel distance in frame2 */
double *d2; /* Pointer to next perpendicular component value */
double *d2_1; /* Perpendicular distance in frame1 */
double *d2_2; /* Perpendicular distance in frame2 */
double *p1; /* Permuted coordinates for point1 */
double *p2; /* Permuted coordinates for point2 */
double *p3; /* Supplied vector */
double *p4; /* Closest approach to supplied vector */
double b1; /* Length of basis vector in frame1 */
double b2; /* Length of basis vector in frame2 */
double b; /* Length of basis vector */
int axis; /* Loop counter for axes */
int ipoint; /* Index of next point */
int nax; /* Number of Frame axes */
int naxes1; /* Number of axes in frame1 */
int naxes2; /* Number of axes in frame2 */
int ncoord_in; /* Number of input PointSet coordinates */
int ncoord_out; /* Number of coordinates in output PointSet */
int npoint; /* Number of points to transform */
int npoint_out; /* Number of points in output PointSet */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Further initialise to prevent compiler "uninitialised use" messages. */
d1 = NULL;
d2 = NULL;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Obtain the number of axes in the two component Frames */
naxes1 = astGetNaxes( this->frame1 );
naxes2 = astGetNaxes( this->frame2 );
/* For the total number of axes. */
nax = naxes1 + naxes2;
/* Obtain the number of input vectors to resolve and the number of coordinate
values per vector. */
npoint = astGetNpoint( in );
ncoord_in = astGetNcoord( in );
/* If OK, check that the number of input coordinates matches the number
required by the Frame. Report an error if these numbers do not match. */
if ( astOK && ( ncoord_in != nax ) ) {
astError( AST__NCPIN, "astResolvePoints(%s): Bad number of coordinate "
"values (%d) in input %s.", status, astGetClass( this ), ncoord_in,
astGetClass( in ) );
astError( AST__NCPIN, "The %s given requires %d coordinate value(s) for "
"each input point.", status, astGetClass( this ), nax );
}
/* If still OK, and a non-NULL pointer has been given for the output PointSet,
then obtain the number of points and number of coordinates per point for
this PointSet. */
if ( astOK && out ) {
npoint_out = astGetNpoint( out );
ncoord_out = astGetNcoord( out );
/* Check that the dimensions of this PointSet are adequate to accommodate the
output coordinate values and report an error if they are not. */
if ( astOK ) {
if ( npoint_out < npoint ) {
astError( AST__NOPTS, "astResolvePoints(%s): Too few points (%d) in "
"output %s.", status, astGetClass( this ), npoint_out,
astGetClass( out ) );
astError( AST__NOPTS, "The %s needs space to hold %d transformed "
"point(s).", status, astGetClass( this ), npoint );
} else if ( ncoord_out < 2 ) {
astError( AST__NOCTS, "astResolvePoints(%s): Too few coordinate "
"values per point (%d) in output %s.", status,
astGetClass( this ), ncoord_out, astGetClass( out ) );
astError( AST__NOCTS, "The %s supplied needs space to store 2 "
"coordinate value(s) per transformed point.", status,
astGetClass( this ) );
}
}
}
/* If all the validation stages are passed successfully, and a NULL output
pointer was given, then create a new PointSet to encapsulate the output
coordinate data. */
if ( astOK ) {
if ( !out ) {
result = astPointSet( npoint, 2, "", status );
/* Otherwise, use the PointSet supplied. */
} else {
result = out;
}
}
/* Store points to the first two axis arrays in the returned PointSet. */
ptr_out = astGetPoints( result );
if( astOK ) {
d1 = ptr_out[ 0 ];
d2 = ptr_out[ 1 ];
}
/* Obtain a pointer to the CmpFrame's axis permutation array. This array
holds the original axis index for each current Frame axis index. */
perm = astGetPerm( this );
/* Temporarily permute the coordinates within the supplied PointSet back
in to the axis order which existed when the CmpFrame was created. */
astPermPoints( in, 0, perm );
/* Extract the axis values relevant to each of the two sub-Frames from the
point1 and point2 arrays, at the same time undoing any axis permutation
applied to the CmpFrame as a whole. */
p1 = astMalloc( sizeof( double )*( size_t )nax );
p2 = astMalloc( sizeof( double )*( size_t )nax );
if( astOK ) {
for( axis = 0; axis < nax; axis++ ) {
p1[ perm[ axis ] ] = point1[ axis ];
p2[ perm[ axis ] ] = point2[ axis ];
}
}
/* Project the first two input points into the two component Frames and
determine the length of the basis vector in each Frame. */
b1 = astDistance( this->frame1, p1, p2 );
b2 = astDistance( this->frame2, p1 + naxes1, p2 + naxes1 );
/* If either of these distances is bad or if both are zero, then fill the
returned PointSet with bad values. */
if( b1 == AST__BAD || b2 == AST__BAD || ( b1 == 0.0 && b2 == 0.0 ) ) {
for( ipoint = 0; ipoint < npoint; ipoint++, d1++, d2++ ) {
*d1 = AST__BAD;
*d2 = AST__BAD;
}
/* Otherwise we continue to calculate the resolved components */
} else if( astOK ){
/* Calculate the total distance between the two points. */
b = sqrt( b1*b1 + b2*b2 );
/* Create PointSets holding the input values which refer to each of the
two component Frames. */
in1 = astPointSet( npoint, naxes1, "", status );
in2 = astPointSet( npoint, naxes2, "", status );
/* Associated the appropriate subset of the data in the supplied input
PointSet with each of these two PointSets. */
astSetSubPoints( in, 0, 0, in1 );
astSetSubPoints( in, 0, naxes1, in2 );
/* Invoke the astResolvePoints method on each of the sub-Frames. These
invocations create two new PointSets containing the output values. */
out1 = astResolvePoints( this->frame1, p1, p2, in1, NULL );
out2 = astResolvePoints( this->frame2, p1 + naxes1, p2 + naxes1, in2, NULL );
/* Get pointers to the axis values in these pointsets. */
ptr_out1 = astGetPoints( out1 );
ptr_out2 = astGetPoints( out2 );
/* More work space */
p3 = astMalloc( sizeof( double )*( size_t )nax );
p4 = astMalloc( sizeof( double )*( size_t )nax );
/* Get pointers to the input axis values (these are still permuted to
undo any axis permutation applied to the CmpFrame). */
ptr_in = astGetPoints( in );
/* Check pointers can be used safely. */
if( astOK ) {
/* Get pointers to the parallel (d1) and perpendiclar (d2) components
within the two sub-Frames (_1 and _2). */
d1_1 = ptr_out1[ 0 ];
d2_1 = ptr_out1[ 1 ];
d1_2 = ptr_out2[ 0 ];
d2_2 = ptr_out2[ 1 ];
/* Loop round each supplied vector. */
for( ipoint = 0; ipoint < npoint; ipoint++, d1++, d2++,
d1_1++, d2_1++,
d1_2++, d2_2++ ) {
/* We can tolerate a bad parallel distance within a sub-Frame if the
basis vector has zero length in the sub-Frame, because the bad
parallel distance will have zero weight in the calculation. Set such
bad parallel distanced arbitrarily to zero. */
if( *d1_1 == AST__BAD && b1 == 0.0 ) *d1_1 = 0.0;
if( *d1_2 == AST__BAD && b2 == 0.0 ) *d1_2 = 0.0;
/* Combine the parallel distances for the individual Frames into a single
parallel distance for the entire CmpFrame. */
if( *d1_1 != AST__BAD && *d1_2 != AST__BAD ) {
*d1 = ( b1*(*d1_1) + b2*(*d1_2) )/b;
/* Offset this distance away from point 1 towards point 2 to get point 4. */
astOffset( this, p1, p2, *d1, p4 );
/* Now find the perpendicular distance (the distance between point4 and
point3). */
for( axis = 0; axis < nax; axis++ ) p3[ axis ] = ptr_in[ axis ][ ipoint ];
*d2 = astDistance( this, p4, p3 );
} else {
*d1 = AST__BAD;
*d2 = AST__BAD;
}
}
}
/* Free resources */
in1 = astAnnul( in1 );
in2 = astAnnul( in2 );
out1 = astAnnul( out1 );
out2 = astAnnul( out2 );
p3 = astFree( p3 );
p4 = astFree( p4 );
}
/* Free resources */
p1 = astFree( p1 );
p2 = astFree( p2 );
/* Re-instate the original ordering of the coordinates within the
supplied PointSet. */
astPermPoints( in, 1, perm );
/* Annul the returned PointSet if an error occurred. */
if( !astOK ) result = astAnnul( result );
/* Return a pointer to the output PointSet. */
return result;
}
static void SetActiveUnit( AstFrame *this_frame, int value, int *status ){
/*
* Name:
* SetActiveUnit
* Purpose:
* Specify how the Unit attribute should be used.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetActiveUnit( AstFrame *this, int value, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetActiveUnit method
* inherited from the Frame class).
* Description:
* This function sets the current value of the ActiveUnit flag for a
* CmpFrame, which controls how the Frame behaves when it is used (by
* astFindFrame) as a template to match another (target) Frame, or is
* used as the "to" Frame by astConvert. It determines if the Mapping
* between the template and target Frames should take differences in
* axis units into account.
* Parameters:
* this
* Pointer to the CmpFrame.
* value
* The new value to use.
* status
* Pointer to the inherited status variable.
*/
/* Check the global error status. */
if ( !astOK ) return;
/* Invoke the parent method to set the ActiveUnitFlag for the CmpFrame,
then set the same value for the component Frames. */
(*parent_setactiveunit)( this_frame, value, status );
astSetActiveUnit( ((AstCmpFrame *)this_frame)->frame1, value );
astSetActiveUnit( ((AstCmpFrame *)this_frame)->frame2, value );
}
static void SetFrameFlags( AstFrame *this_frame, int value, int *status ){
/*
* Name:
* SetFrameFlags
* Purpose:
* Set flags that control current Frame behaviour.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetFrameFlags( AstFrame *this, int value, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetFrameFlags method
* inherited from the Frame class).
* Description:
* This function sets values for the bit mask of flags that control
* how the CmpFrame behaves. It ensures that both component Frames use
* the the same bitmask as the parent CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* value
* The new value to use.
* status
* Pointer to the inherited status variable.
*/
/* Check the global error status. */
if ( !astOK ) return;
/* Invoke the parent method to set the FrameFlags for the CmpFrame,
then set the same value for the component Frames. */
(*parent_setframeflags)( this_frame, value, status );
astSetFrameFlags( ((AstCmpFrame *)this_frame)->frame1, value );
astSetFrameFlags( ((AstCmpFrame *)this_frame)->frame2, value );
}
static int GetActiveUnit( AstFrame *this_frame, int *status ){
/*
* Name:
* GetActiveUnit
* Purpose:
* Determines how the Unit attribute will be used.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int GetActiveUnit( AstFrame *this_frame, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astGetActiveUnit method
* inherited from the Frame class).
* Description:
* This function returns the current value of the ActiveUnit flag for a
* CmpFrame. See the description of the astSetActiveUnit function
* for a description of the ActiveUnit flag.
* Parameters:
* this
* Pointer to the CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The current value of the ActiveUnit flag.
*/
/* Local Variables; */
int result; /* The ActiveUnit flag for the CmpFrame */
/* Check the global error status. */
if ( !astOK ) return 0;
/* If the ActiveUnit value has been set for the CmpFrame use the parent
implementation to get its value. */
if( astTestActiveUnit( this_frame ) ) {
result = (*parent_getactiveunit)( this_frame, status );
/* Otherwise, the default is determined by the component Frames. If both
components have active units, the default for the CmpFrame is "on" */
} else {
result = astGetActiveUnit( ((AstCmpFrame *)this_frame)->frame1 ) ||
astGetActiveUnit( ((AstCmpFrame *)this_frame)->frame2 );
}
/* Return the result */
return result;
}
static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
* Name:
* SetAttrib
* Purpose:
* Set an attribute value for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetAttrib( AstObject *this, const char *setting, int *status )
* Class Membership:
* CmpFrame member function (extends the astSetAttrib method inherited from
* the Mapping class).
* Description:
* This function assigns an attribute value for a CmpFrame, the attribute
* and its value being specified by means of a string of the form:
*
* "attribute= value "
*
* Here, "attribute" specifies the attribute name and should be in lower
* case with no white space present. The value to the right of the "="
* should be a suitable textual representation of the value to be assigned
* and this will be interpreted according to the attribute's data type.
* White space surrounding the value is only significant for string
* attributes.
* Parameters:
* this
* Pointer to the CmpFrame.
* setting
* Pointer to a null terminated string specifying the new attribute
* value.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* This protected method is intended to be invoked by the Object astSet
* method and makes additional attributes accessible to it.
*/
#define BUF_LEN 1024
/* Local Vaiables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstFrame *pfrm; /* Pointer to primary Frame containing axis */
char buf1[BUF_LEN]; /* For for un-indexed attribute name */
char buf2[BUF_LEN]; /* For for indexed attribute name */
int axis; /* Supplied (1-base) axis index */
int len; /* Length of setting string */
int nc; /* Number of characters read by astSscanf */
int oldrep; /* Original error reporting state */
int paxis; /* Index of primary Frame axis */
int ok; /* Have we accessed the attribute succesfully? */
int value; /* Offset to start fo value string */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Obtain the length of the setting string. */
len = strlen( setting );
/* Indicate we have not yet acessed the attribute succesfully. */
ok = 0;
/* First check the supplied attribute name against each of the attribute
names defined by this class. In fact there is nothing to do here
since the CmpFrame class currently defines no extra attributes, but
this may change in the future. */
if( 0 ) {
/* If the attribute is not a CmpFrame specific attribute... */
} else if( astOK ) {
/* We want to allow easy access to the attributes of the component Frames.
That is, we do not want it to be necessary to extract a Frame from
its parent CmpFrame in order to access its attributes. For this reason
we first temporarily switch off error reporting so that if an attempt
to access the attribute fails, we can try a different approach. */
oldrep = astReporting( 0 );
/* Our first attempt is to see if the attribute is recognised by the parent
class (Frame). */
(*parent_setattrib)( this_object, setting, status );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise, clear the error condition so that we can try a different
approach. */
} else {
astClearStatus;
/* If the attribute is qualified by an axis index, try accessing it as an
attribute of the primary Frame containing the specified index. */
if ( nc = 0,
( 2 == astSscanf( setting, "%[^(=](%d)= %n%*s %n", buf1, &axis,
&value, &nc ) ) && ( nc >= len ) ) {
/* Find the primary Frame containing the specified axis. */
astPrimaryFrame( this, axis - 1, &pfrm, &paxis );
if( astOK ) {
/* astPrimaryFrame returns the original - unpermuted - axis index within
the primary Frame. So we need to take into account any axis permutation
which has been applied to the primary Frame when forming the attribute name
to use below. Find the permuted (external) axis index which corresponds to
the internal (unpermuted) axis index "paxis". */
paxis = astValidateAxis( pfrm, paxis, 0, "astSet" );
/* Create a new setting with the same name but with the axis index
appropriate to the primary Frame. */
nc = sprintf( buf2, "%s(%d)=%s", buf1, paxis + 1,
setting+value );
if( nc < BUF_LEN ) {
/* Attempt to access the attribute. */
astSetAttrib( pfrm, buf2 );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise clear the status value, and try again without any axis index. */
} else {
astClearStatus;
sprintf( buf2, "%s=%s", buf1, setting+value );
astSetAttrib( pfrm, buf2 );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
/* Buffer overflow */
} else if( astOK ) {
astError( AST__INTER, "SetAttrib(CmpFrame): Buffer "
"over-flow (internal AST programming error).",
status );
}
/* Free the primary frame pointer. */
pfrm = astAnnul( pfrm );
}
/* If the attribute is not qualified by an axis index, try accessing it
using the primary Frame of each axis in turn. */
} else {
/* Loop round all axes attribute. */
for( axis = 0; axis < astGetNaxes( this ); axis++ ) {
/* Get the primary Frame containing this axis. */
astPrimaryFrame( this, axis, &pfrm, &paxis );
/* Attempt to access the attribute as an attribute of the primary Frame. */
astSetAttrib( pfrm, setting );
/* Free the primary Frame pointer. */
pfrm = astAnnul( pfrm );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
}
}
/* Re-instate the original error reporting state. */
astReporting( oldrep );
}
/* Report an error if the attribute could not be accessed. */
if( !ok && astOK ) {
astError( AST__BADAT, "astSet: The attribute setting \"%s\" is invalid "
"for the given %s.", status, setting, astGetClass( this ) );
}
#undef BUF_LEN
}
static void SetAxis( AstFrame *this_frame, int axis, AstAxis *newaxis, int *status ) {
/*
* Name:
* SetAxis
* Purpose:
* Set a new Axis for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void astSetAxis( AstFrame *this, int axis, AstAxis *newaxis, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetAxis method
* inherited from the Frame class).
* Description:
* This function allows a new Axis object to be associated with one
* of the axes of a CmpFrame, replacing the previous one. Each Axis
* object contains a description of the quantity represented along
* one of the CmpFrame's axes, so this function allows this
* description to be exchanged for another one.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The index (zero-based) of the CmpFrame axis whose associated
* Axis object is to be replaced.
* newaxis
* Pointer to the new Axis object.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
int naxes1; /* Number of axes in frame1 */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astSetAxis" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which Frame contains the axis and invoke its astSetAxis
method to set the new Axis. */
if ( axis < naxes1 ) {
astSetAxis( this->frame1, axis, newaxis );
} else {
astSetAxis( this->frame2, axis - naxes1, newaxis );
}
}
}
static void SetDut1( AstFrame *this_frame, double val, int *status ) {
/*
* Name:
* SetDut1
* Purpose:
* Set the value of the Dut1 attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetDut1( AstFrame *this, double val, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetDut1 method
* inherited from the Frame class).
* Description:
* This function sets the Dut1 value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* val
* New Dut1 value.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to set the CmpFrame Dut1 value. */
(*parent_setdut1)( this_frame, val, status );
/* Now set the Dut1 attribute in the two component Frames. */
astSetDut1( this->frame1, val );
astSetDut1( this->frame2, val );
}
static void SetEpoch( AstFrame *this_frame, double val, int *status ) {
/*
* Name:
* SetEpoch
* Purpose:
* Set the value of the Epoch attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetEpoch( AstFrame *this, double val, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetEpoch method
* inherited from the Frame class).
* Description:
* This function sets the Epoch value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* val
* New Epoch value.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to set the CmpFrame epoch. */
(*parent_setepoch)( this_frame, val, status );
/* Now set the Epoch attribute in the two component Frames. */
astSetEpoch( this->frame1, val );
astSetEpoch( this->frame2, val );
}
static void SetObsAlt( AstFrame *this_frame, double val, int *status ) {
/*
* Name:
* SetObsAlt
* Purpose:
* Set the value of the ObsAlt attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetObsAlt( AstFrame *this, double val, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetObsAlt method
* inherited from the Frame class).
* Description:
* This function sets the ObsAlt value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* val
* New ObsAlt value.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to set the CmpFrame ObsAlt. */
(*parent_setobsalt)( this_frame, val, status );
/* Now set the ObsAlt attribute in the two component Frames. */
astSetObsAlt( this->frame1, val );
astSetObsAlt( this->frame2, val );
}
static void SetObsLat( AstFrame *this_frame, double val, int *status ) {
/*
* Name:
* SetObsLat
* Purpose:
* Set the value of the ObsLat attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetObsLat( AstFrame *this, double val, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetObsLat method
* inherited from the Frame class).
* Description:
* This function sets the ObsLat value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* val
* New ObsLat value.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to set the CmpFrame ObsLat. */
(*parent_setobslat)( this_frame, val, status );
/* Now set the ObsLat attribute in the two component Frames. */
astSetObsLat( this->frame1, val );
astSetObsLat( this->frame2, val );
}
static void SetObsLon( AstFrame *this_frame, double val, int *status ) {
/*
* Name:
* SetObsLon
* Purpose:
* Set the value of the ObsLon attribute for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* void SetObsLon( AstFrame *this, double val, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSetObsLon method
* inherited from the Frame class).
* Description:
* This function sets the ObsLon value in the component Frames as
* well as this CmpFrame.
* Parameters:
* this
* Pointer to the CmpFrame.
* val
* New ObsLon value.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Invoke the parent method to set the CmpFrame ObsLon. */
(*parent_setobslon)( this_frame, val, status );
/* Now set the ObsLon attribute in the two component Frames. */
astSetObsLon( this->frame1, val );
astSetObsLon( this->frame2, val );
}
static AstMapping *Simplify( AstMapping *this_mapping, int *status ) {
/*
* Name:
* Simplify
* Purpose:
* Simplify the Mapping represented by a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstMapping *Simplify( AstMapping *this, int *status )
* Class Membership:
* CmpFrame method (over-rides the astSimplify method inherited
* from the Frame class).
* Description:
* This function simplifies the Mapping represented by a CmpFrame,
* by using the astSimplify method on each of the component Frames and
* combining the resulting Mappings together.
* Parameters:
* this
* Pointer to the original CmpFrame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A new pointer to the simplified CmpFrame.
* Notes:
* - A NULL pointer value will be returned if this function is
* invoked with the AST error status set, or if it should fail for
* any reason.
*/
/* Local Variables: */
AstCmpFrame *new; /* Pointer to new CmpFrame structure */
AstCmpFrame *this; /* Pointer to original CmpFrame structure */
AstMapping *map1; /* Intermediate Mapping */
AstMapping *map2; /* Intermediate Mapping */
AstMapping *result; /* Result pointer to return */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_mapping;
/* Simplify each of the component Frames. */
map1 = astSimplify( this->frame1 );
map2 = astSimplify( this->frame2 );
/* Did any usable simplification occur? */
if( astIsAFrame( map1 ) && astIsAFrame( map2 ) &&
( map1 != (AstMapping *) this->frame1 ||
map2 != (AstMapping *) this->frame2 ) ) {
/* Make a copy of the supplied CmpFrame. */
new = astCopy( this );
result = (AstMapping *) new;
/* Replace the two component Frames with the simplified Frames. */
(void) astAnnul( new->frame1 );
(void) astAnnul( new->frame2 );
new->frame1 = (AstFrame *) map1;
new->frame2 = (AstFrame *) map2;
/* If no simplication took place, annul the Mapping pointers and return a
clone of the supplied pointer. */
} else {
map1 = astAnnul( map1 );
map2 = astAnnul( map2 );
result= astClone( this );
}
/* If an error occurred, annul the returned pointer. */
if ( !astOK ) result = astAnnul( result );
/* Return the result. */
return result;
}
static AstSystemType SystemCode( AstFrame *this, const char *system, int *status ) {
/*
* Name:
* SystemCode
* Purpose:
* Convert a string into a coordinate system type code.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstSystemType SystemCode( AstFrame *this, const char *system, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSystemCode method
* inherited from the Frame class).
* Description:
* This function converts a string used for the external
* description of a coordinate system into a CmpFrame
* coordinate system type code (System attribute value). It is the
* inverse of the astSystemString function.
* Parameters:
* this
* The Frame.
* system
* Pointer to a constant null-terminated string containing the
* external description of the coordinate system.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The System type code.
* Notes:
* - A value of AST__BADSYSTEM is returned if the coordinate
* system description was not recognised. This does not produce an
* error.
* - A value of AST__BADSYSTEM is also returned if this function
* is invoked with the global error status set or if it should fail
* for any reason.
*/
/* Local Variables: */
AstSystemType result; /* Result value to return */
/* Initialise. */
result = AST__BADSYSTEM;
/* Check the global error status. */
if ( !astOK ) return result;
/* Match the "system" string against each possibility and assign the
result. The CmpFrame class only supports a single system "Compound". */
if ( astChrMatch( "Compound", system ) ) {
result = AST__COMP;
}
/* Return the result. */
return result;
}
static const char *SystemString( AstFrame *this, AstSystemType system, int *status ) {
/*
* Name:
* SystemString
* Purpose:
* Convert a coordinate system type code into a string.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* const char *SystemString( AstFrame *this, AstSystemType system, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astSystemString method
* inherited from the Frame class).
* Description:
* This function converts a CmpFrame coordinate system type code
* (System attribute value) into a string suitable for use as an
* external representation of the coordinate system type.
* Parameters:
* this
* The Frame.
* system
* The coordinate system type code.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to a constant null-terminated string containing the
* textual equivalent of the type code supplied.
* Notes:
* - A NULL pointer value is returned if the coordinate system
* code was not recognised. This does not produce an error.
* - A NULL pointer value is also returned if this function is
* invoked with the global error status set or if it should fail
* for any reason.
*/
/* Local Variables: */
const char *result; /* Pointer value to return */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Match the "system" value against each possibility and convert to a
string pointer. (Where possible, return the same string as would be
used in the FITS WCS representation of the coordinate system). A
CmpFrame only allows a single System value, "Compound". */
switch ( system ) {
case AST__COMP:
result = "Compound";
break;
}
/* Return the result pointer. */
return result;
}
static int SubFrame( AstFrame *target_frame, AstFrame *template,
int result_naxes, const int *target_axes,
const int *template_axes, AstMapping **map,
AstFrame **result, int *status ) {
/*
* Name:
* SubFrame
* Purpose:
* Select axes from a CmpFrame and convert to the new coordinate system.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int SubFrame( AstFrame *target, AstFrame *template,
* int result_naxes, const int *target_axes,
* const int *template_axes, AstMapping **map,
* AstFrame **result, int *status )
* Class Membership:
* CmpFrame member function (over-rides the protected astSubFrame
* method inherited from the Frame class).
* Description:
* This function selects a requested sub-set (or super-set) of the
* axes from a "target" CmpFrame and creates a new Frame with
* copies of the selected axes assembled in the requested order. It
* then optionally overlays the attributes of a "template" Frame on
* to the result. It returns both the resulting Frame and a Mapping
* that describes how to convert between the coordinate systems
* described by the target and result Frames. If necessary, this
* Mapping takes account of any differences in the Frames'
* attributes due to the influence of the template.
* Parameters:
* target
* Pointer to the target CmpFrame, from which axes are to be selected.
* template
* Pointer to the template Frame, from which new attributes for
* the result Frame are to be obtained. Optionally, this may be
* NULL, in which case no overlaying of template attributes will
* be performed.
* result_naxes
* Number of axes to be selected from the target Frame. This
* number may be greater than or less than the number of axes in
* this Frame (or equal).
* target_axes
* Pointer to an array of int with result_naxes elements, giving
* a list of the (zero-based) axis indices of the axes to be
* selected from the target CmpFrame. The order in which these
* are given determines the order in which the axes appear in
* the result Frame. If any of the values in this array is set
* to -1, the corresponding result axis will not be derived from
* the target Frame, but will be assigned default attributes
* instead.
* template_axes
* Pointer to an array of int with result_naxes elements. This
* should contain a list of the template axes (given as
* zero-based axis indices) with which the axes of the result
* Frame are to be associated. This array determines which axes
* are used when overlaying axis-dependent attributes of the
* template on to the result. If any element of this array is
* set to -1, the corresponding result axis will not receive any
* template attributes.
*
* If the template argument is given as NULL, this array is not
* used and a NULL pointer may also be supplied here.
* map
* Address of a location to receive a pointer to the returned
* Mapping. The forward transformation of this Mapping will
* describe how to convert coordinates from the coordinate
* system described by the target CmpFrame to that described by
* the result Frame. The inverse transformation will convert in
* the opposite direction.
* result
* Address of a location to receive a pointer to the result Frame.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A non-zero value is returned if coordinate conversion is
* possible between the target and the result Frame. Otherwise zero
* is returned and *map and *result are returned as NULL (but this
* will not in itself result in an error condition). In general,
* coordinate conversion should always be possible if no template
* Frame is supplied but may not always be possible otherwise.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
* Implementation Deficiencies:
* - It is not clear that the method of handling "extra" axes is
* the best one, nor is the method of setting the "following" flag
* necessarily correct. However, it is also not obvious that this
* feature will ever be needed, so improvements have been left
* until the requirement is clearer.
*/
/* Local Variables: */
AstCmpFrame *target; /* Pointer to target CmpFrame structure */
AstFrame *sub_result1; /* Pointer to result Frame for frame1 */
AstFrame *sub_result2; /* Pointer to result Frame for frame2 */
AstMapping *permmap_pref; /* Pointer to PermMap used as a prefix */
AstMapping *permmap_suff; /* Pointer to PermMap used as a suffix */
AstMapping *sub_map1; /* Pointer to Mapping from frame1 */
AstMapping *sub_map2; /* Pointer to Mapping from frame2 */
AstMapping *sub_map; /* Pointer to combined component Mappings */
AstMapping *tmp_map; /* Temporary Mapping pointer */
const int *perm; /* Pointer to axis permutation array */
int *frame_choice; /* Pointer to flag array for partitioning */
int *inperm_pref; /* Pointer to prefix permutation array */
int *inperm_suff; /* Pointer to suffix permutation array */
int *outperm_pref; /* Pointer to prefix permutation array */
int *outperm_suff; /* Pointer to suffix permutation array */
int *target_axes1; /* Pointer to frame1 axis selection array */
int *target_axes2; /* Pointer to frame2 axis selection array */
int *template_axes1; /* Pointer to frame1 template axis array */
int *template_axes2; /* Pointer to frame2 template axis array */
int axis_p; /* Permuted axis index */
int following; /* Associate extra axis and following axis? */
int i1; /* Count of axes obtained from frame1 */
int i2; /* Count of axes obtained from frame2 */
int match; /* Result value to return */
int n1; /* Number of axes obtained from frame1 */
int n2; /* Number of axes obtained from frame2 */
int naxes1; /* Number of axes in frame1 */
int naxes2; /* Number of axes in frame2 */
int naxes; /* Number of axes in target */
int result_axis; /* Result axis index */
int target_axis; /* Target axis index */
/* Initialise the returned values. */
*map = NULL;
*result = NULL;
match = 0;
/* Check the global error status. */
if ( !astOK ) return match;
/* Obtain a pointer to the target CmpFrame structure. */
target = (AstCmpFrame *) target_frame;
/* Obtain the number of axes in the target CmpFrame and in each of its
component Frames. */
naxes = astGetNaxes( target );
naxes1 = astGetNaxes( target->frame1 );
naxes2 = astGetNaxes( target->frame2 );
/* Iinitialise variables to avoid compiler warnings. */
template_axes1 = NULL;
template_axes2 = NULL;
n1 = 0;
n2 = 0;
/* Obtain the axis permutation array for the target CmpFrame. */
perm = astGetPerm( target );
/* Determine how any "extra" axes should be associated with existing
axes (i.e. whether to associate with the preceding or following
axis). */
following = astGetMatchEnd( target );
/* Split selected axes into two groups. */
/* ------------------------------------ */
/* Allocate a workspace array to hold the choice of component Frame
for each selected target axis. */
frame_choice = astMalloc( sizeof( int ) * (size_t) result_naxes );
/* Obtain an array of flags indicating whether each selected target
axis should be obtained from the first or second component
Frame. */
PartitionSelection( result_naxes, target_axes, perm, naxes1, naxes2,
frame_choice, following, status );
/* Allocate two arrays to hold the axis indices that refer to each of
the component Frames. The maximum number of indices is given by
"result_naxes" (if all the selected axes come from one component
Frame alone). */
target_axes1 = astMalloc( sizeof( int ) * (size_t) result_naxes );
target_axes2 = astMalloc( sizeof( int ) * (size_t) result_naxes );
/* If a template Frame has been provided, allocate similar arrays to
hold the indices of the two groups of template axes. */
if ( template ) {
template_axes1 = astMalloc( sizeof( int ) * (size_t) result_naxes );
template_axes2 = astMalloc( sizeof( int ) * (size_t) result_naxes );
}
/* Initialise the count of axes selected from each component Frame. */
if ( astOK ) {
n1 = n2 = 0;
/* Loop through each axis index to be selected from the CmpFrame. */
for ( result_axis = 0; result_axis < result_naxes; result_axis++ ) {
target_axis = target_axes[ result_axis ];
/* Determine if the index refers to a valid CmpFrame axis. If it does,
then permute the index, otherwise set it to -1. */
if ( ( target_axis >= 0 ) && ( target_axis < naxes ) ) {
axis_p = perm[ target_axis ];
} else {
axis_p = -1;
}
/* If the axis is to be selected from the first component Frame, store
the index of the axis to be selected. Also store the associated
template axis index (if any). */
if ( frame_choice[ result_axis ] == 1 ) {
target_axes1[ n1 ] = axis_p;
if ( template ) {
template_axes1[ n1 ] = template_axes[ result_axis ];
}
/* Count the axes selected from the first component Frame. */
n1++;
/* If the axis is to be selected from the second component Frame,
store the index of the index to be selected (adjusting for the
offset in axis numbering). Also store the associated template axis
index (if any) and count the axes selected. */
} else {
target_axes2[ n2 ] = ( axis_p == -1 ) ? -1 : axis_p - naxes1;
if ( template ) {
template_axes2[ n2 ] = template_axes[ result_axis ];
}
n2++;
}
}
}
/* Select from first component Frame only. */
/* --------------------------------------- */
/* If all the selected axes come from the first component Frame, use
that Frame's astSubFrame method to select them (and overlay the
template attributes if required). */
if ( astOK ) {
if ( n1 && !n2 ) {
sub_map1 = NULL;
match = astSubFrame( target->frame1, template, n1, target_axes1,
template_axes1, &sub_map1, result );
/* If this is successful, the "result" Frame will be ready to return
and "sub_map1" will point at a Mapping that converts from the first
component Frame to the "result" Frame. We must now modify this
mapping to account for the CmpFrame's axis permutation array
(i.e. make it refer back to the CmpFrame's original axis order). */
if ( astOK && match ) {
/* To do this we must prefix the Mapping with a PermMap which converts
between the target CmpFrame axes and those of the first component
Frame. Allocate space for the permutation arrays required. */
inperm_pref = astMalloc( sizeof( int ) * (size_t) naxes );
outperm_pref = astMalloc( sizeof( int ) * (size_t) naxes1 );
if ( astOK ) {
/* Permute each target axis index. */
for ( target_axis = 0; target_axis < naxes; target_axis++ ) {
axis_p = perm[ target_axis ];
/* Set up arrays that describe this permutation and its inverse. */
if ( axis_p < naxes1 ) {
inperm_pref[ target_axis ] = axis_p;
outperm_pref[ axis_p ] = target_axis;
/* Note which target axes do not correspond with axes in the first
component Frame and assign -1 (so the PermMap will assign "bad"
coordinate values to these axes). */
} else {
inperm_pref[ target_axis ] = -1;
}
}
/* Use these permutation arrays to construct the PermMap. Prefix this
to the Mapping obtained earlier to give the final Mapping to be
returned. */
permmap_pref =
(AstMapping *) astPermMap( naxes, inperm_pref,
naxes1, outperm_pref, NULL, "", status );
*map = (AstMapping *) astCmpMap( permmap_pref, sub_map1, 1, "", status );
/* Annul the PermMap pointer. */
permmap_pref = astAnnul( permmap_pref );
}
/* Free the permutation arrays and annul the original Mapping pointer. */
inperm_pref = astFree( inperm_pref );
outperm_pref = astFree( outperm_pref );
sub_map1 = astAnnul( sub_map1 );
}
/* Select from second component Frame only. */
/* ---------------------------------------- */
/* If all the selected axes come from the second component Frame, use
that Frame's astSubFrame method to select them (and overlay the
template attributes if required). */
} else if ( n2 && !n1 ) {
sub_map2 = NULL;
match = astSubFrame( target->frame2, template, n2, target_axes2,
template_axes2, &sub_map2, result );
/* If this is successful, the "result" Frame will be ready to return
and "sub_map2" will point at a Mapping that converts from the second
component Frame to the "result" Frame. We must now modify this
mapping to account for the CmpFrame's axis permutation array
(i.e. make it refer back to the CmpFrame's original axis order). */
if ( astOK && match ) {
/* To do this we must prefix the Mapping with a PermMap which converts
between the target CmpFrame axes and those of the second component
Frame. Allocate space for the permutation arrays required. */
inperm_pref = astMalloc( sizeof( int ) * (size_t) naxes );
outperm_pref = astMalloc( sizeof( int ) * (size_t) naxes2 );
if ( astOK ) {
/* Permute each target axis index. */
for ( target_axis = 0; target_axis < naxes; target_axis++ ) {
axis_p = perm[ target_axis ];
/* Set up arrays that describe this permutation and its inverse,
allowing for the shift in axis numbering for the second component
Frame. */
if ( axis_p >= naxes1 ) {
inperm_pref[ target_axis ] = axis_p - naxes1;
outperm_pref[ axis_p - naxes1 ] = target_axis;
/* Note which target axes do not correspond with axes in the second
component Frame and assign -1 (so the PermMap will assign "bad"
coordinate values to these axes). */
} else {
inperm_pref[ target_axis ] = -1;
}
}
/* Use these permutation arrays to construct the PermMap. Prefix this
to the Mapping obtained earlier to give the final Mapping to be
returned. */
permmap_pref =
(AstMapping *) astPermMap( naxes, inperm_pref,
naxes2, outperm_pref, NULL, "", status );
*map = (AstMapping *) astCmpMap( permmap_pref, sub_map2, 1, "", status );
/* Annul the PermMap pointer. */
permmap_pref = astAnnul( permmap_pref );
}
/* Free the permutation arrays and annul the original Mapping pointer. */
inperm_pref = astFree( inperm_pref );
outperm_pref = astFree( outperm_pref );
sub_map2 = astAnnul( sub_map2 );
}
/* Select from both component Frames. */
/* ---------------------------------- */
/* If the selected axes come from both component Frames, then use both
Frames' astSubFrame methods to select the required axes from each
of them (and overlay the template attributes if required). */
} else {
sub_map1 = NULL;
sub_map2 = NULL;
sub_result1 = NULL;
sub_result2 = NULL;
match = astSubFrame( target->frame1, template, n1, target_axes1,
template_axes1, &sub_map1, &sub_result1 );
if ( match ) {
match = astSubFrame( target->frame2, template, n2, target_axes2,
template_axes2, &sub_map2, &sub_result2 );
}
/* If this is successful, the two "result" Frames will need to be
combined together (in a CmpFrame) in order to produce the required
result, and the two accompanying Mappings will also need to be
applied in parallel (in a CmpMap). However, the axis order
resulting from this will still not match that required.
On the target side, this is because of the target's axis
permutation array. On the result side, it is because the result
axes cannot be inter-mingled (as may be required) simply by joining
the Frames and Mappings in parallel. The resulting CmpFrame axes
will therefore need permuting into the required final order. */
if ( astOK && match ) {
/* In addition, the Mappings will need to be both prefixed and
suffixed with suitable PermMaps which re-order the axes. Allocate
space for the permutation arrays required. */
inperm_pref = astMalloc( sizeof( int ) * (size_t) naxes );
outperm_pref = astMalloc( sizeof( int ) * (size_t) naxes );
inperm_suff = astMalloc( sizeof( int ) * (size_t) result_naxes );
outperm_suff = astMalloc( sizeof( int ) * (size_t) result_naxes );
if ( astOK ) {
/* Set up permutation arrays to construct the prefix PermMap. This
simply represents the target CmpFrame's axis permutation array and
its inverse. */
for ( target_axis = 0; target_axis < naxes; target_axis++ ) {
axis_p = perm[ target_axis ];
inperm_pref[ target_axis ] = axis_p;
outperm_pref[ axis_p ] = target_axis;
}
/* Set up permutation arrays to construct the suffix PermMap. This
represents the way the original axis selections were partitioned
between the two component frames. */
i1 = i2 = 0;
for ( result_axis = 0; result_axis < result_naxes;
result_axis++ ) {
/* For each result axis derived from the first component Frame, set up
permutation array elements to link the output axis with the next
component Frame axis. Count the number of component Frame axes
used. */
if ( frame_choice[ result_axis ] == 1 ) {
inperm_suff[ i1 ] = result_axis;
outperm_suff[ result_axis ] = i1;
i1++;
/* Similarly link the axes derived from the second component Frame
with the appropriate axes of that Frame. */
} else {
inperm_suff[ n1 + i2 ] = result_axis;
outperm_suff[ result_axis ] = n1 + i2;
i2++;
}
}
/* Combine the Mappings supplied by the two component Frames in
parallel. */
sub_map = (AstMapping *) astCmpMap( sub_map1, sub_map2, 0, "", status );
/* Create the PermMaps which are to be used as a prefix and a suffix. */
permmap_pref =
(AstMapping *) astPermMap( naxes, inperm_pref,
naxes, outperm_pref, NULL, "", status );
permmap_suff =
(AstMapping *) astPermMap( result_naxes, inperm_suff,
result_naxes, outperm_suff,
NULL, "", status );
/* Add the prefix and suffix PermMaps. */
tmp_map = (AstMapping *) astCmpMap( permmap_pref, sub_map,
1, "", status );
*map = (AstMapping *) astCmpMap( tmp_map, permmap_suff, 1, "", status );
/* Annul the Mapping pointers that are no longer required. */
sub_map = astAnnul( sub_map );
permmap_pref = astAnnul( permmap_pref );
permmap_suff = astAnnul( permmap_suff );
tmp_map = astAnnul( tmp_map );
/* Create the result CmpFrame by combining the two component result
Frames and permuting the resulting axes into the required order. */
*result = (AstFrame *) astCmpFrame( sub_result1, sub_result2,
"", status );
astPermAxes( *result, outperm_suff );
/* ADDED BY DSB (5-FEB-2001). Without this, properties of the target frame
(most importantly, Domain) are not transferred to the result frame.
This results in Frames not matching which should match.
=================================================================== */
/* If the result CmpFrame includes all the axes of the target CmpFrame,
then it should inherit any Domain and Title attributes set in the target
CmpFrame. */
if( result_naxes == naxes ) {
if( astTestDomain( target ) ) {
astSetDomain( *result, astGetDomain( target ) );
}
if( astTestTitle( target ) ) {
astSetTitle( *result, astGetTitle( target ) );
}
}
/* End of DSB insertion (5/2/01).
=================================================================== */
}
/* Free the temporary permutation arrays. */
inperm_pref = astFree( inperm_pref );
inperm_suff = astFree( inperm_suff );
outperm_pref = astFree( outperm_pref );
outperm_suff = astFree( outperm_suff );
}
/* Annul the Mapping and Frame pointers obtained from each component
Frame. */
if( sub_map1 ) sub_map1 = astAnnul( sub_map1 );
if( sub_map2 ) sub_map2 = astAnnul( sub_map2 );
if( sub_result1 ) sub_result1 = astAnnul( sub_result1 );
if( sub_result2 ) sub_result2 = astAnnul( sub_result2 );
}
}
/* Free the workspace used to store the choice of component Frame and the
axis indices for each component Frame. */
frame_choice = astFree( frame_choice );
target_axes1 = astFree( target_axes1 );
target_axes2 = astFree( target_axes2 );
/* If necessary, also free the memory used for the template axis
indices. */
if ( template ) {
template_axes1 = astFree( template_axes1 );
template_axes2 = astFree( template_axes2 );
}
/* If an error occurred, clean up by annulling the result pointers and
returning appropriate null values. */
if ( !astOK ) {
*map = astAnnul( *map );
*result = astAnnul( *result );
match = 0;
}
/* Return the result. */
return match;
}
static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* TestAttrib
* Purpose:
* Test if a specified attribute value is set for a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int TestAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astTestAttrib protected
* method inherited from the Frame class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* a value has been set for one of a CmpFrame's attributes.
* Parameters:
* this
* Pointer to the CmpFrame.
* attrib
* Pointer to a null terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if a value has been set, otherwise zero.
* Notes:
* - This function uses one-based axis numbering so that it is
* suitable for external (public) use.
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
AstFrame *pfrm; /* Pointer to primary Frame containing axis */
char buf1[80]; /* For for un-indexed attribute name */
char buf2[80]; /* For for indexed attribute name */
int axis; /* Supplied (1-base) axis index */
int len; /* Length of attrib string */
int nc; /* Length of string used so far */
int oldrep; /* Original error reporting state */
int paxis; /* Index of primary Frame axis */
int result; /* Result value to return */
int ok; /* Has the attribute been accessed succesfully? */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Obtain the length of the attrib string. */
len = strlen( attrib );
/* Indicate we have not yet acessed the attribute succesfully. */
ok = 0;
/* First check the supplied attribute name against each of the attribute
names defined by this class. In fact there is nothing to do here
since the CmpFrame class currently defines no extra attributes, but
this may change in the future. */
if( 0 ) {
/* If the attribute is not a CmpFrame specific attribute... */
} else if( astOK ) {
/* We want to allow easy access to the attributes of the component Frames.
That is, we do not want it to be necessary to extract a Frame from
its parent CmpFrame in order to access its attributes. For this reason
we first temporarily switch off error reporting so that if an attempt
to access the attribute fails, we can try a different approach. */
oldrep = astReporting( 0 );
/* Our first attempt is to see if the attribute is recognised by the parent
class (Frame). */
result = (*parent_testattrib)( this_object, attrib, status );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise, clear the error condition so that we can try a different
approach. */
} else {
astClearStatus;
/* If the attribute is qualified by an axis index, try accessing it as an
attribute of the primary Frame containing the specified index. */
if ( nc = 0,
( 2 == astSscanf( attrib, "%[^(](%d)%n", buf1, &axis, &nc ) )
&& ( nc >= len ) ) {
/* Find the primary Frame containing the specified axis. */
astPrimaryFrame( this, axis - 1, &pfrm, &paxis );
if( astOK ) {
/* astPrimaryFrame returns the original - unpermuted - axis index within
the primary Frame. So we need to take into account any axis permutation
which has been applied to the primary Frame when forming the attribute name
to use below. Find the permuted (external) axis index which corresponds to
the internal (unpermuted) axis index "paxis". */
paxis = astValidateAxis( pfrm, paxis, 0, "astTest" );
/* Create a new attribute with the same name but with the axis index
appropriate to the primary Frame. */
sprintf( buf2, "%s(%d)", buf1, paxis + 1 );
/* Attempt to access the attribute. */
result = astTestAttrib( pfrm, buf2 );
/* Indicate success. */
if( astOK ) {
ok = 1;
/* Otherwise clear the status value, and try again without any axis index. */
} else {
astClearStatus;
result = astTestAttrib( pfrm, buf1 );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
}
/* Free the primary frame pointer. */
pfrm = astAnnul( pfrm );
}
/* If the attribute is not qualified by an axis index, try accessing it
using the primary Frame of each axis in turn. */
} else {
/* Loop round all axes, until one is found which defines the specified
attribute. */
for( axis = 0; axis < astGetNaxes( this ) && !ok; axis++ ) {
/* Get the primary Frame containing this axis. */
astPrimaryFrame( this, axis, &pfrm, &paxis );
/* Attempt to access the attribute as an attribute of the primary Frame. */
result = astTestAttrib( pfrm, attrib );
/* Indicate success, or clear the status value. */
if( astOK ) {
ok = 1;
} else {
astClearStatus;
}
/* Free the primary Frame pointer. */
pfrm = astAnnul( pfrm );
}
}
}
/* Re-instate the original error reporting state. */
astReporting( oldrep );
}
/* Report an error if the attribute could not be accessed. */
if( !ok && astOK ) {
astError( AST__BADAT, "astTest: The %s given does not have an attribute "
"called \"%s\".", status, astGetClass( this ), attrib );
}
/* Return the result. */
return result;
}
static AstPointSet *Transform( AstMapping *this_mapping, AstPointSet *in,
int forward, AstPointSet *out, int *status ) {
/*
* Name:
* Transform
* Purpose:
* Transform a set of points.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstPointSet *Transform( AstMapping *this, AstPointSet *in,
* int forward, AstPointSet *out, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astTransform method
* inherited from the Frame class).
* Description:
* This function takes a CmpFrame and a set of points encapsulated
* in a PointSet, and applies the coordinate transformation equivalent
* to the CmpFrame (this will normally be a UnitMap but may not be if
* the CmpFrame contains any Regions).
* Parameters:
* this
* Pointer to the CmpFrame.
* in
* Pointer to the PointSet holding the input coordinate data.
* forward
* A non-zero value indicates that the forward coordinate transformation
* should be applied, while a zero value requests the inverse
* transformation.
* out
* Pointer to a PointSet which will hold the transformed (output)
* coordinate values. A NULL value may also be given, in which case a
* new PointSet will be created by this function.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to the output (possibly new) PointSet.
* Notes:
* - The number of coordinate values per point in the input
* PointSet must match the number of axes in the CmpFrame.
* - If an output PointSet is supplied, it must have space for
* sufficient number of points and coordinate values per point to
* accommodate the result (e.g. the number of CmpFrame axes). Any
* excess space will be ignored.
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to original CmpFrame structure */
AstCmpMap *map2; /* Intermediate Mapping */
AstCmpMap *map; /* Equivalent Mapping */
AstPermMap *pmap; /* Intermediate PermMap */
AstPointSet *result; /* Pointer value to return */
const int *inperm; /* Pointer to axis permutation array */
int *outperm; /* Pointer to inverse axis permutation array */
int i; /* External axis index */
int naxes; /* Number of axes in CmpFrame */
int perm; /* Is there an axis permutation to undo? */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_mapping;
/* Form a parallel CmpMap from the two component Frames. */
map = astCmpMap( this->frame1, this->frame2, 0, "", status );
/* The above CmpMap does not take into account any axis permutation
which has been applied to the CmpFrame as a whole (as opposed to axis
permutations applied to the individual component Frames, which are taken
care of by the Transform methods of the individual Frames). Therefore
we need to modify the Mapping by adding a PermMap at the start which
converts from external axis numbering to internal axis numbering, and a
corresponding PermMap at the end which converts from internal to external
axis numbering. Obtain the number of axes in the CmpFrame */
naxes = astGetNaxes( this );
/* Obtain a pointer to the CmpFrame's axis permutation array. This
contains internal axis numbers and is indexed by external axis number. */
inperm = astGetPerm( this );
/* Check if there is any axis permutation to be performed. */
perm = 0;
for( i = 0; i < naxes; i++ ) {
if( inperm[ i ] != i ) {
perm = 1;
break;
}
}
/* If so, create an array holding the inverse permutation - one which
contains external axis numbers and is indexed by internal axis number. */
if( perm ) {
outperm = astMalloc( sizeof( int )*(size_t) naxes );
if( astOK ) for( i = 0; i < naxes; i++ ) outperm[ inperm[ i ] ] = i;
/* Create a PermMap from these permutation arrays. The forward
transformation maps from external axis indices to internal axis
indices. */
pmap = astPermMap( naxes, inperm, naxes, outperm, NULL, "", status );
outperm = astFree( outperm );
/* Combine this PermMap with the CmpMap created above, adding it in the
forward direction at the start and in the inverse direction at the end. */
map2 = astCmpMap( pmap, map, 1, "", status );
map = astAnnul( map );
astInvert( pmap );
map = astCmpMap( map2, pmap, 1, "", status );
map2 = astAnnul( map2 );
pmap = astAnnul( pmap );
}
/* Apply the Mapping to the input PointSet. */
result = astTransform( map, in, forward, out );
/* Annul the Mapping pointer. */
map = astAnnul( map );
/* If an error has occurred and a new PointSet may have been created, then
clean up by annulling it. In any case, ensure that a NULL result is
returned.*/
if ( !astOK ) {
if ( !out ) result = astAnnul( result );
result = NULL;
}
/* Return a pointer to the output PointSet. */
return result;
}
static int Unformat( AstFrame *this_frame, int axis, const char *string,
double *value, int *status ) {
/*
* Name:
* Unformat
* Purpose:
* Read a formatted coordinate value for a CmpFrame axis.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* int Unformat( AstFrame *this, int axis, const char *string,
* double *value, int *status )
* Class Membership:
* CmpFrame member function (over-rides the public astUnformat
* method inherited from the Frame class).
* Description:
* This function reads a formatted coordinate value for a CmpFrame
* axis (supplied as a string) and returns the equivalent numerical
* value as a double. It also returns the number of characters read
* from the string.
* Parameters:
* this
* Pointer to the CmpFrame.
* axis
* The number of the CmpFrame axis for which the coordinate
* value is to be read (axis numbering starts at zero for the
* first axis).
* string
* Pointer to a constant null-terminated string containing the
* formatted coordinate value.
* value
* Pointer to a double in which the coordinate value read will be
* returned.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The number of characters read from the string to obtain the
* coordinate value.
* Notes:
* - Any white space at the beginning of the string will be
* skipped, as also will any trailing white space following the
* coordinate value read. The function's return value will reflect
* this.
* - A function value of zero (and no coordinate value) will be
* returned, without error, if the string supplied does not contain
* a suitably formatted value.
* - The string "" is recognised as a special case and will
* generate the value AST__BAD, without error. The test for this
* string is case-insensitive and permits embedded white space.
* - A function result of zero will be returned and no coordinate
* value will be returned via the "value" pointer if this function
* is invoked with the global error status set, or if it should
* fail for any reason.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
AstFrame *frame; /* Pointer to Frame containing axis */
double coord; /* Coordinate value read */
int naxes1; /* Number of axes in frame1 */
int nc; /* Number of characters read */
int set; /* Digits attribute set? */
/* Initialise. */
nc = 0;
/* Check the global error status. */
if ( !astOK ) return nc;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_frame;
/* Validate and permute the axis index supplied. */
axis = astValidateAxis( this, axis, 1, "astUnformat" );
/* Determine the number of axes in the first component Frame. */
naxes1 = astGetNaxes( this->frame1 );
if ( astOK ) {
/* Decide which component Frame contains the axis and adjust the axis
index if necessary. */
frame = ( axis < naxes1 ) ? this->frame1 : this->frame2;
axis = ( axis < naxes1 ) ? axis : axis - naxes1;
/* Since the component Frame is "managed" by the enclosing CmpFrame,
we next test if any Frame attributes which may affect the result
are undefined (i.e. have not been explicitly set). If so, we
over-ride them, giving them temporary values dictated by the
CmpFrame. Only the Digits attribute is potentially relevant
here. */
set = astTestDigits( frame );
if ( !set ) astSetDigits( frame, astGetDigits( this ) );
/* Invoke the Frame's astUnformat method to read the coordinate value. */
nc = astUnformat( frame, axis, string, &coord );
/* Clear Frame attributes which were temporarily over-ridden. */
if ( !set ) astClearDigits( frame );
}
/* If an error occurred, clear the number of characters read. */
if ( !astOK ) {
nc = 0;
/* Otherwise, if characters were read, return the coordinate value. */
} else if ( nc ) {
*value = coord;
}
/* Return the number of chracters read. */
return nc;
}
static int ValidateSystem( AstFrame *this, AstSystemType system, const char *method, int *status ) {
/*
*
* Name:
* ValidateSystem
* Purpose:
* Validate a value for a CmpFrame's System attribute.
* Type:
* Protected virtual function.
* Synopsis:
* #include "cmpframe.h"
* int ValidateSystem( AstFrame *this, AstSystemType system,
* const char *method, int *status )
* Class Membership:
* CmpFrame member function (over-rides the astValidateSystem method
* inherited from the Frame class).
* Description:
* This function checks the validity of the supplied system value.
* If the value is valid, it is returned unchanged. Otherwise, an
* error is reported and a value of AST__BADSYSTEM is returned.
* Parameters:
* this
* Pointer to the Frame.
* system
* The system value to be checked.
* method
* Pointer to a constant null-terminated character string
* containing the name of the method that invoked this function
* to validate an axis index. This method name is used solely
* for constructing error messages.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The validated system value.
* Notes:
* - A value of AST__BADSYSTEM will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstSystemType result; /* Validated system value */
/* Initialise. */
result = AST__BADSYSTEM;
/* Check the global error status. */
if ( !astOK ) return result;
/* If the value is out of bounds, report an error. */
if ( system < FIRST_SYSTEM || system > LAST_SYSTEM ) {
astError( AST__AXIIN, "%s(%s): Bad value (%d) given for the System "
"or AlignSystem attribute of a %s.", status, method,
astGetClass( this ), (int) system, astGetClass( this ) );
/* Otherwise, return the supplied value. */
} else {
result = system;
}
/* Return the result. */
return result;
}
/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
the axes of a CmpFrame using the private macros defined for this
purpose at the start of this file. */
/* Direction(axis). */
/* ---------------- */
MAKE_CLEAR(Direction)
MAKE_GET(Direction,int,0,0,0)
MAKE_SET(Direction,int)
MAKE_TEST(Direction)
/* Format(axis). */
/* ------------- */
MAKE_CLEAR(Format)
MAKE_GET(Format,const char *,NULL,0,NULL)
MAKE_SET(Format,const char *)
MAKE_TEST(Format)
/* Label(axis). */
/* ------------ */
MAKE_CLEAR(Label)
/* Over-ride the default axis labels produced by Frame class objects
and substitute the axis numbering of the enclosing CmpFrame
instead. */
static const char *label_class;
MAKE_GET(Label,const char *,NULL,( label_class = astGetClass( frame ),
( astOK && !strcmp( label_class,
"Frame" ) ) ),
( (void) sprintf( label_buff, "Axis %d", axis + 1 ), label_buff ))
MAKE_SET(Label,const char *)
MAKE_TEST(Label)
/* Symbol(axis). */
/* ------------- */
MAKE_CLEAR(Symbol)
/* Over-ride the default axis symbols produced by Frame class objects
and substitute the axis numbering of the enclosing CmpFrame
instead. */
static const char *symbol_class;
MAKE_GET(Symbol,const char *,NULL,( symbol_class = astGetClass( frame ),
( astOK && !strcmp( symbol_class,
"Frame" ) ) ),
( (void) sprintf( symbol_buff, "x%d", axis + 1 ), symbol_buff ))
MAKE_SET(Symbol,const char *)
MAKE_TEST(Symbol)
/* Unit(axis). */
/* ----------- */
MAKE_CLEAR(Unit)
MAKE_GET(Unit,const char *,NULL,0,NULL)
MAKE_SET(Unit,const char *)
MAKE_TEST(Unit)
/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
* Name:
* Copy
* Purpose:
* Copy constructor for CmpFrame objects.
* Type:
* Private function.
* Synopsis:
* void Copy( const AstObject *objin, AstObject *objout, int *status )
* Description:
* This function implements the copy constructor for CmpFrame objects.
* Parameters:
* objin
* Pointer to the object to be copied.
* objout
* Pointer to the object being constructed.
* status
* Pointer to the inherited status variable.
* Notes:
* - This constructor makes a deep copy.
*/
/* Local Variables: */
AstCmpFrame *in; /* Pointer to input CmpFrame */
AstCmpFrame *out; /* Pointer to output CmpFrame */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain pointers to the input and output CmpFrames. */
in = (AstCmpFrame *) objin;
out = (AstCmpFrame *) objout;
/* Copy the two component Frames. */
out->frame1 = astCopy( in->frame1 );
out->frame2 = astCopy( in->frame2 );
/* Determine the number of axes and copy the axis permutation
array. */
out->perm = astStore( NULL, in->perm, sizeof( int ) *
(size_t) GetNaxes( (AstFrame *) in, status ) );
}
/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
* Name:
* Delete
* Purpose:
* Destructor for CmpFrame objects.
* Type:
* Private function.
* Synopsis:
* void Delete( AstObject *obj, int *status )
* Description:
* This function implements the destructor for CmpFrame objects.
* Parameters:
* obj
* Pointer to the object to be deleted.
* status
* Pointer to the inherited status variable.
* Notes:
* This function attempts to execute even if the global error
* status is set.
*/
/* Local Variables: */
AstCmpFrame *this; /* Pointer to CmpFrame structure */
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) obj;
/* Annul the two component Frame pointers. */
if ( this->frame1 ) this->frame1 = astAnnul( this->frame1 );
if ( this->frame2 ) this->frame2 = astAnnul( this->frame2 );
/* Free the axis permutation array. */
if ( this->perm ) this->perm = astFree( this->perm );
}
/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
* Name:
* Dump
* Purpose:
* Dump function for CmpFrame objects.
* Type:
* Private function.
* Synopsis:
* void Dump( AstObject *this, AstChannel *channel, int *status )
* Description:
* This function implements the Dump function which writes out data
* for the CmpFrame class to an output Channel.
* Parameters:
* this
* Pointer to the CmpFrame whose data are being written.
* channel
* Pointer to the Channel to which the data are being written.
* status
* Pointer to the inherited status variable.
*/
/* Local Constants: */
#define COMMENT_LEN 150 /* Maximum length of a comment string */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstCmpFrame *this; /* Pointer to the CmpFrame structure */
char comment[ COMMENT_LEN + 1 ]; /* Buffer for comment strings */
char key[ KEY_LEN + 1 ]; /* Buffer for keywords */
int axis; /* Loop counter for CmpFrame axes */
int full; /* Full attribute value */
int full_set; /* Full attribute set? */
int ival; /* Integer value */
int naxes; /* Number of CmpFrame axes */
int set; /* Attribute value set? */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the CmpFrame structure. */
this = (AstCmpFrame *) this_object;
/* Write out values representing the instance variables for the
CmpFrame class. Accompany these with appropriate comment strings,
possibly depending on the values being written.*/
/* In the case of attributes, we first use the appropriate (private)
Test... member function to see if they are set. If so, we then use
the (private) Get... function to obtain the value to be written
out.
For attributes which are not set, we use the astGet... method to
obtain the value instead. This will supply a default value
(possibly provided by a derived class which over-rides this method)
which is more useful to a human reader as it corresponds to the
actual default attribute value. Since "set" will be zero, these
values are for information only and will not be read back. */
/* Axis permutation array. */
/* ----------------------- */
/* Obtain the number of CmpFrame axes. */
naxes = GetNaxes( (AstFrame *) this, status );
/* Write out the CmpFrame axis permutation array value for each axis,
converting to 1-based axis numbering. */
for ( axis = 0; axis < naxes; axis++ ) {
set = ( this->perm[ axis ] != axis );
ival = this->perm[ axis ] + 1;
/* Create a keyword and comment appropriate to the axis. */
(void) sprintf( key, "Axp%d", axis + 1 );
if ( set ) {
(void) sprintf( comment,
"Axis %d permuted to use internal axis %d",
axis + 1, ival );
} else {
(void) sprintf( comment, "Axis %d not permuted", axis + 1 );
}
astWriteInt( channel, key, set, 0, ival, comment );
}
/* Component Frames. */
/* ----------------- */
/* Temporarily set the Channel's Full attribute to -1 (unless it is +1
to start with), remembering the original setting. This prevents any
unnecessary "un-set" Frame values being output that would otherwise
simply duplicate the CmpFrame's attributes which have already been
written. "Set" Frame values are still written, however (and all
values are written if Full is set to 1). */
full_set = astTestFull( channel );
full = astGetFull( channel );
if ( full <= 0 ) astSetFull( channel, -1 );
/* Write out Object descriptions for the two component Frames. */
astWriteObject( channel, "FrameA", 1, 1, this->frame1,
"First component Frame" );
astWriteObject( channel, "FrameB", 1, 1, this->frame2,
"Second component Frame" );
/* Restore the Channel's original Full attribute setting. */
if ( full_set ) {
astSetFull( channel, full );
} else {
astClearFull( channel );
}
/* Undefine macros local to this function. */
#undef COMMENT_LEN
#undef KEY_LEN
}
/* Standard class functions. */
/* ========================= */
/* Implement the astIsACmpFrame and astCheckCmpFrame functions using the macros
defined for this purpose in the "object.h" header file. */
astMAKE_ISA(CmpFrame,Frame)
astMAKE_CHECK(CmpFrame)
AstCmpFrame *astCmpFrame_( void *frame1_void, void *frame2_void,
const char *options, int *status, ...) {
/*
*++
* Name:
c astCmpFrame
f AST_CMPFRAME
* Purpose:
* Create a CmpFrame.
* Type:
* Public function.
* Synopsis:
c #include "cmpframe.h"
c AstCmpFrame *astCmpFrame( AstFrame *frame1, AstFrame *frame2,
c const char *options, ... )
f RESULT = AST_CMPFRAME( FRAME1, FRAME2, OPTIONS, STATUS )
* Class Membership:
* CmpFrame constructor.
* Description:
* This function creates a new CmpFrame and optionally initialises
* its attributes.
*
* A CmpFrame is a compound Frame which allows two component Frames
* (of any class) to be merged together to form a more complex
* Frame. The axes of the two component Frames then appear together
* in the resulting CmpFrame (those of the first Frame, followed by
* those of the second Frame).
*
* Since a CmpFrame is itself a Frame, it can be used as a
* component in forming further CmpFrames. Frames of arbitrary
* complexity may be built from simple individual Frames in this
* way.
*
* Also since a Frame is a Mapping, a CmpFrame can also be used as a
* Mapping. Normally, a CmpFrame is simply equivalent to a UnitMap,
* but if either of the component Frames within a CmpFrame is a Region
* (a sub-class of Frame), then the CmpFrame will use the Region as a
* Mapping when transforming values for axes described by the Region.
* Thus input axis values corresponding to positions which are outside the
* Region will result in bad output axis values.
* Parameters:
c frame1
f FRAME1 = INTEGER (Given)
* Pointer to the first component Frame.
c frame2
f FRAME2 = INTEGER (Given)
* Pointer to the second component Frame.
c options
f OPTIONS = CHARACTER * ( * ) (Given)
c Pointer to a null-terminated string containing an optional
c comma-separated list of attribute assignments to be used for
c initialising the new CmpFrame. The syntax used is identical to
c that for the astSet function and may include "printf" format
c specifiers identified by "%" symbols in the normal way.
f A character string containing an optional comma-separated
f list of attribute assignments to be used for initialising the
f new CmpFrame. The syntax used is identical to that for the
f AST_SET routine.
c ...
c If the "options" string contains "%" format specifiers, then
c an optional list of additional arguments may follow it in
c order to supply values to be substituted for these
c specifiers. The rules for supplying these are identical to
c those for the astSet function (and for the C "printf"
c function).
f STATUS = INTEGER (Given and Returned)
f The global status.
* Returned Value:
c astCmpFrame()
f AST_CMPFRAME = INTEGER
* A pointer to the new CmpFrame.
* Notes:
* - A null Object pointer (AST__NULL) will be returned if this
c function is invoked with the AST error status set, or if it
f function is invoked with STATUS set to an error value, or if it
* should fail for any reason.
* Status Handling:
* The protected interface to this function includes an extra
* parameter at the end of the parameter list descirbed above. This
* parameter is a pointer to the integer inherited status
* variable: "int *status".
*--
* Implementation Notes:
* - This function implements the basic CmpFrame constructor which
* is available via the protected interface to the CmpFrame class.
* A public interface is provided by the astCmpFrameId_ function.
* - Because this function has a variable argument list, it is
* invoked by a macro that evaluates to a function pointer (not a
* function invocation) and no checking or casting of arguments is
* performed before the function is invoked. Because of this, the
* "frame1" and "frame2" parameters are of type (void *) and are
* converted and validated within the function itself.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstCmpFrame *new; /* Pointer to new CmpFrame */
AstFrame *frame1; /* Pointer to first Frame structure */
AstFrame *frame2; /* Pointer to second Frame structure */
va_list args; /* Variable argument list */
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Check the global status. */
new = NULL;
if ( !astOK ) return new;
/* Obtain and validate pointers to the Frame structures provided. */
frame1 = astCheckFrame( frame1_void );
frame2 = astCheckFrame( frame2_void );
if ( astOK ) {
/* Initialise the CmpFrame, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitCmpFrame( NULL, sizeof( AstCmpFrame ), !class_init,
&class_vtab, "CmpFrame", frame1, frame2 );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the
options string to the astVSet method to initialise the new
CmpFrame's attributes. */
va_start( args, status );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
}
/* Return a pointer to the new CmpFrame. */
return new;
}
AstCmpFrame *astCmpFrameId_( void *frame1_void, void *frame2_void,
const char *options, ... ) {
/*
* Name:
* astCmpFrameId_
* Purpose:
* Create a CmpFrame.
* Type:
* Private function.
* Synopsis:
* #include "cmpframe.h"
* AstCmpFrame *astCmpFrameId_( void *frame1_void, void *frame2_void,
* const char *options, ... )
* Class Membership:
* CmpFrame constructor.
* Description:
* This function implements the external (public) interface to the
* astCmpFrame constructor function. It returns an ID value
* (instead of a true C pointer) to external users, and must be
* provided because astCmpFrame_ has a variable argument list which
* cannot be encapsulated in a macro (where this conversion would
* otherwise occur). For the same reason, the "frame1" and "frame2"
* parameters are of type (void *) and are converted and validated
* within the function itself.
*
* The variable argument list also prevents this function from
* invoking astCmpFrame_ directly, so it must be a
* re-implementation of it in all respects, except for the final
* conversion of the result to an ID value.
* Parameters:
* As for astCmpFrame_.
* Returned Value:
* The ID value associated with the new CmpFrame.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstCmpFrame *new; /* Pointer to new CmpFrame */
AstFrame *frame1; /* Pointer to first Frame structure */
AstFrame *frame2; /* Pointer to second Frame structure */
va_list args; /* Variable argument list */
int *status; /* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Pointer to inherited status value */
/* Get a pointer to the inherited status value. */
status = astGetStatusPtr;
/* Check the global status. */
new = NULL;
if ( !astOK ) return new;
/* Obtain the Frame pointers from the ID's supplied and validate the
pointers to ensure they identify valid Frames. */
frame1 = astVerifyFrame( astMakePointer( frame1_void ) );
frame2 = astVerifyFrame( astMakePointer( frame2_void ) );
if ( astOK ) {
/* Initialise the CmpFrame, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitCmpFrame( NULL, sizeof( AstCmpFrame ), !class_init,
&class_vtab, "CmpFrame", frame1, frame2 );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the
options string to the astVSet method to initialise the new
CmpFrame's attributes. */
va_start( args, options );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
}
/* Return an ID value for the new CmpFrame. */
return astMakeId( new );
}
AstCmpFrame *astInitCmpFrame_( void *mem, size_t size, int init,
AstCmpFrameVtab *vtab, const char *name,
AstFrame *frame1, AstFrame *frame2, int *status ) {
/*
*+
* Name:
* astInitCmpFrame
* Purpose:
* Initialise a CmpFrame.
* Type:
* Protected function.
* Synopsis:
* #include "cmpframe.h"
* AstCmpFrame *astInitCmpFrame( void *mem, size_t size, int init,
* AstCmpFrameVtab *vtab, const char *name,
* AstFrame *frame1, AstFrame *frame2 )
* Class Membership:
* CmpFrame initialiser.
* Description:
* This function is provided for use by class implementations to
* initialise a new CmpFrame object. It allocates memory (if
* necessary) to accommodate the CmpFrame plus any additional data
* associated with the derived class. It then initialises a
* CmpFrame structure at the start of this memory. If the "init"
* flag is set, it also initialises the contents of a virtual
* function table for a CmpFrame at the start of the memory passed
* via the "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory in which the CmpFrame is to be
* created. This must be of sufficient size to accommodate the
* CmpFrame data (sizeof(CmpFrame)) plus any data used by the
* derived class. If a value of NULL is given, this function
* will allocate the memory itself using the "size" parameter to
* determine its size.
* size
* The amount of memory used by the CmpFrame (plus derived class
* data). This will be used to allocate memory if a value of
* NULL is given for the "mem" parameter. This value is also
* stored in the CmpFrame structure, so a valid value must be
* supplied even if not required for allocating memory.
* init
* A logical flag indicating if the CmpFrame's virtual function
* table is to be initialised. If this value is non-zero, the
* virtual function table will be initialised by this function.
* vtab
* Pointer to the start of the virtual function table to be
* associated with the new CmpFrame.
* name
* Pointer to a constant null-terminated character string which
* contains the name of the class to which the new object
* belongs (it is this pointer value that will subsequently be
* returned by the Object astClass function).
* frame1
* Pointer to the first Frame to be included in the new CmpFrame.
* frame2
* Pointer to the second Frame to be included in the new CmpFrame.
* Returned Value:
* A pointer to the new CmpFrame.
* Notes:
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
*/
/* Local Variables: */
AstCmpFrame *new; /* Pointer to new CmpFrame */
int axis; /* Loop counter for axes */
int naxes; /* Number of CmpFrame axes */
/* Check the global status. */
if ( !astOK ) return NULL;
/* If necessary, initialise the virtual function table. */
if ( init ) astInitCmpFrameVtab( vtab, name );
/* Initialise a Frame structure (the parent class) as the first
component within the CmpFrame structure, allocating memory if
necessary. Set the number of Frame axes to zero, since all axis
information is stored within the component Frames. */
new = (AstCmpFrame *) astInitFrame( mem, size, 0, (AstFrameVtab *) vtab,
name, 0 );
if ( astOK ) {
/* Initialise the CmpFrame data. */
/* ----------------------------- */
/* Clone the component Frame pointers. */
new->frame1 = astClone( frame1 );
new->frame2 = astClone( frame2 );
/* Determine the number of CmpFrame axes. */
naxes = astGetNaxes( frame1 ) + astGetNaxes( frame2 );
/* Allocate memory to hold the axis permutation array and initialise
this array. */
new->perm = astMalloc( sizeof( int ) * (size_t) naxes );
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) new->perm[ axis ] = axis;
}
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new object. */
return new;
}
AstCmpFrame *astLoadCmpFrame_( void *mem, size_t size,
AstCmpFrameVtab *vtab, const char *name,
AstChannel *channel, int *status ) {
/*
*+
* Name:
* astLoadCmpFrame
* Purpose:
* Load a CmpFrame.
* Type:
* Protected function.
* Synopsis:
* #include "cmpframe.h"
* AstCmpFrame *astLoadCmpFrame( void *mem, size_t size,
* AstCmpFrameVtab *vtab, const char *name,
* AstChannel *channel )
* Class Membership:
* CmpFrame loader.
* Description:
* This function is provided to load a new CmpFrame using data read
* from a Channel. It first loads the data used by the parent class
* (which allocates memory if necessary) and then initialises a
* CmpFrame structure in this memory, using data read from the
* input Channel.
* Parameters:
* mem
* A pointer to the memory into which the CmpFrame is to be
* loaded. This must be of sufficient size to accommodate the
* CmpFrame data (sizeof(CmpFrame)) plus any data used by
* derived classes. If a value of NULL is given, this function
* will allocate the memory itself using the "size" parameter to
* determine its size.
* size
* The amount of memory used by the CmpFrame (plus derived class
* data). This will be used to allocate memory if a value of
* NULL is given for the "mem" parameter. This value is also
* stored in the CmpFrame structure, so a valid value must be
* supplied even if not required for allocating memory.
*
* If the "vtab" parameter is NULL, the "size" value is ignored
* and sizeof(AstCmpFrame) is used instead.
* vtab
* Pointer to the start of the virtual function table to be
* associated with the new CmpFrame. If this is NULL, a pointer
* to the (static) virtual function table for the CmpFrame class
* is used instead.
* name
* Pointer to a constant null-terminated character string which
* contains the name of the class to which the new object
* belongs (it is this pointer value that will subsequently be
* returned by the astGetClass method).
*
* If the "vtab" parameter is NULL, the "name" value is ignored
* and a pointer to the string "CmpFrame" is used instead.
* Returned Value:
* A pointer to the new CmpFrame.
* Notes:
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
*/
/* Local Constants: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstCmpFrame *new; /* Pointer to the new CmpFrame */
char key[ KEY_LEN + 1 ]; /* Buffer for keywords */
int axis; /* Loop counter for axes */
int naxes; /* Number of CmpFrame axes */
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(channel);
/* Initialise. */
new = NULL;
/* Check the global error status. */
if ( !astOK ) return new;
/* If a NULL virtual function table has been supplied, then this is
the first loader to be invoked for this CmpFrame. In this case the
CmpFrame belongs to this class, so supply appropriate values to be
passed to the parent class loader (and its parent, etc.). */
if ( !vtab ) {
size = sizeof( AstCmpFrame );
vtab = &class_vtab;
name = "CmpFrame";
/* If required, initialise the virtual function table for this class. */
if ( !class_init ) {
astInitCmpFrameVtab( vtab, name );
class_init = 1;
}
}
/* Invoke the parent class loader to load data for all the ancestral
classes of the current one, returning a pointer to the resulting
partly-built CmpFrame. */
new = astLoadFrame( mem, size, (AstFrameVtab *) vtab, name,
channel );
if ( astOK ) {
/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
this class into the internal "values list". */
astReadClassData( channel, "CmpFrame" );
/* Now read each individual data item from this list and use it to
initialise the appropriate instance variable(s) for this class. */
/* In the case of attributes, we first read the "raw" input value,
supplying the "unset" value as the default. If a "set" value is
obtained, we then use the appropriate (private) Set... member
function to validate and set the value properly. */
/* Component Frames. */
/* ----------------- */
/* Read both component Frames, supplying a default 1-dimensional Frame
if necessary. */
new->frame1 = astReadObject( channel, "framea", NULL );
if ( !new->frame1 ) new->frame1 = astFrame( 1, "", status );
new->frame2 = astReadObject( channel, "frameb", NULL );
if ( !new->frame2 ) new->frame2 = astFrame( 1, "", status );
/* Axis permutation array. */
/* ----------------------- */
/* Obtain the number of CmpFrame axes and allocate memory to hold the
axis permutation array. */
naxes = GetNaxes( (AstFrame *) new, status );
new->perm = astMalloc( sizeof( int ) * (size_t) naxes );
/* If OK, loop to read the array value for each axis. */
if ( astOK ) {
for ( axis = 0; axis < naxes; axis++ ) {
/* Convert from 1-based to zero-based axis numbering at this
point. The default is the "un-permuted" value. */
sprintf( key, "axp%d", axis + 1 );
new->perm[ axis ] = astReadInt( channel, key, axis + 1 ) - 1;
/* Quit looping if an error occurs. */
if ( !astOK ) break;
}
}
/* If an error occurred, clean up by deleting the new CmpFrame. */
if ( !astOK ) new = astDelete( new );
}
/* Return the new CmpFrame pointer. */
return new;
/* Undefine macros local to this function. */
#undef KEY_LEN
}
/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
this class. Each simply checks the global error status and then locates and
executes the appropriate member function, using the function pointer stored
in the object's virtual function table (this pointer is located using the
astMEMBER macro defined in "object.h").
Note that the member function may not be the one defined here, as it may
have been over-ridden by a derived class. However, it should still have the
same interface. */