SUN/211.28

Starlink Project
Starlink User Note 211.28

R.F. Warren-Smith & D.S. Berry
17th October 2017
Copyright (C) 2017 East Asian Observatory

. AST .
A Library for Handling
World Coordinate Systems
in Astronomy

V8.6

Programmer’s Guide
(C Version)

rrrrrrrrrrrrrr
oooooooooooooooooooooooooooooooooooooo

Geacentric opparent equatorial coordinates; epoch J1997.5




SUN/211.28 —Abstract ii

Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.

Copyright (C) 2017 East Asian Observatory



iii SUN/211.286—Contents
Contents
I__Introductionl 1
(.1 _What Problems Does AST Tackle?l. . . ... ...................... 1
1.2 Other Design Objectives| . . . . ... ... ... ... .... 2
1.3 What Does “AST” Stand For?| . . . .. ......................... 3
2 Overview of AST Concepts| 5
2.1 Relationships Between Coordinate Systems| . . . . .. ................ 5
2.2 Mappings Available|. . . . ... ... o 5
23 CompoundMappings| . .. .. .............. ... 6
2.4 Representing Coordinate Systems|. . . . ... ... ..... ... .......... 8
2.5 Networks of Coordinate Systems| . . . .. ....................... 9
2.6 Input/Output Facilities|. . . . . .......... ... ... ... ........ 10
2.7 Producing Graphical Outpu] . . .. ... ....................... 12
B_How To...] 15
B1 ...ObtainandInstall AST] . . .. ... ... ... ... ... .. ... ... ... 15
B.2 ...Structure an AST Program| . .. . ... ... ... oo oL 15
B3 ...Buildan ASTProgram|. . . . ... .......................... 15
4 R [ibration fromaDatasef] . . . . .. ... ... ... ..... ... 16
B.5 ...Validate WCS Information| . . .. ... ....................... 17
B.6 ...Display ASTData] . ... ........ ... ... ... ...... 17
B.7 _...Convert Between Pi inates| . . ................ 17
B.8 ...Testif a WCSis a Celestial Coordinate System| . . . . . .. ............ 18
B.9 ...Testif a WCSis a Spectral Coordinate System| . . . .. .............. 18
B.10 ...Format Coordinates for Display| . . . ... ..................... 19
B.IT ...Display Coordinates as they are Transformed] . . . ... ... ... .. ... . 19
B.12 ...Read Coordinates Entered by aUser| . .. ... .................. 20
B3 ...Createa New WCS Calibration]. . . . . . . o v vt vv vt 21
B.14 ...Modify a WCS Calibration| . . .. ... ...... ... ... .. ...... 23
B.15 ... Write a Modified WCS Calibration toa Datasefl . . . ... ............ 24
B.16 ...Display a Graphical Coordinate Grid| . . . . ... ................. 26
17 ... Switch to Plot a Different Celestial Coordin oid ... 29
B.18 ...Give a User Control Over the AppearanceofaPlot, . . . . ... ... ... ... 30
@ An AST Object Primer 33
4.1 ASTObjects| . . . ... ... . 33
4.2 Object Creationand Pointers| . . ... ... ... .. ... ... .. 33
43 TheObject Hierarchy| . . . . . . ... ... ... . .. ... ... ... 34
4.4 Displaying Objects| . . . ... .. ... ... .. . 35
45 Getting Attribute Values| . . . . .. ... ... ... 35
4.6 Setting Attribute Values| . . ... ... ... oo oo 36
4.7 Testing, Clearing and Defaulting Attributes| . . . . .. .. .. ... . ... ... .. 38
4.8 Transforming Coordinates| . . . . .. ... .. ... .. ... .. ... L. 39
4.9 Managing Object Pointers| . . . . .. ....... ... ... ... ... . ..., 40
4.10 AST Pointer Contexts—Beginand End|. . . . .. ................. .. 41
411 Exporting, Importing and Exempting AST Pointers| . .. .............. 41
4.12 AST Objects within Multi-threaded Applications| . . . . ... ............ 42




SUN/211.28 —Contents

4.12.1 Locking AST Objects for ExclusiveUse| . . . .. ... ... ... ... ....
47122 ASTPointer Confexts . . . ... ... ... ... ..

4.13 ‘Cogzing Objects| ......................................

ointer <

4715 Error Detection] . . . . . ..o
.16 Sharing the ErrorStatus| . . . ... ... . ... ... oo oo L

[5 Inter-Relating Coordinate Systems (Mappings)|
5.1 TheMappingClass| . . . ... ... ... ... ... ... ... ... ... . ...

b2 TheMappingModel| . ... ........ ... ... ... . ... . ... ...
5.3 Changing AttributesofaMapping] . . . . .. .....................
b.4 Inputand Output Coordinate Numbers| . . . ... .......... ... ... .
5.5 Forward and Inverse Transformations|

P.6  Inverting Mappings|. . . . ... ... .. o o oo
5.7 Finding the Rate of Change of a Mapping Output| . . . . .. ... ... ... ...

5.8 Reporting Coordinate Transformations|. . . . ... ..................
5.9 Handling Missing (Bad) Coordinate Values| . . . . .. ................
b.10 Example—the UnitMap| . . ... ............................
.11 Example—the PermMap| . . . . . ... ... .. .. ... . ...

{6 Compound Mappings (CmpMaps)|

6.1 Combining MappingsinSeries| . . . . . ... ... ...
6.2 Combining Mappingsin Parallel| . . ... ......... ... ... .. ..
6.3 The Component Mappings|. . . . . . . . ..o o i vt
6.4 Creating More Complex Mappings . . . ... .. .. .................
6.5 Example—Transforming Between Two Calibrated Images|. . . . . ... ... ...
6.6 Over-Complex Compound Mappings| . . . ... ... ... .............
6.7 Simplifying Compound Mappings| . . . ... ... ..................

[7__Representing Coordinate Systems (Frames)|
7.1 TheFrameModell . . . . .. ... . . .

|72 Creatingalbrame| . ... .. .. ... ... ... .. L L L

[73 UsingaFrameasaMapping|. . . . ... ........................
74 Frame Axis Attributes] . . . .. ... ... ...

[Z5 Frame Attributes] . ... ... ... ... ... ..
|76 Formatting Axis Values|. . . . .. ............ .. oL
[77 Normalising Frame Coordinates] . . .. ........................
[7.8 Reading Formatted Axis Values| . . . .. ........................
[79 Permuting Frame Axes| . . . . .. .................. ... ... ...
[710 Selecting Frame Axes| . . . . ... ... ... . ... .. ... . .. .. ...
[711 Calculating Distances, Anglesand Offsets| . . . . ... ........ .. ... ...

/.1 nventions for Domain Names| . . . . . . . . . . . . . . . e

[7.14.1 The Syntax for UnitStrings| . . . . . ... ... ... . ... ...
[7.14.2" Side-effects of Changing the Unit attribute] . . . . ... ... ... .....

{8 Celestial Coordinate Systems (Skykrames)|
8.1 The SkyFrameModel| . . . . . ... ... ... .. .. ... .. o 000

iv



v SUN/211.28 —Contents

B.2 CreatingaSkyFrame| . . . . ... ... . ... ... . L 83
8.3 Specifying a Particular Celestial Coordinate System| . . . . . .. ... ....... 84
8.4 Attributes which Qualify Celestial Coordinate Systems| . . . . .. ... ... ... 84
8.5 Using Default SkyFrame Attributes|. . . . . ... ................... 85
8.6 Formatting Celestial Coordinates] . . . . ... ..................... 86
8.7 Reading Formatted Celestial Coordinates| . . . ... ................. 88
8.8 Representing Offsets from a Specified Sky Position]. . . . . . . ... ........ 91
[9__Spectral Coordinate Systems (Speckrames)| 93

0.1 TheSpecFrameModell . . ... ... .. ... ... ... ... ... ... .. ... 93
EZ CreafingaSpecFrame]. . . . . . ... ... .. ... ... ... 93

9.3 Specifying a Particular Spectral Coordinate System| . . . ... ........... 93
9.4 Attributes which Qualify Spectral Coordinate Systems| . .. ... ......... 94
9.5 Using Default SpecFrame Attributes| . . . .. ... ............... ... 95
0.6 Creating Spectral Cubes| . . .. ........ ... .. ... .. ... ........ 9
0.7 Handling Dual-Sideband Spectral . . . . . ... .. ... .. ............ 97

[10 Time Systems (TimeFrames)| 99

10.1 T1 Frame Modell . . . . . .. ... 99
[10.2 Creating a IimeFrame| . . ... ... ... ... ... ... .. . . 99
[10.3 Specifying a Particular Time System| . . . .. ... ... .. ............. 99
10.4 Attributes which Qualify Time Coordinate Systems| . . . . . ... ... ... ... 100
(11 Compound Frames (CmpFrames)| 101
[11.1 Creatinga Cmpkrame] . . ... ... ... .. ... .. .. ... ... .. 101
[11.2 The Attributes of a CmpFrame| . . . .. ... ... ... .. ... .......... 101
[12_An Introduction to Coordinate System Conversions| 103
12.1 Converting between Celestial Coordinate Systems| . . . . ... ... ... .. ... 103
12.2 Converting between Spectral Coordinate Systems| . . . . .. ............ 105
[12.3 Converting between Time Coordinate Systems| . . . . .. .............. 106
12.4 Handling SkyFrame Axis Permutations| . . . .. ................... 107
[12.5 Converting Between Frames| . . . . . ... ... ... ... . ... ... ...... 108
12.6 The Choice of AlignmentSystem| . . . ... ...................... 108
(13 Coordinate System Networks (FrameSets)| 111
131 The FrameSetModel . . . . . ... ... ... . 111
13.2 Creatinga FrameSet|. . . . . ... ... ... ... ... ... .. 0. 112
13.3 Adding New Framestoa FrameSet/. . . . . ... ... ... ... ... ... .. ... 112
134 The B n rrent Frames| . . . . . . ..o oo 114
[13.5 Referring to the Base and Current Frames| . . . . .. ................. 114
[13.6 Usinga FrameSetasaMapping]. . . . .. ....................... 115
13.7 Extracting a Mapping from a FrameSet|. . . . . .. ... ............... 115
(3.8 Usinga FrameSetasaFrame| . .. ... ... ........ ... ... ... ... 116
[13.9 Extracting a Frame froma FrameSef| . . . ... ... ... .. ............ 117
13.10Removing a Frame from a FrameSet| . . . . ... ... ... .. ... .. ... ... 117

|14 Higher Level OBerations on FrameSets| 119

14.1 Creating FrameSets with astConvert| . . . . . .. ... .. ... ... ... .. ... 119




SUN/211.28 —Contents

[14.2 Converting between FrameSet Coordinate Systems| . . . .. ... ... ......
[14.3 Example—Registering Two Images| . . . . . . ... ... ... ............
14.4 Re-Defining a FrameSet Coordinate System| . . . . . ... ....... ... . ...
145 Example—BinninganImagel. . . . . . .. ... ... ... ... ... ... .. ...
14.6 Maintaining the Integrity of FrameSets|. . . . . .. .. ... .. ... ... ... ..

[M47 Merging FrameSets| . . . . . ... ... .. ... .. ...

[15 Saving and Restoring Objects (Channels)|
15.1 The ChannelModell . . . . . . . . .. ... . .. .

[15.2 CreatingaChannel| . . .. ... . ... ... ... . ... . ......
[15.3 Writing ObjectstoaChannell. . . . ... ........ .. ... ... ........
15.4 Reading Objects fromaChannel] . . . ... ... ... .. ... ... .. .. ..
15.5 Saving and Restoring Multiple Objects|. . . . . . ... ..... ... ..... ...
5.6 ValidatingInpu| . . . . . . . . ... ... ... ...
15.7 Storing an ID String withan Object{ . . . . . ... ... ...... .. ... .. ...
[15.8 The Textual OutputFormat] . . . ... ... .... ... .. ............
15.9 Controlling the AmountofOutput| . . . . .. ... ... ....... ... ... ...
[15.10Controlling Commenting]. . . . . . . ..o v vt vttt
15.11Editing Textual Output| . . . . . ... ... ... ... .. ... ... ... .. ...
[15.12Mixing Objects withother Text| . . . . ... ... ........ ... ... . ....
15.13Reading Objects from Files|{. . . . . . ... ... .. ... ... ... ..... ...
[15.14Writing Objectsto Files| . . . . . ... ... ... .. ... .. ... ........
15.15Reading and Writing Objects to other Places]. . . . . . ... ... ... ... ....

[L6 Storing AST Objects in FITS Headers (FitsChans)|
[16.1 The Native FITSEncoding| . . . . . ... ... ... .. ... ...........

16.2 The FitsChanModell . . . . . ... ... ... .. .. .. .. .. .. . ...
[16.3 Creatinga FitsChan|. . . . ... ... .. ... ... .. ... ......
[16.4 Addressing CardsinaFitsChan|. . . .. ... .....................
[16.5 Writing Native Objectstoa FitsChan| . . . .. ... ..... ... ... ... ...
16.6 Extracting Individual Cards from a FitsChan| . . . .. .. ... ... .. ... ...
[16.7 The Native FitsChan Output Format| . . . . .. ... ... . ............
16.8 Adding Individual Cards toa FitsChan| . . . ... ... ..... .. .. ..., ...
16.9 Adding Concatenated Cardstoa FitsChan| . . ... ... .. ............
16.10Reading Native Objects From a FitsChan| . . . . ... .. ... ... .. ... ...
[16.11Saving and Restoring Multiple Objects ina FitsChan|. . . . . ... ... ... ...
16.12Mixing Native Objects with Other FITSCards|. . . . . . . ... ... ... ... ..
[16.13Finding and Changing Cardsina FitsChan| . . . . ... ... ............

[17 Using Foreign FITS Encodings|
[17.1 The Foreign FITSEncodings| . . . . . ... .......................

[17.2 Limitations of Foreign Encodings| . . . . ... .....................
[17.3 Identifying Foreign EncodingsonInpuf] . . . . .. ..................
[17.4 Reading Foreign WCS Information froma FITSHeader] . . . . ... ... ... ..
[17.5 Removing WCS Information from FITS Headers—the Destructive Read] . . . . .
[17.6 Propagating WCS Information through Data Processing Steps| . . . . . . ... ..
[17.7 Writing Foreign WCS Information toa FITSHeader] . . . . . ... ... ... ...

vi



vii

SUN/211.28 —Contents

[18 Storing AST Objects as XML (XmlChan)|
[18.1 Reading IVOA Space-Time-Coordinates XML (STC-X) Descriptions| . . . . . . . .

[19 Reading and writing STC-S descriptions (StcsChans))|

20 Creating Your Own Private Mappings (IntraMaps)|
0.1 The Need for Extensibility] . . . .. ... .......... ... ... ........

202 TheIntraMapModel| . . . ... ... ... ... ... ... .. ... ... ... .

[20.3 Limitations of IntraMaps|. . . . ... ..........................

[20.4 Writing a Transformation Function] . . . .. ... ...................

0.5 Registering a Transformation Function] . . . . ... ....... .. .. .. .....

0.6 CreatinganIntraMap|. . . . ... ............................

[20.7 Restricted Implementations of Transformation Functions| . . . ... ... ... ..

20. riabl mber

f rdinates| . . . . . ...

0.9 Adapting a Transformation Function to Individual IntraMaps) . . . .. . ... ..

20.10Simplifying IntraMaps| . . . . . ... ... .. ... ... ...

20.11Writing and Reading IntraMaps|. . . . . ... .....................

20.12Managing Transformation Functions in Libraries| . . . . . . . ... ... ... ...

21 Producing Graphical Output (Plots)|

21.2 Plotting Symbols|

1.3 Plotting GeodesicCurves| . .. .............................

1.4 Plotting Curves Parallelto Axes|. . . ... ... .. ... ... ....... ...

215 Plotting Generalized Curves|. . . .. .......... ... .. ... ........

1.6 Clipping| . . . .

R17 UsingaPlotasaMapping| . . . .. ...........................

18 UsingaPlotasaFrame|. . . ... .......... ... ... ... ........

21.9 Regions of Valid Physical Coordinates . . .. .. ...................

[21.10Plotting Borders|

21.11Plotting Texd] . .
|21.12P|otting a Grid| .

21.13Controlling the Appearance of Sub-strings| . . . ... ................

1.14Producing Logarithmic Axes| . .. ... ........................

21.15Choosing a Graphics Package] . . . . ... ... ... ... . ... ... ... ...,

|22 ComEiling and Linking Software that Uses AST|

22.1 Accessing the "asth” HeaderFile| . . . . ... ... .. ... ... ... ... ...

222 Linking with AST Facilities| . . .. ... ........................

22.3 Building ADAM Applications that Use AST]. . . . . . ... .............

A" The AST Class Hierarchy|

(B AST Function Descriptions|

astAddColumnl|

163
164

167

169
169
169
169
170
171
172
173
173
174
175
176
177

179
179
179
180
181
181
181
182
182
183
183
183
184
184
185
186

187
187
187
188

189



SUN/211.28 —Contents viii

[ astAddVariantl . . . . . . . . . .. 199
astAngle| . . . .. ... 200
astAnnull . . ... e 201
astAxAngle| . . ... oo 202

[ astAXDIStancel . . . . ... . 203

AxNorml. . . . . . . e e e 204

[ astAXOMfset]. . . . . . . .. e e e 205

[ astBBufl . . . . . . . e 206

T ASTBEEI . s e e e e e e 207
astBorder . . . . . .. e e 208
astBoundingBox|. . . . . ... Lo oL o 209
astBox]. . . .. e e 210

[ astChannell . . . . . . . . . . 212

[_astChannelDatal . . . . . . . . . . . . . e 214
astChebyDomain| . . . . ... ... ... ... o o oo 215
astChebyMap| . . . . . . . . ... 216
astCirclel . . . . e e 219

[ astCirclePars| . . . . . . . . . e e 221

[ astClear. . . . . . . . e 222

[ astClearStatus] . . . . . . . . . . 223

T aSICIP] - - e 224

[ astCIONE] .« o . e 226
astCmpkrame| . . . . ... .. oo 227

[ astCmpMap| . . . .. 228
astCmpRegion|. . . . . ... ... .. o 230
astColumnNamel . . . . . . . . . . . e 232

[ astColumnNulll . . ... ... .. . .. 233
astColumnShape| . . ... ... ... ... ... L o 235

[ astColumnSizel. . . . . . . . 236

[ astConvertl . . . . . . . .. e e 237

[ astConvex<<X>| . . . . . . e e e e e e 241

[ astCopY|. . - 243
astCreatedAtl. . . . . . . . . . e e e 244

[ astCurrentlimel . . . . . . . . . . . . . e 245

| astCurvel . . .. e 246
astDSBSpeckrame| . . . . . oo 247

[ astDecompose] . . . ... 248
astDelFits|. . . . . . . e e e 250
a eletel . . . . . e 251

[ astDistancel . . . . . . . .. e e e 252

[ astDownsizel . . . . . . .. e e 253

[ @astEBUll . . . o ot e o e e 254
astEllipsel . . . . . . .. 255
astEllipsePars| . . . ... ... ... . 257
asttmptykits) . . . ... oo oo 258
astEndl . . ... 259
astbscapes| . . . ... 260
astExempt| . . ... o o 261




SUN/211.28 —Contents

astExport] . . . .. e e 262

[ astFIndFitsl . . . . . . 263
[_astbBindFramel . . . . . . . . . . . e 266
FitsChanl. . . . . . . . . e 271

[ astFitsTablel. . . . . . . . . . e 273
[ astbluxFrame| . . . . . . . . . . e 274
[ astFormatl. . . . . . . . .. e e 276
[ astFramel . . . . . . . 277
[ astFrameSet] . . ... ... . . . . e 279
astFromString| . . . . .. L 281
astGenCurvel . . . . . . . L e e e e e e e 282

[ astGet<X>|. . . . e 283
Acti nitl . . . . e e e e e e 284

[ astGetColumnDatal . . . . .. . . . . . . . . e 285
[ astGetFits<X>| . . . . . . e 286
[ astGetFrame| . . . . . . . . . e 288
rfContext] . . . . . . . .. e e 289
astGetMapping| . . . . ... Lo 290

[ astGetRefPosl. . . . . . . . . 291
astGetRegionBounds| . . . ... ... .. oo oo 292
astGetRegionkrame| . . . . . ... ..o oo oo 293

— aStGEREGIONETAMESR « - « « o o o e et e e 294
astGetRegionMesh| . . .. ... ... ... oo 295

[ astGetRegionPoints| . . . . .. . ... 296
astGetStcCoordl . . . . . . e e 298

[ astGetStcNCoord| . . . . . . . e e e 299
astGetStcRegion| . . . . ..o oo oo 300
astGetTableHeader] . . . . . . . . . . . . . . . . .. 301

[ astGetTables| . . . . . . . . . .. 302
[ astGetUnd . . . . . . . e 303
astGriPop| . . . . .. 304

[ astGrfPushl . . . . . . . . 305
.......................................... 306
[ astGridl . . . . . e 311
[ astGridlinel . . . . .. L e e e 312
astGrismMap| . . . ... ... 313
astHasAttributel . . . . . . . . . . . e 314

[ astHasColumnl|. . . . . . . . . . . e 315
[ astHasParameter] . . . . . . . . . . . . . ... 316
astlmport|. . . . ... 317

[ astlntersectl. . . . . . . ... 318
[ astintervall . . . . . . . .. e 319
astintraMap| . . ... ... o oo 321

[ astlnfraReg|. . . . . ... 323
astinvertl . . . . . . . . 326

[ astIsA<Class>| . . . . . . . . . . e e 327
astkeyMap|. . . .. ... o 328
astLinearApprox| . . . ... ... . 329




SUN/211.28 —Contents

| asthockl . ..

astbutMap| . . . . ..o
[ astMapBox| . .. ...
astMapCopy| . . . . . . . e
 aSMApDENed] . . .o
astMapGetO<X>| . . . o oot
astMapGetI<X>| . . . ... ... o
astMapGetC| . . . . . ... ... L
astMapGetElem<X>| . . . ... ... ... oo o oo oo
astMapHasKey| . . .. ... ... ... ... . o o
astMapKey| . . . . ...
astMaplenC| . . . . . ... ...

astMapLength| . . ... ... . oo oo
[ astMapPut0O<X>| . . ... ...
[ astMapPutI<X>| . ...
astMapPutElem<X>| . . . . ... ...

astMaEPutE |

astM aE Eegloﬂ .......................................
astMapRemove] . . . ... ... ...

astMapRename| . . . . ... ...
astMapSize|. . . . . ...

astMapSplit] . .. .. ...
astMapTypel . . . . . . ..

astMathMaEI ........................................
ast Yl atrix Yl aEl .......................................

astNegatg ..........................................

astNormMap|. . . . . ... ... o
astNullRegion| . . . .. .. ... ... .. o oo

[ astOutline<X>| . . . . . .

astOverlaE] .........................................
astParameterNAME] . . .« . o v v e e

astPchaE] .........................................

[ astPointlistl . . . . . . . .
astPolyCoeffs| . . . .. ... ... . ...
astPolyCurvel . . . ... ... ... .




SUN/211.28 —Contents

astPolyMap| . ... ... .. 404
astPolyTran| . . . ... ... ... ... ... 406
astPolygon| . . . . ... ... 408

[ astPrisml . . .. 410
astPurgeRows| . . . ... ... o 411
Wﬂ ....................................... 412
astPutCardsl . . . . . . . .. 413

[ astPutChannelDatal . . . . . . . . . . . . . . e 414
[ astPutColumnDatal . . . . . . .. . ... . e 415
[ astPutFitsl. . . . . . . e e 416
Putlablel. . . . . . . . . e 417

[ astPutTableHeader . ... ... ... . . ... . . .. .. e 418
[ astPutTables . . . . . . . . . e 419
astQuadApprox| . . . . ... 420

[ astRatel . . . . . 422
astRateMap| . . . ... .. .. oo o 423
astRead| . . . . . . . .. e 425
[_astReadHits|. . . . . . . . . . . e 426
[ astRebin<X>| . . . . . .. 427
astRebinSeq<X>| . . . ... ... ... Lo 433
astRegionOutling] . . . ... ... ... ... L 440

[ astRemapFrame| . . . . . . ... 441
| astRemoveColumnl| . . . . . . . . . . e 442
RemoveFramel . . . . . . . . . . 443
[___astRemoveParameter] . . . . . . . . . . . . . ... 444
astRemoveRegions| . . ... ... oo oo 445

[ astRemoveRowl . . . . . . . . 446
[ astRemovelables| . .. .. ... .. ..o 447
astResample<X>| . . . ... .. .. ... o o oo 448
astResolvel . . . . . . . .. 458

[ astRetainFits . . . . . . . . . . 459
[ astSamel. . . . . . . . e 460
astSelectorMap| . . . ... ... Lo 461
astSell . . . ... 463

[ astSet<<X>| . . . L e e e 465
[ astSetActiveUnitl. . . . . . . . . . . . e 466
[ astSetFits<X>| . . . . . L e 468
[ astSetFitsCMI . . . . . . . . e 470
[ astSetFitsUl . . . . . . . . . e 471
[ astSetPutErd . . . . . . . . e 472
[ astSetRefPos| . . . . . . . . e e 473
[ astSetStatus] . . . . . . .. e e e 474
[ astSetUnd . . . . . . . . e e 475
astShiftMap| . . . . ... ... 476
astSNOWI . . . . . e e e 477
howFits| . . . . . . . e 478
[_astShowMesh| . . . . . . . . . . . e 479

| astSimplify| . . . ..o 480




SUN/211.28 —Contents xii

astSkyFrame| . . . . . . ... o 481
astSkyOffsetMap| . . . ... ... ... ... L oo 483
| astSlaAddl . . .. 484
astSlaMap| . . ... ... 487
astSpecAdd| .. ... 488
astSpecFluxkFrame|. . . . . . . . . .o 491
astSpecFrame| . . . . . . . e 492
[ astSpecMap| . ... .. 494
astSphMap| . . . . . . ... 496
astStatus] . . . . . . e e e e 498
astStcCatalogEntryLocation| . . . . .. ... ... .. ... oo 0 000 499
| astStcObsDatal.ocation| . . . . . . . . . . e 501
[ astStcResourceProfile] . . . . . . . ... 503
[ astStcSearchlocation| . . . . . . . . . . . . . e 505
[ astStesChanl . . . . . . . . e 507
astStripEscapes| . . . .. ... oo o 509
astSwitchMap| . . . ... ... ... oo 510
astlablel. . . . . . . . e e e 512
[ astlableSourcel. . . . . . . . . . e 513
[ astTestl . . . . oo 514
[ astTestEitsl . . . . . . . . . e 515
| astlext] . . .. e e e e 516
[ astThread|. . . . . . . . . . e e e 517
[ astTimeAdd| . . . . . . . . e 519
[_astlimeFramel . . . . . . . . . . . e 522
astIimeMap| . . .. . ... 524
astloString| . . . . . . . L e e 525
[ ASTITANT] . -« o o oo e e e e e 526
[ astTran2] . . . . . . . e e e 527
[ astIranGrid|l . . . . . . . . e 528
astlranMap| . . . ... ... . o 530
[ astTranNl . . . . 532
.......................................... 534
[ astTunel . . . . . . e 536
[ astluneC] . . . . . . . e e e 537
astUinterp| . . . .. ... .. 539
astUkernll . . . . . . . e e e 542
[ astUnformatl . . . . . . . . . . . e e e e 544
astUnitMap| . . .. .o oo oo 548
[ astUnitNormMap| . . . . . . . . ... 549
astUnlockl. . . . . . . e e 551
[ astVersionl . . . . . . ... e e e 552
astWarnings| . . . . .. ... 553
astWatchl . . . . . . . . e 555
astWesMap|. .. .o c oo 556
[ astWInMap|. . . .. 559
astWritel. . . . . . e e 561




xiii SUN/211.28 —Contents

[_astXmlChan| . . . . . . . . e 563
| astZoomMap|. . . . ... o 565
[C AST Attribute Descriptions| 567
| Abbrev(axis) . . . . . .. e 568
Adaptivel . . . ... e 569
AlignOffset|. . . . . .. .. ... 570
AlignSideBand|. . . . . ... ... oo oo 571
AlignSpecOffset| . . . . . . ... ... .. 572
AlignStdOfRest| . . . . . .. ... oo 573
AlignSystem| . . . . . ..o 574

T ATENTIMESCAIE . . o . e e e 575
| AllVariants| . . . . . . . . 576
AllWarnings| . . . . . . .. ... 577
AsTIMe(axis)| . . . . . . . e e e e e 579

[ Basel. . .. e 580
L Borderl . . . . ..o 581
| Bottom(axis)| . . . . . . .. e 582
.......................................... 583

D TIXI .« o o e e e e e e e e e e e e e e e e e e e e e e e 584

L Carlinl - o e e e e e 585
| Cardl. . . . 586
[ CardComml. . . . . .. .. 587
[ CardNamel . . . . . . o o e e e 588
CardTypel. . . . . . ..o 589
Classl . . . o e 590

[ Ceanl . . v oo et 591
) 592
ClipOp| . . . o o 593

[ Closed . . ... 594
| Colour(element)| . . . . . . . . . . L 595
| ColumnLenC(column)| . . . . ... ... ... ... . 596
ColumnLength(column)| . . . .. ... ... ... ... .. ... ... ... . ... 597
ColumnNdim(column)| . . . . . . ... ... . . 598
Columnlype(column), . . ... ... ... ... ... .. ... ... . ... 599

[ Comment]. . . . . ... 600
[ Currenfl . . . . . . . e 601
| DSBCentrel . . . . . . . . 602
D =Y 4 3T 603
Digits/Digits(axis)] . . . . . . . ... ... 604
Direction(axis)] - - - - - 4 . o i e e 605

[ Discal . . . e 606
[ Domainl. . . . . . o o e 607
| DrawAxes(axis)| . . . . .« o o e 608
| DrawTitlel. . . . . . . . . o 609
L Dfail . . . o e o e 610
L DUtTl. e e e 611




SUN/211.28 —Contents Xiv

Encoding| . . . . . . .. .. .. 613
EBOCbl ............................................ 620

[ EquinoX|. . . ... 622
SCAPE| « v v e e e e e e e e e e e e e e e e e e 623

[ FAMFACEON - « « « v o e e e e e e e e e 625
[ FitsAxisOrderl . . . . . . . . o e e e e 626
FitsDigits| . . . . . oo oo 627

[ FsToll. . . . o e e 628
| Font(element) . . . . . . . . . . e 629
| Format(axis) . . - . - . . . . e 630
............................................. 633
Gap(axis) - - - . e 634

Grfl . e e 635

L Gridl. . . . e 636
GrismAlpha| . . ... ... oo 637
rISMEDPS|. . . . e e e e 638
GrismGl . . . . o e e e e e e e e e e e e e 639

[ GrismMI. . . . e e e e 640
[ GrismNRI . . . . . e e e 641
L GrismNRP . . ... e e 642
[ GrsmThetal . ... ... . .. . e 643
rismWaveR|. . . . . . .. 644
A | 5 645
TR . e 646
L Tdentl . ... ..o 647
Imagkreq| . . . . . . . ... 648
Indentl. . . . . . . .. e 649

| InternalUnit(axis) . . . . . . . . . o o 650
B 651
[ Tnverfl . . . .. 652
[ Tnvisiblel - . v oo e 653
| ISLatAXIS(axis)| - - - - o v v e e e e 654
[ Islinearl. . . . . . . . e e 655
| ISLONAXIS(AXIS)| - - - o v v e e e e e e 656
TISOIMPIE . . e e e e e 657
[terlnversel . . . . . . . . . e e 658

L TIWd . e 659
eyase . . .. 660
eyError] . . .. L e e e 661

[ TTOMSEH . o o oo e e e e e 662
| Label(axis) . - - - - - o o o e 663
| LabelAt(axis)|. . . . . . . . . . e e e 664
| LabelUnits(axis)| - - - - - - . . o o o o o e 665
LabelUp(axis) . . . ... ... . . 666
Labelling| . . . ... .. ... 667
LatAXis| . . . . . e e e e e e 668

[ TOstSizel . . . o e 669




XV

SUN/211.28 —Contents

Loglabel(axis)| . . . . . ... ... . . . 671
LogPlot(axis)|. . . . . ... ... . . 672
Loglicks(axis)| . . . ... .. ... .. ... . 673
LonAXisl . . . . . e 674
LutEpsilon| . . ... ... ... 675

[ Luflnferp|. . . . . . . 676
MajTickLen(axis)| . . . .. ... ... . . 677
MapLocked| . . ... ... .. .. 678
MatchEndl . . . . . . . . . 679

[ MaxAxes . . . . . . o 680
hSizel . . . . e 681

L MINAXES . . o o o e 682
| MinTick(axis)| . . . . . . . . e 683
| MinTickLen(axis)l . . . . . . . . . . e 684
[ NatLafl . ... ... . . e 685
I N 75 ) 686
[ Naxes . . . . . o 687
L Ncard . - - o e 688
[ Ncolumn| . . . . . . . o e 689
Neglon|. . . . .. .. ... 690
Negated| . . . ... ... ... . 691

[ ONframel - . .. 692
L NI - e e e e e e e e e 693
[ NiterInversel . . . . . . . . . oL e 694
TUNREY] - e 695
[ Nobjec] . . . . 696
NOrmM(aXiS)| -« v v v v v e e e e e 697

| NormUnit(axis)| . . - . .« o o v e e 698
L INOUH - o e e e 699
Nparameter] . . . . . . ... ... ... 700
NIOWI . . . . o o e e e e e e e 701

| NumLab(axis)| . . . . . . . . . . 702
NumLabGap(axis) . . .. ... ... . .. . . . 703
ObjSize| . . . . . . .. 704

[ ObsAIfl . . . . 705
| Obslatl . . . . o o e 706
[ Obslon|. . . . . e 707
| PVMax(i)| . . . . . o o e 708
............................................ 709
| PcdCen(axis)|. . . . . . o o o o e e e 710
.......................................... 711

PolarLong| . . ... ... .. .. . .. 712
PolXTaﬂ ........................................... 713

[ PIeSeIVEAXES . . . oo 714
T DI - e 715
[ Projection]. . ... 716
RefCountl . . . . . . . . . e 717




SUN/211.28 —Contents

RegionClass| ........................................
Reporf] . . . . . oo

ReportLevell . . . . . . . e

SImpFll . ..o
Smplb ..o
SimpVertices| . . . . ...

SInKFilel . . . . . .

SipReplace| . . . .. ... ... .. .
Size(element)] . . . . . . . ...
[ SI1ZeGUESS| . . . . e e e e e e e e e e e

SKyRef(axis)] . . . v v oo e e e
SkyRefls| . . . ... ...

SkyToll . . . .. .

ortbBy|. . . . e e e e e e e

SOUICeSYS| . . ...
SourceVRE . . . . e

S 3ecVa!| ...........................................
SECSATEAl . . o o o e s

StcsLengtm .........................................
§tcs Eroﬁs| ..........................................

Stylefelement)| . . . .. ... ... .. L
Symbol(axis)| . . . . . ...

| TextLab(axis)|. . . . . . . o o
TextLabGap(axis) . . . . . ... ...
I i Ck‘ slll ...........................................
TimeOrigin|. . . . . . ... o
TimeScalel. . . . . . ..

XVi



xvii SUN/211.28 —Contents

[ IranForward|. . . . . . . . . . e 771
[ Tranlnversel . . . . . . . . . e e 772
| Unit(axis)| . . . . . . . o e e e e e e e e 773
[ UnitRadius| . . . . . . . . . e 774
[ UseDefsl. . . o oo e 775
[ Varianfl . . . . . . e 776
Warnings| . . . . . . ... 778
WesAxis(lonlat) . . . . . . . . e 779
TOWGSTPE -« e e e e 780
Width(element)] . . . . . . . . .. 781

[ XmlEormatl . . . . . . .. e 782
XmlLength| . . ... .. ... 784
XmlPrefiX. . . . . . 785

[ Zooml . ... e e e e 786
[D AST Class Descriptions| 787
N < 7= 788
[ BOX . o e 789
[ Channell . . . .. .. e 790
ChebyMap| . . . . . . ... 791
circlel . . . e e e e 792
CmEFrame| ......................................... 793
m .......................................... 794
m ........................................ 795
[ DSBSpecFrame] . .. ... ... ... 796
DssMap|. . . ..o oo 797
TEIDSE . 798
[ FitsChanl . . . . . o e 799
| HitsTablel . . . . . . e 802
[ FluxFramel . . . . . . . . . e e 803
Tamel . . .. e e e e e 804

[ FrameSet] . . . . . . . . . . . e 806
GrlsmMaEI ......................................... 808

[ Intervall . . . . o e e e 809
IntraMap| . . .. ... oo 810
m .......................................... 811
m ........................................... 813
TOMAPDING] - - . e e e e e e 814
MathMap|. . . . ... .. 816
O MAEXMAD] - -« - o o e e e e 817
[ NormMap| . . . . . 818
NullRegion|. . . . . ... ... ... 819
Object|. . . . . .o 820

T DPAAMAP]. - - e 822
[ PermMapl|. . . . .. 823
Plotl . . . . . . 824

I 1Y <5 827



SUN/211.28 —Contents

| ZoomMap| . . ... ... o

UNIX Command Descriptions|

[ ast_ linkl . . . .. ...
| ast link adam| . . . ... .. ... . . ...

AST Memory Management and Utility Functions|

RateMaEI ...............................
Regloﬁ| ................................

SelectorMap| . . . . ...... .. ... o oo
ShiftMap| . . . . . . .. ..

SKyAXis|. . . ...
SkyFrame|. . . . ... ... ...

SlaMap| . . . .. ...
SpecFluxFrame| . . ... ......... .. ... ........
Speckrame| . . . . ...

StcCatalogEntryLocation| . . . . ... .... ... ........
StcObsDatal.ocation| . ... ....................

TEBIEL . o oo

TimeMap|. . .. ... ... oo
[ranMap| . . . . . ...

UnitMap| . . .. ... ... ... oo oo
UnitNormMap|. . . . ... . ... ... ... ..

WcsMaE' ...............................
WinMap| . .. ... ... ...

astAppendString] . . . ... ... ...
astAppendStringf] . . . ... ... oL

astBrackets] . . . . . . . ..

XVviii



Xix SUN/211.28 —Contents
astChrSplit| . . . . ... ... 886
astChrSplitC| . . . . ... ... o 887
astChrSplitRE| . . . .. ... ... o 888
astChrSubl . . . . .. ... 889

[_astChrTrund . . . ... .. ... . 891
[ astFandll . .. ... 892
[astFred . .. ... ... 893
| astFreeDouble| . . . . . . ... o 894
CastGrowl . . .o oot 895
astlsDynamac| . . .. ... ... ... ... o o 896
astMallod . . . . ... ... 897
astMemCaching| . . . . . ... ... . L 898
astReallod. . . . . .. ... 899
astRemoveLeadingBlanks| . . . .. ... ... .. ... . 0 0 00000 900
astSizeOf| . . . . . . . 901

[ astStorel . . . . o oo 902
[ astString] . ... 903
astStringArray| . . . .. ... L 904

[ astStringCase] . ... .. 905
FITS- overage 906
[G1 PaperI-General Linear Coordinates| . . . . . . ... ................. 906
G.1.1 Requirements for a Successful Write Operation|. . . . . .. ......... 906
G.1.2 Use and Choice of CI'YPEi keywords| . . . ... ............... 906
G.1.3 _Choice of Reference Poinfl . . . . ... .................. ... 908
G.1.4 Choice of AxisOrdering| . . . . ... .. ... ... .. ... .. ..... 908
G.1.5 Alternate Axis Descriptions| . . . . . ... ... ... . ... ... ... 908

IG.2 Paper II - Celestial Coordinates| . . . ... ....................... 909
G.2.1 Requirements for a Successful Write Operation]. . . . . ... ... ..... 909
G.2.2 Choice of LONPOLE/LATPOLE . . . . .. ... ... ... ... ...... 909

2. r Defined Fiducial Points| . . . .. ... ... ... . ... ... ..... 911

IG24 Common Non-Standard Featuresl. . . ... .................. 911

|G.3 Paper Il - Spectral Coordinates| . . . . .. ....................... 912
G.3.1 Requirements for a Successful Write Operation|. . . . . ... ... ..... 912

3.2 mmon Non-Standard Features|. . . . .. ... ............... 914

|G.4 Paper IV - Coordinate Distortions|. . . . . ... ... ................ 914
[G41 The "-SIP” distortioncode] . . . . . . ... ... ... ... . ... ... 914
[L_Release Notes| 915
IH1 Changes Introducedin VI.1) . . . .. ... ... ..o oo o 915
[H2 ChangesIntroducedin VI.2] . . .. ... ... ... ... .. ... ........ 916
H.3 ChangesIntroduced in V1.3| . . . .. ... ... ... ... . . ... ......... 917
[H4 Changes Introduced in V1.4 . . . . ... ... ... ... ... ........... 918
H.5 Changes Introducedin VL5 . . ... ........ ... ... ... ........ 919
[H.6 Changes Introducedin VI . . .. ... ...... ... ... ... ........ 920
H.7 Changes Introduced in VI.7] . . . .. ... ... ... ... ... .. ........ 922
[H.8 Changes Introduced in VI.8-2 . . . ... ... ... ... .. ... ........ 923
9 Changes Introduced in VI.8-3| . . . . . . . ... ... ... ... 923




SUN/211.28 —Contents XX

IH.10 Changes Introduced in V1.8-4] . . . . ... ....................... 924
[H.11 Changes Introduced in VI.8-5 . . . ... ... ... ... .. ... ........ 924
[H.12 Changes Introduced in VI.8-7 . . . . ... ... ... ... ... ........ 924
[H.13 Changes Introduced in VI.8-§ . . . ... ... ... .. ... ... ........ 925
[H.14 Changes Introduced in VI.8-13] . . . ... ... .................... 925
[H.15 Changes Introduced in V2.0] . . . . ... ... ... .. ... ... ........ 926
[H.16 Changes Introduced in V3.0 . . . . ... ... .. ... ... .. ........ 928
H.17 Changes Introduced in V3.1| . . . . . ... ... ... ... .. . ... . ... ... 930
[H.I8Changes Introduced in V3.2 . . .. ... ... ... ... .. ... ........ 931

19 Changes Introducedin V3.3 . . . .. ........ .. ... ... ... ... 932
[H.20 Changes Introduced in V3.4 . . . . ... ... ... ... ... ... ......... 933
H.21 Changes Introduced in V3.5 . . . . . ... ... ... ... .. ... ........ 934
[H.22 Changes Introduced in V3.6 . . . .. ........ ... ... ... ........ 934
H.23 Changes Introduced in V3.7 . . . . ... ... ... ... .. ... ... . ... 935
[H.24 Changes Introduced in VA.0] . . . . ... ... ... .. ... ... ........ 935
[H.25Changes Introduced in VA1 . . .. . ... ... ... ... ... .......... 935
[H.26 Changes Introduced in V4.2 . . .. ... ... ... ... .. ... ........ 936
[H.27 Changes Introduced in VA3 . . . . . ... ... ... ... . ... .......... 937
H.28 Changes Introduced in V4.4 . . . . ... ... ... ... ... .. L. 938
[H.29 Changes Introduced in VA5 . . . . . ... ... ... ... . ... .......... 938
H.30 Changes Introduced in V4.6 . . . . ... ... ... .. .. ... .. ... .. ..., 939
[H.31 Changes Introduced in V5.0 . . . . ... ... ... ... .. ... ........ 940
H.32 Changes Introduced in V5.T| . . . . . ... ... . . 940
[H.33 Changes Introduced in V5.2 . . .. ... ... ... ... .. ... ........ 941
H.34 Changes Introduced in V5.3 . . . . ... ... ... ... ... ... .. ... ... 942
[H.35Changes Introduced in V5.3-T) . . . . ... ... ... ... ... ........ 943
H.36 Changes Introduced in V5.3-2 . . . . ... ... ... ... ... ........ 944
[H.37 Changes Introduced in V5.4-0 . . . . .. ........................ 944
[H.38 Changes Introduced in V5.5-0 . . . . .. .......... ... ... ........ 945
H.39 Changes Introduced in V5.6-0 . . . . . ......... ... . ... ......... 945
[H.40 ChangesIntroduced in V5.6-1] . . . ... ... ... ... ............. 945

41 Changes Introduced in V5.7-0 . . . . ... ... .. ... .. ... ...... 946
[H.42 Changes Introduced in V5.7-1] . . . . . . . .. ... . 946
H.43 Changes Introduced in V5.7-2 . . . . .. ... .. ... ... ... .. 947
[H.44 Changes Introduced in V6.0] . . . . . .. ... ... ... .. ... ..., 947
H.45 Changes Introduced in V6.0-1) . . . .. ... ... .. ... ... ...... 948
[H.46 Changes Introduced in V7.0.0] . . . . . ... ... .. 948
H.47 Changes Introduced in VZ7.0.1f . . . . .. ... ... .. ... .. .. ... .. ..., 948
[H.48 Changes Introduced in V7.0.2] . . . . .. ... ... .. ... ... ........ 948
[H.49 Changes Introduced in V7.0.3] . . . . . ... ... ... ... 949
H.50 Changes Introduced in V7.04{ . . . . . . .. ... ... ... ... ... . ... .. 949
[H.51 Changes Introduced in V7.0.5) . . . . ... ... ... ... . ... .. ....... 949
H.52 Changes Introduced in V7.0.6[ . . . . .. ... .. ... .. ... ........... 949
[H.53 Changes Introduced in V7.1.0] . . . . . . ... ... .. 950
H.54 Changes Introduced in VZ7.1.1f . . . . ... ... ... ... ... ...... ..., 950
[H.55 Changes Introduced in V7.2.00 . . . . .. ... ... ... .. ... ........ 950
H.56 Changes Introduced in V7.3.0| . . . . ... ... ... . . ... ... 950
[H.57 Changes Introduced in V7.3.T] . . . . . ... ... o i i 951




xxi

SUN/211.28 —Contents

IH.58 Changes Introduced in V7.3.2] . . ... ......................... 951
[H.59 Changes Introduced in V733 . . . . . ... ... ... ... ... ... ... 951
[H.60 Changes Introduced in V7.3.4 . . . ... ... ... ... .. .. ... .. .... 952
[H.61 Changes Introduced in V8.0.0] . . . .. .............. ... ........ 952
[H.62 Changes Introduced in V8.0.T| . . . . ... ... ... ... ........... 952
[H.63 Changes Introduced in V8.0.2] . . . ... ........................ 953
[H.64 Changes Introduced in VB.0.3| . . . . . .. ... ... ... .. ... ...... 953
H.65 Changes Introduced in V8.0.4{ . . . . . . ... .. ... ... ... ... . ... .. 953
[H.66 Changes Introduced in V8.0.5] . . . ... ... .. ... ... ... ........ 954
H.67 Changes Introduced in V8.1.0] . . . ... ........ ... .. ... ........ 954
[H.68 Changes Introduced in V8.2 . . . .. ........ ... ... ... ........ 954

.69 Changes Introduced in V8.3] . . . . .. ... ... ... ... .. ... .. 955
[H.70 Changes Introduced in V8.4] . . . . . ... ... ... ... . . ... ......... 955
H.71 Changes Introduced in V8.5 . . . . ... ... ... ... .. ... ........ 956
[H.72 Changes Introduced in V8.62] . . . . .. ........................ 956
H.73 Changes Introduced in V8.6.3| . . . . . .. ... ... ... ... ........... 957




SUN/211.28—TList of Figures xxii

List of Figures

[l A Mapping viewed as a “black box” for transforming coordinates. . . . . . . .. 5
2 A CmpMap composed of two component Mappings joined in series| . ... ... 7
B~ A CmpMap composed of two Mappings joined in parallel| . . . . ... ...... 7
4 CmpMaps may be nested in order to construct complex Mappings out of simpler |
[ buidingblocks| . . ... ... o 8
b Representing coordinate systems as Frames.| . . . ... ... ............ 9
6 A CmpFrame (compound Frame) formed by combining two simpler Frames.| . . 10
[/___AFrameSetisanetworkof Frames]. . . . .. ... ... ... ... . .... 11
8 Alabelled coordinate grid for an all-sky zenithal equal area projection in ecliptic |
[ coordinates) . . . .. ... 13
9 Anexample of a displayed image with a coordinate grid plotted overit| . . . . . 27
0 An over-complex compound Mapping| . . . ... ... ... ... .. ....... 61
11  Anexample FrameSet| . . . . .. ... .. ... ... .. ... ... o L. 113
12 FrameSet produced when converting between two SkyFrames]. . . . . . ... .. 119
13 Conversion between two FrameSets is performed by establishin a link between a |
[ pair of Frames, one from each FrameSet] . . . .. ... ..... ... .. ... ... 121
[[4 TInterposing a Mappingintoa FrameSet| . . ... ... ................ 125
15  Two FrameSets in the process of being merged.| . . . . . ... ... ... ... ... 128




1 SUN/211.28 —Introduction

This is the C version of this document.
For the Fortran version, please see SUN/210.

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.

2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial


http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://fits.gsfc.nasa.gov/fits_wcs.html

SUN/211.28 —Introduction 2

coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate [System|
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:

(1) Minimum Software Dependencies. The AST library depends on no other other softwardﬂ

(2) Environment Independence. AST is designed so that it can operate in a variety of “pro-
gramming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced via a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

11t comes with bundled copies of the ERFA and Starlink PAL libraries which are built at the same time as
the other AST internal libraries. Alternatively, external PAL and ERFA libraries may be used by specifying the
“-with-external_pal” option when configuring AST



http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun268.htx/sun268.html?xref_

)

SUN/211.28 —Introduction

e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

Multiple Language Support. AST has been designed to be called from more than one
language. Both C and Fortran interfaces are available (see SUN /210 for the Fortran version)
and use from C++ is also straightforward if the C interface is included using;:

extern "C" {
#include "ast.h"

}

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

(4) Oriented Design. AST uses “object oriented” techniques internally in order to

)

1.3

provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using C and Fortran.

Portability. AST is implemented entirely in ANSI standard C and, when called via its C
interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C
macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (formerly
DEC UNIX) platforms.

What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.


http://www.starlink.ac.uk/cgi-bin/htxserver/sun210.htx/sun210.html?xref_
http://www.starlink.ac.uk/jniast/

SUN/211.28 —Introduction



5 SUN/211.28 —Overview of AST Concepts

2  Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure|1) into which you can feed sets of
coordinates.

Forward
/
*—>»
Input . Output
Coordinates A Mapplng Coordinates
*—>»
.
h Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

For each set you feed in, the Mapping returns a corresponding set of transformed coordinates.
Since each set of coordinates represents a point in a coordinate space, the Mapping acts to
inter-relate corresponding positions in the two spaces, although what these spaces represent
is unspecified. Notice that a Mapping need not have the same number of input and output
coordinates. That is, the two coordinate spaces which it inter-relates need not have the same
number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either from
the input coordinate space to the output, or vice versa. The first of these is termed the forward
transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see

2.2 Mappings Available

The basic concept of a (§2.1) is rather generic and obviously it is necessary to have spe-
cific Mappings that implement specific relationships between coordinate systems. AST provides
a range of these, to perform transformations such as the following and, where appropriate, their
inverses:



SUN/211.28 —Overview of AST Concepts 6

e Conversions between various celestial coordinate systems (the(SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap|and |GrismMap).

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)

and a 3-dimensional vectorial positions (the[SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the [DssMap|and [WcsMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap} WinMapl} [ShiftMap|and |[ZoomMap).

e General N-dimensional polynomial transformations (the [PolyMap|and [ChebyMap).
e Lookup tables (the [LutMap).

e General-purpose transformations expressed using arithmetic operations and functions

similar to those available in C (the MathMap).

e Transformations for internal use within a program, based on private transformation

functions which you write yourself in C (the |IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above, see
its entry in Appendix D} In addition, see the discussion of the PermMap in §5.11} the [UnitMap
in §5.10/and the IntraMap in The ZoomMap is used as an example throughout §4|

2.3 Compound Mappings

The Mappings described in provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of called a or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure [2}

Here, the transformations implemented by each component Mapping are performed one after
the other, with the output from the first Mapping feeding into the second. The second way, in
parallel, is shown in Figure

In this case, each Mapping acts on a complementary subset of the input and output CoordinatesEI

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure ). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in the

2 A pair of Mappings can be combined in a third way using a A TranMap allows the forward transfor-
mation of one Mapping to be combined with the inverse transformation of another to produce a single Mapping.



7 SUN/211.28 —Overview of AST Concepts

CmpMap

Mapping A Mapping B

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.



SUN/211.28 —Overview of AST Concepts 8

/

Mapping B

Mapping A

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex
Mappings out of simpler building blocks.

coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6} Also see the CmpMap
entry in Appendix|D}

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure |5).

A Frame is similar in concept to the frame you might draw around a graph. It contains
information about the labels which appear on the axes, the axis units, a title, knowledge of how
to format the coordinate values on each axis, efc. An AST Frame is not, however, restricted to
two dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Functions are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure [Bp,c),
represents celestial coordinate systems, the represents spectral coordinate systems,
and the represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a
compound Frame, or in which both sets of axes are combined. One could, for



9 SUN/211.28 —Overview of AST Concepts

x1 b)
x2
SkyFrame
RA
o Dec )
SkyFrame

RA
Dec o

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A represents a (spherical) celestial coordinate system. (c) The
axis order of any [Frame|may be permuted to match the coordinate space it describes.

example, have celestial coordinates on two axes and an unrelated coordinate (wavelength,
perhaps) on a third (Figure [p). Knowledge of the relationships between the axes is preserved
internally by the process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7} for SkyFrames see §§and
for SpecFrames see @ Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure[7).

A may be extended by adding a new to it, together with an associated [Mapping]

which relates the new coordinate system to one which is already present. This process ensures
that there is always exactly one path, via Mappings, between any pair of Frames. A function is
provided for identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s purpose,
which is to calibrate datasets and other entities by attaching coordinate systems to them. In
this context, the base Frame represents the “native” coordinate system (for example, the pixel
coordinates of an image). Similarly, one Frame is termed the current Frame and represents
the “currently-selected” coordinates. It might, typically, be a celestial or spectral coordinate
system and would be used during interactions with a user, as when plotting axes on a graph or
producing a table of results. Other Frames within the FrameSet represent a library of alternative
coordinate systems which a software user can select by making them current.



SUN/211.28 —Overview of AST Concepts 10

/ CmpFrame

(SkyFrame
RA
Dec

Frame
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure #), CmpFrames may be nested in order to
build more complex Frames.

Further reading: For a more complete description of FrameSets, see §13{and Also see the
FrameSet entry in Appendix|D}

2.6 Input/Output Facilities

AST allows you to convert any kind of into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other software
will understand it. However, more specialised forms of Channel are provided which use text
formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a[FitsChan|is provided. Instead of using free-format text,
a FitsChan converts AST Objects to and from FITS header cards. It also allows the information
to be encoded in the FITS cards in a number of ways (called encodings), so that WCS information
from a variety of sources can be handled.

Another sub-class of Channel, called is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class



11 SUN/211.28 —Overview of AST Concepts

Frame 1 Current Frame
Mappmg

Frame 3

Mapping

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.



SUN/211.28 —Overview of AST Concepts 12

(currently, no schema or DTD is available describing this format). The other is a subset of
an early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described
athttp://www.ivoa.net/Documents/WD/STC/STC-20050225. htmlf} The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

Finally, the class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST object, and vice-versa.

Further reading: For a more complete description of Channels see and for FitsChans see

and Also see the Channel and FitsChan entries in Appendix[D|and the entry
in Appendix [C}

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of [FrameSet| called a
whose base corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the class - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the
Plot class is to produce line plots such as flux against wavelength, displacement again time, etc.
For these situations the current Frame of the Plot would be a compound Frame
containing a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.. Figure8).

This uses a general algorithm which does not depend on knowledge of the coordinates being
represented, so can also handle programmer-defined coordinate systems. Grids for all-sky
projections, including polar regions, can be drawn and most aspects of the output (colour, line
style, etc.) can be adjusted by setting appropriate Plot attributes.

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmIChan
class to produce corresponding AST objects (subclasses of theclass). However, the reverse is not possible. That is,
AST objects can not currently be written out in the form of STC documents.


http://www.ivoa.net/Documents/WD/STC/STC-20050225.html 
http://www.ivoa.net/Documents/latest/STC-S.html

13 SUN/211.28 —Overview of AST Concepts

Ecliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single function call.

Further reading: For a more complete description of Plots and how to produce graphical output,
see §21] Also see the Plot entry in Appendix D}



SUN/211.28 —Overview of AST Concepts

14



15 SUN/211.28 —How To...

3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into
detail. The examples given (sort of) follow on from each other, so you should be able to construct
a variety of programs by piecing them together. Note that some of them appear longer than
they actually are, because we have included plenty of comments and a few options that you
probably won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4|first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collectiorﬁ If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program
An AST program normally has the following structure:

/* Include the interface to the AST library. */
#include "ast.h"

/* Main program (or could be any function). */
main () {
<normal C declarations and statements>

/* Enclose the parts which use AST between the astBegin and astEnd macros. */
astBegin;
<C statements which use AST>
astEnd;

<maybe more C statements>

The use of [astBegin| and [astEnd)| is optional, but has the effect of tidying up after you have
finished using AST, so is normally recommended. For more details of this, see §4.10, For details
of how to access the “ast.h” header file, see §22.1]

3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:

4The Starlink Software Collection can be downloaded from http: //www.starlink.ac.uk/Download/


http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/Download/

SUN/211.28 —How To... 16

cc program.c -L/star/lib -I/star/include ‘ast_link‘ -o program
To build a program which uses PGPLOT for graphics, use:
cc program.c -L/star/lib ‘ast_link -pgplot® -o program

For more details about accessing the “ast.h” header file, see §22.1} For more details about linking
programs, see §22.2]and the description of the “fast_link]” command in Appendix[E]

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that “cards” is a pointer to a string containing a complete set of concatenated FITS
header cards (such as produced by the CFITSIO function fits_hdr2str). Then proceed as follows:

fitsfile *fptr;
AstFitsChan *fitschan;
AstFrameSet *wcsinfo;
char *header;

int nkeys, status;

/* Obtain all the cards in the header concatenated into a single dynamically
allocated null-terminated character string. Note, we do not exclude
any cards since we may later modify the WCS information within the
header and consequently want to write the entire header out again. */
if( fits_hdr2str( fptr, O, NULL, O, &header, &nkeys, &status ) )
printf (" Error getting header\n");

/* Header obtained succesfully... */
} else {

/* Create a FitsChan and fill it with FITS header cards. */
fitschan = astFitsChan( NULL, NULL, "" );
astPutCards( fitschan, header );

/* Free the memory holding the concatenated header cards. */
header = free( header );

/* Read WCS information from the FitsChan. */
wcsinfo = astRead( fitschan );

The result should be a pointer, “wcsinfo”, to a[FrameSet| which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.



17 SUN/211.28 —How To...

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a[Channel| or XmIChan| (§15) rather than a In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to the
function ndfGtwcs—see SUN/33. The whole process can probably be encapsulated in a similar
way for most data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3/and §17.4] For a more
general description of FitsChans and their use with FITS header cards, see §16/and For
more details about FrameSets, see §13]and

3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong:

#include <string.h>

if ( tastOK ) {
<an error occurred (a message will have been issued)>
} else if ( wecsinfo == AST__NULL ) {
<there was no WCS information present>
} else if ( strcmp( astGetC( wcsinfo, "Class" ), "FrameSet" ) ) {
<something unexpected was read (i.e. not a FrameSet)>
} else {
<WCS information was read OK>

}

For more information about detecting errors in AST functions, see For details of how to
validate input data read by AST, see §15.6/and §17.4]

3.6 ...Display AST Data

If you have a pointer to any AST[Object] you can display the data stored in that Object in textual
form as follows:

astShow( wcsinfo );

Here, we have used a pointer to the [FrameSet| which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using [astShow] see For information about interpreting the output,
also see §15.8]

3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a such as we read in to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:


http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndfGtwcs
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_

SUN/211.28 —How To... 18

double xpixel[ N ], ypixel[ N ];
double xworld[ N ], yworld[ N ];

astTran2( wcsinfo, N, xpixel, ypixel, 1, xworld, yworld );

Here, N is the number of points to be transformed, “xpixel” and “ypixel” hold the pixel
coordinates, and “xworld” and “yworld” receive the returned world coordinatesE] To transform
in the opposite direction, interchange the two pairs of arrays (so that the world coordinates are
given as input) and change the fifth argument of to zero.

To transform points in one dimension, use In any other number of dimensions (or if
the number of dimensions is initially unknown), useastTranN|or [astIranP| These functions are
described in Appendix

For more information about transforming coordinates, see and §13.6 For details of how to
handle missing coordinates, see §5.9

3.8 ...Testif a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in in the form of a pointer “wcsinfo”
toa then you may determine if the current coordinate system is a celestial one or not,
as follows:

AstFrame *frame;
int issky;

/* Obtain a pointer to the current Frame and determine if it is a
SkyFrame. */

frame = astGetFrame( wcsinfo, AST__CURRENT );

issky = astIsASkyFrame( frame );

frame astAnnul ( frame );

This will set “issky” to 1 if the WCS is a celestial coordinate system, and to zero otherwise.

3.9 ...Testif a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the astIsASpecFrame
function in place of the astIsASkyFrame function.

5By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1) and
each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but if they
are, then they will be in radians.



19 SUN/211.28 —How To...

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the [FrameSef] pointer “wcsinfo” obtained in
and a pair of world coordinates “xw” and “yw” (e.. see §3.7), you could proceed as follows:

#include <stdio.h>
const char *xtext, *ytext;
double xw, yw;

xtext = astFormat( wcsinfo, 1, xw );
ytext astFormat( wcsinfo, 2, yw );

(void) printf( "Position = %s, %s\n", xtext, ytext );

Here, the second argument to is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate format-
ting will be employed.

For more information about formatting coordinate values and how to control the style of
formatting used, see and If necessary, also see for details of how to “normalise” a
set of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and +90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when

using the[FrameSef pointer “wcsinfo” obtained in §3.4]to transform coordinates (§8.7), you could

inspect the coordinate values as follows:

astSet( wcsinfo, "Report=1" );
astTran2( wcsinfo, N, xpixel, ypixel, 1, xworld, yworld );

By setting the FrameSet’s attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:

(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) --> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) --> (2:15:13.1, 38:57:40)
(46.6528, 24.7901) --> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) --> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) --> (2:26:40.6, 44:41:27)



SUN/211.28 —How To... 20

For a complete description of the Report attribute, see its entry in Appendix [C} For further
details of how to set and enquire attribute values, see and

3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the pointer “wcsinfo” obtained earlier (§3.4), you could proceed as follows:

#include <stdio.h>

char *t;

char text[ MAXCHARS + 2 ];
double coord[ 10 1;

int iaxis, n, naxes;

/* Obtain the number of coordinate axes (if not already known). */
naxes = astGetI( wcsinfo, "Naxes" );

/* Loop to read each line of input text, in this case from the
standard input stream (your programming environment will probably
provide a better way of reading text than this). Set the pointer
"t" to the start of each line read. */

while ( t = fgets( text, MAXCHARS + 2, stdin ) ) {

/* Attempt to read a coordinate for each axis. */
for ( iaxis = 1; iaxis <= naxes; iaxis++ ) {
n = astUnformat( wcsinfo, iaxis, t, &coord[ iaxis - 1 ] );

/* If nothing was read and this is not the first axis or the
end-of-string, try stepping over a separator and reading again. */
if ( 'n && ( iaxis > 1 ) && *t )

n = astUnformat( wcsinfo, iaxis, ++t, &coord[ iaxis - 1 ] );

/* Quit if nothing was read, otherwise move on to the next coordinate. */
if ( 'n ) break;
t += n;

}

/* Test for the possible errors that may occur... */

/* Error detected by AST (a message will have been issued). */
if ( lastOK ) {

break;

/* Error in input data at character t[n]. */
} else if ( *t || 'n ) {



21 SUN/211.28 —How To...

<handle the error, or report your own message here>
break;

} else {
<coordinates were read 0K>

}

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787”),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the function, see
For details of how sexagesimal formats are handled, and the forms of input that may be used
for celestial coordinates, see

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is
probably to create a set of strings describing the required calibration in terms of the keywords
used by the FITS WCS standard, and then convert these strings into an AST describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but the
basic kernel is quite simple, involving the following keywords (all of which end with an integer
axis index, indicated below by < i >):

CRPIX<i>
hold the pixel coordinates at a reference point

CRVAL<i>
hold the corresponding WCS coordinates at the reference point

CTYPE<i>
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CD<i>_<j>
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the image.
If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and CD2_1) can
be omitted.



SUN/211.28 —How To... 22

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header cards
could be:

CTYPE1 = ’RA---TAN’ / Axis 1 represents RA with a tan projection
CTYPE2 = ’DEC--TAN’ / Axis 2 represents Dec with a tan projection
CRPIX1 = 100.5 / Pixel coordinates of reference point

CRPIX2 = 98.4 / Pixel coordinates of reference point

CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours

CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees
Chi_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
Ch2_2 = 0.0003333333 / Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals sign
in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.

e celestial longitude and latitude must both be specified in decimal degrees.

e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.
o the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS ’FK5?
EQUINOX = 2005.6

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of FK5,
in which case EQUINOX defaults to B1950.0.

Once you have created these FITS-WCS header card strings, you should store them in a
and then read the corresponding FrameSet from the FitsChan. How to do this is described in

£4
Having created the WCS calibration, you may want to store it in a data file. How to do this is

described in §3.15) f]

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a describing pixel
coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such as
a for celestial coordinates, a[SpecFrame|for spectral coordinates, a Timeframe for time
coordinates, or a for a combination of different coordinates. You also need to create
a suitable Mapping| which transforms pixel coordinates into world coordinates. AST provides
many different types of Mappings, all of which can be combined together in arbitrary fashions
to create more complicated Mappings. The WCS Frame should then be added into the FrameSet,
using the Mapping to connect the WCS Frame with the pixel Frame.

o1f you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS cards
directly.



23 SUN/211.28 —How To...

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that the
data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to the
grid of pixels which they occupy, so that any coordinate systems previously associated with the
image become invalid.

To correct for this, it is necessary to set up a[Mapping|which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates “xnew” and “ynew” can be expressed in terms of the old
coordinates “xold” and “yold” as follows:

double xnew, xold, ynew, yold;
double m[ 4 1, z[ 2 1;

xnew = xold * m[ 0 ] + yold * m[ 1 ] +
ynew = xold * m[ 2 ] + yold * m[ 3 ] +

where “m” is a 2 x2 transformation matrix and “z” represents a shift of origin. This is there-
fore a general linear coordinate transformation which can represent displacement, rotation,
magnification and shear.

In AST, it can be represented by concatenating two Mappings. The first is a which
implements the matrix multiplication. The second is a which linearly transforms one
coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a could have been used in place of a WinMap). These Mappings may be
constructed and concatenated as follows:

AstCmpMap *newmap;
AstMatrixMap *matrixmap;
AstWinMap *winmap;

/* The MatrixMap may be constructed directly from the matrix "m". */
matrixmap = astMatrixMap( 2, 2, 0, m, "" );

/* For the WinMap, we set up the coordinates of the corners of a unit
square (window) and then the same square shifted by the required
amount. */

{
double inal] = { 0.0, 0.0 };
double inb[] = { 1.0, 1.0 };
double outal] = { z[ 01, z[ 11 };
double outb[] = { 1.0+ z[ 01, 1.0+ z[ 11 };



SUN/211.28 —How To... 24

/* The WinMap will then implement this shift. */
winmap = astWinMap( 2, ina, inb, outa, outb, "" );

}

/* Join the two Mappings together, so that they are applied one after
the other. */
newmap = astCmpMap( matrixmap, winmap, 1, "" );

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D] For an
overview of how individual Mappings may be combined, see (§6] gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a

pointer to a “wesinfol” (§3.4), the Mapping created above may be used to produce a
calibration for the new image as follows:

AstFrameSet *wcsinfol, *wcsinfo?2;

/* If necessary, make a copy of the WCS calibration, since we are
about to alter it. */
wcsinfo2 = astCopy( wcsinfol );

/* Re-map the base Frame so that it refers to the new data grid
instead of the old one. */
astRemapFrame( wcsinfo2, AST__BASE, newmap );

This will produce a pointer, “wcsinfo2”, to a new FrameSet in which all the coordinate systems
associated with your original image are modified so that they are correctly registered with the
new image instead.

For more information about re-mapping the Frames within a FrameSet, see §14.4, Also see §14.5]
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.

3.15 ...Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.

In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can be
stored with the data. You should usually make preparations for doing this when you first read
the WCS calibration from your input dataset by modifying the example given in as follows:

AstFitsChan *fitschanl;
AstFrameSet *wcsinfol;
const char *encode;



25

SUN/211.28 —How To...

/* Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use astPutCards in
place of astPutFits. x/
fitschanl = astFitsChan( NULL, NULL, "" );
for ( icard = 0; icard < ncard; icard++ ) astPutFits( fitschanl, cards[ icard ], 0 );

/* Note which encoding has been used for the WCS information. */
encode = astGetC( fitschanl, "Encoding" );

/* Rewind the input FitsChan and read the WCS information from it. */
astClear( fitschanl, "Card" );
wcsinfol = astRead( fitschanl );

Note how we have added an enquiry to determine how the WCS information is encoded in the
input FITS cards, storing a pointer to the resulting string in the “encode” variable. This must be
done before actually reading the WCS calibration.

(N.B. If you will be making extensive use of astGetC in your program, then you should allocate a buffer

and make a copy of this string, because the pointer returned by astGetC will only remain valid for 50

invocations of the function, and you will need to use the value again later on.)

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in
the form of a[FrameSet]identified by the pointer “wcsinfo2”, you can produce a new

containing the output FITS header cards as follows:

AstFitsChan *fitschan?2;
AstFrameSet *wcsinfo?2;

/* Make a copy of the input FitsChan, AFTER the WCS information has
been read from it. This will propagate all the input FITS header
cards, apart from those describing the input WCS calibration. */

fitschan2 = astCopy( fitschanl );

/* If necessary, make modifications to the cards in "fitschan2"
(e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
a change in image size). You probably only need to do this if your
data system does not provide these facilities itself. */

<details not shown - see below>

/* Alternatively, if your data system handles the propagation of FITS
header cards to the output dataset for you, then simply create an
empty FitsChan to contain the output WCS information alone.

fitschan2 = astFitsChan( NULL, NULL, "" );

*/

/* Rewind the new FitsChan (if necessary) and attempt to write the
output WCS information to it using the same encoding method as the
input dataset. */

astSet( fitschan2, "Card=1, Encoding=/s", encode );

if ( lastWrite( fitschan2, wcsinfo2 ) ) {



SUN/211.28 —How To... 26

/* If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead. */
astSet( fitschan2, "Encoding=NATIVE" );
(void) astWrite( fitschan2, wcsinfo2 );

¥
For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4} §16.9, §16.8and §16.13

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan that
contains them as follows:

#include <stdio.h>
char card[ 81 ];

astClear( fitschan2, "Card" );
while ( astFindFits( fitschan2, "%f", card, 1 ) ) (void) printf( "%s\n", card );

Here, we have simply written each card to the standard output stream, but you would obviously
replace this with a function invocation to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed, possibly
involving use of a|Channel or XmIChan| (§I5) rather than a FitsChan. In the case of the Starlink
NDF data format, for example, all of the above may be replaced by a single call to the function
ndfPtwcs—see SUN/33. The whole process can probably be encapsulated in a similar way for
most data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
For more information about writing WCS information to FitsChans, see and
For information about the options for encoding WCS information in FITS header cards, see
and the description of the Encoding attribute in Appendix [C| For a complete
understanding of FitsChans and their use with FITS header cards, you should read and

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure[9) over the displayed image.

The use of AST in such circumstances is independent of the underlying graphics system, so
starting up the graphics system, setting up a coordinate system, displaying the image, and
closing down afterwards can all be done using the graphics functions you would normally use.

However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the C interface to the PGPLOT graphics packageﬂ Plotting a coordinate
grid with AST then becomes a relatively minor part of what is almost a complete graphics
program.

7 An interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although interfaces
to other graphics systems may also be written.


http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_ndfPtwcs
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_

27 SUN/211.28 —How To...

FK5 coordinates; mean equinox J2000.0

S

s X
TN

i
\ ] = J
R A e
= /\
[\
\
A
0 23 22 21 20 19 18

Right ascension

N

Declination

60

(]

50
|/
. -
3 2 1

Figure 9: An example of a displayed image with a coordinate grid plotted over it.



SUN/211.28 —How To... 28

Once again, we assume that a pointer, “wcsinfo”, to a suitable associated with the
image has already been obtained (§3.4).

#include "cpgplot.h"

AstPlot *plot;

const float *data;

float hi, lo, scale, x1, x2, xleft, xright, xscale;
float y1, y2, ybottom, yscale, ytop;

int nx, ny;

/* Access the image data, which we assume has dimension sizes "nx" and
"ny", and will be accessed via the "data" pointer. Also derive
limits for scaling it, which we assign to the variables "hi" and
"10". */

<this stage depends on your data system, so is not shown>

/* Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success. */
if( cpgbeg( O, " ", 1, 1) ==1) {

/* Clear the screen and ensure equal scales on both axes. */

cpgpage () ;
cpgwnad( 0.0f, 1.0f, 0.0f, 1.0f );

/* Obtain the extent of the plotting area (not strictly necessary for
PGPLOT, but possibly for other graphics systems). From this, derive
the display scale in graphics units per pixel so that the image
will fit within the display area. */
cpgawin( &x1, &x2, &yl, &y2 );
xscale = ( x2 - x1 ) / nx;
yscale = ( y2 - y1 ) / ny;
scale = ( xscale < yscale ) 7 xscale : yscale;

/* Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area. */

xleft = 0.5f *x ( x1 + X2 - nx * scale );
xright = 0.5f * ( x1 + x2 + nx * scale );
ybottom = 0.5f * ( yl + y2 - ny * scale );
ytop = 0.5f * ( y1 + y2 + ny * scale );

/* Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) . */

{
float tr[] = { xleft - 0.5f * scale, scale, 0.0f,
ybottom - 0.5f * scale, 0.0f, scale };
cpggray( data, nx, ny, 1, nx, 1, ny, hi, lo, tr );
}

/* BEGINNING OF AST BIT x*/
/* */
/* Store the locations of the bottom left and top right corners of the




29 SUN/211.28 —How To...

region used to display the image, in graphics coordinates. */

{
float gbox[] = { xleft, ybottom, xright, ytop };

/* Similarly, store the locations of the image’s bottom left and top
right corners, in pixel coordinates -- with the first pixel centred
at (1,1). */

double pbox[] = { 0.5, 0.5, nx + 0.5, ny + 0.5 };

/* Create a Plot, based on the FrameSet associated with the
image. This attaches the Plot to the graphics surface so that it
matches the displayed image. Specify that a complete set of grid
lines should be drawn (rather than just coordinate axes). */
plot = astPlot( wcsinfo, gbox, pbox, "Grid=1" );
X

/* Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system. */
astSet( plot, "Colour(grid)=2, Font(textlab)=3" );

/* Use the Plot to draw the coordinate grid. */
astGrid( plot );

<maybe some more AST graphics here>
/* Annul the Plot when finished (or use the astBegin/astEnd technique
shown earlier). */

plot = astAnnul( plot );

/* END OF AST BIT x*/
/* */

/* Close down the graphics system. */
cpgend () ;

Note that once you have set up a[Plot|which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a range
of Plot attributes which gives control over most aspects of the output’s appearance. For details
of the facilities available, see §21]and the description of the Plot class in Appendix D}

For details of how to build a graphics program which uses PGPLOT, see and the description
of the command in Appendix

3.17 ...Switch to Plot a Different Celestial Coordinate Grid
Once you have set up a to draw a coordinate grid (§3.16), it is a simple matter to change

things so that the grid represents a different celestial coordinate system. For example, after
creating the Plot with you could use:

astSet( plot, "System=Galactic" );



SUN/211.28 —How To... 30

or:
astSet( plot, "System=FK5, Equinox=J2010" );

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see for how to determine if this is the caseEb. If it did not,
you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the |System| [Equinox|and [Epoch|attributes in Appendix

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a[Ploffs attributes to control the appearance of the graphical output it produces
(§3.1¢and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attri