
Funtools: FITS Users Need Tools

Summary
This document is the Table of Contents for Funtools.

Description
Funtools, is a "minimal buy-in" FITS library and utility package developed at the the High Energy
Astrophysics Division of SAO. The Funtools library provides simplified access to a wide array of
file types: standard astronomical FITS images and binary tables, raw arrays and binary event lists,
and even tables of ASCII column data. A sophisticated region filtering library (compatible with ds9)
filters images and tables using boolean operations between geometric shapes, support world
coordinates, etc. Funtools also supports advanced capabilities such as optimized data searching
using index files. The main goal of the Funtools project has been to develop a minimal buy-in FITS
library for researchers who are occasional (but serious) coders. In this case, "minimal buy-in" means
"easy to learn, easy to use, and easy to re-learn next month". We have tried to achieve this goal by
emphasizing two essential capabilities. The first is the ability to develop FITS programs without
knowing much about FITS, i.e., without having to deal with the arcane rules for generating a
properly formatted FITS file. The second is to support the use of already-familiar C/Unix facilities,
especially C structs and Unix stdio. Taken together, these two capabilities should allow researchers
to leverage their existing programming expertise while minimizing the need to learn new and
complex coding rules.

Choose from the following topics:

................ 1Funtools User Programs

.......... 1funcalc: Funtools calculator (for binary tables)

........... 8funcen: find centroid (for binary tables)

.......... 9funcnts: count photons in specified regions

.......... 19funcone: cone search on RA, Dec columns

.......... 21fundisp: display data in a Funtools data file

.......... 28funhead: display a header in a Funtools file

.......... 30funhist: create a 1D histogram of a column

....... 33funimage: create a FITS image from a Funtools data file

........ 37funindex: create an index on a column in a binary table

..... 38funjoin: join two or more FITS binary tables on specified columns

......... 41funmerge: merge one or more Funtools table files
42funsky: convert between image and sky coordinates, using WCS info from a FITS header

.... 45funtable: copy selected rows from a Funtools file to a FITS binary table

......... 48funtbl: extract a table from Funtools ASCII output

............. 51funtools and ds9 image display

................ 53Funtools Programming

............. ??Funtools Programming Summary

............. 54Funtools Programming Tutorial

1

............ 56A Short Digression on Subroutine Order

................ 56Compiling and Linking

.............. 87The Funtools Reference Handle

........... 57The Funtools Programming Reference Manual

............. 58FunOpen: open a Funtools file

............. 60FunImageGet: retrieve image data

............. 62FunImagePut: output image data

.......... 64FunImageRowGet: retrieve image data by row

.......... 65FunImageRowPut: output image data by row

.......... 76FunTableRowGet: retrieve rows from a table

........... 77FunTableRowPut: output rows to a table

........ 66FunColumnSelect: select columns in a table for access

...... 73FunColumnActivate: activate columns in a table for read/write

....... 75FunColumnLookup: lookup info about the columns in a table

.......... 82FunInfoGet: get info about an image or table

.......... 85FunInfoPut: put info about an image or table

............. 78FunParamGet: get header param

............. 80FunParamPut: put header param

............ 86FunFlush: flush I/O in a Funtools file

............. 87FunClose: close a Funtools file

.............. 57Funtools Programming Examples
evmerge: merge new columns with existing columns
evcols: add column and rows to binary tables
imblank: blank out image values below a threshold

.................. 91Funtools Data Files

................ 91Supported Data Formats

............... 92FITS File and Extensions

.............. 92Non-FITS Raw Event Files

............... 94Non-FITS Array Files

............. 102Column-based Text (ASCII) Files

............... 111Database Views of Tables

............... 95Image Sections and Blocking
Binning FITS Binary Tables and Non-FITS Event Files

............ 96Disk Files and Other Supported File Types
Funtools Data Filtering

.................. 100Table Filtering

.............. 117Fast Table Filtering using Indexes

................ 123Spatial Region Filtering

................ 127Region Geometry

................. 136Region Algebra

................ 152Region Coordinates

................ 157Region Boundaries

......... 161Differences Between Funtools and IRAF Regions

2

............. 164Combining Table and Region Filters
Miscellaneous

.............. 165Funtools Environment Variables

................. 167Funtools ChangeLog

Last updated: January 6, 2006

3

Funtools Programs

Summary
funcalc [-n] [-a argstr] [-e expr] [-f file] [-l link] [-p prog] [-u] <iname> [oname [columns]]

funcen [-i] [-n iter] [-t tol] [-v lev] <iname> <region>

funcnts [switches] <source_file> [source_region] [bkgd_file] [bkgd_region|bkgd_cnts]

funcone [-n] [-x|-X|-j|-J] [[-l|-L] list] [-r ra_col] [-d dec_col] <iname> <oname> <ra[hdr]> <dec[hdr]> <radius[dr’"]> [columns]

fundisp [-f format] [-l] [-n] [-T] <iname> [columns|bitpix=n]

funhead [-a] [-l] [-s] [-t] [-L] <iname> [oname ename]

funhist [-n|-w|-T] <iname> [column] [[lo_edge:hi_edge:]bins]

funimage [-a] [-l] [-p x|y] <iname> <oname> [bitpix=n]

funindex <iname> <key> [oname]

funjoin [switches] <ifile1> <ifile2> ... <ifilen> <ofile>

funmerge <iname1> <iname2> ... <oname>

funsky [switches] <iname1> [<lname2> <col1> <col2>]

funtable [-a] [-i|-z] [-m] [-s cols] <iname> <oname> [columns]

funtbl [-c cols] [-h] [-n table] [-p prog] [-s sep] [-T] <iname>

funcalc - Funtools calculator (for binary tables)
funcalc [-n] [-a argstr] [-e expr] [-f file] [-l link] [-p prog] <iname> [oname [columns]]

 -a argstr # user arguments to pass to the compiled program
 -e expr # funcalc expression
 -f file # file containing funcalc expression
 -l libs # libs to add to link command
 -n # output generated code instead of compiling and executing
 -p prog # generate named program, no execution
 -u # die if any variable is undeclared (don’t auto-declare)

funcalc is a calculator program that allows arbitrary expressions to be constructed, compiled, and
executed on columns in a Funtools table (FITS binary table or raw event file). It works by integrating
user-supplied expression(s) into a template C program, then compiling and executing the program.
funcalc expressions are C statements, although some important simplifications (such as automatic
declaration of variables) are supported.

funcalc expressions can be specified in three ways: on the command line using the -e [expression] switch,
in a file using the -f [file] switch, or from stdin (if neither -e nor -f is specified). Of course a file containing
funcalc expressions can be read from stdin.

Each invocation of funcalc requires an input Funtools table file to be specified as the first command line
argument. The output Funtools table file is the second optional argument. It is needed only if an output
FITS file is being created (i.e., in cases where the funcalc expression only prints values, no output file is
needed). If input and output file are both specified, a third optional argument can specify the list of
columns to activate (using FunColumnActivate()). Note that funcalc determines whether or not to
generate code for writing an output file based on the presence or absence of an output file argument.

1

A funcalc expression executes on each row of a table and consists of one or more C statements that
operate on the columns of that row (possibly using temporary variables). Within an expression, reference
is made to a column of the current row using the C struct syntax cur->[colname], e.g. cur->x, cur->pha,
etc. Local scalar variables can be defined using C declarations at very the beginning of the expression, or
else they can be defined automatically by funcalc (to be of type double). Thus, for example, a swap of
columns x and y in a table can be performed using either of the following equivalent funcalc expressions:

 double temp;
 temp = cur->x;
 cur->x = cur->y;
 cur->y = temp;

or:

 temp = cur->x;
 cur->x = cur->y;
 cur->y = temp;

When this expression is executed using a command such as:

 funcalc -f swap.expr itest.ev otest.ev

the resulting file will have values of the x and y columns swapped.

By default, the data type of the variable for a column is the same as the data type of the column as stored
in the file. This can be changed by appending ":[dtype]" to the first reference to that column. In the
example above, to force x and y to be output as doubles, specify the type ’D’ explicitly:

 temp = cur->x:D;
 cur->x = cur->y:D;
 cur->y = temp;

Data type specifiers follow standard FITS table syntax for defining columns using TFORM:

A: ASCII characters
B: unsigned 8-bit char
I: signed 16-bit int
U: unsigned 16-bit int (not standard FITS)
J: signed 32-bit int
V: unsigned 32-bit int (not standard FITS)
E: 32-bit float
D: 64-bit float
X: bits (treated as an array of chars)

Note that only the first reference to a column should contain the explicit data type specifier.

Of course, it is important to handle the data type of the columns correctly. One of the most frequent cause
of error in funcalc programming is the implicit use of the wrong data type for a column in expression. For
example, the calculation:

2

 dx = (cur->x - cur->y)/(cur->x + cur->y);

usually needs to be performed using floating point arithmetic. In cases where the x and y columns are
integers, this can be done by reading the columns as doubles using an explicit type specification:

 dx = (cur->x:D - cur->y:D)/(cur->x + cur->y);

Alternatively, it can be done using C type-casting in the expression:

 dx = ((double)cur->x - (double)cur->y)/((double)cur->x + (double)cur->y);

In addition to accessing columns in the current row, reference also can be made to the previous row using
prev->[colname], and to the next row using next->[colname]. Note that if prev->[colname] is specified
in the funcalc expression, the very first row is not processed. If next->[colname] is specified in the
funcalc expression, the very last row is not processed. In this way, prev and next are guaranteed always
to point to valid rows. For example, to print out the values of the current x column and the previous y
column, use the C fprintf function in a funcalc expression:

 fprintf(stdout, "%d %d\n", cur->x, prev->y);

New columns can be specified using the same cur->[colname] syntax by appending the column type (and
optional tlmin/tlmax/binsiz specifiers), separated by colons. For example, cur->avg:D will define a new
column of type double. Type specifiers are the same those used above to specify new data types for
existing columns.

For example, to create and output a new column that is the average value of the x and y columns, a new
"avg" column can be defined:

 cur->avg:D = (cur->x + cur->y)/2.0

Note that the final ’;’ is not required for single-line expressions.

As with FITS TFORM data type specification, the column data type specifier can be preceded by a
numeric count to define an array, e.g., "10I" means a vector of 10 short ints, "2E" means two single
precision floats, etc. A new column only needs to be defined once in a funcalc expression, after which it
can be used without re-specifying the type. This includes reference to elements of a column array:

 cur->avg[0]:2D = (cur->x + cur->y)/2.0;
 cur->avg[1] = (cur->x - cur->y)/2.0;

The ’X’ (bits) data type is treated as a char array of dimension (numeric_count/8), i.e., 16X is processed as
a 2-byte char array. Each 8-bit array element is accessed separately:

 cur->stat[0]:16X = 1;
 cur->stat[1] = 2;

Here, a 16-bit column is created with the MSB is set to 1 and the LSB set to 2.

By default, all processed rows are written to the specified output file. If you want to skip writing certain
rows, simply execute the C "continue" statement at the end of the funcalc expression, since the writing of
the row is performed immediately after the expression is executed. For example, to skip writing rows

3

whose average is the same as the current x value:

 cur->avg[0]:2D = (cur->x + cur->y)/2.0;
 cur->avg[1] = (cur->x - cur->y)/2.0;
 if(cur->avg[0] == cur->x)
 continue;

If no output file argument is specified on the funcalc command line, no output file is opened and no rows
are written. This is useful in expressions that simply print output results instead of generating a new file:

 fpv = (cur->av3:D-cur->av1:D)/(cur->av1+cur->av2:D+cur->av3);
 fbv = cur->av2/(cur->av1+cur->av2+cur->av3);
 fpu = ((double)cur->au3-cur->au1)/((double)cur->au1+cur->au2+cur->au3);
 fbu = cur->au2/(double)(cur->au1+cur->au2+cur->au3);
 fprintf(stdout, "%f\t%f\t%f\t%f\n", fpv, fbv, fpu, fbu);

In the above example, we use both explicit type specification (for "av" columns) and type casting (for "au"
columns) to ensure that all operations are performed in double precision.

When an output file is specified, the selected input table is processed and output rows are copied to the
output file. Note that the output file can be specified as "stdout" in order to write the output rows to the
standard output. If the output file argument is passed, an optional third argument also can be passed to
specify which columns to process.

In a FITS binary table, it sometimes is desirable to copy all of the other FITS extensions to the output file
as well. This can be done by appending a ’+’ sign to the name of the extension in the input file name. See
funtable for a related example.

funcalc works by integrating the user-specified expression into a template C program called tabcalc.c. The
completed program then is compiled and executed. Variable declarations that begin the funcalc
expression are placed in the local declaration section of the template main program. All other lines are
placed in the template main program’s inner processing loop. Other details of program generation are
handled automatically. For example, column specifiers are analyzed to build a C struct for processing
rows, which is passed to FunColumnSelect() and used in FunTableRowGet(). If an unknown variable is
used in the expression, resulting in a compilation error, the program build is retried after defining the
unknown variable to be of type double.

Normally, funcalc expression code is added to funcalc row processing loop. It is possible to add code to
other parts of the program by placing this code inside special directives of the form:

 [directive name]
 ... code goes here ...
 end

The directives are:

global add code and declarations in global space, before the main routine.
local add declarations (and code) just after the local declarations in main
before add code just before entering the main row processing loop
after add code just after exiting the main row processing loop

4

Thus, the following funcalc expression will declare global variables and make subroutine calls just before
and just after the main processing loop:

 global
 double v1, v2;
 double init(void);
 double finish(double v);
 end
 before
 v1 = init();
 end
 ... process rows, with calculations using v1 ...
 after
 v2 = finish(v1);
 if(v2 < 0.0){
 fprintf(stderr, "processing failed %g -> %g\n", v1, v2);
 exit(1);
 }
 end

Routines such as init() and finish() above are passed to the generated program for linking using the -l [link
directives ...] switch. The string specified by this switch will be added to the link line used to build the
program (before the funtools library). For example, assuming that init() and finish() are in the library
libmysubs.a in the /opt/special/lib directory, use:

 funcalc -l "-L/opt/special/lib -lmysubs" ...

User arguments can be passed to a compiled funcalc program using a string argument to the "-a" switch.
The string should contain all of the user arguments. For example, to pass the integers 1 and 2, use:

 funcalc -a "1 2" ...

The arguments are stored in an internal array and are accessed as strings via the ARGV(n) macro. For
example, consider the following expression:

 local
 int pmin, pmax;
 end

 before
 pmin=atoi(ARGV(0));
 pmax=atoi(ARGV(1));
 end

 if((cur->pha >= pmin) && (cur->pha <= pmax))
 fprintf(stderr, "%d %d %d\n", cur->x, cur->y, cur->pha);

This expression will print out x, y, and pha values for all rows in which the pha value is between the two
user-input values:

5

 funcalc -a ’1 12’ -f foo snr.ev’[cir 512 512 .1]’
 512 512 6
 512 512 8
 512 512 5
 512 512 5
 512 512 8

 funcalc -a ’5 6’ -f foo snr.ev’[cir 512 512 .1]’
 512 512 6
 512 512 5
 512 512 5

Note that it is the user’s responsibility to ensure that the correct number of arguments are passed. The
ARGV(n) macro returns a NULL if a requested argument is outside the limits of the actual number of
args, usually resulting in a SEGV if processed blindly. To check the argument count, use the ARGC
macro:

 local
 long int seed=1;
 double limit=0.8;
 end

 before
 if(ARGC >= 1) seed = atol(ARGV(0));
 if(ARGC >= 2) limit = atof(ARGV(1));
 srand48(seed);
 end

 if (drand48() > limit) continue;

The macro WRITE_ROW expands to the FunTableRowPut() call that writes the current row. It can be
used to write the row more than once. In addition, the macro NROW expands to the row number currently
being processed. Use of these two macros is shown in the following example:

 if(cur->pha:I == cur->pi:I) continue;
 a = cur->pha;
 cur->pha = cur->pi;
 cur->pi = a;
 cur->AVG:E = (cur->pha+cur->pi)/2.0;
 cur->NR:I = NROW;
 if(NROW < 10) WRITE_ROW;

If the -p [prog] switch is specified, the expression is not executed. Rather, the generated executable is
saved with the specified program name for later use.

If the -n switch is specified, the expression is not executed. Rather, the generated code is written to stdout.
This is especially useful if you want to generate a skeleton file and add your own code, or if you need to
check compilation errors. Note that the comment at the start of the output gives the compiler command
needed to build the program on that platform. (The command can change from platform to platform
because of the use of different libraries, compiler switches, etc.)

6

As mentioned previously, funcalc will declare a scalar variable automatically (as a double) if that variable
has been used but not declared. This facility is implemented using a sed script named funcalc.sed, which
processes the compiler output to sense an undeclared variable error. This script has been seeded with the
appropriate error information for gcc, and for cc on Solaris, DecAlpha, and SGI platforms. If you find that
automatic declaration of scalars is not working on your platform, check this sed script; it might be
necessary to add to or edit some of the error messages it senses.

In order to keep the lexical analysis of funcalc expressions (reasonably) simple, we chose to accept some
limitations on how accurately C comments, spaces, and new-lines are placed in the generated program. In
particular, comments associated with local variables declared at the beginning of an expression (i.e., not in
a local...end block) will usually end up in the inner loop, not with the local declarations:

 /* this comment will end up in the wrong place (i.e, inner loop) */
 double a; /* also in wrong place */
 /* this will be in the the right place (inner loop) */
 if(cur->x:D == cur->y:D) continue; /* also in right place */
 a = cur->x;
 cur->x = cur->y;
 cur->y = a;
 cur->avg:E = (cur->x+cur->y)/2.0;

Similarly, spaces and new-lines sometimes are omitted or added in a seemingly arbitrary manner. Of
course, none of these stylistic blemishes affect the correctness of the generated code.

Because funcalc must analyze the user expression using the data file(s) passed on the command line, the
input file(s) must be opened and read twice: once during program generation and once during execution.
As a result, it is not possible to use stdin for the input file: funcalc cannot be used as a filter. We will
consider removing this restriction at a later time.

Along with C comments, funcalc expressions can have one-line internal comments that are not passed on
to the generated C program. These internal comment start with the # character and continue up to the
new-line:

 double a; # this is not passed to the generated C file
 # nor is this
 a = cur->x;
 cur->x = cur->y;
 cur->y = a;
 /* this comment is passed to the C file */
 cur->avg:E = (cur->x+cur->y)/2.0;

As previously mentioned, input columns normally are identified by their being used within the inner event
loop. There are rare cases where you might want to read a column and process it outside the main loop.
For example, qsort might use a column in its sort comparison routine that is not processed inside the inner
loop (and therefore not implicitly specified as a column to be read). To ensure that such a column is read
by the event loop, use the explicit keyword. The arguments to this keyword specify columns that should
be read into the input record structure even though they are not mentioned in the inner loop. For example:

7

 explicit pi pha

will ensure that the pi and pha columns are read for each row, even if they are not processed in the inner
event loop. The explicit statement can be placed anywhere.

Finally, note that funcalc currently works on expressions involving FITS binary tables and raw event files.
We will consider adding support for image expressions at a later point, if there is demand for such support
from the community.

funcen - find centroid (for binary tables)
funcen [-i] [-n iter] [-t tol] [-v lev] <iname> <region>

 -i # use image filtering (default: event filtering)
 -n iter # max number of iterations (default: 0)
 -t tol # pixel tolerance distance (default: 1.0)
 -v [0,1,2,3] # output verbosity level (default: 0)

funcen iteratively calculates the centroid position within one or more regions of a Funtools table (FITS
binary table or raw event file). Starting with an input table, an initial region specification, and an iteration
count, the program calculates the average x and y position within the region and then uses this new
position as the region center for the next iteration. Iteration terminates when the maximum number of
iterations is reached or when the input tolerance distance is met for that region. A count of events in the
final region is then output, along with the pixel position value (and, where available, WCS position).

The first argument to the program specifies the Funtools table file to process. Since the file must be read
repeatedly, a value of "stdin" is not permitted when the number of iterations is non-zero. Use Funtools
Bracket Notation to specify FITS extensions and filters.

The second required argument is the initial region descriptor. Multiple regions are permitted. However,
compound regions (accelerators, variable argument regions and regions connected via boolean algebra)
are not permitted. Points and polygons also are illegal. These restrictions might be lifted in a future
version, if warranted.

The -n (iteration number) switch specifies the maximum number of iterations to perform. The default is 0,
which means that the program will simply count and display the number of events in the initial region(s).
Note that when iterations is 0, the data can be input via stdin.

The -t (tolerance) switch specifies a floating point tolerance value. If the distance between the current
centroid position value and the last position values is less than this value, iteration terminates. The default
value is 1 pixel.

The -v (verbosity) switch specifies the verbosity level of the output. The default is 0, which results in a
single line of output for each input region consisting of the following values:

 counts x y [ra dec coordsys]

The last 3 WCS values are output if WCS information is available in the data file header. Thus, for
example:

8

 [sh] funcen -n 0 snr.ev "cir 505 508 5"
 915 505.00 508.00 345.284038 58.870920 j2000

 [sh] funcen -n 3 snr.ev "cir 505 508 5"
 1120 504.43 509.65 345.286480 58.874587 j2000

The first example simply counts the number of events in the initial region. The second example iterates the
centroid calculation three times to determine a final "best" position.

Higher levels of verbosity obviously imply more verbose output. At
level 1, the output essentially contains the same information as level
0, but with keyword formatting:
 [sh] funcen -v 1 -n 3 snr.ev "cir 505 508 5"
 event_file: snr.ev
 initial_region: cir 505 508 5
 tolerance: 1.0000
 iterations: 1
 events: 1120
 x,y(physical): 504.43 509.65
 ra,dec(j2000): 345.286480 58.874587
 final_region1: cir 504.43 509.65 5

Level 2 outputs results from intermediate calculations as well.

Ordinarily, region filtering is performed using analytic (event) filtering, i.e. that same style of filtering as
is performed by fundisp and funtable. Use the -i switch to specify image filtering, i.e. the same style
filtering as is performed by funcnts. Thus, you can perform a quick calculation of counts in regions, using
either the analytic or image filtering method, by specifying the -n 0 and optional -i switches. These two
method often give different results because of how boundary events are processed:

 [sh] funcen snr.ev "cir 505 508 5"
 915 505.00 508.00 345.284038 58.870920 j2000

 [sh] funcen -i snr.ev "cir 505 508 5"
 798 505.00 508.00 345.284038 58.870920 j2000

See Region Boundaries for more information about how boundaries are calculated using these two
methods.

funcnts - count photons in specified regions, with bkgd
subtraction
funcnts [switches] <source_file> [source_region] [bkgd_file] [bkgd_region|bkgd_value]

 -e "source_exposure[;bkgd_exposure]"
 # source (bkgd) FITS exposure image using matching files
 -w "source_exposure[;bkgd_exposure]"
 # source (bkgd) FITS exposure image using WCS transform
 -t "source_timecorr[;bkgd_timecorr]"
 # source (bkgd) time correction value or header parameter name
 -g # output using nice g format
 -G # output using %.14g format (maximum precision)
 -i "[column;]int1;int2..." # column-based intervals

9

 -m # match individual source and bkgd regions
 -p # output in pixels, even if wcs is present
 -r # output inner/outer radii (and angles) for annuli (and pandas)
 -s # output summed values
 -v "scol[;bcol]" # src and bkgd value columns for tables
 -T # output in starbase/rdb format

 -z # output regions with zero area

funcnts counts photons in the specified source regions and reports the results for each region. Regions are
specified using the Spatial Region Filtering mechanism. Photons are also counted in the specified bkgd
regions applied to the same data file or a different data file. (Alternatively, a constant background value in
counts/pixel**2 can be specified.) The bkgd regions are either paired one-to-one with source regions or
pooled and normalized by area, and then subtracted from the source counts in each region. Displayed
results include the bkgd-subtracted counts in each region, as well as the error on the counts, the area in
each region, and the surface brightness (cnts/area**2) calculated for each region.

The first argument to the program specifies the FITS input image, array, or raw event file to process. If
"stdin" is specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS
extensions, image sections, and filters.

The optional second argument is the source region descriptor. If no region is specified, the entire field is
used.

The background arguments can take one of two forms, depending on whether a separate background file is
specified. If the source file is to be used for background as well, the third argument can be either the
background region, or a constant value denoting background cnts/pixel. Alternatively, the third argument
can be a background data file, in which case the fourth argument is the background region. If no third
argument is specified, a constant value of 0 is used (i.e., no background).

In summary, the following command arguments are valid:

 [sh] funcnts sfile # counts in source file
 [sh] funcnts sfile sregion # counts in source region
 [sh] funcnts sfile sregion bregion # bkgd reg. is from source file
 [sh] funcnts sfile sregion bvalue # bkgd reg. is constant
 [sh] funcnts sfile sregion bfile bregion # bkgd reg. is from separate file

NB: unlike other Funtools programs, source and background regions are specified as separate arguments
on the command line, rather than being placed inside brackets as part of the source and background
filenames. This is because regions in funcnts are not simply used as data filters, but also are used to
calculate areas, exposure, etc. If you put the source region inside the brackets (i.e. use it simply as a filter)
rather than specifying it as argument two, the program still will only count photons that pass the region
filter. However, the area calculation will be performed on the whole field, since field() is the default
source region. This rarely is the desired behavior. On the other hand, with FITS binary tables, it often is
useful to put a column filter in the filename brackets, so that only events matching the column filter are
counted inside the region.

For example, to extract the counts within a radius of 22 pixels from the center of the FITS binary table
snr.ev and subtract the background determined from the same image within an annulus of radii 50-100
pixels:

10

 [sh] funcnts snr.ev "circle(502,512,22)" "annulus(502,512,50,100)"
 # source
 # data file: snr.ev
 # degrees/pix: 0.00222222
 # background
 # data file: snr.ev
 # column units
 # area: arcsec**2
 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2

 # background-subtracted results
 reg net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 3826.403 66.465 555.597 5.972 96831.98 0.040 0.001

 # the following source and background components were used:
 source region(s)

 circle(502,512,22)

 reg counts pixels
 ---- ------------ ---------
 1 4382.000 1513

 background region(s)

 annulus(502,512,50,100)

 reg counts pixels
 ---- ------------ ---------
 all 8656.000 23572

The area units for the output columns labeled "area", "surf_bri" (surface brightness) and "surf_err" will be
given either in arc-seconds (if appropriate WCS information is in the data file header(s)) or in pixels. If the
data file has WCS info, but you do not want arc-second units, use the -p switch to force output in pixels.
Also, regions having zero area are not normally included in the primary (background-subtracted) table, but
are included in the secondary source and bkgd tables. If you want these regions to be included in the
primary table, use the -z switch.

Note that a simple sed command will extract the background-subtracted results for further analysis:

 [sh] cat funcnts.sed
 1,/---- .*/d
 /^$/,$d

 [sh] sed -f funcnts.sed funcnts.out
 1 3826.403 66.465 555.597 5.972 96831.98 0.040 0.001

If separate source and background files are specified, funcnts will attempt to normalize the the
background area so that the background pixel size is the same as the source pixel size. This normalization
can only take place if the appropriate WCS information is contained in both files (e.g. degrees/pixel values
in CDELT). If either file does not contain the requisite size information, the normalization is not

11

performed. In this case, it is the user’s responsibility to ensure that the pixel sizes are the same for the two
files.

Normally, if more than one background region is specified, funcnts will combine them all into a single
region and use this background region to produce the background-subtracted results for each source
region. The -m (match multiple backgrounds) switch tells funcnts to make a one to one correspondence
between background and source regions, instead of using a single combined background region. For
example, the default case is to combine 2 background regions into a single region and then apply that
region to each of the source regions:

 [sh] funcnts snr.ev "annulus(502,512,0,22,n=2)" "annulus(502,512,50,100,n=2)"
 # source
 # data file: snr.ev
 # degrees/pix: 0.00222222
 # background
 # data file: snr.ev
 # column units
 # area: arcsec**2
 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2

 # background-subtracted results
 reg net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 3101.029 56.922 136.971 1.472 23872.00 0.130 0.002
 2 725.375 34.121 418.625 4.500 72959.99 0.010 0.000

 # the following source and background components were used:
 source region(s)

 annulus(502,512,0,22,n=2)

 reg counts pixels
 ---- ------------ ---------
 1 3238.000 373
 2 1144.000 1140

 background region(s)

 annulus(502,512,50,100,n=2)

 reg counts pixels
 ---- ------------ ---------
 all 8656.000 23572

Note that the basic region filter rule "each photon is counted once and no photon is counted more than
once" still applies when using The -m to match background regions. That is, if two background regions
overlap, the overlapping pixels will be counted in only one of them. In a worst-case scenario, if two
background regions are the same region, the first will get all the counts and area and the second will get
none.

12

Using the -m switch causes funcnts to use each of the two background regions independently with each of
the two source regions:

 [sh] funcnts -m snr.ev "annulus(502,512,0,22,n=2)" "ann(502,512,50,100,n=2)"
 # source
 # data file: snr.ev
 # degrees/pix: 0.00222222
 # background
 # data file: snr.ev
 # column units
 # area: arcsec**2
 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2

 # background-subtracted results
 reg net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 3087.015 56.954 150.985 2.395 23872.00 0.129 0.002
 2 755.959 34.295 388.041 5.672 72959.99 0.010 0.000

 # the following source and background components were used:
 source region(s)

 annulus(502,512,0,22,n=2)

 reg counts pixels
 ---- ------------ ---------
 1 3238.000 373
 2 1144.000 1140

 background region(s)

 ann(502,512,50,100,n=2)

 reg counts pixels
 ---- ------------ ---------
 1 3975.000 9820
 2 4681.000 13752

Note that most floating point quantities are displayed using "f" format. You can change this to "g" format
using the -g switch. This can be useful when the counts in each pixel is very small or very large. If you
want maximum precision and don’t care about the columns lining up nicely, use -G, which outputs all
floating values as %.14g.

When counting photons using the annulus and panda (pie and annuli) shapes, it often is useful to have
access to the radii (and panda angles) for each separate region. The -r switch will add radii and angle
columns to the output table:

 [sh] funcnts -r snr.ev "annulus(502,512,0,22,n=2)" "ann(502,512,50,100,n=2)"
 # source
 # data file: snr.ev
 # degrees/pix: 0.00222222
 # background
 # data file: snr.ev
 # column units
 # area: arcsec**2

13

 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2
 # radii: arcsecs
 # angles: degrees

 # background-subtracted results
 reg net_counts error background berror area surf_bri surf_err radius1 radius2 angle1 angle2
 ---- ------------ --------- ------------ --------- --------- --------- --------- --------- --------- --------- ---------
 1 3101.029 56.922 136.971 1.472 23872.00 0.130 0.002 0.00 88.00 NA NA
 2 725.375 34.121 418.625 4.500 72959.99 0.010 0.000 88.00 176.00 NA NA

 # the following source and background components were used:
 source region(s)

 annulus(502,512,0,22,n=2)

 reg counts pixels
 ---- ------------ ---------
 1 3238.000 373
 2 1144.000 1140

 background region(s)

 ann(502,512,50,100,n=2)

 reg counts pixels
 ---- ------------ ---------
 all 8656.000 23572

Radii are given in units of pixels or arc-seconds (depending on the presence of WCS info), while the angle
values (when present) are in degrees. These columns can be used to plot radial profiles. For example, the
script funcnts.plot in the funtools distribution) will plot a radial profile using gnuplot (version 3.7 or
above). A simplified version of this script is shown below:

 #!/bin/sh

 if [x"$1" = xgnuplot]; then
 if [x‘which gnuplot 2>/dev/null‘ = x]; then
 echo "ERROR: gnuplot not available"
 exit 1
 fi
 awk ’
 BEGIN{HEADER=1; DATA=0; FILES=""; XLABEL="unknown"; YLABEL="unknown"}
 HEADER==1{
 if($1 == "#" && $2 == "data" && $3 == "file:"){
 if(FILES != "") FILES = FILES ","
 FILES = FILES $4
 }
 else if($1 == "#" && $2 == "radii:"){
 XLABEL = $3
 }
 else if($1 == "#" && $2 == "surf_bri:"){
 YLABEL = $3
 }
 else if($1 == "----"){
 printf "set nokey; set title \"funcnts(%s)\"\n", FILES
 printf "set xlabel \" radius(%s)\"\n", XLABEL
 printf "set ylabel \"surf_bri(%s)\"\n", YLABEL
 print "plot \"-\" using 3:4:6:7:8 with boxerrorbars"
 HEADER = 0
 DATA = 1
 next
 }

14

 }
 DATA==1{
 if(NF == 12){
 print $9, $10, ($9+$10)/2, $7, $8, $7-$8, $7+$8, $10-$9
 }
 else{
 exit
 }
 }
 ’ | gnuplot -persist - 1>/dev/null 2>&1

 elif [x"$1" = xds9]; then
 awk ’
 BEGIN{HEADER=1; DATA=0; XLABEL="unknown"; YLABEL="unknown"}
 HEADER==1{
 if($1 == "#" && $2 == "data" && $3 == "file:"){
 if(FILES != "") FILES = FILES ","
 FILES = FILES $4
 }
 else if($1 == "#" && $2 == "radii:"){
 XLABEL = $3
 }
 else if($1 == "#" && $2 == "surf_bri:"){
 YLABEL = $3
 }
 else if($1 == "----"){
 printf "funcnts(%s) radius(%s) surf_bri(%s) 3\n", FILES, XLABEL, YLABEL
 HEADER = 0
 DATA = 1
 next
 }
 }
 DATA==1{
 if(NF == 12){
 print $9, $7, $8
 }
 else{
 exit
 }
 }
 ’
 else
 echo "funcnts -r ... | funcnts.plot [ds9|gnuplot]"
 exit 1
 fi

Thus, to run funcnts and plot the results using gnuplot (version 3.7 or above), use:

 funcnts -r snr.ev "annulus(502,512,0,50,n=5)" ... | funcnts.plot gnuplot

The -s (sum) switch causes funcnts to produce an additional table of summed (integrated) background
subtracted values, along with the default table of individual values:

15

 [sh] funcnts -s snr.ev "annulus(502,512,0,50,n=5)" "annulus(502,512,50,100)"
 # source
 # data file: snr.ev
 # degrees/pix: 0.00222222
 # background
 # data file: snr.ev
 # column units
 # area: arcsec**2
 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2

 # summed background-subtracted results
 upto net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 2880.999 54.722 112.001 1.204 19520.00 0.148 0.003
 2 3776.817 65.254 457.183 4.914 79679.98 0.047 0.001
 3 4025.492 71.972 1031.508 11.087 179775.96 0.022 0.000
 4 4185.149 80.109 1840.851 19.786 320831.94 0.013 0.000
 5 4415.540 90.790 2873.460 30.885 500799.90 0.009 0.000

 # background-subtracted results
 reg counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 2880.999 54.722 112.001 1.204 19520.00 0.148 0.003
 2 895.818 35.423 345.182 3.710 60159.99 0.015 0.001
 3 248.675 29.345 574.325 6.173 100095.98 0.002 0.000
 4 159.657 32.321 809.343 8.699 141055.97 0.001 0.000
 5 230.390 37.231 1032.610 11.099 179967.96 0.001 0.000

 # the following source and background components were used:
 source region(s)

 annulus(502,512,0,50,n=5)

 reg counts pixels sumcnts sumpix
 ---- ------------ --------- ------------ ---------
 1 2993.000 305 2993.000 305
 2 1241.000 940 4234.000 1245
 3 823.000 1564 5057.000 2809
 4 969.000 2204 6026.000 5013
 5 1263.000 2812 7289.000 7825

 background region(s)

 annulus(502,512,50,100)

 reg counts pixels
 ---- ------------ ---------
 all 8656.000 23572

The -t and -e switches can be used to apply timing and exposure corrections, respectively, to the data.
Please note that these corrections are meant to be used qualitatively, since application of more accurate
correction factors is a complex and mission-dependent effort. The algorithm for applying these simple
corrections is as follows:

16

 C = Raw Counts in Source Region
 Ac= Area of Source Region
 Tc= Exposure time for Source Data
 Ec= Average exposure in Source Region, from exposure map

 B= Raw Counts in Background Region
 Ab= Area of Background Region
 Tb= (Exposure) time for Background Data
 Eb= Average exposure in Background Region, from exposure map

Then, Net Counts in Source region is

 Net= C - B * (Ac*Tc*Ec)/(Ab*Tb*Eb)

with the standard propagation of errors for the Error on Net. The net rate would then be

 Net Rate = Net/(Ac*Tc*Ec)

The average exposure in each region is calculated by summing up the pixel values in the exposure map for
the given region and then dividing by the number of pixels in that region. Exposure maps often are
generated at a block factor > 1 (e.g., block 4 means that each exposure pixel contains 4x4 pixels at full
resolution) and funcnts will deal with the blocking automatically. Using the -e switch, you can supply
both source and background exposure files (separated by ";"), if you have separate source and background
data files. If you do not supply a background exposure file to go with a separate background data file,
funcnts assumes that exposure already has been applied to the background data file. In addition, it
assumes that the error on the pixels in the background data file is zero.

NB: The -e switch assumes that the exposure map overlays the image file exactly, except for the block
factor. Each pixel in the image is scaled by the block factor to access the corresponding pixel in the
exposure map. If your exposure map does not line up exactly with the image, do not use the -e exposure
correction. In this case, it still is possible to perform exposure correction if both the image and the
exposure map have valid WCS information: use the -w switch so that the transformation from image pixel
to exposure pixel uses the WCS information. That is, each pixel in the image region will be transformed
first from image coordinates to sky coordinates, then from sky coordinates to exposure coordinates. Please
note that using -w can increase the time required to process the exposure correction considerably.

A time correction can be applied to both source and background data using the -t switch. The value for the
correction can either be a numeric constant or the name of a header parameter in the source (or
background) file:

 [sh] funcnts -t 23.4 ... # number for source
 [sh] funcnts -t "LIVETIME;23.4" ... # param for source, numeric for bkgd

When a time correction is specified, it is applied to the net counts as well (see algorithm above), so that
the units of surface brightness become cnts/area**2/sec.

The -i (interval) switch is used to run funcnts on multiple column-based intervals with only a single pass
through the data. It is equivalent to running funcnts several times with a different column filter added to
the source and background data each time. For each interval, the full funcnts output is generated, with a
linefeed character (^L) inserted between each run. In addition, the output for each interval will contain the
interval specification in its header. Intervals are very useful for generating X-ray hardness ratios

17

efficiently. Of course, they are only supported when the input data are contained in a table.

Two formats are supported for interval specification. The most general format is semi-colon-delimited list
of filters to be used as intervals:

 funcnts -i "pha=1:5;pha=6:10;pha=11:15" snr.ev "circle(502,512,22)" ...

Conceptually, this will be equivalent to running funcnts three times:

 funcnts snr.ev’[pha=1:5]’ "circle(502,512,22)"
 funcnts snr.ev’[pha=6:10]’ "circle(502,512,22)"
 funcnts snr.ev’[pha=11:15]’ "circle(502,512,22)"

However, using the -i switch will require only one pass through the data.

Note that complex filters can be used to specify intervals:

 funcnts -i "pha=1:5& π=4;pha=6:10& π=5;pha=11:15& π=6" snr.ev ...

The program simply runs the data through each filter in turn and generates three funcnts outputs,
separated by the line-feed character.

In fact, although the intent is to support intervals for hardness ratios, the specified filters do not have to be
intervals at all. Nor does one "interval" filter have to be related to another. For example:

 funcnts -i "pha=1:5;pi=6:10;energy=11:15" snr.ev "circle(502,512,22)" ...

is equivalent to running funcnts three times with unrelated filter specifications.

A second interval format is supported for the simple case in which a single column is used to specify
multiple homogeneous intervals for that column. In this format, a column name is specified first, followed
by intervals:

 funcnts -i "pha;1:5;6:10;11:15" snr.ev "circle(502,512,22)" ...

This is equivalent to the first example, but requires less typing. The funcnts program will simply prepend
"pha=" before each of the specified intervals. (Note that this format does not contain the "=" character in
the column argument.)

Ordinarily, when funcnts is run on a FITS binary table (or a raw event table), one integral count is
accumulated for each row (event) contained within a given region. The -v "scol[;bcol]" (value column)
switch will accumulate counts using the value from the specified column for the given event. If only a
single column is specified, it is used for both the source and background regions. Two separate columns,
separated by a semi-colon, can be specified for source and background. The special token ’$none’ can be
used to specify that a value column is to be used for one but not the other. For example, ’pha;$none’ will
use the pha column for the source but use integral counts for the background, while ’$none;pha’ will do
the converse. If the value column is of type logical, then the value used will be 1 for T and 0 for F. Value
columns are used, for example, to integrate probabilities instead of integral counts.

18

If the -T (rdb table) switch is used, the output will conform to starbase/rdb data base format: tabs will be
inserted between columns rather than spaces and line-feed will be inserted between tables.

Finally, note that funcnts is an image program, even though it can be run directly on FITS binary tables.
This means that image filtering is applied to the rows in order to ensure that the same results are obtained
regardless of whether a table or the equivalent binned image is used. Because of this, however, the number
of counts found using funcnts can differ from the number of events found using row-filter programs such
as fundisp or funtable For more information about these difference, see the discussion of Region
Boundaries.

funcone - cone search of a binary table containing RA, Dec
columns
funcone <switches> <iname> <oname> <ra[hdr]> <dec[hdr]> <radius[dr’"]> [columns]

 -d deccol:[hdr] # Dec column name, units (def: DEC:d)
 -j # join columns from list file
 -J # join columns from list file, output all rows
 -l listfile # read centers and radii from a list
 -L listfile # read centers and radii from a list, output list rows
 -n # don’t use cone limits as a filter
 -r racol:[hdr] # RA column name, units (def: RA:h)
 -x # append RA_CEN, DEC_CEN, RAD_CEN, CONE_KEY cols
 -X # append RA_CEN, DEC_CEN, RAD_CEN, CONE_KEY cols, output all rows

Funcone performs a cone search on the RA and Dec columns of a FITS binary table. The distance from
the center RA, Dec position to the RA, Dec in each row in the table is calculated. Rows whose distance is
less than the specified radius are output.

The first argument to the program specifies the FITS file, raw event file, or raw array file. If "stdin" is
specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS
extensions, and filters. The second argument is the output FITS file. If "stdout" is specified, the FITS
binary table is written to the standard output.

The third and fourth required arguments are the RA and Dec center position. By default, RA is specified
in hours while Dec is specified in degrees. You can change the units of either of these by appending the
character "d" (degrees), "h" (hours) or "r" (radians). Sexagesimal notation is supported, with colons or
spaces separating hms and dms. (When using spaces, please ensure that the entire string is quoted.)

The fifth required argument is the radius of the cone search. By default, the radius value is given in
degrees. The units can be changed by appending the character "d" (degrees), "r" (radians), "’" (arc
minutes) or ’"’ (arc seconds).

By default, all columns of the input file are copied to the output file. Selected columns can be output using
an optional sixth argument in the form:

 "column1 column1 ... columnN"

A seventh argument allows you to output selected columns from the list file when -j switch is used. Note

19

that the RA and Dec columns used in the cone calculation must not be de-selected.

Also by default, the RA and Dec column names are named "RA" and "Dec", and are given in units of
hours and degrees respectively. You can change both the name and the units using the -r [RA] and/or -d
[Dec] switches. Once again, one of "h", "d", or "r" is appended to the column name to specify units but in
this case, there must be a colon ":" between the name and the unit specification.

If the -l [listfile] switch is used, then one or more of the center RA, center Dec, and radius can be taken
from a list file (which can be a FITS table or an ASCII column text file). In this case, the third (center
RA), fourth (center Dec), and fifth (radius) command line arguments can either be a column name in the
list file (if that parameter varies) or else a numeric value (if that parameter is static). When a column name
is specified for the RA, Dec, or radius, you can append a colon followed by "h", "d", or "r" to specify units
(also ’ and " for radius). The cone search algorithm is run once for each row in the list, taking RA, Dec,
and radius values from the specified columns or from static numeric values specified on the command
line.

When using a list, all valid rows from each iteration are written to a single output file. Use the -x switch to
help delineate which line of the list file was used to produce the given output row(s). This switch causes
the values for the center RA, Dec, radius, and row number to be appended to the output file, in columns
called RA_CEN, DEC_CEN, RAD_CEN and CONE_KEY, respectively. Alternatively, the -j (join)
switch will append all columns from the list row to the output row (essentially a join of the list row and
input row), along with the CONE_KEY row number. These two switches are mutually exclusive.

The -X and -J switches write out the same data as their lower case counterparts for each row satisfying a
cone search. In addition, these switches also write out rows from the event file that do not satisfy any cone
search. In such cases, that CONE_KEY column will be given a value of -1 and the center and list position
information will be set to zero for the given row. Thus, all rows of the input event file are guaranteed to be
output, with rows satisfying at least one cone search having additional search information.

The -L switch acts similarly to the -l switch in that it takes centers from a list file. However, it also
implicitly sets the -j switch, so that output rows are the join of the input event row and the center position
row. In addition, this switch also writes out all center position rows for which no event satisfies the cone
search criteria of that row. The CONE_KEY column will be given a value of -2 for center rows that were
not close to any data row and the event columns will be zeroed out for such rows. In this way, all centers
rows are guaranteed to be output at least once.

If any of "all row" switches (-X, -J, or -L) are specified, then a new column named JSTAT is added to the
output table. The positive values in this column indicate the center position row number (starting from 1)
in the list file that this data row successful matched in a cone search. A value of -1 means that the data row
did not match any center position. A value of -2 means that the center position was not matched by any
data row.

Given a center position and radius, the cone search algorithm calculates limit parameters for a box
enclosing the specified cone, and only tests rows whose positions values lie within those limits. For small
files, the overhead associated with this cone limit filtering can cause the program to run more slowly than
if all events were tested. You can turn off cone limit filtering using the -n switch to see if this speeds up
the processing (especially useful when processing a large list of positions).

20

For example, the default cone search uses columns "RA" and "Dec" in hours and degrees (respectively)
and RA position in hours, Dec and radius in degrees:

 funone in.fits out.fits 23.45 34.56 0.01

To specify the RA position in degrees:

 funcone in.fits out.fits 23.45d 34.56 0.01

To get RA and Dec from a list but use a static value for radius (and also write identifying info for each
row in the list):

 funcone -x -l list.txt in.fits out.fits MYRA MYDec 0.01

User specified columns in degrees, RA position in hours (sexagesimal notation), Dec position in degrees
(sexagesimal notation) and radius in arc minutes:

 funcone -r myRa:d -d myDec in.fits out.fits 12:30:15.5 30:12 15’

fundisp - display data in a Funtools data file
fundisp [-f format] [-l] [-n] [-T] <iname> [columns|bitpix=n]

 -f # format string for display
 -l # display image as a list containing the columns X, Y, VAL
 -n # don’t output header
 -F [c] # use specified character as column separator (def: space)
 -T # output in rdb/starbase format (tab separators)

fundisp displays the data in the specified FITS Extension and/or Image Section of a FITS file, or in a
Section of a non-FITS array or raw event file.

The first argument to the program specifies the FITS input image, array, or raw event file to display. If
"stdin" is specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS
extensions, image sections, and filters.

If the data being displayed are columns (either in a FITS binary table or a raw event file), the individual
rows are listed. Filters can be added using bracket notation. Thus:

 [sh] fundisp "test.ev[time-(int)time>.15]"
 X Y PHA PI TIME DX DY
 ------- ------- ------- --------- ---------------- ---------- ----------
 10 8 10 8 17.1600 8.50 10.50
 9 9 9 9 17.1600 9.50 9.50
 10 9 10 9 18.1600 9.50 10.50
 10 9 10 9 18.1700 9.50 10.50
 8 10 8 10 17.1600 10.50 8.50
 9 10 9 10 18.1600 10.50 9.50
 9 10 9 10 18.1700 10.50 9.50
 10 10 10 10 19.1600 10.50 10.50
 10 10 10 10 19.1700 10.50 10.50
 10 10 10 10 19.1800 10.50 10.50

21

[NB: The FITS binary table test file test.ev, as well as the FITS image test.fits, are contained in the
funtools funtest directory.]

When a table is being displayed using fundisp, a second optional argument can be used to specify the
columns to display. For example:

 [sh] fundisp "test.ev[time-(int)time>=.99]" "x y time"
 X Y TIME
 -------- -------- ---------------------
 5 -6 40.99000000
 4 -5 59.99000000
 -1 0 154.99000000
 -2 1 168.99000000
 -3 2 183.99000000
 -4 3 199.99000000
 -5 4 216.99000000
 -6 5 234.99000000
 -7 6 253.99000000

The special column $REGION can be specified to display the region id of each row:

 [sh $] fundisp "test.ev[time-(int)time>=.99&&annulus(0 0 0 10 n=3)]" ’x y time $REGION’
 X Y TIME REGION
 -------- -------- --------------------- ----------
 5 -6 40.99000000 3
 4 -5 59.99000000 2
 -1 0 154.99000000 1
 -2 1 168.99000000 1
 -3 2 183.99000000 2
 -4 3 199.99000000 2
 -5 4 216.99000000 2
 -6 5 234.99000000 3
 -7 6 253.99000000 3

Here only rows with the proper fractional time and whose position also is within one of the three annuli
are displayed.

Columns can be excluded from display using a minus sign before the column:

 [sh $] fundisp "test.ev[time-(int)time>=.99]" "-time"
 X Y PHA PI DX DY
 -------- -------- -------- ---------- ----------- -----------
 5 -6 5 -6 5.50 -6.50
 4 -5 4 -5 4.50 -5.50
 -1 0 -1 0 -1.50 0.50
 -2 1 -2 1 -2.50 1.50
 -3 2 -3 2 -3.50 2.50
 -4 3 -4 3 -4.50 3.50
 -5 4 -5 4 -5.50 4.50
 -6 5 -6 5 -6.50 5.50
 -7 6 -7 6 -7.50 6.50

All columns except the time column are displayed.

22

The special column $N can be specified to display the ordinal value of each row. Thus, continuing the
previous example:

 fundisp "test.ev[time-(int)time>=.99]" ’-time $n’
 X Y PHA PI DX DY N
 ------- -------- -------- ---------- ----------- ----------- ----------
 5 -6 5 -6 5.50 -6.50 337
 4 -5 4 -5 4.50 -5.50 356
 -1 0 -1 0 -1.50 0.50 451
 -2 1 -2 1 -2.50 1.50 465
 -3 2 -3 2 -3.50 2.50 480
 -4 3 -4 3 -4.50 3.50 496
 -5 4 -5 4 -5.50 4.50 513
 -6 5 -6 5 -6.50 5.50 531
 -7 6 -7 6 -7.50 6.50 550

Note that the column specification is enclosed in single quotes to protect ’$n’ from begin expanded by the
shell.

In general, the rules for activating and de-activating columns are:

If only exclude columns are specified, then all columns but the exclude columns will be activated.
If only include columns are specified, then only the specified columns are activated.
If a mixture of include and exclude columns are specified, then all but the exclude columns will be
active; this last case is ambiguous and the rule is arbitrary.

In addition to specifying columns names explicitly, the special symbols + and - can be used to activate and
de-activate all columns. This is useful if you want to activate the $REGION column along with all other
columns. According to the rules, the syntax "$REGION" only activates the region column and de-activates
the rest. Use "+ $REGION" to activate all columns as well as the region column.

If the data being displayed are image data (either in a FITS primary image, a FITS image extension, or an
array file), an mxn pixel display is produced, where m and n are the dimensions of the image. By default,
pixel values are displayed using the same data type as in the file. However, for integer data where the
BSCALE and BZERO header parameters are present, the data is displayed as floats. In either case, the
display data type can be overridden using an optional second argument of the form:

 bitpix=n

where n is 8,16,32,-32,-64, for unsigned char, short, int, float and double, respectively.

Of course, running fundisp on anything but the smallest image usually results in a display whose size
makes it unreadable. Therefore, one can uses bracket notation (see below) to apply section and/or blocking
to the image before generating a display. For example:

23

 [sh] fundisp "test.fits[2:6,2:7]" bitpix=-32
 2 3 4 5 6
 ---------- ---------- ---------- ---------- ----------
 2: 3.00 4.00 5.00 6.00 7.00
 3: 4.00 5.00 6.00 7.00 8.00
 4: 5.00 6.00 7.00 8.00 9.00
 5: 6.00 7.00 8.00 9.00 10.00
 6: 7.00 8.00 9.00 10.00 11.00
 7: 8.00 9.00 10.00 11.00 12.00

Note that is is possible to display a FITS binary table as an image simply by passing the table through
funimage first:

 [sh] ./funimage test.ev stdout | fundisp "stdin[2:6,2:7]" bitpix=8
 2 3 4 5 6
 ------- ------- ------- ------- -------
 2: 3 4 5 6 7
 3: 4 5 6 7 8
 4: 5 6 7 8 9
 5: 6 7 8 9 10
 6: 7 8 9 10 11
 7: 8 9 10 11 12

If the -l (list) switch is used, then an image is displayed as a list containing the columns: X, Y, VAL. For
example:

 fundisp -l "test1.fits[2:6,2:7]" bitpix=-32
 X Y VAL
 ---------- ---------- -----------
 2 2 6.00
 3 2 1.00
 4 2 1.00
 5 2 1.00
 6 2 1.00
 2 3 1.00
 3 3 5.00
 4 3 1.00
 5 3 1.00
 6 3 1.00
 2 4 1.00
 3 4 1.00
 4 4 4.00
 5 4 1.00
 6 4 1.00
 2 5 1.00
 3 5 1.00
 4 5 1.00
 5 5 3.00
 6 5 1.00
 2 6 1.00
 3 6 1.00
 4 6 1.00
 5 6 1.00
 6 6 2.00
 2 7 1.00

24

 3 7 1.00
 4 7 1.00
 5 7 1.00
 6 7 1.00

If the -n (nohead) switch is used, then no header is output for tables. This is useful, for example, when
fundisp output is being directed into gnuplot.

The fundisp program uses a default set of display formats:

 datatype TFORM format
 -------- ----- --------
 double D "%21.8f"
 float E "%11.2f"
 int J "%10d"
 short I "%8d"
 byte B "%6d"
 string A "%12.12s"
 bits X "%8x"
 logical L "%1x"

Thus, the default display of 1 double and 2 shorts gives:

 [sh] fundisp snr.ev "time x y"

 TIME X Y
 --------------------- -------- --------
 79494546.56818075 546 201
 79488769.94469175 548 201
 ...

You can change the display format for individual columns or for all columns of a given data types by
means of the -f switch. The format string that accompanies -f is a space-delimited list of keyword=format
values. The keyword values can either be column names (in which case the associated format pertains
only to that column) or FITS table TFORM specifiers (in which case the format pertains to all columns
having that data type). For example, you can change the double and short formats for all columns like this:

 [sh] fundisp -f "D=%22.11f I=%3d" snr.ev "time x y"

 TIME X Y
 ---------------------- --- ---
 79494546.56818075478 546 201
 79488769.94469174743 548 201
 ...

Alternatively, you can change the format of the time and x columns like this:

 [sh] fundisp -f "time=%22.11f x=%3d" snr.ev "time x y"

 TIME X Y
 ---------------------- --- --------
 79494546.56818075478 546 201
 79488769.94469174743 548 201
 ...

25

Note that there is a potential conflict if a column has the same name as one of the TFORM specifiers. In
the examples above, the the "X" column in the table has the same name as the X (bit) datatype. To resolve
this conflict, the format string is processed such that TFORM datatype specifiers are checked for first,
using a case-sensitive comparison. If the specified format value is not an upper case TFORM value, then a
case-insensitive check is made on the column name. This means that, in the examples above, "X=%3d"
will refer to the X (bit) datatype, while "x=%3d" will refer to the X column:

 [sh] fundisp -f "X=%3d" snr.ev "x y"

 X Y
 -------- --------
 546 201
 548 201
 ...

 [sh] fundisp -f "x=%3d" snr.ev "x y"

 X Y
 --- --------
 546 201
 548 201
 ...

As a rule, therefore, it is best always to specify the column name in lower case and TFORM data types in
upper case.

The -f [format] will change the format for a single execution of fundisp. You also can use the
FUN_FORMAT envronment variable to change the format for all invocations of fundisp. The format of
this environment variable’s value is identical to that used with the -f switch. This global value can be
overridden in individual cases by use of the -f [format] switch.

Caveats: Please also note that it is the user’s responsibility to match the format specifier to the column
data type correctly. Also note that, in order to maintain visual alignment between names and columns, the
column name will be truncated (on the left) if the format width is less than the length of the name.
However, truncation is not performed if the output is in RDB format (using the -T switch).

[An older-style format string is supported but deprecated. It consists of space-delimited C format
statements for all data types, specified in the following order:

 double float int short byte string bit.

This order of the list is based on the assumption that people generally will want to change the float
formats.

If "-" is entered instead of a format statement for a given data type, the default format is used. Also, the
format string can be terminated without specifying all formats, and defaults will be used for the rest of the
list. Note that you must supply a minimum field width, i.e., "%6d" and "%-6d" are legal, "%d" is not legal.
By using -f [format], you can change the double and short formats like this:

26

 [sh] fundisp -f "22.11f - - 3d" snr.ev "time x y"

 TIME X Y
 ---------------------- --- ---
 79494546.56818075478 546 201
 79488769.94469174743 548 201
 ...

NB: This format is deprecated and will be removed in a future release.]

The -F[c] switch can be used to specify a (single-character) column separator (where the default is a
space). Note that column formatting will almost certainly also add spaces to pad individual columns to the
required width. These can be removed with a program such as sed, at the cost of generating unaligned
columns. For example:

fundisp -F’,’ snr.ev’[cir 512 512 .1]’
 X, Y, PHA, PI, TIME, DX, DY
--------,--------,--------,--------,---------------------,--------,--------
 512, 512, 6, 7, 79493997.45854475, 578, 574
 512, 512, 8, 9, 79494575.58943175, 579, 573
 512, 512, 5, 6, 79493631.03866175, 578, 575
 512, 512, 5, 5, 79493290.86521725, 578, 575
 512, 512, 8, 9, 79493432.00990875, 579, 573

fundisp -F’,’ snr.ev’[cir 512 512 .1]’ | sed ’s/ *, */,/g’
 X,Y,PHA,PI,TIME,DX,DY
--------,--------,--------,--------,---------------------,--------,--------
 512,512,6,7,79493997.45854475,578,574
 512,512,8,9,79494575.58943175,579,573
 512,512,5,6,79493631.03866175,578,575
 512,512,5,5,79493290.86521725,578,575
 512,512,8,9,79493432.00990875,579,573

fundisp -f "x=%3d y=%3d pi=%1d pha=%1d time=%20.11f dx=%3d dy=%3d" -F’,’ snr.ev’[cir 512 512 .1]’ | sed ’s/ *, */,/g’
 X,Y,A,I,TIME,DX,DY
---,---,-,-,--------------------,---,---
512,512,6,7,79493997.45854474604,578,574
512,512,8,9,79494575.58943174779,579,573
512,512,5,6,79493631.03866174817,578,575
512,512,5,5,79493290.86521725357,578,575
512,512,8,9,79493432.00990875065,579,573

If the -T (rdb table) switch is used, the output will conform to starbase/rdb data base format: tabs will be
inserted between columns rather than spaces. This format is not available when displaying image pixels
(except in conjunction with the -l switch).

Finally, note that fundisp can be used to create column filters from the auxiliary tables in a FITS file. For
example, the following shell code will generate a good-time interval (GTI) filter for X-ray data files that
contain a standard GTI extension:

 #!/bin/sh
 sed ’1,/---- .*/d
 /^$/,$d’ | awk ’tot>0{printf "||"};{printf "time="$1":"$2; tot++}’

If this script is placed in a file called "mkgti", it can be used in a command such as:

 fundisp foo.fits"[GTI]" | mkgti > gti.filter

The resulting filter file can then be used in various funtools programs:

27

 funcnts foo.fits"[@gti.filter]" ...

to process only the events in the good-time intervals.

funhead - display a header in a Funtools file
funhead [-a] [-s] [-t] [-L] <iname> [oname ename]

 -a # display all extension headers
 -s # display 79 chars instead of 80 before the new-line
 -t # prepend data type char to each line of output
 -L # output in rdb/starbase list format

funhead displays the FITS header parameters in the specified FITS Extension.

The first argument to the program specifies the Funtools input file to display. If "stdin" is specified, data
are read from the standard input. Funtools Bracket Notation is used to specify particular FITS extension to
process. Normally, the full 80 characters of each header card is output, followed by a new-line.

If the -a switch is specified, the header from each FITS extensions in the file is displayed. Note, however,
that the -a switch does not work with FITS files input via stdin. We hope to remove this restriction in a
future release.

If the -s switch is specified, only 79 characters are output before the new-line. This helps the display on 80
character terminals.

If the -t switch is specified, the data type of the parameter is output as a one character prefix, followed by
77 characters of the param. The parameter data types are defined as: FUN_PAR_UNKNOWN (’u’),
FUN_PAR_COMMENT (’c’), FUN_PAR_LOGICAL (’l’), FUN_PAR_INTEGER (’i’),
FUN_PAR_STRING (’s’), FUN_PAR_REAL (’r’), FUN_PAR_COMPLEX (’x’).

If the -L (rdb table) switch is used, the output will conform to starbase/rdb data base list format.

For example to display the EVENTS extension (binary table):

 [sh] funhead "foo.fits[EVENTS]"
 XTENSION= ’BINTABLE’ / FITS 3D BINARY TABLE
 BITPIX = 8 / Binary data
 NAXIS = 2 / Table is a matrix
 NAXIS1 = 20 / Width of table in bytes
 NAXIS2 = 30760 / Number of entries in table
 PCOUNT = 0 / Random parameter count
 GCOUNT = 1 / Group count
 TFIELDS = 7 / Number of fields in each row
 EXTNAME = ’EVENTS ’ / Table name
 EXTVER = 1 / Version number of table
 TFORM1 = ’1I ’ / Data type for field
 TTYPE1 = ’X ’ / Label for field
 TUNIT1 = ’ ’ / Physical units for field
 TFORM2 = ’1I ’ / Data type for field
 etc. ...
 END

28

To display the third header:

 [sh] funhead "foo.fits[3]"
 XTENSION= ’BINTABLE’ / FITS 3D BINARY TABLE
 BITPIX = 8 / Binary data
 NAXIS = 2 / Table is a matrix
 NAXIS1 = 32 / Width of table in bytes
 NAXIS2 = 40 / Number of entries in table
 PCOUNT = 0 / Random parameter count
 GCOUNT = 1 / Group count
 TFIELDS = 7 / Number of fields in each row
 EXTNAME = ’TGR ’ / Table name
 EXTVER = 1 / Version number of table
 TFORM1 = ’1D ’ / Data type for field
 etc. ...
 END

To display the primary header (i.e., extension 0):

 sh> funhead "coma.fits[0]"
 SIMPLE = T /STANDARD FITS FORMAT
 BITPIX = 16 /2-BYTE TWOS-COMPL INTEGER
 NAXIS = 2 /NUMBER OF AXES
 NAXIS1 = 800 /
 NAXIS2 = 800 /
 DATATYPE= ’INTEGER*2’ /SHORT INTEGER
 END

The funhead program also can edit (i.e. add, delete, or modify) or display individual headers parameters.
Edit mode is signalled by the presence of two additional command-line arguments: output file and edit
command file, in that order. Edit mode acts as a filter: the output file will contain the entire input FITS
file, including other extensions. The edit command file can be "stdin", in which case edit command are
read from the standard input.

The edit command file contains parameter comments (having ’#’ in the first column) and delete and
assignment(modify or add) operations. A delete operation is specified by preceding the parameter name
with a minus sign "-". A display operation (very useful in interactive sessions, i.e., where the edit
commands are taken from stdin) is specified by preceding the parameter name with a question mark "?".
In either case, a parameter value need not be specified. An assignment operation is specified in the same
two ways that a parameter is specified in a text header (but without the comment character that precedes
header params), i.e.:

FITS-style comments have an equal sign "=" between the keyword and value and an optional slash
"/" to signify a comment. The strict FITS rules on column positions are not enforced.
Free-form comments can have an optional colon separator between the keyword and value. In the
absence of quote, all tokens after the keyword are part of the value, i.e. no comment is allowed.

For example, the following interactive session checks for the existence of parameters, adds new
parameters, modifies them, and modifies and deletes existing parameters:

29

 sh$./funhead snr.ev foo.fits -
 # look for FOO1
 ? FOO1
 WARNING: FOO1 not found
 # add new foo1
 FOO1 = 100
 # add foo2
 FOO2 = 200
 # reset foo1 to a different value
 FOO1 -1
 # delete foo2
 -FOO2
 # change existing value
 EXTVER 2
 ? XS-SORT
 XS-SORT = ’EOF ’ / type of event sort
 # delete existing value
 -XS-SORT
 # exit
 ^D

See Column-based Text Files for more information about header parameter format.

funhist - create a 1D histogram of a column (from a FITS binary
table or raw event file) or an image
funhist [-n|-w|-T] <iname> [column] [[lo:hi:]bins]

 -n # normalize bin value by the width of each bin
 -w # specify bin width instead of number of bins in arg3
 -T # output in rdb/starbase format (tab separators)

funhist creates a one-dimensional histogram from the specified columns of a FITS Extension binary table
of a FITS file (or from a non-FITS raw event file), or from a FITS image or array, and writes that
histogram as an ASCII table. Alternatively, the program can perform a 1D projection of one of the image
axes.

The first argument to the program is required, and specifies the Funtools file: FITS table or image, raw
event file, or array. If "stdin" is specified, data are read from the standard input. Use Funtools Bracket
Notation to specify FITS extensions, and filters.

For a table, the second argument also is required. It specifies the column to use in generating the
histogram. If the data file is of type image (or array), the column is optional: if "x" (or "X"), "y" (or "Y")
is specified, then a projection is performed over the x (dim1) or y (dim2) axes, respectively. (That is, this
projection will give the same results as a histogram performed on a table containing the equivalent x,y
event rows.) If no column name is specified or "xy" (or "XY") is specified for the image, then a histogram
is performed on the values contained in the image pixels.

The argument that follows is optional and specifies the number of bins to use in creating the histogram
and, if desired, the range of bin values. For image and table histograms, the range should specify the min
and max data values. For image histograms on the x and y axes, the range should specify the min and max

30

image bin values. If this argument is omitted, the number of output bins for a table is calculated either
from the TLMIN/TLMAX headers values (if these exist in the table FITS header for the specified column)
or by going through the data to calculate the min and max value. For an image, the number of output bins
is calculated either from the DATAMIN/DATAMAX header values, or by going through the data to
calculate min and max value. (Note that this latter calculation might fail if the image cannot be fit in
memory.) If the data are floating point (table or image) and the number of bins is not specified, an
arbitrary default of 128 is used.

For binary table processing, the -w (bin width) switch can be used to specify the width of each bin rather
than the number of bins. Thus:

 funhist test.ev pha 1:100:5

means that 5 bins of width 20 are used in the histogram, while:

 funhist -w test.ev pha 1:100:5

means that 20 bins of width 5 are used in the histogram.

The data are divvied up into the specified number of bins and the resulting 1D histogram (or projection) is
output in ASCII table format. For a table, the output displays the low_edge (inclusive) and hi_edge
(exclusive) values for the data. For example, a 15-row table containing a "pha" column whose values
range from -7.5 to 7.5 can be processed thus:

 [sh] funhist test.ev pha
 # data file: /home/eric/data/test.ev
 # column: pha
 # min,max,bins: -7.5 7.5 15

 bin value lo_edge hi_edge
 ------ --------- --------------------- ---------------------
 1 22 -7.50000000 -6.50000000
 2 21 -6.50000000 -5.50000000
 3 20 -5.50000000 -4.50000000
 4 19 -4.50000000 -3.50000000
 5 18 -3.50000000 -2.50000000
 6 17 -2.50000000 -1.50000000
 7 16 -1.50000000 -0.50000000
 8 30 -0.50000000 0.50000000
 9 16 0.50000000 1.50000000
 10 17 1.50000000 2.50000000
 11 18 2.50000000 3.50000000
 12 19 3.50000000 4.50000000
 13 20 4.50000000 5.50000000
 14 21 5.50000000 6.50000000
 15 22 6.50000000 7.50000000

 [sh] funhist test.ev pha 1:6
 # data file: /home/eric/data/test.ev
 # column: pha
 # min,max,bins: 0.5 6.5 6

 bin value lo_edge hi_edge
 ------ --------- --------------------- ---------------------

31

 1 16 0.50000000 1.50000000
 2 17 1.50000000 2.50000000
 3 18 2.50000000 3.50000000
 4 19 3.50000000 4.50000000
 5 20 4.50000000 5.50000000
 6 21 5.50000000 6.50000000

 [sh] funhist test.ev pha 1:6:3
 # data file: /home/eric/data/test.ev
 # column: pha
 # min,max,bins: 0.5 6.5 3

 bin value lo_edge hi_edge
 ------ --------- --------------------- ---------------------
 1 33 0.50000000 2.50000000
 2 37 2.50000000 4.50000000
 3 41 4.50000000 6.50000000

For a table histogram, the -n(normalize) switch can be used to normalize the bin value by the width of the
bin (i.e., hi_edge-lo_edge):

 [sh] funhist -n test.ev pha 1:6:3
 # data file: test.ev
 # column: pha
 # min,max,bins: 0.5 6.5 3
 # width normalization (val/(hi_edge-lo_edge)) is applied

 bin value lo_edge hi_edge
 ------ --------------------- --------------------- ---------------------
 1 16.50000000 0.50000000 2.50000000
 2 6.16666667 2.50000000 4.50000000
 3 4.10000000 4.50000000 6.50000000

This could used, for example, to produce a light curve with values having units of counts/second instead
of counts.

For an image histogram, the output displays the low and high image values (both inclusive) used to
generate the histogram. For example, in the following example, 184 pixels had a value of 1, 31 had a value
of 2, while only 2 had a value of 3,4,5,6, or 7:

 [sh] funhist test.fits
 # data file: /home/eric/data/test.fits
 # min,max,bins: 1 7 7

 bin value lo_val hi_val
 ------ --------------------- --------------------- ---------------------
 1 184.00000000 1.00000000 1.00000000
 2 31.00000000 2.00000000 2.00000000
 3 2.00000000 3.00000000 3.00000000
 4 2.00000000 4.00000000 4.00000000
 5 2.00000000 5.00000000 5.00000000
 6 2.00000000 6.00000000 6.00000000
 7 2.00000000 7.00000000 7.00000000

32

For the axis projection of an image, the output displays the low and high image bins (both inclusive) used
to generate the projection. For example, in the following example, 21 counts had their X bin value of 2,
etc.:

 [sh] funhist test.fits x 2:7
 # data file: /home/eric/data/test.fits
 # column: X
 # min,max,bins: 2 7 6

 bin value lo_bin hi_bin
 ------ --------------------- --------------------- ---------------------
 1 21.00000000 2.00000000 2.00000000
 2 20.00000000 3.00000000 3.00000000
 3 19.00000000 4.00000000 4.00000000
 4 18.00000000 5.00000000 5.00000000
 5 17.00000000 6.00000000 6.00000000
 6 16.00000000 7.00000000 7.00000000

 [sh] funhist test.fits x 2:7:2
 # data file: /home/eric/data/test.fits
 # column: X
 # min,max,bins: 2 7 2

 bin value lo_bin hi_bin
 ------ --------------------- --------------------- ---------------------
 1 60.00000000 2.00000000 4.00000000
 2 51.00000000 5.00000000 7.00000000

You can use gnuplot or other plotting programs to graph the results, using a script such as:

 #!/bin/sh
 sed -e ’1,/---- .*/d
 /^$/,$d’ | \
 awk ’\
 BEGIN{print "set nokey; set title \"funhist\"; set xlabel \"bin\"; set ylabel \"counts\"; plot \"-\" with boxes"} \
 {print $3, $2, $4-$3}’ | \
 gnuplot -persist - 1>/dev/null 2>&1

Similar plot commands are supplied in the script funhist.plot:

 funhist test.ev pha ... | funhist.plot gnuplot

funimage - create a FITS image from a Funtools data file
funimage [-a] <iname> <oname> [bitpix=n]
funimage [-l] <iname> <oname> <xcol:xdims> <ycol:ydims> <vcol> [bitpix=n]
funimage [-p x|y] <iname> <oname> [bitpix=n]

 -a # append to existing output file as an image extension
 -l # input is a list file containing xcol, ycol, value
 -p [x|y] # project along x or y axis to create a 1D image

funimage creates a primary FITS image from the specified FITS Extension and/or Image Section of a
FITS file, or from an Image Section of a non-FITS array, or from a raw event file.

33

The first argument to the program specifies the FITS input image, array, or raw event file to process. If
"stdin" is specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS
extensions, image sections, and filters. The second argument is the output FITS file. If "stdout" is
specified, the FITS image is written to the standard output. By default, the output pixel values are of the
same data type as those of the input file (or type "int" when binning a table), but this can be overridden
using an optional third argument of the form:

 bitpix=n

where n is 8,16,32,-32,-64, for unsigned char, short, int, float and double, respectively.

If the input data are of type image, the appropriate section is extracted and blocked (based on how the
Image Section is specified), and the result is written to the FITS primary image. When an integer image
containing the BSCALE and BZERO keywords is converted to float, the pixel values are scaled and the
scaling keywords are deleted from the output header. When converting integer scaled data to integer
(possibly of a different size), the pixels are not scaled and the scaling keywords are retained.

If the input data is a binary table or raw event file, these are binned into an image, from which a section is
extracted and blocked, and written to a primary FITS image. In this case, it is necessary to specify the two
columns that will be used in the 2D binning. This can be done on the command line using the
bincols=(x,y) keyword:

 funcnts "foo.ev[EVENTS,bincols=(detx,dety)]"

The full form of the bincols= specifier is:

 bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]])

where the tlmin, tlmax, and binsiz specifiers determine the image binning dimensions:

 dim = (tlmax - tlmin)/binsiz (floating point data)
 dim = (tlmax - tlmin)/binsiz + 1 (integer data)

Using this syntax, it is possible to bin any two columns of a binary table at any bin size. Note that the
tlmin, tlmax, and binsiz specifiers can be omitted if TLMIN, TLMAX, and TDBIN header parameters
(respectively) are present in the FITS binary table header for the column in question. Note also that if only
one parameter is specified, it is assumed to be tlmax, and tlmin defaults to 1. If two parameters are
specified, they are assumed to be tlmin and tlmax. See Binning FITS Binary Tables and Non-FITS Event
Files for more information about binning parameters.

By default, a new 2D FITS image file is created and the image is written to the primary HDU. If the -a
(append) switch is specified, the image is appended to an existing FITS file as an IMAGE extension. (If
the output file does not exist, the switch is effectively ignored and the image is written to the primary
HDU.) This can be useful in a shell programming environment when processing multiple FITS images
that you want to combine into a single final FITS file.

funimage also can take input from a table containing columns of x, y, and value (e.g., the output from
fundisp -l which displays each image x and y and the number of counts at that position.) When the -l (list)
switch is used, the input file is taken to be a FITS or ASCII table containing (at least) three columns that
specify the x and y image coordinates and the value of that image pixel. In this case, funimage requires

34

four extra arguments: xcolumn:xdims, ycolumn:ydims, vcolumn and bitpix=n. The x and y col:dim
information takes the form:

 name:dim # values range from 1 to dim
 name:min:max # values range from min to max
 name:min:max:binsiz # dimensions scaled by binsize

In particular, the min value should be used whenever the minimum coordinate value is something other
than one. For example:

 funimage -l foo.lst foo.fits xcol:0:512 ycol:0:512 value bitpix=-32

The list feature also can be used to read unnamed columns from standard input: simply replace the column
name with a null string. Note that the dimension information is still required:

 funimage -l stdin foo.fits "":0:512 "":0:512 "" bitpix=-32
 240 250 1
 255 256 2
 ...
 ^D

The list feature provides a simple way to generate a blank image. If you pass a Column-based Text File to
funimage in which the text header contains the required image information, then funimage will correctly
make a blank image. For example, consider the following text file (called foo.txt):

 x:I:1:10 y:I:1:10
 ------ ------
 0 0

This text file defines two columns, x and y, each of data type 32-bit int and image dimension 10. The
command:

 funimage foo.txt foo.fits bitpix=8

will create an empty FITS image called foo.fits containing a 10x10 image of unsigned char:

 fundisp foo.fits
 1 2 3 4 5 6 7 8 9 10
 ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
 10: 0 0 0 0 0 0 0 0 0 0
 9: 0 0 0 0 0 0 0 0 0 0
 8: 0 0 0 0 0 0 0 0 0 0
 7: 0 0 0 0 0 0 0 0 0 0
 6: 0 0 0 0 0 0 0 0 0 0
 5: 0 0 0 0 0 0 0 0 0 0
 4: 0 0 0 0 0 0 0 0 0 0
 3: 0 0 0 0 0 0 0 0 0 0
 2: 0 0 0 0 0 0 0 0 0 0
 1: 1 0 0 0 0 0 0 0 0 0

Note that the text file must contain at least one row of data. However, in the present example, event
position 0,0 is outside the limits of the image and will be ignored. (You can, of course, use real x,y values
to seed the image with data.)

35

Furthermore, you can use the TEXT filter specification to obviate the need for an input text file altogether.
The following command will create the same 10x10 char image without an actual input file:

 funimage stdin’[TEXT(x:I:10,y:I:10)]’ foo.fits bitpix=8 < /dev/null
or
 funimage /dev/null’[TEXT(x:I:10,y:I:10)]’ foo.fits bitpix=8

You also can use either of these methods to generate a region mask simply by appending a region inside
the filter brackets and specfying mask=all along with the bitpix. For example, the following command
will generate a 10x10 char mask using 3 regions:

 funimage stdin’[TEXT(x:I:10,y:I:10),cir(5,5,4),point(10,1),-cir(5,5,2)]’ \
 foo.fits bitpix=8,mask=all < /dev/null

The resulting mask looks like this:

 fundisp foo.fits
 1 2 3 4 5 6 7 8 9 10
 ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
 10: 0 0 0 0 0 0 0 0 0 0
 9: 0 0 0 0 0 0 0 0 0 0
 8: 0 0 1 1 1 1 1 0 0 0
 7: 0 1 1 1 1 1 1 1 0 0
 6: 0 1 1 0 0 0 1 1 0 0
 5: 0 1 1 0 0 0 1 1 0 0
 4: 0 1 1 0 0 0 1 1 0 0
 3: 0 1 1 1 1 1 1 1 0 0
 2: 0 0 1 1 1 1 1 0 0 0
 1: 0 0 0 0 0 0 0 0 0 2

You can use funimage to create 1D image projections along the x or y axis using the -p [x|y] switch. This
capability works for both images and tables. For example consider a FITS table named ev.fits containing
the following rows:

 X Y
 -------- --------
 1 1
 1 2
 1 3
 1 4
 1 5
 2 2
 2 3
 2 4
 2 5
 3 3
 3 4
 3 5
 4 4
 4 5
 5 5

A corresponding 5x5 image, called dim2.fits, would therefore contain:

36

 1 2 3 4 5
 ---------- ---------- ---------- ---------- ----------
 5: 1 1 1 1 1
 4: 1 1 1 1 0
 3: 1 1 1 0 0
 2: 1 1 0 0 0
 1: 1 0 0 0 0

A projection along the y axis can be performed on either the table or the image:

 funimage -p y ev.fits stdout | fundisp stdin
 1 2 3 4 5
 ---------- ---------- ---------- ---------- ----------
 1: 1 2 3 4 5

 funimage -p y dim2.fits stdout | fundisp stdin
 1 2 3 4 5
 ---------- ---------- ---------- ---------- ----------
 1: 1 2 3 4 5

Furthermore, you can create a 1D image projection along any column of a table by using the
bincols=[column] filter specification and specifying a single column. For example, the following
command projects the same 1D image along the y axis of a table as use of the -p y switch:

 funimage ev.fits’[bincols=y]’ stdout | fundisp stdin
 1 2 3 4 5
 ---------- ---------- ---------- ---------- ----------
 1: 1 2 3 4 5

Examples:

Create a FITS image from a FITS binary table:

 [sh] funimage test.ev test.fits

Display the FITS image generated from a blocked section of FITS binary table:

 [sh] funimage "test.ev[2:8,3:7,2]" stdout | fundisp stdin
 1 2 3
 --------- --------- ---------
 1: 20 28 36
 2: 28 36 44

funindex - create an index for a column of a FITS binary table
funindex <switches> <iname> <key> [oname]

 NB: these options are not compatible with Funtools processing. Please
 use the defaults instead.
 -c # compress output using gzip"
 -a # ASCII output, ignore -c (default: FITS table)"
 -f # FITS table output (default: FITS table)"
 -l # long output, i.e. with key value(s) (default: long)"
 -s # short output, i.e. no key value(s) (default: long)"

37

The funindex script creates an index for the specified column (key) by running funtable -s (sort) and then
saving the column value and the record number for each sorted row. This index will be used automatically
by funtools filtering of that column, provided the index file’s modification date is later than that of the
data file.

The first required argument is the name of the FITS binary table to index. Please note that text files cannot
be indexed at this time. The second required argument is the column (key) name to index. While multiple
keys can be specified in principle, the funtools index processing assume a single key and will not
recognize files containing multiple keys.

By default, the output index file name is [root]_[key].idx, where [root] is the root of the input file.
Funtools looks for this specific file name when deciding whether to use an index for faster filtering.
Therefore, the optional third argument (output file name) should not be used for funtools processing.

For example, to create an index on column Y for a given FITS file, use:

 funindex foo.fits Y

This will generate an index named foo_y.idx, which will be used by funtools for filters involving the Y
column.

funjoin - join two or more FITS binary tables on specified
columns
funjoin [switches] <ifile1> <ifile2> ... <ifilen> <ofile>

 -a cols # columns to activate in all files
 -a1 cols ... an cols # columns to activate in each file
 -b ’c1:bvl,c2:bv2’ # blank values for common columns in all files
 -bn ’c1:bv1,c2:bv2’ # blank values for columns in specific files
 -j col # column to join in all files
 -j1 col ... jn col # column to join in each file
 -m min # min matches to output a row
 -M max # max matches to output a row
 -s # add ’jfiles’ status column
 -S col # add col as status column
 -t tol # tolerance for joining numeric cols [2 files only]

funjoin joins rows from two or more (up to 32) FITS Binary Table files, based on the values of specified
join columns in each file. NB: the join columns must have an index file associated with it. These files are
generated using the funindex program.

The first argument to the program specifies the first input FITS table or raw event file. If "stdin" is
specified, data are read from the standard input. Subsequent arguments specify additional event files and
tables to join. The last argument is the output FITS file.

NB: Do not use Funtools Bracket Notation to specify FITS extensions and row filters when running
funjoin or you will get wrong results. Rows are accessed and joined using the index files directly, and this
bypasses all filtering.

38

The join columns are specified using the -j col switch (which specifies a column name to use for all files)
or with -j1 col1, -j2 col2, ... -jn coln switches (which specify a column name to use for each file). A join
column must be specified for each file. If both -j col and -jn coln are specified for a given file, then the
latter is used. Join columns must either be of type string or type numeric; it is illegal to mix numeric and
string columns in a given join. For example, to join three files using the same key column for each file,
use:

 funjoin -j key in1.fits in2.fits in3.fits out.fits

A different key can be specified for the third file in this way:

 funjoin -j key -j3 otherkey in1.fits in2.fits in3.fits out.fits

The -a "cols" switch (and -a1 "col1" , -a2 "cols2" counterparts) can be used to specify columns to
activate (i.e. write to the output file) for each input file. By default, all columns are output.

If two or more columns from separate files have the same name, the second (and subsequent) columns are
renamed to have an underscore and a numeric value appended.

The -m min and -M max switches specify the minimum and maximum number of joins required to write
out a row. The default minimum is 0 joins (i.e. all rows are written out) and the default maximum is 63
(the maximum number of possible joins with a limit of 32 input files). For example, to write out only
those rows in which exactly two files have columns that match (i.e. one join):

 funjoin -j key -m 1 -M 1 in1.fits in2.fits in3.fits ... out.fits

A given row can have the requisite number of joins without all of the files being joined (e.g. three files are
being joined but only two have a given join key value). In this case, all of the columns of the non-joined
file are written out, by default, using blanks (zeros or NULLs). The -b c1:bv1,c2:bv2 and -b1
’c1:bv1,c2:bv2’ -b2 ’c1:bv1,c2:bv2’ ... switches can be used to set the blank value for columns common
to all files and/or columns in a specified file, respectively. Each blank value string contains a
comma-separated list of column:blank_val specifiers. For floating point values (single or double), a
case-insensitive string value of "nan" means that the IEEE NaN (not-a-number) should be used. Thus, for
example:

 funjoin -b "AKEY:???" -b1 "A:-1" -b3 "G:NaN,E:-1,F:-100" ...

means that a non-joined AKEY column in any file will contain the string "???", the non-joined A column
of file 1 will contain a value of -1, the non-joined G column of file 3 will contain IEEE NaNs, while the
non-joined E and F columns of the same file will contain values -1 and -100, respectively. Of course,
where common and specific blank values are specified for the same column, the specific blank value is
used.

To distinguish which files are non-blank components of a given row, the -s (status) switch can be used to
add a bitmask column named "JFILES" to the output file. In this column, a bit is set for each non-blank
file composing the given row, with bit 0 corresponds to the first file, bit 1 to the second file, and so on.
The file names themselves are stored in the FITS header as parameters named JFILE1, JFILE2, etc. The -S
col switch allows you to change the name of the status column from the default "JFILES".

39

A join between rows is the Cartesian product of all rows in one file having a given join column value with
all rows in a second file having the same value for its join column and so on. Thus, if file1 has 2 rows with
join column value 100, file2 has 3 rows with the same value, and file3 has 4 rows, then the join results in
2*3*4=24 rows being output.

The join algorithm directly processes the index file associated with the join column of each file. The
smallest value of all the current columns is selected as a base, and this value is used to join equal-valued
columns in the other files. In this way, the index files are traversed exactly once.

The -t tol switch specifies a tolerance value for numeric columns. At present, a tolerance value can join
only two files at a time. (A completely different algorithm is required to join more than two files using a
tolerance, somethng we might consider implementing in the future.)

The following example shows many of the features of funjoin. The input files t1.fits, t2.fits, and t3.fits
contain the following columns:

 [sh] fundisp t1.fits
 AKEY KEY A B
 ----------- ------ ------ ------
 aaa 0 0 1
 bbb 1 3 4
 ccc 2 6 7
 ddd 3 9 10
 eee 4 12 13
 fff 5 15 16
 ggg 6 18 19
 hhh 7 21 22

fundisp t2.fits
 AKEY KEY C D
 ----------- ------ ------ ------
 iii 8 24 25
 ggg 6 18 19
 eee 4 12 13
 ccc 2 6 7
 aaa 0 0 1

fundisp t3.fits
 AKEY KEY E F G
------------ ------ -------- -------- -----------
 ggg 6 18 19 100.10
 jjj 9 27 28 200.20
 aaa 0 0 1 300.30
 ddd 3 9 10 400.40

Given these input files, the following funjoin command:

 funjoin -s -a1 "-B" -a2 "-D" -a3 "-E" -b \
 "AKEY:???" -b1 "AKEY:XXX,A:255" -b3 "G:NaN,E:-1,F:-100" \
 -j key t1.fits t2.fits t3.fits foo.fits

will join the files on the KEY column, outputting all columns except B (in t1.fits), D (in t2.fits) and E (in
t3.fits), and setting blank values for AKEY (globally, but overridden for t1.fits) and A (in file 1) and G, E,
and F (in file 3). A JFILES column will be output to flag which files were used in each row:

40

 AKEY KEY A AKEY_2 KEY_2 C AKEY_3 KEY_3 F G JFILES
 ------------ ------ ------ ------------ ------ ------ ------------ ------ -------- ----------- --------
 aaa 0 0 aaa 0 0 aaa 0 1 300.30 7
 bbb 1 3 ??? 0 0 ??? 0 -100 nan 1
 ccc 2 6 ccc 2 6 ??? 0 -100 nan 3
 ddd 3 9 ??? 0 0 ddd 3 10 400.40 5
 eee 4 12 eee 4 12 ??? 0 -100 nan 3
 fff 5 15 ??? 0 0 ??? 0 -100 nan 1
 ggg 6 18 ggg 6 18 ggg 6 19 100.10 7
 hhh 7 21 ??? 0 0 ??? 0 -100 nan 1
 XXX 0 255 iii 8 24 ??? 0 -100 nan 2
 XXX 0 255 ??? 0 0 jjj 9 28 200.20 4

funmerge - merge one or more Funtools table files
funmerge [-w|-x] -f [colname] <iname1> <iname2> ... <oname>

 -f # output a column specifying file from which this event came
 -w # adjust position values using WCS info
 -x # adjust position values using WCS info and save old values

funmerge merges FITS data from one or more FITS Binary Table files or raw event files.

The first argument to the program specifies the first input FITS table or raw event file. If "stdin" is
specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS extensions
and row filters. Subsequent arguments specify additional event files and tables to merge. (NB: Stdin
cannot not be used for any of these additional input file arguments.) The last argument is the output FITS
file. The columns in each input table must be identical.

If an input file begins with the ’@’ character, it is processed as an include file, i.e., as a text file containing
event file names (as well as blank lines and/or comment lines starting with the ’#’ sign). If standard input
is specified as an include file (’@stdin’), then file names are read from the standard input until EOF (^D).
Event files and include files can be mixed on a command line.

Rows from each table are written sequentially to the output file. If the switch -f [colname] is specified on
the command line, an additional column is added to each row containing the number of the file from
which that row was taken (starting from one). In this case, the corresponding file names are stored in the
header parameters having the prefix FUNFIL , i.e., FUNFIL01, FUNFIL02, etc.

Using the -w switch (or -x switch as described below), funmerge also can adjust the position column
values using the WCS information in each file. (By position columns, we mean the columns that the table
is binned on, i.e., those columns defined by the bincols= switch, or (X,Y) by default.) To perform WCS
alignment, the WCS of the first file is taken as the base WCS. Each position in subsequent files is adjusted
by first converting it to the sky coordinate in its own WCS coordinate system, then by converting this sky
position to the sky position of the base WCS, and finally converting back to a pixel position in the base
system. Note that in order to perform WCS alignment, the appropriate WCS and TLMIN/TLMAX
keywords must already exist in each FITS file.

When performing WCS alignment, you can save the original positions in the output file by using the -x
(for "xtra") switch instead of the -w switch (i.e., using this switch also implies using -w) The old positions
are saved in columns having the same name as the original positional columns, with the added prefix
"OLD_".

41

Examples:

Merge two tables, and preserve the originating file number for each row in the column called "FILE"
(along with the corresponding file name in the header):

 [sh] funmerge -f "FILE" test.ev test2.ev merge.ev

Merge two tables with WCS alignment, saving the old position values in 2 additional columns:

 [sh] funmerge -x test.ev test2.ev merge.ev

This program only works on raw event files and binary tables. We have not yet implemented image and
array merging.

funsky - convert between image and sky coordinates
 funsky iname[ext] # RA,Dec (deg) or image pix from stdin
 funsky iname[ext] [lname] # RA, Dec (deg) or image pix from list
 funsky iname[ext] [col1] [col2] # named cols:units from stdin
 funsky iname[ext] [lname] [col1] [col2] # named cols:units from list

 -d # always use integer tlmin conversion (as ds9 does)
 -r # convert x,y to RA,Dec (default: convert RA,Dec to x,y)
 -o # include offset from the nominal target position (in arcsec)
 -v # display input values also (default: display output only)
 -T # output display in rdb format (w/header,tab delimiters)

Funsky converts input sky coordinates (RA, Dec) to image coordinates (or vice versa) using the WCS
information contained in the specified FITS file. Several calling sequences are supported in order to make
it easy to specify coordinate positions in different ways.

The first required argument is always the input FITS file (or extension) containing the WCS information
in an extension header. Note that the data from this file is not used. By default, the program converts input
RA and Dec values to X and Y using this WCS information. If the WCS is associated with a FITS image,
then the X,Y values are image values. If the WCS is associated with a binary table, then the X, Y values
are physical values. To convert X,Y to RA and Dec, use the -r (reverse) switch.

If no other command arguments are supplied, then the input positions are read from the standard input.
Each line is assumed to contain a single coordinate position consisting of an RA in degrees (or X in
pixels) followed by a Dec in degrees (or Y in pixels). The usual delimiters are supported (spaces, commas,
tabs). For example:

 # read from stdin, default column names and units
 [sh] funsky snr.ev
 22.982695 58.606523 # input RA (hrs), Dec(deg)
 510.00 510.00
 22.982127 58.607634 # input
 512.00 510.50
 22.981700 58.614301 # input
 513.50 513.50
 ^D # end of input

42

If a second argument is supplied, this argument is assumed to be a file containing RA (X) and Dec (Y)
positions. The file can either be an ASCII table or a FITS binary table. The order of columns is
unimportant, if the table has a column header. In this case, the names of the columns must be one of "RA",
"DEC", or "X", "Y" for sky to image and image to sky conversions, respectively. If the table has no
header, then once again, RA (X) is assumed to first, followed by DEC (Y). For example:

 # read from file, default column names and units
 [sh] cat hd.in
 RA DEC
 --------- ---------
 22.982695 58.606523
 22.982127 58.607634
 22.981700 58.614301

 [sh] funsky snr.ev hd.in
 510.00 510.00
 512.00 510.50
 513.50 513.50

If three arguments are supplied, then the input positions again are read from the standard input. Each line
is assumed to contain a single coordinate position consisting of an RA (or X in pixels) followed by a Dec
(or Y in pixels), with the usual delimiters supported. However, the second and third arguments now
specify the column names and/or sky units using a colon-delimited syntax:

 [colname]:[h|d|r]

If the colname is omitted, the names default to "RA", "DEC", "X", "Y", "COL1", or "COL2" as above. If
the units are omitted, the default is degrees for both RA and Dec. When the -r switch is used (convert from
image to sky) the units are applied to the output instead of the input. The following examples will serve to
illustrate the options:

 # read from stdin, specifying column names (def. units: degrees)
 [sh] cat hd.in
 MYRA MYDEC
 --------- ---------
 22.982695 58.606523
 22.982127 58.607634
 22.981700 58.614301

 [sh] funsky snr.ev MYRA MYDEC < hd.in
 510.00 510.00
 512.00 510.50
 513.50 513.50

 # read from stdin, specifying column names and units
 [sh] cat dd.in
 MYRA MYDEC
 --------- ---------
 344.740432 58.606523
 344.731900 58.607634
 344.725500 58.614301

 [sh] funsky snr.ev MYRA:d MYDEC:d < dd.in
 510.00 510.00

43

 512.00 510.50
 513.50 513.50

 # read stdin, convert image to sky, specifying output sky units
 [sh] cat im.in
 510.00 510.00
 512.00 510.50
 513.50 513.50

 [sh] cat im.in | funsky -r snr.ev :d :d
 344.740432 58.606523
 344.731900 58.607634
 344.725500 58.614301

Finally, four command arguments specify both and input file and column names and/or units:

 [sh] cat dd.in
 MYRA MYDEC
 --------- ---------
 344.740432 58.606523
 344.731900 58.607634
 344.725500 58.614301

 [sh] funsky snr.ev dd.in MYRA:d MYDEC:d
 510.00 510.00
 512.00 510.50
 513.50 513.50

 # read file, convert image to sky, specifying output sky units
 [sh] cat im.in
 510.00 510.00
 512.00 510.50
 513.50 513.50

 [sh] funsky -r snr.ev im.in :d :d
 344.740432 58.606523
 344.731900 58.607634
 344.725500 58.614301

By default, the output of funsky consists only of the converted coordinate position(s), one per output line.
This makes parsing in shell scripts easy. Use the -v (verbose) switch to specify that the input coordinates
should be pre-pended to each line. For example:

 [sh] cat dd.in
 MYRA MYDEC
 --------- ---------
 344.740432 58.606523
 344.731900 58.607634
 344.725500 58.614301

 [sh] funsky snr.ev dd.in MYRA:d MYDEC:d
 510.00 510.00
 512.00 510.50
 513.50 513.50

44

 [sh] funsky -v snr.ev dd.in MYRA:d MYDEC:d
 344.740432 58.606523 510.00 510.00
 344.731900 58.607634 512.00 510.50
 344.725500 58.614301 513.50 513.50

In addition, a full starbase table can be output using the -T (table) switch. This switch can be used with or
without the -v switch. If the -T and -v are both specified, then a descriptive header parameters are output
before the table (mainly to remind you of the sky units):

 # output table in non-verbose mode
 [sh] funsky -T snr.ev dd.in MYRA:d MYDEC:d
 X Y
 ------------ ------------
 510.00 510.00
 512.00 510.50
 513.50 513.50

 # output table in verbose mode
 [sh] funsky -T -v snr.ev dd.in MYRA:d MYDEC:d
 # IFILE = /Users/eric/data/snr.ev
 # ICOL1 = MYRA
 # ICOL2 = MYDEC
 # IUNITS1 = d
 # IUNITS2 = d
 # OCOL1 = X
 # OCOL2 = Y

 MYRA MYDEC X Y
 ------------ ------------ ------------ ------------
 344.740432 58.606523 510.00 510.00
 344.731900 58.607634 512.00 510.50
 344.725500 58.614301 513.50 513.50

Finally, the -d (ds9) switch mimicks ds9’s use of integer TLMIN and TLMAX values for all coordinate
transformations. FITS conventions seem to call for use of floating point TLMIN and TLMAX when the
data are floats. This convention is followed by funsky but results in a small discrepancy with ds9’s
converted values for floating point data. We will remedy this conflict in the future, maybe.

funtable - copy selected rows from a Funtools file to a FITS
binary table
funtable [-a] [-i|-z] [-m] [-s cols] <iname> <oname> [columns]

 -a # append to existing output file as a table extension
 -i # for image data, only generate X and Y columns
 -m # for tables, write a separate file for each region
 -s "col1 ..." # columns on which to sort
 -z # for image data, output zero-valued pixels

funtable selects rows from the specified FITS Extension (binary table only) of a FITS file, or from a
non-FITS raw event file, and writes those rows to a FITS binary table file. It also will create a FITS binary
table from an image or a raw array file.

45

The first argument to the program specifies the FITS file, raw event file, or raw array file. If "stdin" is
specified, data are read from the standard input. Use Funtools Bracket Notation to specify FITS
extensions, and filters. The second argument is the output FITS file. If "stdout" is specified, the FITS
binary table is written to the standard output. By default, all columns of the input file are copied to the
output file. Selected columns can be output using an optional third argument in the form:

 "column1 column1 ... columnN"

The funtable program generally is used to select rows from a FITS binary table using Table Filters and/or
Spatial Region Filters. For example, you can copy only selected rows (and output only selected columns)
by executing in a command such as:

 [sh] funtable "test.ev[pha==1& π==10]" stdout "x y pi pha" | fundisp stdin
 X Y PHA PI
 ------- ------- ------- ---------
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10
 1 10 1 10

The special column $REGION can be specified to write the region id of each row:

 [sh $] funtable "test.ev[time-(int)time>=.99&&annulus(0 0 0 10 n=3)]" stdout ’x y time $REGION’ | fundisp stdin
 X Y TIME REGION
 -------- -------- --------------------- ----------
 5 -6 40.99000000 3
 4 -5 59.99000000 2
 -1 0 154.99000000 1
 -2 1 168.99000000 1
 -3 2 183.99000000 2
 -4 3 199.99000000 2
 -5 4 216.99000000 2
 -6 5 234.99000000 3
 -7 6 253.99000000 3

Here only rows with the proper fractional time and whose position also is within one of the three annuli
are written.

Columns can be excluded from display using a minus sign before the column:

 [sh $] funtable "test.ev[time-(int)time>=.99]" stdout "-time" | fundisp stdin
 X Y PHA PI DX DY
 -------- -------- -------- ---------- ----------- -----------
 5 -6 5 -6 5.50 -6.50
 4 -5 4 -5 4.50 -5.50
 -1 0 -1 0 -1.50 0.50
 -2 1 -2 1 -2.50 1.50
 -3 2 -3 2 -3.50 2.50

46

 -4 3 -4 3 -4.50 3.50
 -5 4 -5 4 -5.50 4.50
 -6 5 -6 5 -6.50 5.50
 -7 6 -7 6 -7.50 6.50

All columns except the time column are written.

In general, the rules for activating and de-activating columns are:

If only exclude columns are specified, then all columns but the exclude columns will be activated.
If only include columns are specified, then only the specified columns are activated.
If a mixture of include and exclude columns are specified, then all but the exclude columns will be
active; this last case is ambiguous and the rule is arbitrary.

In addition to specifying columns names explicitly, the special symbols + and - can be used to activate and
de-activate all columns. This is useful if you want to activate the $REGION column along with all other
columns. According to the rules, the syntax "$REGION" only activates the region column and de-activates
the rest. Use "+ $REGION" to activate all columns as well as the region column.

Ordinarily, only the selected table is copied to the output file. In a FITS binary table, it sometimes is
desirable to copy all of the other FITS extensions to the output file as well. This can be done by appending
a ’+’ sign to the name of the extension in the input file name. For example, the first command below
copies only the EVENT table, while the second command copies other extensions as well:

 [sh] funtable "/proj/rd/data/snr.ev[EVENTS]" events.ev
 [sh] funtable "/proj/rd/data/snr.ev[EVENTS+]" eventsandmore.ev

If the input file is an image or a raw array file, then funtable will generate a FITS binary table from the
pixel values in the image. Note that it is not possible to specify the columns to output (using
command-line argument 3). Instead, there are two ways to create such a binary table from an image. By
default, a 3-column table is generated, where the columns are "X", "Y", and "VALUE". For each pixel in
the image, a single row (event) is generated with the "X" and "Y" columns assigned the dim1 and dim2
values of the image pixel, respectively and the "VALUE" column assigned the value of the pixel. With
sort of table, running funhist on the "VALUE" column will give the same results as running funhist on
the original image.

If the -i ("individual" rows) switch is specified, then only the "X" and "Y" columns are generated. In this
case, each positive pixel value in the image generates n rows (events), where n is equal to the integerized
value of that pixel (plus 0.5, for floating point data). In effect, -i approximately recreates the rows of a
table that would have been binned into the input image. (Of course, this is only approximately correct,
since the resulting x,y positions are integerized.)

If the -s [col1 col2 ... coln] ("sort") switch is specified, the output rows of a binary table will be sorted
using the specified columns as sort keys. The sort keys must be scalar columns and also must be part of
the output file (i.e. you cannot sort on a column but not include it in the output). This facility uses the
_sort program (included with funtools), which must be accessible via your path.

47

For binary tables, the -m ("multiple files") switch will generate a separate file for each region in the filter
specification i.e. each file contains only the rows from that region. Rows which pass the filter but are not
in any region also are put in a separate file.

The separate output file names generated by the -m switch are produced automatically from the root
output file to contain the region id of the associated region. (Note that region ids start at 1, so that the file
name associated with id 0 contains rows that pass the filter but are not in any given region.) Output file
names are generated as follows:

A $n specification can be used anywhere in the root file name (suitably quoted to protect it from the
shell) and will be expanded to be the id number of the associated region. For example:

 funtable -m input.fits’[cir(512,512,1);cir(520,520,1)...]’ ’foo.goo_$n.fits’

will generate files named foo.goo_0.fits (for rows not in any region but still passing the filter),
foo.goo_1.fits (rows in region id #1, the first region), foo.goo_2.fits (rows in region id #2), etc. Note
that single quotes in the output root are required to protect the ’$’ from the shell.
If $n is not specified, then the region id will be placed before the first dot (.) in the filename. Thus:

 funtable -m input.fits’[cir(512,512,1);cir(520,520,1)...]’ foo.evt.fits

will generate files named foo0.evt.fits (for rows not in any region but still passing the filter),
foo1.evt.fits (rows in region id #1), foo2.evt.fits (rows in region id #2), etc.
If no dot is specified in the root output file name, then the region id will be appended to the filename.
Thus:

 funtable -m input.fits’[cir(512,512,1);cir(520,520,1)...]’ ’foo_evt’

will generate files named foo_evt0 (for rows not in any region but still passing the filter), foo_evt1
(rows in region id #1), foo_evt2 (rows in region id #2), etc.

The multiple file mechanism provide a simple way to generate individual source data files with a single
pass through the data.

By default, a new FITS file is created and the binary table is written to the first extension. If the -a
(append) switch is specified, the table is appended to an existing FITS file as a BINTABLE extension.
Note that the output FITS file must already exist.

If the -z ("zero" pixel values) switch is specified and -i is not specified, then pixels having a zero value
will be output with their "VALUE" column set to zero. Obviously, this switch does not make sense when
individual events are output.

funtbl - extract a table from Funtools ASCII output
funtable [-c cols] [-h] [-n table] [-p prog] [-s sep] <iname>

[NB: This program has been deprecated in favor of the ASCII text processing support in funtools. You can
now perform fundisp on funtools ASCII output files (specifying the table using bracket notation) to extract
tables and columns.] The funtbl script extracts a specified table (without the header and comments) from

48

a funtools ASCII output file and writes the result to the standard output. The first non-switch argument is
the ASCII input file name (i.e. the saved output from funcnts, fundisp, funhist, etc.). If no filename is
specified, stdin is read. The -n switch specifies which table (starting from 1) to extract. The default is to
extract the first table. The -c switch is a space-delimited list of column numbers to output, e.g. -c "1 3 5"
will extract the first three odd-numbered columns. The default is to extract all columns. The -s switch
specifies the separator string to put between columns. The default is a single space. The -h switch specifies
that column names should be added in a header line before the data is output. Without the switch, no
header is prepended. The -p program switch allows you to specify an awk-like program to run instead of
the default (which is host-specific and is determined at build time). The -T switch will output the data in
rdb format (i.e., with a 2-row header of column names and dashes, and with data columns separated by
tabs). The -help switch will print out a message describing program usage.

For example, consider the output from the following funcnts command:

 [sh] funcnts -sr snr.ev "ann 512 512 0 9 n=3"
 # source
 # data file: /proj/rd/data/snr.ev
 # arcsec/pixel: 8
 # background
 # constant value: 0.000000
 # column units
 # area: arcsec**2
 # surf_bri: cnts/arcsec**2
 # surf_err: cnts/arcsec**2

 # summed background-subtracted results
 upto net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 147.000 12.124 0.000 0.000 1600.00 0.092 0.008
 2 625.000 25.000 0.000 0.000 6976.00 0.090 0.004
 3 1442.000 37.974 0.000 0.000 15936.00 0.090 0.002

 # background-subtracted results
 reg net_counts error background berror area surf_bri surf_err
 ---- ------------ --------- ------------ --------- --------- --------- ---------
 1 147.000 12.124 0.000 0.000 1600.00 0.092 0.008
 2 478.000 21.863 0.000 0.000 5376.00 0.089 0.004
 3 817.000 28.583 0.000 0.000 8960.00 0.091 0.003

 # the following source and background components were used:
 source_region(s)

 ann 512 512 0 9 n=3

 reg counts pixels sumcnts sumpix
 ---- ------------ --------- ------------ ---------
 1 147.000 25 147.000 25
 2 478.000 84 625.000 109
 3 817.000 140 1442.000 249

49

There are four tables in this output. To extract the last one, you can execute:

 [sh] funcnts -s snr.ev "ann 512 512 0 9 n=3" | funtbl -n 4
 1 147.000 25 147.000 25
 2 478.000 84 625.000 109
 3 817.000 140 1442.000 249

Note that the output has been re-formatted so that only a single space separates each column, with no
extraneous header or comment information.

To extract only columns 1,2, and 4 from the last example (but with a header prepended and tabs between
columns), you can execute:

 [sh] funcnts -s snr.ev "ann 512 512 0 9 n=3" | funtbl -c "1 2 4" -h -n 4 -s "\t"
 #reg counts sumcnts
 1 147.000 147.000
 2 478.000 625.000
 3 817.000 1442.000

Of course, if the output has previously been saved in a file named foo.out, the same result can be obtained
by executing:

 [sh] funtbl -c "1 2 4" -h -n 4 -s "\t" foo.out
 #reg counts sumcnts
 1 147.000 147.000
 2 478.000 625.000
 3 817.000 1442.000

Go to Funtools Help Index

Last updated: April 1, 2007

50

FunDS9: Funtools and DS9 Image Display

Summary
Describes how funtools can be integrated into the ds9 Analysis menu.

Description
SAOImage/DS9 is an astronomical imaging and data visualization application used by astronomers around
the world. DS9 can display standard astronomical FITS images and binary tables, but also has support for
displaying raw array files, shared memory files, and data files automatically retrieved via FTP and HTTP.
Standard functional capabilities include multiple frame buffers, colormap and region manipulation, and
many data scaling algorithms. DS9’s advanced features include TrueColor visuals, deep frame buffers,
true PostScript printing, and display of image mosaics. The program’s support of image tiling, "blinking",
arbitrary zoom, rotation, and pan is unparalleled in astronomy. It also has innovative support for automatic
retrieval and display of standard image data such as the Digital Sky Survey (using servers at SAO, StScI,
or ESO).

DS9 can communicate with external programs such as Funtools using the XPA messaging system. In
addition, programs can be integrated directly into the DS9 GUI by means of a configurable Analysis
menu. By default, the DS9 Analysis menu contains algorithms deemed essential to the core functions of
DS9, e.g., display cross-cuts of data, iso-intensity contours, and WCS grids. However, new programs can
be added to DS9 by creating a set-up file which can be loaded into DS9 to reconfigure the Analysis menu.

The basic format of the analysis set-up file is:
 #
 # Analysis command descriptions:
 # menu label/description
 # file templates for this command
 # "menu" (add to menu) |"bind" (bind to key)
 # analysis command line

For example, the funcnts program can be specified in this way:

 Funcnts (counts in source/bkgd regions; options: none)
 *
 menu
 funcnts $filename $regions(source,,) $regions(background,,) | $text

As shown above, DS9 supports a macro facility to provide information as well as task support to
command lines. For example, the $regions macro is expanded by DS9 to provide the current source and/or
background region to the analysis command. The $text macro is expanded to generate a text window
display. It also is possible to query for parameters using a $param macro, plot data using a $plot macro,
etc. See the DS9 documentation for further details.

A set-up file called funtools.ds9 will load some useful Funtools applications (counts in regions, radial
profile, X-ray light curve and energy spectrum, 1D histogram) into the DS9 Analysis menu (version 2.1
and above). The file resides in the bin directory where Funtools programs are installed. It can be manually
loaded into DS9 from the Load Analysis Commands ... option of the Analysis menu. Alternatively, you

51

http://hea-www.harvard.edu/saord/ds9/index.html
http://hea-www.harvard.edu/saord/xpa/index.html

can tell DS9 to load this file automatically at start-up time by adding the pathname to the
Edit ->Preferences->Analysis Menu->Analysis File menu option. (NB: make sure you select
Edit ->Preferences->Save Preferences after setting the pathname.)

The tasks in this setup file generally process the original disk-based FITS file. Funcnts-based results
(radial profile, counts in regions) are presented in WCS units, if present in the FITS header. For situations
where a disk file is not available (e.g., image data generated and sent to DS9’s ’fits’ XPA access point),
versions of the radial profile and counts in regions tasks also are also offered utilizing DS9’s internal
image data. Results are presented in pixels. Aside from the units, the results should be identical to the
file-based results.

Go to Funtools Help Index

Last updated: November 16, 2005

52

FunLib: the Funtools Programming Interface

Summary
A description of the Funtools library.

Introduction to the Funtools Programming Interface
To create a Funtools application, you need to include the funtools.h definitions file in your code:

 #include <funtools.h>

You then call Funtools subroutines and functions to access Funtools data. The most important routines
are:

FunOpen: open a Funtools file
FunInfoGet: get info about an image or table
FunImageGet: retrieve image data
FunImageRowGet: retrieve image data by row
FunImagePut: output image data
FunImageRowPut: output image data by row
FunColumnSelect: select columns in a table for access
FunTableRowGet: retrieve rows from a table
FunTableRowPut: output rows to a table
FunClose: close a Funtools file

Your program must be linked against the libfuntools.a library, along with the math library. The following
libraries also might be required on your system:

-lsocket -lnsl for socket support
-ldl for dynamic loading

For example, on a Solaris system using gcc, use the following link line:

 gcc -o foo foo.c -lfuntools -lsocket -lnsl -ldl -lm

On a Solaris system using Solaris cc, use the following link line:

 gcc -o foo foo.c -lfuntools -lsocket -lnsl -lm

On a Linux system using gcc, use the following link line:

 gcc -o foo foo.c -lfuntools -ldl -lm

Once configure has built a Makefile on your platform, the required "extra" libraries (aside from -lm,
which always is required) are specified in that file’s EXTRA_LIBS variable. For example, under Linux
you will find:

53

 grep EXTRA_LIBS Makefile
 EXTRA_LIBS = -ldl
 ...

The Funtools library contains both the zlib library (http://www.gzip.org/zlib/) and Doug Mink’s WCS
library (http://tdc-www.harvard.edu/software/wcstools/). It is not necessary to put these libraries on a
Funtools link line. Include files necessary for using these libraries are installed in the Funtools include
directory.

Funtools Programming Tutorial
The FunOpen() function is used to open a FITS file, an array, or a raw event file:

 /* open the input FITS file for reading */
 ifun = FunOpen(iname, "r", NULL);
 /* open the output FITS file for writing, and connect it to the input file */
 ofun = FunOpen(iname, "w", ifun);

A new output file can inherit header parameters automatically from existing input file by passing the input
Funtools handle as the last argument to the new file’s FunOpen() call as shown above.

For image data, you then can call FunImageGet() to read an image into memory.

 float buf=NULL;
 /* extract and bin the data section into an image buffer */
 buf = FunImageGet(fun, NULL, "bitpix=-32");

If the (second) buf argument to this call is NULL, buffer space is allocated automatically. The (third) plist
argument can be used to specify the return data type of the array. If NULL is specified, the data type of the
input file is used.

To process an image buffer, you would generally make a call to FunInfoGet() to determine the dimensions
of the image (which may have been changed from the original file dimensions due to Funtools image
sectioning on the command line). In a FITS image, the index along
the dim1 axis varies most rapidly, followed by the dim2 axis, etc.
Thus, to access each pixel in an 2D image, use a double loop such as:

 buf = FunImageGet(fun, NULL, "bitpix=-32");
 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
 for(i=1; i<=dim2; i++){
 for(j=1; j<=dim1; j++){
 ... process buf[((i-1)*dim1)+(j-1)] ...
 }
 }

or:

 buf = FunImageGet(fun, NULL, "bitpix=-32");
 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
 for(i=0; i<(dim1*dim2); i++){
 ... process buf[i] ...
 }

54

Finally, you can write the resulting image to disk using FunImagePut():

 FunImagePut(fun2, buf, dim1, dim2, -32, NULL);

Note that Funtools automatically takes care of book-keeping tasks such as reading and writing FITS
headers (although you can, of course, write your own header or add your own parameters to a header).

For binary tables and raw event files, a call to FunOpen() will be followed by a call to the
FunColumnSelect() routine to select columns to be read from the input file and/or written to the output
file:

 typedef struct evstruct{
 double time;
 int time2;
 } *Ev, EvRec;
 FunColumnSelect(fun, sizeof(EvRec), NULL,
 "time", "D", "rw", FUN_OFFSET(Ev, time),
 "time2", "J", "w", FUN_OFFSET(Ev, time2),
 NULL);

Columns whose (third) mode argument contains an "r" are "readable", i.e., columns will be read from the
input file and converted into the data type specified in the call’s second argument. These columns values
then are stored in the specified offset of the user record structure. Columns whose mode argument
contains a "w" are "writable", i.e., these values will be written to the output file. The FunColumnSelect()
routine also offers the option of automatically merging user columns with the original input columns when
writing the output rows.

Once a set of columns has been specified, you can retrieve rows using FunTableRowGet(), and write the
rows using FunTableRowPut():

 Ev ebuf, ev;
 /* get rows -- let routine allocate the array */
 while((ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got))){
 /* process all rows */
 for(i=0; i<got; i++){
 /* point to the i’th row */
 ev = ebuf+i;
 /* time2 is generated here */
 ev->time2 = (int)(ev->time+.5);
 /* change the input time as well */
 ev->time = -(ev->time/10.0);
 }
 /* write out this batch of rows with the new column */
 FunTableRowPut(fun2, (char *)ebuf, got, 0, NULL);
 /* free row data */
 if(ebuf) free(ebuf);
 }

The input rows are retrieved into an array of user structs, which can be accessed serially as shown above.
Once again, Funtools automatically takes care of book-keeping tasks such as reading and writing FITS
headers (although you can, of course, write your own header or add your own parameters to a header).

55

When all processing is done, you can call FunClose() to close the file(s):

 FunClose(fun2);
 FunClose(fun);

These are the basics of processing FITS files (and arrays or raw event data) using Funtools. The routines
in these examples are described in more detail below, along with a few other routines that support
parameter access, data flushing, etc.

Compiling and Linking
To create a Funtools application, a software developer will include the funtools.h definitions file in
Funtools code:

 #include <funtools.h>

The program is linked against the libfuntools.a library, along with the math library (and the dynamic load
library, if the latter is available on your system):

 gcc -o foo foo.c -lfuntools -ldl -lm

If gcc is used, Funtools filtering can be performed using dynamically loaded shared objects that are built
at run-time. Otherwise, filtering is performed using a slave process.

Funtools has been built on the following systems:

Sun/Solaris 5.X
Linux/RedHat Linux 5.X,6.X,7.X
Dec Alpha/OSF1 V4.X
WindowsNT/Cygwin 1.0
SGI/IRIX64 6.5

A Short Digression on Subroutine Order
There is a natural order for all I/O access libraries. You would not think of reading a file without first
opening it, or writing a file after closing it. A large part of the experiment in funtools is to use the idea of
"natural order" as a means of making programming easier. We do this by maintaining the state of
processing for a given funtools file, so that we can do things like write headers and flush extension
padding at the right time, without you having to do it.

For example, if you open a new funtools file for writing using FunOpen(), then generate an array of image
data and call FunImagePut(), funtools knows to write the image header automatically. There is no need to
think about writing a standard header. Of course, you can add parameters to the file first by calling one of
the FunParamPut() routines, and these parameters will automatically be added to the header when it is
written out. There still is no need to write the header explicitly.

56

Maintaining state in this way means that there are certain rules of order which should be maintained in any
funtools program. In particular, we strongly recommend the following ordering rules be adhered to:

When specifying that input extensions be copied to an output file via a reference handle, open the
output file before reading the input file. (Otherwise the initial copy will not occur).
Always write parameters to an output file using one of the FunParamPut() calls before writing any
data. (This is a good idea for all FITS libraries, to avoid having to recopy data is the FITS header
needs to be extended by adding a single parameter.)
If you retrieve an image, and need to know the data type, use the FUN_SECT_BITPIX option of
FunInfoGet(), after calling FunImageGet(), since it is possible to change the value of BITPIX from
the latter.
When specifying that input extensions be copied to an output file via a reference handle, close the
output file before closing input file, or else use FunFlush() explicitly on the output file before closing
the input file. (Otherwise the final copy will not occur).

We believe that these are the natural rules that are implied in most FITS programming tasks. However, we
recognize that making explicit use of "natural order" to decide what automatic action to take on behalf of
the programmer is experimental. Therefore, if you find that your needs are not compatible with our
preferred order, please let us know -- it will be most illuminating for us as we evaluate this experiment.

Funtools Programming Examples
The following complete coding examples are provided to illustrate the simplicity of Funtools applications.
They can be found in the funtest subdirectory of the Funtools distribution. In many cases, you should be
able to modify one of these programs to generate your own Funtools program:

evread.c: read and write binary tables
evcols.c: add column and rows to binary tables
evmerge.c: merge new columns with existing columns
evnext.c: manipulate raw data pointers
imblank.c: blank out image values below a threshold
asc2fits.c: convert a specific ASCII table to FITS binary table

The Funtools Programming Reference Manual
#include <funtools.h>

Fun FunOpen(char *name, char *mode, Fun ref)

void * FunImageGet(Fun fun, void *buf, char *plist)

int FunImagePut(Fun fun, void *buf, int dim1, int dim2, int bitpix, char *plist)

void * FunImageRowGet(Fun fun, void *buf, int rstart, int rstop, char *plist)

void * FunImageRowPut(Fun fun, void *buf, int rstart, int rstop, int dim1, int dim2, int bitpix, char *plist)

int FunColumnSelect(Fun fun, int size, char *plist, ...)

void FunColumnActivate(Fun fun, char *s, char *plist)

int FunColumnLookup(Fun fun, char *s, int which, char **name, int *type, int *mode, int *offset, int *n, int *width)

57

void * FunTableRowGet(Fun fun, void *rows, int maxrow, char *plist, int *nrow)

int FunTableRowPut(Fun fun, void *rows, int nev, int idx, char *plist)

int FunParamGetb(Fun fun, char *name, int n, int defval, int *got)

int FunParamGeti(Fun fun, char *name, int n, int defval, int *got)

double FunParamGetd(Fun fun, char *name, int n, double defval, int *got)

char * FunParamGets(Fun fun, char *name, int n, char *defval, int *got)

int FunParamPutb(Fun fun, char *name, int n, int value, char *comm, int append)

int FunParamPuti(Fun fun, char *name, int n, int value, char *comm, int append)

int FunParamPutd(Fun fun, char *name, int n, double value, int prec, char *comm, int append)

int FunParamPuts(Fun fun, char *name, int n, char *value, char *comm, int append)

int FunInfoGet(Fun fun, int type, ...)

int FunInfoPut(Fun fun, int type, ...)

void FunFlush(Fun fun, char *plist)

void FunClose(Fun fun)

FunOpen - open a Funtools data file
 #include <funtools.h>

 Fun FunOpen(char *name, char *mode, Fun ref);

The FunOpen() routine opens a Funtools data file for reading or appending, or creates a new FITS file for
writing. The name argument specifies the name of the Funtools data file to open. You can use IRAF-style
bracket notation to specify Funtools Files, Extensions, and Filters. A separate call should be made each
time a different FITS extension is accessed:

 Fun fun;
 char *iname;
 ...
 if(!(fun = FunOpen(iname, "r", NULL))){
 fprintf(stderr, "could not FunOpen input file: %s\n", iname);
 exit(1);
 }

If mode is "r", the file is opened for reading, and processing is set up to begin at the specified extension.
For reading, name can be stdin, in which case the standard input is read.

If mode is "w", the file is created if it does not exist, or opened and truncated for writing if it does exist.
Processing starts at the beginning of the file. The name can be stdout, in which case the standard output is
readied for processing.

If mode is "a", the file is created if it does not exist, or opened if it does exist. Processing starts at the end
of the file. The name can be stdout, in which case the standard output is readied for processing.

58

When a Funtools file is opened for writing or appending, a previously opened Funtools reference handle
can be specified as the third argument. This handle typically is associated with the input Funtools file that
will be used to generate the data for the output data. When a reference file is specified in this way, the
output file will inherit the (extension) header parameters from the input file:

 Fun fun, fun2;
 ...
 /* open input file */
 if(!(fun = FunOpen(argv[1], "r", NULL)))
 gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
 /* open the output FITS image, inheriting params from input */
 if(!(fun2 = FunOpen(argv[2], "w", fun)))
 gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);

Thus, in the above example, the output FITS binary table file will inherit all of the parameters associated
with the input binary table extension.

A file opened for writing with a Funtools reference handle also inherits the selected columns (i.e. those
columns chosen for processing using the FunColumnSelect() routine) from the reference file as its default
columns. This makes it easy to open an output file in such a way that the columns written to the output file
are the same as the columns read in the input file. Of course, column selection can easily be tailored using
the FunColumnSelect() routine. In particular, it is easy to merge user-defined columns with the input
columns to generate a new file. See the evmerge for a complete example.

In addition, when a Funtools reference handle is supplied in a FunOpen() call, it is possible also to specify
that all other extensions from the reference file (other than the input extension being processed) should be
copied from the reference file to the output file. This is useful, for example, in a case where you are
processing a FITS binary table or image and you want to copy all of the other extensions to the output file
as well. Copy of other extensions is controlled by adding a "C" or "c" to the mode string of the FunOpen()
call of the input reference file. If "C" is specified, then other extensions are always copied (i.e., copy is
forced by the application). If "c" is used, then other extensions are copied if the user requests copying by
adding a plus sign "+" to the extension name in the bracket specification. For example, the funtable
program utilizes "c" mode, giving users the option of copying all other extensions:

 /* open input file -- allow user copy of other extensions */
 if(!(fun = FunOpen(argv[1], "rc", NULL)))
 gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
 /* open the output FITS image, inheriting params from input */
 if(!(fun2 = FunOpen(argv[2], "w", fun)))
 gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);

Thus, funtable supports either of these command lines:

 # copy only the EVENTS extension
 csh> funtable "test.ev[EVENTS,circle(512,512,10)]" foo.ev
 # copy ALL extensions
 csh> funtable "test.ev[EVENTS+,circle(512,512,10)]" foo.ev

Use of a Funtools reference handle implies that the input file is opened before the output file. However, it
is important to note that if copy mode ("c" or "C") is specified for the input file, the actual input file open
is delayed until just after the output file is opened, since the copy of prior extensions to the output file

59

takes place while Funtools is seeking to the specified input extension. This implies that the output file
should be opened before any I/O is done on the input file or else the copy will fail. Note also that the copy
of subsequent extension will be handled automatically by FunClose() if the output file is closed before the
input file. Alternatively, it can be done explicitly by FunFlush(), but again, this assumes that the input file
still is open.

Upon success FunOpen() returns a Fun handle that is used in subsequent Funtools calls. On error, NULL
is returned.

FunImageGet - get an image or image section
 #include <funtools.h>

 void *FunImageGet(Fun fun, void *buf, char *plist)

The FunImageGet() routine returns an binned image array of the specified section of a Funtools data file.
If the input data are already of type image, the array is generated by extracting the specified image section
and then binning it according to the specified bin factor. If the input data are contained in a binary table or
raw event file, the rows are binned on the columns specified by the bincols= keyword (using appropriate
default columns as necessary), after which the image section and bin factors are applied. In both cases, the
data is automatically converted from FITS to native format, if necessary.

The first argument is the Funtools handle returned by FunOpen(). The second buf argument is a pointer to
a data buffer to fill. If NULL is specified, FunImageGet will allocate a buffer of the appropriate size.
Generally speaking, you always want Funtools to allocate the buffer because the image dimensions will be
determined by Funtools image sectioning on the command line.

The third plist (i.e., parameter list) argument is a string containing one or more comma-delimited
keyword=value parameters. It can be used to specify the return data type using the bitpix= keyword. If
no such keyword is specified in the plist string, the data type of the returned image is the same as the data
type of the original input file, or is of type int for FITS binary tables.

If the bitpix= keyword is supplied in the plist string, the data type of the returned image will be one of the
supported FITS image data types:

8 unsigned char
16 short
32 int
-32 float
-64 double

For example:

 void *buf;
 /* extract data section into an image buffer */
 if(!(buf = FunImageGet(fun, NULL, NULL)))
 gerror(stderr, "could not FunImageGet: %s\n", iname);

will allocate buf and retrieve the image in the file data format. In this case, you will have to determine the

60

data type (using the FUN_SECT_BITPIX value in the FunInfoGet() routine) and then use a switch
statement to process each data type:

 int bitpix;
 void *buf;
 unsigned char *cbuf;
 short *sbuf;
 int *ibuf;
 ...
 buf = FunImageGet(fun, NULL, NULL);
 FunInfoGet(fun, FUN_SECT_BITPIX, &bitpix, 0);
 /* set appropriate data type buffer to point to image buffer */
 switch(bitpix){
 case 8:
 cbuf = (unsigned char *)buf; break;
 case 16:
 sbuf = (short *)buf; break;
 case 32:
 ibuf = (int *)buf; break;
 ...

See the imblank example code for more details on how to process an image when the data type is not
specified beforehand.

It often is easier to specify the data type directly:

 double *buf;
 /* extract data section into a double image buffer */
 if(!(buf = FunImageGet(fun, NULL, "bitpix=-64")))
 gerror(stderr, "could not FunImageGet: %s\n", iname);

will extract the image while converting to type double.

On success, a pointer to the image buffer is returned. (This will be the same as the second argument, if
NULL is not passed to the latter.) On error, NULL is returned.

In summary, to retrieve image or row data into a binned image, you simply call FunOpen() followed by
FunImageGet(). Generally, you then will want to call FunInfoGet() to retrieve the axis dimensions (and
data type) of the section you are processing (so as to take account of sectioning and blocking of the
original data):

 double *buf;
 int i, j;
 int dim1, dim2;
 ... other declarations, etc.

 /* open the input FITS file */
 if(!(fun = FunOpen(argv[1], "rc", NULL)))
 gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);

 /* extract and bin the data section into a double float image buffer */
 if(!(buf = FunImageGet(fun, NULL, "bitpix=-64")))
 gerror(stderr, "could not FunImageGet: %s\n", argv[1]);

 /* get dimension information from funtools structure */

61

 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);

 /* loop through pixels and reset values below limit to value */
 for(i=0; i<dim1*dim2; i++){
 if(buf[i] <= blimit) buf[i] = bvalue;
 }

Another useful plist string value is "mask=all", which returns an image populated with regions id values.
Image pixels within a region will contain the associated region id (region values start at 1), and otherwise
will contain a 0 value. Thus, the returned image is a region mask which can be used to process the image
data (which presumably is retrieved by a separate call to FunImageGet) pixel by pixel.

If a FITS binary table or a non-FITS raw event file is being binned into an image, it is necessary to specify
the two columns that will be used in the 2D binning. This usually is done on the command line using the
bincols=(x,y) keyword:

 funcnts "foo.ev[EVENTS,bincols=(detx,dety)]"

The full form of the bincols= specifier is:

 bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]])

where the tlmin, tlmax, and binsiz specifiers determine the image binning dimensions:

 dim = (tlmax - tlmin)/binsiz (floating point data)
 dim = (tlmax - tlmin)/binsiz + 1 (integer data)

These tlmin, tlmax, and binsiz specifiers can be omitted if TLMIN, TLMAX, and TDBIN header
parameters (respectively) are present in the FITS binary table header for the column in question. Note that
if only one parameter is specified, it is assumed to be tlmax, and tlmin defaults to 1. If two parameters are
specified, they are assumed to be tlmin and tlmax.

If bincols is not specified on the command line, Funtools tries to use appropriate defaults: it looks for the
environment variable FITS_BINCOLS (or FITS_BINKEY). Then it looks for the Chandra parameters
CPREF (or PREFX) in the FITS binary table header. Failing this, it looks for columns named "X" and "Y"
and if these are not found, it looks for columns containing the characters "X" and "Y".

See Binning FITS Binary Tables and Non-FITS Event Files for more information.

FunImagePut - put an image to a Funtools file
 #include <funtools.h>

 int FunImagePut(Fun fun, void *buf, int dim1, int dim2, int bitpix,
 char *plist)

The FunImagePut() routine outputs an image array to a FITS file. The image is written either as a
primary header/data unit or as an image extension, depending on whether other data have already been
written to the file. That is, if the current file position is at the beginning of the file, a primary HDU is
written. Otherwise, an image extension is written.

62

The first argument is the Funtools handle returned by FunOpen(). The second buf argument is a pointer to
a data buffer to write. The dim1and dim2 arguments that follow specify the dimensions of the image,
where dim1 corresponds to naxis1 and dim2 corresponds to naxis2. The bitpix argument specifies the data
type of the image and can have the following FITS-standard values:

8 unsigned char
16 short
32 int
-32 float
-64 double

When FunTableRowPut() is first called for a given image, Funtools checks to see if the primary header
has already been written (by having previously written an image or a binary table.) If not, this image is
written to the primary HDU. Otherwise, it is written to an image extension.

Thus, a simple program to generate a FITS image might look like this:

 int i;
 int dim1=512, dim2=512;
 double *dbuf;
 Fun fun;
 dbuf = malloc(dim1*dim2*sizeof(double));
 /* open the output FITS image, preparing to copy input params */
 if(!(fun = FunOpen(argv[1], "w", NULL)))
 gerror(stderr, "could not FunOpen output file: %s\n", argv[1]);
 for(i=0; i<(dim1*dim2); i++){
 ... fill dbuf ...
 }
 /* put the image (header will be generated automatically */
 if(!FunImagePut(fun, buf, dim1, dim2, -64, NULL))
 gerror(stderr, "could not FunImagePut: %s\n", argv[1]);
 FunClose(fun);
 free(dbuf);

In addition, if a Funtools reference handle was specified when this table was opened, the parameters from
this Funtools reference handle are merged into the new image header. Furthermore, if a reference image
was specified during FunOpen(), the values of dim1, dim2, and bitpix in the calling sequence can all be
set to 0. In this case, default values are taken from the reference image section. This is useful if you are
reading an image section in its native data format, processing it, and then writing that section to a new
FITS file. See the imblank example code.

The data are assumed to be in the native machine format and will automatically be swapped to FITS
big-endian format if necessary. This behavior can be over-ridden with the convert=[true|false] keyword
in the plist param list string.

When you are finished writing the image, you should call FunFlush() to write out the FITS image padding.
However, this is not necessary if you subsequently call FunClose() without doing any other I/O to the
FITS file.

63

FunImageRowGet - get row(s) of an image
 #include <funtools.h>

 void *FunImageRowGet(Fun fun, void *buf, int rstart, int rstop,
 char *plist)

The FunImageRowGet() routine returns one or more image rows from the specified section of a Funtools
data file. If the input data are of type image, the array is generated by extracting the specified image rows
and then binning them according to the specified bin factor. If the input data are contained in a binary
table or raw event file, the rows are binned on the columns specified by the bincols= keyword (using
appropriate default columns as needed), after which the image section and bin factors are applied.

The first argument is the Funtools handle returned by FunOpen(). The second buf argument is a pointer to
a data buffer to fill. If NULL is specified, FunImageGet() will allocate a buffer of the appropriate size.

The third and fourth arguments specify the first and last row to retrieve. Rows are counted starting from 1,
up to the value of FUN_YMAX(fun). The final plist (i.e., parameter list) argument is a string containing
one or more comma-delimited keyword=value parameters. It can be used to specify the return data type
using the bitpix= keyword. If no such keyword is specified in the plist string, the data type of the image is
the same as the data type of the original input file, or is of type int for FITS binary tables.

If the bitpix= value is supplied in the plist string, the data type of the returned image will be one of the
supported FITS image data types:

8 unsigned char
16 short
32 int
-32 float
-64 double

For example:

 double *drow;
 Fun fun;
 ... open files ...
 /* get section dimensions */
 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
 /* allocate one line’s worth */
 drow = malloc(dim1*sizeof(double));
 /* retrieve and process each input row (starting at 1) */
 for(i=1; i <= dim2; i++){
 if(!FunImageRowGet(fun, drow, i, i, "bitpix=-64"))
 gerror(stderr, "can’t FunImageRowGet: %d %s\n", i, iname);
 /* reverse the line */
 for(j=1; j<=dim1; j++){
 ... process drow[j-1] ...
 }
 }
 ...

64

On success, a pointer to the image buffer is returned. (This will be the same as the second argument, if
NULL is not passed to the latter.) On error, NULL is returned. Note that the considerations described
above for specifying binning columns in FunImageGet() also apply to FunImageRowGet().

FunImageRowPut - put row(s) of an image
 #include <funtools.h>

 void *FunImageRowPut(Fun fun, void *buf, int rstart, int rstop,
 int dim1, int dim2, int bitpix, char *plist)

The FunImageRowPut() routine writes one or more image rows to the specified FITS image file. The
first argument is the Funtools handle returned by FunOpen(). The second buf argument is a pointer to the
row data buffer, while the third and fourth arguments specify the starting and ending rows to write. Valid
rows values range from 1 to dim2, i.e., row is one-valued.

The dim1and dim2 arguments that follow specify the dimensions, where dim1 corresponds to naxis1 and
dim2 corresponds to naxis2. The bitpix argument data type of the image and can have the following
FITS-standard values:

8 unsigned char
16 short
32 int
-32 float
-64 double

For example:

 double *drow;
 Fun fun, fun2;
 ... open files ...
 /* get section dimensions */
 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
 /* allocate one line’s worth */
 drow = malloc(dim1*sizeof(double));
 /* retrieve and process each input row (starting at 1) */
 for(i=1; i <= dim2; i++){
 if(!FunImageRowGet(fun, drow, i, i, "bitpix=-64"))
 gerror(stderr, "can’t FunImageRowGet: %d %s\n", i, iname);
 ... process drow ...
 if(!FunImageRowPut(fun2, drow, i, i, 64, NULL))
 gerror(stderr, "can’t FunImageRowPut: %d %s\n", i, oname);
 }
 ...

The data are assumed to be in the native machine format and will automatically be swapped to big-endian
FITS format if necessary. This behavior can be over-ridden with the convert=[true|false] keyword in the
plist param list string.

65

When you are finished writing the image, you should call FunFlush() to write out the FITS image padding.
However, this is not necessary if you subsequently call FunClose() without doing any other I/O to the
FITS file.

FunColumnSelect - select Funtools columns
 #include <funtools.h>

 int FunColumnSelect(Fun fun, int size, char *plist,
 char *name1, char *type1, char *mode1, int offset1,
 char *name2, char *type2, char *mode2, int offset2,
 ...,
 NULL)

 int FunColumnSelectArr(Fun fun, int size, char *plist,
 char **names, char **types, char **modes,
 int *offsets, int nargs);

The FunColumnSelect() routine is used to select the columns from a Funtools binary table extension or
raw event file for processing. This routine allows you to specify how columns in a file are to be read into a
user record structure or written from a user record structure to an output FITS file.

The first argument is the Fun handle associated with this set of columns. The second argument specifies
the size of the user record structure into which columns will be read. Typically, the sizeof() macro is used
to specify the size of a record structure. The third argument allows you to specify keyword directives for
the selection and is described in more detail below.

Following the first three required arguments is a variable length list of column specifications. Each
column specification will consist of four arguments:

name: the name of the column
type: the data type of the column as it will be stored in the user record struct (not the data type of the
input file). The following basic data types are recognized:

A: ASCII characters
B: unsigned 8-bit char
I: signed 16-bit int
U: unsigned 16-bit int (not standard FITS)
J: signed 32-bit int
V: unsigned 32-bit int (not standard FITS)
E: 32-bit float
D: 64-bit float

The syntax used is similar to that which defines the TFORM parameter in FITS binary tables. That is,
a numeric repeat value can precede the type character, so that "10I" means a vector of 10 short ints,
"E" means a single precision float, etc. Note that the column value from the input file will be
converted to the specified data type as the data is read by FunTableRowGet().

66

[A short digression regarding bit-fields: Special attention is required when reading or writing the
FITS bit-field type ("X"). Bit-fields almost always have a numeric repeat character preceding the ’X’
specification. Usually this value is a multiple of 8 so that bit-fields fit into an integral number of bytes. For
all cases, the byte size of the bit-field B is (N+7)/8, where N is the numeric repeat character.

A bit-field is most easily declared in the user struct as an array of type char of size B as defined
above. In this case, bytes are simply moved from the file to the user space. If, instead, a short or int scalar
or array is used, then the algorithm for reading the bit-field into the user space depends on the size of the
data type used along with the value of the repeat character. That is, if the user data size is equal to the byte
size of the bit-field, then the data is simply moved (possibly with endian-based byte-swapping) from one
to the other. If, on the other hand, the data storage is larger than the bit-field size, then a data type cast
conversion is performed to move parts of the bit-field into elements of the array. Examples will help make
this clear:

If the file contains a 16X bit-field and user space specifies a 2B char array[2], then the bit-field
is moved directly into the char array.
If the file contains a 16X bit-field and user space specifies a 1I scalar short int, then the bit-field
is moved directly into the short int.
If the file contains a 16X bit-field and user space specifies a 1J scalar int, then the bit-field is
type-cast to unsigned int before being moved (use of unsigned avoids possible sign extension).
If the file contains a 16X bit-field and user space specifies a 2J int array[2], then the bit-field is
handled as 2 chars, each of which are type-cast to unsigned int before being moved (use of
unsigned avoids possible sign extension).
If the file contains a 16X bit-field and user space specifies a 1B char, then the bit-field is treated
as a char, i.e., truncation will occur.
If the file contains a 16X bit-field and user space specifies a 4J int array[4], then the results are
undetermined.

For all user data types larger than char, the bit-field is byte-swapped as necessary to convert to native
format, so that bits in the resulting data in user space can be tested, masked, etc. in the same way
regardless of platform.]

In addition to setting data type and size, the type specification allows a few ancillary parameters to be
set, using the full syntax for type:

 [@][n]<type>[[[’B’]poff]][:[tlmin[:tlmax[:binsiz]]]]

The special character "@" can be prepended to this specification to indicated that the data element is
a pointer in the user record, rather than an array stored within the record.

The [n] value is an integer that specifies the number of elements that are in this column (default is 1).
TLMIN, TLMAX, and BINSIZ values also can be specified for this column after the type, separated
by colons. If only one such number is specified, it is assumed to be TLMAX, and TLMIN and
BINSIZ are set to 1.

The [poff] value can be used to specify the offset into an array. By default, this offset value is set to
zero and the data specified starts at the beginning of the array. The offset usually is specified in terms
of the data type of the column. Thus an offset specification of [5] means a 20-byte offset if the data
type is a 32-bit integer, and a 40-byte offset for a double. If you want to specify a byte offset instead

67

of an offset tied to the column data type, precede the offset value with ’B’, e.g. [B6] means a 6-bye
offset, regardless of the column data type. The [poff] is especially useful in conjunction with the pointer @
specification, since it allows the data element to anywhere stored anywhere in the allocated array. For
example, a specification such as "@I[2]" specifies the third (i.e., starting from 0) element in the array
pointed to by the pointer value. A value of "@2I[4]" specifies the fifth and sixth values in the array. For
example, consider the following specification:

 typedef struct EvStruct{
 short x[4], *atp;
 } *Event, EventRec;
 /* set up the (hardwired) columns */
 FunColumnSelect(fun, sizeof(EventRec), NULL,
 "2i", "2I ", "w", FUN_OFFSET(Event, x),
 "2i2", "2I[2]", "w", FUN_OFFSET(Event, x),
 "at2p", "@2I", "w", FUN_OFFSET(Event, atp),
 "at2p4", "@2I[4]", "w", FUN_OFFSET(Event, atp),
 "atp9", "@I[9]", "w", FUN_OFFSET(Event, atp),
 "atb20", "@I[B20]", "w", FUN_OFFSET(Event, atb),
 NULL);

Here we have specified the following columns:
2i: two short ints in an array which is stored as part the record
2i2: the 3rd and 4th elements of an array which is stored as part of the record
an array of at least 10 elements, not stored in the record but allocated elsewhere, and used by
three different columns:

at2p: 2 short ints which are the first 2 elements of the allocated array
at2p4: 2 short ints which are the 5th and 6th elements of the allocated array
atp9: a short int which is the 10th element of the allocated array

atb20: a short int which is at byte offset 20 of another allocated array
In this way, several columns can be specified, all of which are in a single array. NB: it is the
programmer’s responsibility to ensure that specification of a positive value for poff does not point
past the end of valid data.
read/write mode: "r" means that the column is read from an input file into user space by
FunTableRowGet(), "w" means that the column is written to an output file. Both can specified at the
same time.
offset: the offset into the user data to store this column. Typically, the macro
FUN_OFFSET(recname, colname) is used to define the offset into a record structure.

When all column arguments have been specified, a final NULL argument must added to signal the column
selection list.

As an alternative to the varargs FunColumnSelect() routine, a non-varargs routine called
FunColumnSelectArr() also is available. The first three arguments (fun, size, plist) of this routine are the
same as in FunColumnSelect(). Instead of a variable argument list, however, FunColumnSelectArr() takes
5 additional arguments. The first 4 arrays arguments contain the names, types, modes, and offsets,
respectively, of the columns being selected. The final argument is the number of columns that are
contained in these arrays. It is the user’s responsibility to free string space allocated in these arrays.

68

Consider the following example:

 typedef struct evstruct{
 int status;
 float pi, pha, *phas;
 double energy;
 } *Ev, EvRec;

 FunColumnSelect(fun, sizeof(EvRec), NULL,
 "status", "J", "r", FUN_OFFSET(Ev, status),
 "pi", "E", "r", FUN_OFFSET(Ev, pi),
 "pha", "E", "r", FUN_OFFSET(Ev, pha),
 "phas", "@9E", "r", FUN_OFFSET(Ev, phas),
 NULL);

Each time a row is read into the Ev struct, the "status" column is converted to an int data type (regardless
of its data type in the file) and stored in the status value of the struct. Similarly, "pi" and "pha", and the
phas vector are all stored as floats. Note that the "@" sign indicates that the "phas" vector is a pointer to a
9 element array, rather than an array allocated in the struct itself. The row record can then be processed as
required:

 /* get rows -- let routine allocate the row array */
 while((ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got))){
 /* process all rows */
 for(i=0; i<got; i++){
 /* point to the i’th row */
 ev = ebuf+i;
 ev->pi = (ev->pi+.5);
 ev->pha = (ev->pi-.5);
 }

FunColumnSelect() can also be called to define "writable" columns in order to generate a FITS Binary
Table, without reference to any input columns. For example, the following will generate a 4-column FITS
binary table when FunTableRowPut() is used to write Ev records:

 typedef struct evstruct{
 int status;
 float pi, pha
 double energy;
 } *Ev, EvRec;

 FunColumnSelect(fun, sizeof(EvRec), NULL,
 "status", "J", "w", FUN_OFFSET(Ev, status),
 "pi", "E", "w", FUN_OFFSET(Ev, pi),
 "pha", "E", "w", FUN_OFFSET(Ev, pha),
 "energy", "D", "w", FUN_OFFSET(Ev, energy),
 NULL);

All columns are declared to be write-only, so presumably the column data is being generated or read from
some other source.

In addition, FunColumnSelect() can be called to define both "readable" and "writable" columns. In this
case, the "read" columns are associated with an input file, while the "write" columns are associated with
the output file. Of course, columns can be specified as both "readable" and "writable", in which case they

69

are read from input and (possibly modified data values are) written to the output. The FunColumnSelect()
call itself is made by passing the input Funtools handle, and it is assumed that the output file has been
opened using this input handle as its Funtools reference handle.

Consider the following example:

 typedef struct evstruct{
 int status;
 float pi, pha, *phas;
 double energy;
 } *Ev, EvRec;

 FunColumnSelect(fun, sizeof(EvRec), NULL,
 "status", "J", "r", FUN_OFFSET(Ev, status),
 "pi", "E", "rw", FUN_OFFSET(Ev, pi),
 "pha", "E", "rw", FUN_OFFSET(Ev, pha),
 "phas", "@9E", "rw", FUN_OFFSET(Ev, phas),
 "energy", "D", "w", FUN_OFFSET(Ev, energy),
 NULL);

As in the "read" example above, each time an row is read into the Ev struct, the "status" column is
converted to an int data type (regardless of its data type in the file) and stored in the status value of the
struct. Similarly, "pi" and "pha", and the phas vector are all stored as floats. Since the "pi", "pha", and
"phas" variables are declared as "writable" as well as "readable", they also will be written to the output
file. Note, however, that the "status" variable is declared as "readable" only, and hence it will not be
written to an output file. Finally, the "energy" column is declared as "writable" only, meaning it will not
be read from the input file. In this case, it can be assumed that "energy" will be calculated in the program
before being output along with the other values.

In these simple cases, only the columns specified as "writable" will be output using FunTableRowPut().
However, it often is the case that you want to merge the user columns back in with the input columns,
even in cases where not all of the input column names are explicitly read or even known. For this
important case, the merge=[type] keyword is provided in the plist string.

The merge=[type] keyword tells Funtools to merge the columns from the input file with user columns on
output. It is normally used when an input and output file are opened and the input file provides the
Funtools reference handle for the output file. In this case, each time FunTableRowGet() is called, the raw
input rows are saved in a special buffer. If FunTableRowPut() then is called (before another call to
FunTableRowGet()), the contents of the raw input rows are merged with the user rows according to the
value of type as follows:

update: add new user columns, and update value of existing ones (maintaining the input data type)
replace: add new user columns, and replace the data type and value of existing ones. (Note that if
tlmin/tlmax values are not specified in the replacing column, but are specified in the original column
being replaced, then the original tlmin/tlmax values are used in the replacing column.)
append: only add new columns, do not "replace" or "update" existing ones

Consider the example above. If merge=update is specified in the plist string, then "energy" will be added
to the input columns, and the values of "pi", "pha", and "phas" will be taken from the user space (i.e., the
values will be updated from the original values, if they were changed by the program). The data type for

70

"pi", "pha", and "phas" will be the same as in the original file. If merge=replace is specified, both the data
type and value of these three input columns will be changed to the data type and value in the user
structure. If merge=append is specified, none of these three columns will be updated, and only the
"energy" column will be added. Note that in all cases, "status" will be written from the input data, not
from the user record, since it was specified as read-only.

Standard applications will call FunColumnSelect() to define user columns. However, if this routine is not
called, the default behavior is to transfer all input columns into user space. For this purpose a default
record structure is defined such that each data element is properly aligned on a valid data type boundary.
This mechanism is used by programs such as fundisp and funtable to process columns without needing to
know the specific names of those columns. It is not anticipated that users will need such capabilities
(contact us if you do!)

By default, FunColumnSelect() reads/writes rows to/from an "array of structs", where each struct contains
the column values for a single row of the table. This means that the returned values for a given column are
not contiguous. You can set up the IO to return a "struct of arrays" so that each of the returned columns
are contiguous by specifying org=structofarrays (abbreviation: org=soa) in the plist. (The default case is
org=arrayofstructs or org=aos.)

For example, the default setup to retrieve rows from a table would be to define a record structure for a
single event and then call FunColumnSelect() as follows:

 typedef struct evstruct{
 short region;
 double x, y;
 int pi, pha;
 double time;
 } *Ev, EvRec;

 got = FunColumnSelect(fun, sizeof(EvRec), NULL,
 "x", "D:10:10", mode, FUN_OFFSET(Ev, x),
 "y", "D:10:10", mode, FUN_OFFSET(Ev, y),
 "pi", "J", mode, FUN_OFFSET(Ev, pi),
 "pha", "J", mode, FUN_OFFSET(Ev, pha),
 "time", "1D", mode, FUN_OFFSET(Ev, time),
 NULL);

Subsequently, each call to FunTableRowGet() will return an array of structs, one for each returned row. If
instead you wanted to read columns into contiguous arrays, you specify org=soa:

 typedef struct aevstruct{
 short region[MAXROW];
 double x[MAXROW], y[MAXROW];
 int pi[MAXROW], pha[MAXROW];
 double time[MAXROW];
 } *AEv, AEvRec;

 got = FunColumnSelect(fun, sizeof(AEvRec), "org=soa",
 "x", "D:10:10", mode, FUN_OFFSET(AEv, x),
 "y", "D:10:10", mode, FUN_OFFSET(AEv, y),

71

 "pi", "J", mode, FUN_OFFSET(AEv, pi),
 "pha", "J", mode, FUN_OFFSET(AEv, pha),
 "time", "1D", mode, FUN_OFFSET(AEv, time),
 NULL);

Note that the only modification to the call is in the plist string.

Of course, instead of using staticly allocated arrays, you also can specify dynamically allocated pointers:

 /* pointers to arrays of columns (used in struct of arrays) */
 typedef struct pevstruct{
 short *region;
 double *x, *y;
 int *pi, *pha;
 double *time;
 } *PEv, PEvRec;

 got = FunColumnSelect(fun, sizeof(PEvRec), "org=structofarrays",
 "$region", "@I", mode, FUN_OFFSET(PEv, region),
 "x", "@D:10:10", mode, FUN_OFFSET(PEv, x),
 "y", "@D:10:10", mode, FUN_OFFSET(PEv, y),
 "pi", "@J", mode, FUN_OFFSET(PEv, pi),
 "pha", "@J", mode, FUN_OFFSET(PEv, pha),
 "time", "@1D", mode, FUN_OFFSET(PEv, time),
 NULL);

Here, the actual storage space is either allocated by the user or by the FunColumnSelect() call).

In all of the above cases, the same call is made to retrieve rows, e.g.:

 buf = (void *)FunTableRowGet(fun, NULL, MAXROW, NULL, &got);

However, the individual data elements are accessed differently. For the default case of an "array of
structs", the individual row records are accessed using:

 for(i=0; i<got; i++){
 ev = (Ev)buf+i;
 fprintf(stdout, "%.2f\t%.2f\t%d\t%d\t%.4f\t%.4f\t%21.8f\n",
 ev->x, ev->y, ev->pi, ev->pha, ev->dx, ev->dy, ev->time);
 }

For a struct of arrays or a struct of array pointers, we have a single struct through which we access
individual columns and rows using:

 aev = (AEv)buf;
 for(i=0; i<got; i++){
 fprintf(stdout, "%.2f\t%.2f\t%d\t%d\t%.4f\t%.4f\t%21.8f\n",
 aev->x[i], aev->y[i], aev->pi[i], aev->pha[i],
 aev->dx[i], aev->dy[i], aev->time[i]);
 }

Support for struct of arrays in the FunTableRowPut() call is handled analogously.

72

See the evread example code and evmerge example code for working examples of how
FunColumnSelect() is used.

FunColumnActivate - activate Funtools columns
 #include <funtools.h>

 void FunColumnActivate(Fun fun, char *s, char *plist)

The FunColumnActivate() routine determines which columns (set up by FunColumnSelect()) ultimately
will be read and/or written. By default, all columns that are selected using FunColumnSelect() are
activated. The FunColumnActivate() routine can be used to turn off/off activation of specific columns.

The first argument is the Fun handle associated with this set of columns. The second argument is a
space-delimited list of columns to activate or de-activate. Columns preceded by "+" are activated and
columns preceded by a "-" are de-activated. If a column is named without "+" or "-", it is activated. The
reserved strings "$region" and ’$n’ are used to activate a special columns containing the filter region value
and row value, respectively, associated with this row. For example, if a filter containing two circular
regions is specified as part of the Funtools file name, this column will contain a value of 1 or 2, depending
on which region that row was in. The reserved strings "$x" and "$y" are used to activate the current
binning columns. Thus, if the columns DX and DY are specified as binning columns:

 [sh $] fundisp foo.fits[bincols=(DX,DY)]

then "$x" and "$y" will refer to these columns in a call to FunColumnActivate().

In addition, if the activation string contains only columns to be activated, then the routine will de-activate
all other columns. Similarly, if the activation string contains only columns to de-activate, then the routine
will activate all other columns before activating the list. This makes it simple to change the activation state
of all columns without having to know all of the column names. For example:

"pi pha time" # only these three columns will be active
"-pi -pha -time" # all but these columns will be active
"pi -pha" # only pi is active, pha is not, others are not
"+pi -pha" # same as above
"pi -pha -time" # only pi is active, all others are not
"pi pha" # pha and pi are active, all others are not
"pi pha -x -y" # pha and pi are active, all others are not

You can use the column activation list to reorder columns, since columns are output in the order specified.
For example:

 # default output order
 fundisp snr.ev’[cir 512 512 .1]’
 X Y PHA PI TIME DX DY
 -------- -------- -------- -------- --------------------- -------- --------
 512 512 6 7 79493997.45854475 578 574
 512 512 8 9 79494575.58943175 579 573
 512 512 5 6 79493631.03866175 578 575
 512 512 5 5 79493290.86521725 578 575

73

 512 512 8 9 79493432.00990875 579 573

 # re-order the output by specifying explicit order
 fundisp snr.ev’[cir 512 512 .1]’ "time x y dy dx pi pha"
 TIME X Y DY DX PI PHA
 --------------------- -------- -------- -------- -------- -------- --------
 79493997.45854475 512 512 574 578 7 6
 79494575.58943175 512 512 573 579 9 8
 79493631.03866175 512 512 575 578 6 5
 79493290.86521725 512 512 575 578 5 5
 79493432.00990875 512 512 573 579 9 8

A "+" sign by itself means to activate all columns, so that you can reorder just a few columns without
specifying all of them:

 # reorder 3 columns and then output the rest
 fundisp snr.ev’[cir 512 512 .1]’ "time pi pha +"
 TIME PI PHA Y X DX DY
 --------------------- -------- -------- -------- -------- -------- --------
 79493997.45854475 7 6 512 512 578 574
 79494575.58943175 9 8 512 512 579 573
 79493631.03866175 6 5 512 512 578 575
 79493290.86521725 5 5 512 512 578 575
 79493432.00990875 9 8 512 512 579 573

The column activation/deactivation is performed in the order of the specified column arguments. This
means you can mix "+", "-" (which de-activates all columns) and specific column names to reorder and
select columns in one command. For example, consider the following:

 # reorder and de-activate
 fundisp snr.ev’[cir 512 512 .1]’ "time pi pha + -x -y"
 TIME PI PHA DX DY
 --------------------- -------- -------- -------- --------
 79493997.45854475 7 6 578 574
 79494575.58943175 9 8 579 573
 79493631.03866175 6 5 578 575
 79493290.86521725 5 5 578 575
 79493432.00990875 9 8 579 573

We first activate "time", "pi", and "pha" so that they are output first. We then activate all of the other
columns, and then de-activate "x" and "y". Note that this is different from:

 # probably not what you want ...
 fundisp snr.ev’[cir 512 512 .1]’ "time pi pha -x -y +"
 TIME PI PHA Y X DX DY
 --------------------- -------- -------- -------- -------- -------- --------
 79493997.45854475 7 6 512 512 578 574
 79494575.58943175 9 8 512 512 579 573
 79493631.03866175 6 5 512 512 578 575
 79493290.86521725 5 5 512 512 578 575
 79493432.00990875 9 8 512 512 579 573

Here, "x" and "y" are de-activated, but then all columns including "x" and "y" are again re-activated.

74

Typically, FunColumnActivate() uses a list of columns that are passed into the program from the
command line. For example, the code for funtable contains the following:

 char *cols=NULL;

 /* open the input FITS file */
 if(!(fun = FunOpen(argv[1], "rc", NULL)))
 gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);

 /* set active flag for specified columns */
 if(argc >= 4) cols = argv[3];
 FunColumnActivate(fun, cols, NULL);

The FunOpen() call sets the default columns to be all columns in the input file. The FunColumnActivate()
call then allows the user to control which columns ultimately will be activated (i.e., in this case, written to
the new file). For example:

 funtable test.ev foo.ev "pi pha time"

will process only the three columns mentioned, while:

 funtable test.ev foo.ev "-time"

will process all columns except "time".

If FunColumnActivate() is called with a null string, then the environment variable FUN_COLUMNS will
be used to provide a global value, if present. This is the reason why we call the routine even if no columns
are specified on the command line (see example above), instead of calling it this way:

 /* set active flag for specified columns */
 if(argc >= 4){
 FunColumnActivate(fun, argv[3], NULL);
 }

FunColumnLookup - lookup a Funtools column
 #include <funtools.h>

 int FunColumnLookup(Fun fun, char *s, int which,
 char **name, int *type, int *mode,
 int *offset, int *n, int *width)

The FunColumnLookup() routine returns information about a named (or indexed) column. The first
argument is the Fun handle associated with this set of columns. The second argument is the name of the
column to look up. If the name argument is NULL, the argument that follows is the zero-based index into
the column array of the column for which information should be returned. The next argument is a pointer
to a char *, which will contain the name of the column. The arguments that follow are the addresses of int
values into which the following information will be returned:

type: data type of column:
A: ASCII characters
B: unsigned 8-bit char

75

I: signed 16-bit int
U: unsigned 16-bit int (not standard FITS)
J: signed 32-bit int
V: unsigned 32-bit int (not standard FITS)
E: 32-bit float
D: 64-bit float

mode: bit flag status of column, including:
COL_ACTIVE 1 is column activated?
COL_IBUF 2 is column in the raw input data?
COL_PTR 4 is column a pointer to an array?
COL_READ 010 is read mode selected?
COL_WRITE 020 is write mode selected?
COL_REPLACEME 040 is this column being replaced by user data?

offset: byte offset in struct
n: number of elements (i.e. size of vector) in this column
width : size in bytes of this column

If the named column exists, the routine returns a positive integer, otherwise zero is returned. (The positive
integer is the index+1 into the column array where this column was located.) If NULL is passed as the
return address of one (or more) of these values, no data is passed back for that information. For example:

 if(!FunColumnLookup(fun, "phas", 0, NULL NULL, NULL, NULL, &npha, NULL))
 gerror(stderr, "can’t find phas column\n");

only returns information about the size of the phas vector.

FunTableRowGet - get Funtools rows
 #include <funtools.h>

 void *FunTableRowGet(Fun fun, void *rows, int maxrow, char *plist,
 int *nrow)

The FunTableRowGet() routine retrieves rows from a Funtools binary table or raw event file, and places
the values of columns selected by FunColumnSelect() into an array of user structs. Selected column values
are automatically converted to the specified user data type (and to native data format) as necessary.

The first argument is the Fun handle associated with this row data. The second rows argument is the array
of user structs into which the selected columns will be stored. If NULL is passed, the routine will
automatically allocate space for this array. (This includes proper allocation of pointers within each struct,
if the "@" pointer type is used in the selection of columns. Note that if you pass NULL in the second
argument, you should free this space using the standard free() system call when you are finished with the
array of rows.) The third maxrow argument specifies the maximum number of rows to be returned. Thus,
if rows is allocated by the user, it should be at least of size maxrow*sizeof(evstruct).

76

The fourth plist argument is a param list string. Currently, the keyword/value pair "mask=transparent" is
supported in the plist argument. If this string is passed in the call’s plist argument, then all rows are passed
back to the user (instead of just rows passing the filter). This is only useful when FunColumnSelect() also
is used to specify "$region" as a column to return for each row. In such a case, rows found within a region
have a returned region value greater than 0 (corresponding to the region id of the region in which they are
located), rows passing the filter but not in a region have region value of -1, and rows not passing any filter
have region value of 0. Thus, using "mask=transparent" and the returned region value, a program can
process all rows and decide on an action based on whether a given row passed the filter or not.

The final argument is a pointer to an int variable that will return the actual number of rows returned. The
routine returns a pointer to the array of stored rows, or NULL if there was an error. (This pointer will be
the same as the second argument, if the latter is non-NULL).

 /* get rows -- let routine allocate the row array */
 while((buf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got))){
 /* process all rows */
 for(i=0; i<got; i++){
 /* point to the i’th row */
 ev = buf+i;
 /* rearrange some values. etc. */
 ev->energy = (ev->pi+ev->pha)/2.0;
 ev->pha = -ev->pha;
 ev->pi = -ev->pi;
 }
 /* write out this batch of rows */
 FunTableRowPut(fun2, buf, got, 0, NULL);
 /* free row data */
 if(buf) free(buf);
 }

As shown above, successive calls to FunTableRowGet() will return the next set of rows from the input file
until all rows have been read, i.e., the routine behaves like sequential Unix I/O calls such as fread(). See
evmerge example code for a more complete example.

Note that FunTableRowGet() also can be called as FunEventsGet(), for backward compatibility.

FunTableRowPut - put Funtools rows
int FunTableRowPut(Fun fun, void *rows, int nev, int idx, char *plist)

The FunTableRowPut() routine writes rows to a FITS binary table, taking its input from an array of user
structs that contain column values selected by a previous call to FunColumnSelect(). Selected column
values are automatically converted from native data format to FITS data format as necessary.

The first argument is the Fun handle associated with this row data. The second rows argument is the array
of user structs to output. The third nrow argument specifies the number number of rows to write. The
routine will write nrow records, starting from the location specified by rows.

The fourth idx argument is the index of the first raw input row to write, in the case where rows from the
user buffer are being merged with their raw input row counterparts (see below). Note that this idx value is
has nothing to do with the row buffer specified in argument 1. It merely matches the row being written

77

with its corresponding (hidden) raw row. Thus, if you read a number of rows, process them, and then write
them out all at once starting from the first user row, the value of idx should be 0:

 Ev ebuf, ev;
 /* get rows -- let routine allocate the row array */
 while((ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got))){
 /* process all rows */
 for(i=0; i<got; i++){
 /* point to the i’th row */
 ev = ebuf+i;
 ...
 }
 /* write out this batch of rows, starting with the first */
 FunTableRowPut(fun2, (char *)ebuf, got, 0, NULL);
 /* free row data */
 if(ebuf) free(ebuf);
 }

On the other hand, if you write out the rows one at a time (possibly skipping rows), then, when writing the
i’th row from the input array of rows, set idx to the value of i:

 Ev ebuf, ev;
 /* get rows -- let routine allocate the row array */
 while((ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got))){
 /* process all rows */
 for(i=0; i<got; i++){
 /* point to the i’th row */
 ev = ebuf+i;
 ...
 /* write out the current (i.e., i’th) row */
 FunTableRowPut(fun2, (char *)ev, 1, i, NULL);
 }
 /* free row data */
 if(ebuf) free(ebuf);
 }

The final argument is a param list string that is not currently used. The routine returns the number of rows
output. This should be equal to the value passed in the third nrowFunParamGet - get a Funtools param
value

 #include <funtools.h>

 int FunParamGetb(Fun fun, char *name, int n, int defval, int *got)

 int FunParamGeti(Fun fun, char *name, int n, int defval, int *got)

 double FunParamGetd(Fun fun, char *name, int n, double defval, int *got)

 char *FunParamGets(Fun fun, char *name, int n, char *defval, int *got)

The four routines FunParamGetb(), FunParamGeti(), FunParamGetd(), and FunParamGets(), return
the value of a FITS header parameter as a boolean, int, double, and string, respectively. The string
returned by FunParamGets() is a malloc’ed copy of the header value and should be freed when no longer
needed.

78

The first argument is the Fun handle associated with the FITS header being accessed. Normally, the
header is associated with the FITS extension that you opened with FunOpen(). However, you can use
FunInfoPut() to specify access of the primary header. In particular, if you set the
FUN_PRIMARYHEADER parameter to 1, then the primary header is used for all parameter access until
the value is reset to 0. For example:

 int val;
 FunParamGeti(fun, "NAXIS", 1, 0, &got); # current header
 val=1;
 FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch to ...
 FunParamGeti(fun, "NAXIS", 1, 0, &got); # ... primary header
 FunParamGeti(fun, "NAXIS", 2, 0, &got); # ... primary header
 val=0;
 FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch back to ...
 FunParamGeti(fun, "NAXIS", 2, 0, &got); # current header

Alternatively, you can use the FUN_PRIMARY macro to access parameters from the primary header on a
per-parameter basis:

 FunParamGeti(fun, "NAXIS1", 0, 0, &got); # current header
 FunParamGeti(FUN_PRIMARY(fun), "NAXIS1", 0, 0, &got); # primary header

NB: FUN_PRIMARY is deprecated. It makes use of a global parameter and therefore will not not
appropriate for threaded applications, when we make funtools thread-safe. We recommend use of
FunInfoPut() to switch between the extension header and the primary header.

For output data, access to the primary header is only possible until the header is written out, which usually
takes place when the first data are written.

The second argument is the name of the parameter to access. The third n argument, if non-zero, is an
integer that will be added as a suffix to the parameter name. This makes it easy to use a simple loop to
process parameters having the same root name. For example, to gather up all values of TLMIN and
TLMAX for each column in a binary table, you can use:

 for(i=0, got=1; got; i++){
 fun->cols[i]->tlmin = (int)FunParamGeti(fun, "TLMIN", i+1, 0.0, &got);
 fun->cols[i]->tlmax = (int)FunParamGeti(fun, "TLMAX", i+1, 0.0, &got);
 }

The fourth defval argument is the default value to return if the parameter does not exist. Note that the data
type of this parameter is different for each specific FunParamGet() call. The final got argument will be 0 if
no param was found. Otherwise the data type of the parameter is returned as follows:
FUN_PAR_UNKNOWN (’u’), FUN_PAR_COMMENT (’c’), FUN_PAR_LOGICAL (’l’),
FUN_PAR_INTEGER (’i’), FUN_PAR_STRING (’s’), FUN_PAR_REAL (’r’), FUN_PAR_COMPLEX
(’x’).

These routines return the value of the header parameter, or the specified default value if the header
parameter does not exist. The returned value is a malloc’ed string and should be freed when no longer
needed.

79

By default, FunParamGets() returns the string value of the named parameter. However, you can use
FunInfoPut() to retrieve the raw 80-character FITS card instead. In particular, if you set the
FUN_RAWPARAM parameter to 1, then card images will be returned by FunParamGets() until the value
is reset to 0.

Alternatively, if the FUN_RAW macro is applied to the name, then the 80-character raw FITS card is
returned instead. NB: FUN_RAW is deprecated. It makes use of a global parameter and therefore will
not not appropriate for threaded applications, when we make funtools thread-safe. We recommend use of
FunInfoPut() to switch between the extension header and the primary header.

Note that in addition to the behaviors described above, the routine FunParamGets() will return the 80
raw characters of the nth FITS card (including the comment) if name is specified as NULL and n is
positive. For example, to loop through all FITS header cards in a given extension and print out the raw
card, use:

 for(i=1; ;i++){
 if((s = FunParamGets(fun, NULL, i, NULL, &got))){
 fprintf(stdout, "%.80s\n", s);
 free(s);
 }
 else{
 break;
 }
 }

FunParamPut - put a Funtools param value
 #include <funtools.h>

 int FunParamPutb(Fun fun, char *name, int n, int value, char *comm,
 int append)

 int FunParamPuti(Fun fun, char *name, int n, int value, char *comm,
 int append)

 int FunParamPutd(Fun fun, char *name, int n, double value, int prec,
 char *comm, int append)

 int FunParamPuts(Fun fun, char *name, int n, char *value, char *comm,
 int append)

The four routines FunParamPutb(), FunParamPuti(), FunParamPutd(), and FunParamPuts(), will set
the value of a FITS header parameter as a boolean, int, double, and string, respectively.

The first argument is the Fun handle associated with the FITS header being accessed. Normally, the
header is associated with the FITS extension that you opened with FunOpen(). However, you can use
FunInfoPut() to specify that use of the primary header. In particular, if you set the
FUN_PRIMARYHEADER parameter to 1, then the primary header is used for all parameter access until
the value is reset to 0. For example:

80

 int val;
 FunParamPuti(fun, "NAXIS1", 0, 10, NULL, 1); # current header
 val=1;
 FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch to ...
 FunParamPuti(fun, "NAXIS1", 0, 10, NULL, 1); # primary header

(You also can use the deprecated FUN_PRIMARY macro, to access parameters from the primary header.)

The second argument is the name of the parameter. (In accordance with FITS standards, the special
names COMMENT and HISTORY , as well as blank names, are output without the "= " value indicator
in columns 9 and 10.

The third n argument, if non-zero, is an integer that will be added as a suffix to the parameter name. This
makes it easy to use a simple loop to process parameters having the same root name. For example, to set
the values of TLMIN and TLMAX for each column in a binary table, you can use:

 for(i=0; i<got; i++){
 FunParamPutd(fun, "TLMIN", i+1, tlmin[i], 7, "min column val", 1);
 FunParamPutd(fun, "TLMAX", i+1, tlmax[i], 7, "max column val", 1);
 }

The fourth defval argument is the value to set. Note that the data type of this argument is different for
each specific FunParamPut() call. The comm argument is the comment string to add to this header
parameter. Its value can be NULL. The final append argument determines whether the parameter is added
to the header if it does not exist. If set to a non-zero value, the header parameter will be appended to the
header if it does not exist. If set to 0, the value will only be used to change an existing parameter.

Note that the double precision routine FunParamPutd() supports an extra prec argument after the value
argument, in order to specify the precision when converting the double value to ASCII. In general a
20.[prec] format is used (since 20 characters are alloted to a floating point number in FITS) as follows: if
the double value being put to the header is less than 0.1 or greater than or equal to 10**(20-2-[prec]), then
%20.[prec]e format is used (i.e., scientific notation); otherwise %20.[prec]f format is used (i.e., numeric
notation).

As a rule, parameters should be set before writing the table or image. It is, however, possible to update the
value of an existing parameter after writing an image or table (but not to add a new one). Such updating
only works if the parameter already exists and if the output file is seekable, i.e. if it is a disk file or is
stdout being redirected to a disk file.

It is possible to add a new parameter to a header after the data has been written, but only if space has
previously been reserved. To reserve space, add a blank parameter whose value is the name of the
parameter you eventually will update. Then, when writing the new parameter, specify a value of 2 for the
append flag. The parameter writing routine will first look to update an existing parameter, as usual. If an
existing parameter is not found, an appropriately-valued blank parameter will be searched for and
replaced. For example:

81

 /* add blank card to be used as a place holder for IPAR1 update */
 FunParamPuts(fun, NULL, 0, "IPAR1", "INTEGER Param", 0);
 ...
 /* write header and data */
 FunTableRowPut(fun, events, got, 0, NULL);
 ...
 /* update param in file after writing data -- note append = 2 here */
 FunParamPuti(fun, "IPAR", 1, 400, "INTEGER Param", 2);

The parameter routines return a 1 if the routine was successful and a 0 on failure. In general, the major
reason for failure is that you did not set the append argument to a non-zero value and the parameter did
not already exist in the file.

FunInfoGet - get information from Funtools struct
 #include <funtools.h>

 int FunInfoGet(Fun fun, int type, char *addr, ...)

The FunInfoGet() routine returns information culled from the Funtools structure. The first argument is
the Fun handle from which information is to be retrieved. This first required argument is followed by a
variable length list of pairs of arguments. Each pair consists of an integer representing the type of
information to retrieve and the address where the information is to be stored. The list is terminated by a 0.
The routine returns the number of get actions performed.

The full list of available information is described below. Please note that only a few of these will be useful
to most application developers. For imaging applications, the most important types are:

 FUN_SECT_DIM1 int /* dim1 for section */
 FUN_SECT_DIM2 int /* dim2 for section */
 FUN_SECT_BITPIX int /* bitpix for section */

These would be used to determine the dimensions and data type of image data retrieved using the
FunImageGet() routine. For example:

 /* extract and bin the data section into an image buffer */
 buf = FunImageGet(fun, NULL, NULL);
 /* get required information from funtools structure.
 this should come after the FunImageGet() call, in case the call
 changed sect_bitpix */
 FunInfoGet(fun,
 FUN_SECT_BITPIX, &bitpix,
 FUN_SECT_DIM1, &dim1,
 FUN_SECT_DIM2, &dim2,
 0);
 /* loop through pixels and reset values below limit to value */
 for(i=0; i<dim1*dim2; i++){
 switch(bitpix){
 case 8:
 if(cbuf[i] <= blimit) cbuf[i] = bvalue;
 ...
 }

82

It is important to bear in mind that the call to FunImageGet() can change the value of
FUN_SECT_BITPIX (e.g. if "bitpix=n" is passed in the param list). Therefore, a call to FunInfoGet()
should be made after the call to FunImageGet(), in order to retrieve the updated bitpix value. See the
imblank example code for more details.

It also can be useful to retrieve the World Coordinate System information from the Funtools structure.
Funtools uses the the WCS Library developed by Doug Mink at SAO, which is available here. (More
information about the WCSTools project in general can be found here.) The FunOpen() routine initializes
two WCS structures that can be used with this WCS Library. Applications can retrieve either of these two
WCS structures using FunInfoGet():

 FUN_WCS struct WorldCoor * /* wcs structure, for image coordinates*/
 FUN_WCS0 struct WorldCoor * /* wcs structure, for physical coordinates */

The structure retrieved by FUN_WCS is a WCS library handle containing parameters suitable for use with
image coordinates, regardless of whether the data are images or tables. For this structure, the WCS
reference point (CRPIX) has been converted to image coordinates if the underlying file is a table (and
therefore in physical coordinates). You therefore must ensure that the positions being passed to a routine
like pix2wcs are in image coordinates. The FUN_WCS0 structure has not had its WCS reference point
converted to image coordinates. It therefore is useful when passing processing physical coordinates from a
table.

Once a WCS structure has been retrieved, it can be used as the first argument to the WCS library routines.
(If the structure is NULL, no WCS information was contained in the file.) The two important WCS
routines that Funtools uses are:

 #include <wcs.h>
 void pix2wcs (wcs,xpix,ypix,xpos,ypos)
 struct WorldCoor *wcs; /* World coordinate system structure */
 double xpix,ypix; /* x and y coordinates in pixels */
 double *xpos,*ypos; /* RA and Dec in degrees (returned) */

which converts pixel coordinates to sky coordinates, and:

 void wcs2pix (wcs, xpos, ypos, xpix, ypix, offscl)
 struct WorldCoor *wcs; /* World coordinate system structure */
 double xpos,ypos; /* World coordinates in degrees */
 double *xpix,*ypix; /* coordinates in pixels */
 int *offscl; /* 0 if within bounds, else off scale */

which converts sky coordinates to pixel coordinates. Again, please note that the wcs structure returned by
FUN_WCS assumes that image coordinates are passed to the pix2wcs routine, while FUN_WCS0
assumes that physical coordinates are passed.

Note that funtools.h file automatically includes wcs.h. An example program that utilizes these WCS
structure to call WCS Library routines is twcs.c.

The following is the complete list of information that can be returned:

83

ftp://cfa-ftp.harvard.edu/pub/gsc/WCSTools/home.html
http://tdc-www.harvard.edu/software/wcstools/

 name type comment
 --------- -------- ---
 FUN_FNAME char * /* file name */
 FUN_GIO GIO /* gio handle */
 FUN_HEADER FITSHead /* fitsy header struct */
 FUN_TYPE int /* TY_TABLE,TY_IMAGE,TY_EVENTS,TY_ARRAY */
 FUN_BITPIX int /* bits/pixel in file */
 FUN_MIN1 int /* tlmin of axis1 -- tables */
 FUN_MAX1 int /* tlmax of axis1 -- tables */
 FUN_MIN2 int /* tlmin of axis2 -- tables */
 FUN_MAX2 int /* tlmax of axis2 -- tables */
 FUN_DIM1 int /* dimension of axis1 */
 FUN_DIM2 int /* dimension of axis2 */
 FUN_ENDIAN int /* 0=little, 1=big endian */
 FUN_FILTER char * /* supplied filter */
 FUN_IFUN FITSHead /* pointer to reference header */
 FUN_IFUN0 FITSHead /* same as above, but no reset performed */
 /* image information */
 FUN_DTYPE int /* data type for images */
 FUN_DLEN int /* length of image in bytes */
 FUN_DPAD int /* padding to end of extension */
 FUN_DOBLANK int /* was blank keyword defined? */
 FUN_BLANK int /* value for blank */
 FUN_SCALED int /* was bscale/bzero defined? */
 FUN_BSCALE double /* bscale value */
 FUN_BZERO double /* bzero value */
 /* table information */
 FUN_NROWS int /* number of rows in file (naxis2) */
 FUN_ROWSIZE int /* size of user row struct */
 FUN_BINCOLS char * /* specified binning columns */
 FUN_OVERFLOW int /* overflow detected during binning? */
 /* array information */
 FUN_SKIP int /* bytes to skip in array header */
 /* section information */
 FUN_SECT_X0 int /* low dim1 value of section */
 FUN_SECT_X1 int /* hi dim1 value of section */
 FUN_SECT_Y0 int /* low dim2 value of section */
 FUN_SECT_Y1 int /* hi dim2 value of section */
 FUN_SECT_BLOCK int /* section block factor */
 FUN_SECT_BTYPE int /* ’s’ (sum), ’a’ (average) for binning */
 FUN_SECT_DIM1 int /* dim1 for section */
 FUN_SECT_DIM2 int /* dim2 for section */
 FUN_SECT_BITPIX int /* bitpix for section */
 FUN_SECT_DTYPE int /* data type for section */
 FUN_RAWBUF char * /* pointer to raw row buffer */
 FUN_RAWSIZE int /* byte size of raw row records */
 /* column information */
 FUN_NCOL int /* number of row columns defined */
 FUN_COLS FunCol /* array of row columns */
 /* WCS information */
 FUN_WCS struct WorldCoor * /* wcs structure, converted for images*/
 FUN_WCS0 struct WorldCoor * /* wcs structure, not converted */

Row applications would not normally need any of this information. An example of how these values can
be used in more complex programs is the evnext example code. In this program, the time value for each
row is changed to be the value of the succeeding row. The program thus reads the time values for a batch

84

of rows, changes the time values to be the value for the succeeding row, and then merges these changed
time values back with the other columns to the output file. It then reads the next batch, etc.

This does not work for the last row read in each batch, since there is no succeeding row until the next
batch is read. Therefore, the program saves that last row until it has read the next batch, then processes the
former before starting on the new batch. In order to merge the last row successfully, the code uses
FUN_RAWBUF to save and restore the raw input data associated with each batch of rows. Clearly, this
requires some information about how funtools works internally. We are happy to help you write such
programs as the need arises.

FunInfoPut - put information into a Funtools struct
 #include <funtools.h>

 int FunInfoPut(Fun fun, int type, char *addr, ...)

The FunInfoPut() routine puts information into a Funtools structure. The first argument is the Fun handle
from which information is to be retrieved. After this first required argument comes a variable length list of
pairs of arguments. Each pair consists of an integer representing the type of information to store and the
address of the new information to store in the struct. The variable list is terminated by a 0. The routine
returns the number of put actions performed.

The full list of available information is described above with the FunInfoPut() routine. Although use of
this routine is expected to be uncommon, there is one important situation in which it plays an essential
part: writing multiple extensions to a single output file.

For input, multiple extensions are handled by calling FunOpen() for each extension to be processed. When
opening multiple inputs, it sometimes is the case that you will want to process them and then write them
(including their header parameters) to a single output file. To accomplish this, you open successive input
extensions using FunOpen() and then call FunInfoPut() to set the Funtools reference handle of the output
file to that of the newly opened input extension:

 /* open a new input extension */
 ifun=FunOpen(tbuf, "r", NULL)))
 /* make the new extension the reference handle for the output file */
 FunInfoPut(ofun, FUN_IFUN, &ifun, 0);

Resetting FUN_IFUN has same effect as when a funtools handle is passed as the final argument to
FunOpen(). The state of the output file is reset so that a new extension is ready to be written. Thus, the
next I/O call on the output extension will output the header, as expected.

For example, in a binary table, after resetting FUN_IFUN you can then call FunColumnSelect() to select
the columns for output. When you then call FunImagePut() or FunTableRowPut(), a new extension will be
written that contains the header parameters from the reference extension. Remember to call FunFlush() to
complete output of a given extension.

A complete example of this capability is given in the evcol example code. The central algorithm is:

85

open the output file without a reference handle
loop: open each input extension in turn

set the reference handle for output to the newly opened input extension
read the input rows or image and perform processing
write new rows or image to the output file
flush the output
close input extension

close output file

Note that FunFlush() is called after processing each input extension in order to ensure that the proper
padding is written to the output file. A call to FunFlush() also ensures that the extension header is written
to the output file in the case where there are no rows to output.

If you wish to output a new extension without using a Funtools reference handle, you can call
FunInfoPut() to reset the FUN_OPS value directly. For a binary table, you would then call
FunColumnSelect() to set up the columns for this new extension.

 /* reset the operations performed on this handle */
 int ops=0;
 FunInfoPut(ofun, FUN_OPS, &ops, 0);
 FunColumnSelect(fun, sizeof(EvRec), NULL,
 "MYCOL", "J", "w", FUN_OFFSET(Ev, mycol),
 NULL);

Once the FUN_OPS variable has been reset, the next I/O call on the output extension will output the
header, as expected.

FunFlush - flush data to output file
 #include <funtools.h>

 void FunFlush(Fun fun, char *plist)

The FunFlush routine will flush data to a FITS output file. In particular, it can be called after all rows
have been written (using the FunTableRowPut() routine) in order to add the null padding that is required
to complete a FITS block. It also should be called after completely writing an image using FunImagePut()
or after writing the final row of an image using FunTableRowPut().

The plist (i.e., parameter list) argument is a string containing one or more comma-delimited
keyword=value parameters. If the plist string contains the parameter "copy=remainder" and the file was
opened with a reference file, which, in turn, was opened for extension copying (i.e. the input FunOpen()
mode also was "c" or "C"), then FunFlush also will copy the remainder of the FITS extensions from the
input reference file to the output file. This normally would be done only at the end of processing.

Note that FunFlush() is called with "copy=remainder" in the mode string by FunClose(). This means that
if you close the output file before the reference input file, it is not necessary to call FunFlush() explicitly,
unless you are writing more than one extension. See the evmerge example code. However, it is safe to call
FunFlush() more than once without fear of re-writing either the padding or the copied extensions.

86

In addition, if FunFlush() is called on an output file with the plist set to "copy=reference" and if the file
was opened with a reference file, the reference extension is written to the output file. This mechanism
provides a simple way to copy input extensions to an output file without processing the former. For
example, in the code fragment below, an input extension is set to be the reference file for a newly opened
output extension. If that reference extension is not a binary table, it is written to the output file:

 /* process each input extension in turn */
 for(ext=0; ;ext++){
 /* get new extension name */
 sprintf(tbuf, "%s[%d]", argv[1], ext);
 /* open input extension -- if we cannot open it, we are done */
 if(!(ifun=FunOpen(tbuf, "r", NULL)))
 break;
 /* make the new extension the reference handle for the output file */
 FunInfoPut(ofun, FUN_IFUN, &ifun, 0);
 /* if its not a binary table, just write it out */
 if(!(s=FunParamGets(ifun, "XTENSION", 0, NULL, &got)) ||
 strcmp(s, "BINTABLE")){
 if(s) free(s);
 FunFlush(ofun, "copy=reference");
 FunClose(ifun);
 continue;
 }
 else{
 /* process binary table */

 }
 }

FunClose - close a Funtools data file
 #include <funtools.h>

 void FunClose(Fun fun)

The FunClose() routine closes a previously-opened Funtools data file, freeing control structures. If a
Funtools reference handle was passed to the FunOpen() call for this file, and if copy mode also was
specified for that file, then FunClose() also will copy the remaining extensions from the input file to the
output file (if the input file still is open). Thus, we recommend always closing the output Funtools file
before the input file. (Alternatively, you can call FunFlush() explicitly).

FunRef: the Funtools Reference Handle

Summary
A description of how to use a Funtools reference handle to connect a Funtools input file to an output file.

87

Description
The Funtools reference handle connects a Funtools input file to a Funtools output file so that parameters
(or even whole extensions) can be copied from the one to the other. To make the connection, the Funtools
handle of the input file is passed to the final argument of the FunOpen() call for the output file:

 if(!(ifun = FunOpen(argv[1], "r", NULL)))
 gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
 if(!(ofun = FunOpen(argv[2], "w", ifun)))
 gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);

It does not matter what type of input or output file (or extension) is opened, or whether they are the same
type. When the output image or binary table is written using FunImagePut() or FunTableRowPut() an
appropriate header will be written first, with parameters copied from the input extension. Of course,
invalid parameters will be removed first, e.g., if the input is a binary table and the output is an image, then
binary table parameters such as TFORM, TUNIT, etc. parameters will not be copied to the output.

Use of a reference handle also allows default values to be passed to FunImagePut() in order to write out an
output image with the same dimensions and data type as the input image. To use the defaults from the
input, a value of 0 is entered for dim1, dim2, and bitpix. For example:

 fun = FunOpen(argv[1], "r", NULL);
 fun2 = FunOpen(argv[2], "w", fun);
 buf = FunImageGet(fun, NULL, NULL);
 ... process image data ...
 FunImagePut(fun2, buf, 0, 0, 0, NULL);

Of course, you often want to get information about the data type and dimensions of the image for
processing. The above code is equivalent to the following:

 fun = FunOpen(argv[1], "r", NULL);
 fun2 = FunOpen(argv[2], "w", fun);
 buf = FunImageGet(fun, NULL, NULL);
 FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2,
 FUN_SECT_BITPIX, &bitpix, 0);
 ... process image data ...
 FunImagePut(fun2, buf, dim1, dim2, bitpix, NULL);

It is possible to change the reference handle for a given output Funtools handle using the FunInfoPut()
routine:

 /* make the new extension the reference handle for the output file */
 FunInfoPut(fun2, FUN_IFUN, &fun, 0);

When this is done, Funtools specially resets the output file to start a new output extension, which is
connected to the new input reference handle. You can use this mechanism to process multiple input
extensions into a single output file, by successively opening the former and setting the reference handle
for the latter. For example:

88

 /* open a new output FITS file */
 if(!(fun2 = FunOpen(argv[2], "w", NULL)))
 gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);
 /* process each input extension in turn */
 for(ext=0; ;ext++){
 /* get new extension name */
 sprintf(tbuf, "%s[%d]", argv[1], ext);
 /* open it -- if we cannot open it, we are done */
 if(!(fun=FunOpen(tbuf, "r", NULL)))
 break;
 /* make the new extension the reference handle for the output file */
 FunInfoPut(fun2, FUN_IFUN, &fun, 0);
 ... process ...
 /* flush output extension (write padding, etc.) */
 FunFlush(fun2, NULL);
 /* close the input extension */
 FunClose(fun);
 }

In this example, the output file is opened first. Then each successive input extension is opened, and the
output reference handle is set to the newly opened input handle. After data processing is performed, the
output extension is flushed and the input extension is closed, in preparation for the next input extension.

Finally, a reference handle can be used to copy other extensions from the input file to the output file. Copy
of other extensions is controlled by adding a "C" or "c" to the mode string of the FunOpen() call of the
input reference file. If "C" is specified, then other extensions are always copied (i.e., copy is forced by
the application). If "c" is used, then other extensions are copied if the user requests copying by adding a
plus sign "+" to the extension name in the bracket specification. For example, the funtable program
utilizes user-specified "c" mode so that the second example below will copy all extensions:

 # copy only the EVENTS extension
 csh> funtable "test.ev[EVENTS,circle(512,512,10)]" foo.ev
 # copy ALL extensions
 csh> funtable "test.ev[EVENTS+,circle(512,512,10)]" foo.ev

When extension copy is specified in the input file, the call to FunOpen() on the input file delays the actual
file open until the output file also is opened (or until I/O is performed on the input file, which ever
happens first). Then, when the output file is opened, the input file is also opened and input extensions are
copied to the output file, up to the specific extension being opened. Processing of input and output
extensions then proceed.

When extension processing is complete, the remaining extensions need to be copied from input to output.
This can be done explicitly, using the FunFlush() call with the "copy=remaining" plist:

 FunFlush(fun, "copy=remaining");

Alternatively, this will happen automatically, if the output file is closed before the input file:

 /* we could explicitly flush remaining extensions that need copying */
 /* FunFlush(fun2, "copy=remaining"); */
 /* but if we close output before input, end flush is done automatically */
 FunClose(fun2);
 FunClose(fun);

89

Go to Funtools Help Index

Last updated: December 1, 2005

90

FunFiles: Funtools Data Files

Summary
This document describes the data file formats (FITS, array, raw events) as well as the file types (gzip,
socket, etc.) supported by Funtools.

Description
Funtools supports FITS images and binary tables, and binary files containing array (homogeneous) data or
event (heterogeneous) data. IRAF-style brackets are appended to the filename to specify various kinds of
information needed to characterize these data:

 file[ext|ind|ARRAY()|EVENTS(),section][filters]
 or
 file[ext|ind|ARRAY()|EVENTS(),section,filters]

where:

file is the Funtools file name
ext is the FITS extension name
ind is the FITS extension number
ARRAY() is an array specification
EVENTS() is an event specification
section is the image section specification
filters are spatial region and table (row) filters

Supported Data Formats
Funtools programs (and the underlying libraries) support the following data file formats:

FITS images (and image extensions)
FITS binary tables
binary files containing an array of homogeneous data
binary files containing events, i.e. records of heterogeneous data
column-based text files, which are documented here
non-disk files and lists of files

Information needed to identify and characterize the event or image data can be specified on the command
line using IRAF-style bracket notation appended to the filename:

 foo.fits # open FITS default extension
 image.fits[3] # open FITS extension #3
 events.fits[EVENTS] # open EVENTS extension
 array.file[ARRAY(s1024)] # open 1024x1024 short array
 events.file[EVENTS(x:1024,y:1024...)] # open non-FITS event list

91

Note that in many Unix shells (e.g., csh and tcsh), filenames must be enclosed in quotes to protect the
brackets from shell processing.

FITS Images and Binary Tables
When FunOpen() opens a FITS file without a bracket specifier, the default behavior is to look for a valid
image in the primary HDU. In the absence of a primary image, Funtools will try to open an extension
named either EVENTS or STDEVT, if one of these exists. This default behavior supports both FITS
image processing and standard X-ray event list processing (which, after all, is what we at SAO/HEAD
do).

In order to open a FITS binary table or image extension explicitly, it is necessary to specify either the
extension name or the extension number in brackets:

 foo.fits[1] # open extension #1: the primary HDU
 foo.fits[3] # open extension #3 of a FITS file
 foo.fits[GTI] # open GTI extension of a FITS file

The ext argument specifies the name of the FITS extension (i.e. the value of the EXTENSION header
parameter in a FITS extension), while the index specifies the value of the FITS EXTVER header
parameter. Following FITS conventions, extension numbers start at 1.

When a FITS data file is opened for reading using FunOpen(), the specified extension is automatically
located and is used to initialize the Funtools internal data structures.

Non-FITS Raw Event Files
In addition to FITS tables, Funtools programs and libraries can operate on non-FITS files containing
heterogeneous event records. To specify such an event file, use:

file[EVENTS(event-spec)]
file[EVENTS()]

where event-spec is a string that specified the names, data types, and optional image dimensions for each
element of the event record:

[name]:[n][type]:[(lodim:)hidim]

Data types follow standard conventions for FITS binary tables, but include two extra unsigned types (’U’
and ’V’):

B -- unsigned 8-bit char
I -- signed 16-bit int
J -- signed 32-bit int
K -- signed 64-bit int
E -- 32-bit float
D -- 64-bit float
U -- unsigned 16-bit int

92

V -- unsigned 32-bit int

An optional integer value n can be prefixed to the type to indicate that the element is an array of n values.
For example:

 foo.fits[EVENTS(x:I,y:I,status:4J)]

defines x and y as 16-bit ints and status as an array of 4 32-bit ints.

Furthermore, image dimensions can be attached to the event specification in order to tell Funtools how to
bin the events into an image. They follow the conventions for the FITS TLMIN/TLMAX keywords. If the
low image dimension is not specified, it defaults to 1. Thus:

RAWX:J:1:100
RAWX:J:100

both specify that the dimension of this column runs from 1 to 100.

NB: it is required that all padding be specified in the record definition. Thus, when writing out whole C
structs instead of individual record elements, great care must be taken to include the compiler-added
padding in the event definition.

For example, suppose a FITS binary table has the following set of column definitions:

 TTYPE1 = ’X ’ / Label for field
 TFORM1 = ’1I ’ / Data type for field
 TLMIN1 = 1 / Min. axis value
 TLMAX1 = 10 / Max. axis value
 TTYPE2 = ’Y ’ / Label for field
 TFORM2 = ’1I ’ / Data type for field
 TLMIN2 = 2 / Min. axis value
 TLMAX2 = 11 / Max. axis value
 TTYPE3 = ’PHA ’ / Label for field
 TFORM3 = ’1I ’ / Data type for field
 TTYPE4 = ’PI ’ / Label for field
 TFORM4 = ’1J ’ / Data type for field
 TTYPE5 = ’TIME ’ / Label for field
 TFORM5 = ’1D ’ / Data type for field
 TTYPE6 = ’DX ’ / Label for field
 TFORM6 = ’1E ’ / Data type for field
 TLMIN6 = 1 / Min. axis value
 TLMAX6 = 10 / Max. axis value
 TTYPE7 = ’DY ’ / Label for field
 TFORM7 = ’1E ’ / Data type for field
 TLMIN7 = 3 / Min. axis value
 TLMAX7 = 12 / Max. axis value

An raw event file containing these same data would have the event specification:

 EVENTS(X:I:10,Y:I:2:11,PHA:I,PI:J,TIME:D,DX:E:10,DY:E:3:12)

93

If no event specification string is included within the EVENTS() operator, then the event specification is
taken from the EVENTS environment variable:

 setenv EVENTS "X:I:10,Y:I:10,PHA:I,PI:J,TIME:D,DX:E:10,DY:E:10"

In addition to knowing the data structure, it is necessary to know the endian ordering of the data, i.e.,
whether or not the data is in bigendian format, so that we can convert to the native format for this
platform. This issue does not arise for FITS Binary Tables because all FITS files use big-endian ordering,
regardless of platform. But for non-FITS data, big-endian data produced on a Sun workstation but read on
a Linux PC needs to be byte-swapped, since PCs use little-endian ordering. To specify an ordering, use the
bigendian= or endian= keywords on the command-line or the EVENTS_BIGENDIAN or
EVENTS_ENDIAN environment variables. The value of the bigendian variables should be "true" or
"false", while the value of the endian variables should be "little" or "big".

For example, a PC can access data produced by a Sun using:

 hrc.nepr[EVENTS(),bigendian=true]
or
 hrc.nepr[EVENTS(),endian=big]
or
 setenv EVENTS_BIGENDIAN true
or
 setenv EVENTS_ENDIAN big

If none of these are specified, the data are assumed to follow the format for that platform and no
byte-swapping is performed.

Non-FITS Array Files
In addition to FITS images, Funtools programs and libraries can operate on non-FITS files containing
arrays of homogeneous data. To specify an array file, use:

file[ARRAY(array-spec)]
file[ARRAY()]

where array-spec is of the form:

[type][dim1][.dim2][:skip][endian]

and where [type] is:

b (8-bit unsigned char)
s (16-bit short int)
u (16-bit unsigned short int)
i (32-bit int)
r,f (32-bit float)
d (64-bit float)

94

The dim1 specification is required, but dim2 is optional and defaults to dim1. The skip specification is
optional and defaults to 0. The optional endian specification can be ’l’ or ’b’ and defaults to the endian
type for the current machine.

If no array specification is included within the ARRAY() operator, then the array specification is taken
from the ARRAY environment variable. For example:

 foo.arr[ARRAY(r512)] # bitpix=-32 dim1=512 dim2=512
 foo.arr[ARRAY(r512.400)] # bitpix=-32 dim1=512 dim2=400
 foo.arr[ARRAY(r512.400]) # bitpix=-32 dim1=512 dim2=400
 foo.arr[ARRAY(r512.400:2880)] # bitpix=-32 dim1=512 dim2=400 skip=2880
 foo.arr[ARRAY(r512l)] # bitpix=-32 dim1=512 dim2=512 endian=little
 setenv ARRAY "r512.400:2880"
 foo.arr[ARRAY()] # bitpix=-32 dim1=512 dim2=400 skip=2880

Specifying Image Sections
Once a data file (and possibly, a FITS extension) has been specified, the next (optional) part of a bracket
specification can be used to select image section information, i.e., to specify the x,y limits of an image
section, as well as the blocking factor to apply to that section. This information can be added to any file
specification but only is used by Funtools image processing routines.

The format of the image section specification is one of the following:

file[xy0:xy1,block]
file[x0:x1,y0:y1,block]
file[x0:x1,*,block]
file[*,y0:y1,block]
file[*,block]

where the limit values can be ints or "*" for default. A single "*" can be used instead of val:val, as shown.
Note that blocking is applied to the section after it is extracted.

In addition to image sections specified by the lo and hi x,y limits, image sections using center positions
can be specified:

file[dim1@xcen,dim2@ycen]
file[xdim2@xcen@ycen]
file[dim1@xcen,dim2@ycen,block]
file[dim@xcen@ycen,block]

Note that the (float) values for dim, dim1, dim2, xcen, ycen must be specified or else the expression does
not make sense!

In all cases, block is optional and defaults to 1. An ’s’ or ’a’ can be appended to signify "sum" or
"average" blocking (default is "sum"). Section specifications are given in image coordinates by default. If
you wish to specify physical coordinates, add a ’p’ as the last character of the section specification, before
the closing bracket. For example:

95

 file[-8:-7,-8:-7p]

 file[-8:-7,-8:-7,2p]

A section can be specified in any Funtools file name. If the operation to be applied to that file is an
imaging operation, then the specification will be utilized. If the operation is purely a table operation, then
the section specification is ignored.

Do not be confused by:

 foo.fits[2]
 foo.fits[*,2]

The former specifies opening the second extension of the FITS file. The latter specifies application of
block 2 to the image section.

Note that the section specification must come after any of FITS ext name or ind number, but all sensible
defaults are supported:

file[ext]
file[ext,index]
file[index]
file[ext,section]
file[ext,index,section]
file[index,section]
file[section]

Binning FITS Binary Tables and Non-FITS Event Files
If a FITS binary table or a non-FITS raw event file is to be binned into a 2D image (e.g., using the
funimage program), it is necessary to specify the two columns to be used for the binning, as well as the
dimensions of the image. Funtools first looks for a specifier of the form:

 bincols=([xnam[:tlmin[:tlmax:[binsiz]]]],[ynam[:tlmin[:tlmax[:binsiz]]]])

in bracket syntax, and uses the column names thus specified. The tlmin, tlmax, and binsiz specifiers
determine the image binning dimensions using:

 dim = (tlmax - tlmin)/binsiz (floating point data)
 dim = (tlmax - tlmin)/binsiz + 1 (integer data)

These tlmin, tlmax, and binsiz specifiers can be omitted if TLMIN, TLMAX, and TDBIN header
parameters are present in the FITS binary table header, respectively. If only one parameter is specified, it
is assumed to be tlmax, and tlmin defaults to 1. If two parameters are specified, they are assumed to be
tlmin and tlmax. For example, to bin an HRC event list columns "VPOS" and "UPOS", use:

96

 hrc.nepr[bincols=(VPOS,UPOS)]

or

 hrc.nepr[bincols=(VPOS:49152,UPOS:4096)]

Note that you can optionally specify the dimensions of these columns to cover cases where neither
TLMAX keywords are defined in the header. If either dimension is specified, then both must be specified.

You can set the FITS_BINCOLS or EVENTS_BINCOLS environment variable as an alternative to adding
the "bincols=" specifier to each file name for FITS binary tables and raw event files, respectively. If no
binning keywords or environment variables are specified, or if the specified columns are not in the binary
table, the Chandra parameters CPREF (or PREFX) are searched for in the FITS binary table header.
Failing this, columns named "X" and "Y" are sought. If these are not found, the code looks for columns
containing the characters "X" and "Y". Thus, you can bin on "DETX" and "DETX" columns without
specifying them, if these are the only column names containing the "X" and "Y" characters.

Ordinarily, each event or row contributes one count to an image pixel during the 2D binning process.
Thus, if five events all have the same (x,y) position, the image pixel value for that position will have a
value of five. It is possible to specify a variable contribution for each event by using the vcol=[colname]
filter spec:

 vcol=[colname]

The vcol colname is a column containing a numeric value in each event row that will be used as the
contribution of the given event to its image pixel. For example, consider an event file that has the
following content:

 x:e:4 y:e:4 v:e
 ------ ------ ----
 1 1 1.0
 2 2 2.0
 3 3 3.0
 4 4 0.0
 1 1 1.0
 2 2 2.0
 3 3 3.0
 4 4 4.0

There are two events with x,y value of (1,1) so ordinarily a 2D image will have a value of 2 in the (1,1)
pixel. If the v column is specified as the value column:

 foo.fits’[vcol=v]’

then each pixel will contain the additive sum of the associated (x,y) column values from the v column. For
example, image pixel (1,1) will contain 1. + 1. = 2, image pixel (2,2) will contain (2 + 2) = 4, etc.

An important variation on the use of a value column to specify the contribution an event makes to an
image pixel is when the value column contains the reciprocal of the event contribution. For this case, the
column name should be prefixed with a / (divide sign) thus:

97

 foo.fits’[vcol=/v]’

Each image pixel value will then be the sum of the reciprocals of the value column. A zero in the value
column results in NaN (not a number). Thus, in the above example, image pixel (1.1) will contain 1/1 +
1/1 = 2, image pixel (2,2) will contain (1/2 + 1/2) = 1, etc. Image pixel (4,4) will contain (1/0 + 1/4) =
NaN.

You can set the FITS_VCOL or EVENTS_VCOL environment variable as an alternative to adding the
"vcol=" specifier to each file name for FITS binary tables and raw event files, respectively.

Finally, when binning events, the data type of the resulting 2D image must be specified. This can be done
with the "bitpix=[n]" keyword in the bracket specification. For example:

 events.fits[bincols=(VPOS,UPOS),bitpix=-32]

will create a floating point image binned on columns VPOS and UPOS. If no bitpix keyword is specified,
bitpix=32 is assumed. As with bincols values, you also can use the FITS_BITPIX and EVENTS_BITPIX
environment variables to set this value for FITS binary tables and raw event files, respectively.

The funimage program also allows you to create a 1D image projection along any column of a table by
using the bincols=[column] filter specification and specifying a single column. For example, the
following command projects a 1D image along the chipx column of a table:

 funimage ev.fits’[bincols=chipx]’ im.fits

See funimage for more information about creating 1D and 2D images.

Finally, please note that Funtools supports most FITS standards. We will add missing support as required
by the community. In general, however, we do not support non-standard extensions. For example, we
sense the presence of the binary table ’variable length array’ proposed extension and we pass it along
when copying and filtering files, but we do not process it. We will add support for new standards as they
become official.

Table and Spatial Region Filters
Note that, in addition extensions and image sections, Funtools bracket notation can be used to specify
table and spatial region filters. These filters are always placed after the image section information. They
can be specified in the same bracket or in a separate bracket immediately following:

file[ext|ind|ARRAY()|EVENTS(),section][filters]
file[ext|ind|ARRAY()|EVENTS(),section,filters]

where:

file is the Funtools file name
ARRAY() is an array specification
EVENTS() is an event list specification
ext is the FITS extension name
ind is the FITS extension number

98

section is the image section to extract
filters are spatial region and table (row) filters to apply

The topics of table and region filtering are covered in detail in:

Table Filtering
Spatial Region Filtering

Disk Files and Other Supported File Types
The specified file usually is an ordinary disk file. In addition, gzip’ed files are supported in Funtools:
gzip’ed input files are automatically uncompressed as they are read, and gzip’ed output files are
compressed as they are written. NB: if a FITS binary table is written in gzip format, the number of rows in
the table will be set to -1. Such a file will work with Funtools programs but will not work with other FITS
programs such as ds9.

The special keywords "stdin" and "stdout" designate Unix standard input and standard output,
respectively. The string "-" (hyphen) will be taken to mean "stdin" if the file is opened for reading and
"stdout" if the file is opened for writing.

A file also can be an INET socket on the same or another machine using the syntax:

 machine:port

Thus, for example:

 karapet:1428

specifies that I/O should be performed to/from port 1428 on the machine karapet. If no machine name is
specified, the default is to use the current machine:

 :1428

This means to open port 1428 on the current machine. Socket support allows you to generate a distributed
pipe:

 on karapet: funtask1 in.fits bynars:1428
 on bynars: funtask2 :1428 out.fits

The socket mechanism thus supports simple parallel processing using process decomposition. Note that
parallel processing using data decomposition is supported via the section specifier (see below), and the
row# specifier, which is part of Table Filtering.

A file also can be a pointer to shared memory using the syntax:

 shm:[id|@key][:size]

A shared memory segment is specified with a shm: prefix, followed by either the shared memory id or the
shared memory key (where the latter is prefixed by the ’@’ character). The size (in bytes) of the shared
memory segment can then be appended (preceded by the ’:’ character). If the size specification is absent,

99

the code will attempt to determine the length automatically. If the open mode contains the string "w+",
then the memory segment will be created if it does not exist. (It also will be released and deleted when the
file is closed.) In the case where a memory segment is being created, the length of the segment is required.

A file also can be Unix piped command (i.e. a program to run) using the syntax:

 "pipe: command arg1 ... argn"

The output from the command must be a valid FITS file. It is important to use quotes to protect spaces so
that command arguments are passed correctly. A silly example is:

 fundisp "pipe: funtable ’foo.fits[cir 512 512 .1]’ stdout"

This seemed like a good idea at the time ...

Lists of Files
Funtools also will process a list of files as a single file using the syntax:

 "list: file1 file2 ... filen"

The files in the list are separated by whitespace. Any of the above file types can be used. For example, if
two files, foo1.fits and foo2.fits, are part of the same observation, they can be processed as a single file
(using their own filters):

 fundisp "list: foo1.fits[cir(512,512,10)] foo2.fits[cir(511,511,10)]"
 X Y PHA PI TIME DX DY
 -------- -------- -------- -------- --------------------- -------- --------
 512 512 6 7 79493997.45854475 578 574
 512 512 8 9 79494575.58943175 579 573
 512 512 5 6 79493631.03866175 578 575
 512 512 5 5 79493290.86521725 578 575
 512 512 8 9 79493432.00990875 579 573
 511 511 5 5 79488631.09462625 580 575
 511 511 10 11 79488780.60006675 580 573
 511 511 4 4 79494562.35474326 580 575
 511 511 6 6 79488203.01561825 580 575
 511 511 6 6 79488017.99730176 580 575
 511 511 4 4 79494332.45355175 580 575
 511 511 9 10 79492685.94014275 581 574
 511 511 5 5 79487708.71298325 580 575
 511 511 8 9 79493719.00160225 581 573

Again, note that it is important to avoid spaces in the filters because the list separator also is whitespace.
To protect whitespace in a filter, enclose the file specification in quotes:

 fundisp "list: ’foo1.fits[cir 512 512 .1]’ foo2.fits[cir(511,511,.1)]"

Go to Funtools Help Index

100

Last updated: February 15, 2006

101

Funtext: Support for Column-based Text Files

Summary
This document contains a summary of the options for processing column-based text files.

Description
Funtools will automatically sense and process "standard" column-based text files as if they were FITS
binary tables without any change in Funtools syntax. In particular, you can filter text files using the same
syntax as FITS binary tables:

 fundisp foo.txt’[cir 512 512 .1]’
 fundisp -T foo.txt > foo.rdb
 funtable foo.txt’[pha=1:10,cir 512 512 10]’ foo.fits

The first example displays a filtered selection of a text file. The second example converts a text file to an
RDB file. The third example converts a filtered selection of a text file to a FITS binary table.

Text files can also be used in Funtools image programs. In this case, you must provide binning parameters
(as with raw event files), using the bincols keyword specifier:

 bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]

For example:

 funcnts foo’[bincols=(x:1024,y:1024)]’ "ann 512 512 0 10 n=10"

Standard Text Files
Standard text files have the following characteristics:

Optional comment lines start with #
Optional blank lines are considered comments
An optional table header consists of the following (in order):

a single line of alpha-numeric column names
an optional line of unit strings containing the same number of cols
an optional line of dashes containing the same number of cols

Data lines follow the optional header and (for the present) consist of the same number of columns as
the header.
Standard delimiters such as space, tab, comma, semi-colon, and bar.

Examples:

102

 # rdb file
 foo1 foo2 foo3 foos
 ---- ---- ---- ----
 1 2.2 3 xxxx
 10 20.2 30 yyyy

 # multiple consecutive whitespace and dashes
 foo1 foo2 foo3 foos
 --- ---- ---- ----
 1 2.2 3 xxxx
 10 20.2 30 yyyy

 # comma delims and blank lines
 foo1,foo2,foo3,foos

 1,2.2,3,xxxx
 10,20.2,30,yyyy

 # bar delims with null values
 foo1|foo2|foo3|foos
 1||3|xxxx
 10|20.2||yyyy

 # header-less data
 1 2.2 3 xxxx
 10 20.2 30 yyyy

The default set of token delimiters consists of spaces, tabs, commas, semi-colons, and vertical bars.
Several parsers are used simultaneously to analyze a line of text in different ways. One way of analyzing a
line is to allow a combination of spaces, tabs, and commas to be squashed into a single delimiter (no null
values between consecutive delimiters). Another way is to allow tab, semi-colon, and vertical bar
delimiters to support null values, i.e. two consecutive delimiters implies a null value (e.g. RDB file). A
successful parser is one which returns a consistent number of columns for all rows, with each column
having a consistent data type. More than one parser can be successful. For now, it is assumed that
successful parsers all return the same tokens for a given line. (Theoretically, there are pathological cases,
which will be taken care of as needed). Bad parsers are discarded on the fly.

If the header does not exist, then names "col1", "col2", etc. are assigned to the columns to allow filtering.
Furthermore, data types for each column are determined by the data types found in the columns of the first
data line, and can be one of the following: string, int, and double. Thus, all of the above examples return
the following display:

 fundisp foo’[foo1>5]’
 FOO1 FOO2 FOO3 FOOS
 ---------- --------------------- ---------- ------------
 10 20.20000000 30 yyyy

Comments Convert to Header Params
Comments which precede data rows are converted into header parameters and will be written out as such
using funimage or funhead. Two styles of comments are recognized:

103

1. FITS-style comments have an equal sign "=" between the keyword and value and an optional slash "/"
to signify a comment. The strict FITS rules on column positions are not enforced. In addition, strings only
need to be quoted if they contain whitespace. For example, the following are valid FITS-style comments:

 # fits0 = 100
 # fits1 = /usr/local/bin
 # fits2 = "/usr/local/bin /opt/local/bin"
 # fits3c = /usr/local/bin /opt/local/bin /usr/bin
 # fits4c = "/usr/local/bin /opt/local/bin" / path dir

Note that the fits3c comment is not quoted and therefore its value is the single token "/usr/local/bin" and
the comment is "opt/local/bin /usr/bin". This is different from the quoted comment in fits4c.

2. Free-form comments can have an optional colon separator between the keyword and value. In the
absence of quote, all tokens after the keyword are part of the value, i.e. no comment is allowed. If a string
is quoted, then slash "/" after the string will signify a comment. For example:

 # com1 /usr/local/bin
 # com2 "/usr/local/bin /opt/local/bin"
 # com3 /usr/local/bin /opt/local/bin /usr/bin
 # com4c "/usr/local/bin /opt/local/bin" / path dir

 # com11: /usr/local/bin
 # com12: "/usr/local/bin /opt/local/bin"
 # com13: /usr/local/bin /opt/local/bin /usr/bin
 # com14c: "/usr/local/bin /opt/local/bin" / path dir

Note that com3 and com13 are not quoted, so the whole string is part of the value, while comz4c and
com14c are quoted and have comments following the values.

Some text files have column name and data type information in the header. You can specify the format of
column information contained in the header using the "hcolfmt=" specification. See below for a detailed
description.

Multiple Tables in a Single File
Multiple tables are supported in a single file. If an RDB-style file is sensed, then a ^L (vertical tab) will
signify end of table. Otherwise, an end of table is sensed when a new header (i.e., all alphanumeric
columns) is found. (Note that this heuristic does not work for single column tables where the column type
is ASCII and the table that follows also has only one column.) You also can specify characters that signal
an end of table condition using the eot= keyword. See below for details.

You can access the nth table (starting from 1) in a multi-table file by enclosing the table number in
brackets, as with a FITS extension:

 fundisp foo’[2]’

The above example will display the second table in the file. (Index values start at 1 in oder to maintain
logical compatibility with FITS files, where extension numbers also start at 1).

104

TEXT() Specifier
As with ARRAY() and EVENTS() specifiers for raw image arrays and raw event lists respectively, you
can use TEXT() on text files to pass key=value options to the parsers. An empty set of keywords is
equivalent to not having TEXT() at all, that is:

 fundisp foo
 fundisp foo’[TEXT()]’

are equivalent. A multi-table index number is placed before the TEXT() specifier as the first token, when
indexing into a multi-table: fundisp foo’[2,TEXT(...)]’

The filter specification is placed after the TEXT() specifier, separated by a comma, or in an entirely
separate bracket:

 fundisp foo’[TEXT(...),circle 512 512 .1]’
 fundisp foo’[2,TEXT(...)][circle 512 512 .1]’

Text() Keyword Options
The following is a list of keywords that can be used within the TEXT() specifier (the first three are the
most important):

delims="[delims]"
Specify token delimiters for this file. Only a single parser having these delimiters will be used to
process the file.

 fundisp foo.fits’[TEXT(delims="!")]’
 fundisp foo.fits’[TEXT(delims="\t%")]’

comchars="[comchars]"
Specify comment characters. You must include "\n" to allow blank lines. These comment characters
will be used for all standard parsers (unless delims are also specified).

 fundisp foo.fits’[TEXT(comchars="!\n")]’

cols="[name1:type1 ...]"
Specify names and data type of columns. This overrides header names and/or data types in the first
data row or default names and data types for header-less tables.

 fundisp foo.fits’[TEXT(cols="x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e")]’

If the column specifier is the only keyword, then the cols= is not required (in analogy with
EVENTS()):

 fundisp foo.fits’[TEXT(x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e)]’

Of course, an index is allowed in this case:

105

 fundisp foo.fits’[2,TEXT(x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e)]’

eot="[eot delim]"
Specify end of table string specifier for multi-table files. RDB files support ^L. The end of table
specifier is a string and the whole string must be found alone on a line to signify EOT. For example:

 fundisp foo.fits’[TEXT(eot="END")]’

will end the table when a line contains "END" is found. Multiple lines are supported, so that:

 fundisp foo.fits’[TEXT(eot="END\nGAME")]’

will end the table when a line contains "END" followed by a line containing "GAME".

In the absence of an EOT delimiter, a new table will be sensed when a new header (all alphanumeric
columns) is found.

null1="[datatype]"
Specify data type of a single null value in row 1. Since column data types are determined by the first
row, a null value in that row will result in an error and a request to specify names and data types
using cols=. If you only have a one null in row 1, you don’t need to specify all names and columns.
Instead, use null1="type" to specify its data type.

alen=[n]
Specify size in bytes for ASCII type columns. FITS binary tables only support fixed length ASCII
columns, so a size value must be specified. The default is 16 bytes.

nullvalues=["true"|"false"]
Specify whether to expect null values. Give the parsers a hint as to whether null values should be
allowed. The default is to try to determine this from the data.

whitespace=["true"|"false"]
Specify whether surrounding white space should be kept as part of string tokens. By default
surrounding white space is removed from tokens.

header=["true"|"false"]
Specify whether to require a header. This is needed by tables containing all string columns (and with
no row containing dashes), in order to be able to tell whether the first row is a header or part of the
data. The default is false, meaning that the first row will be data. If a row dashes are present, the
previous row is considered the column name row.

units=["true"|"false"]
Specify whether to require a units line. Give the parsers a hint as to whether a row specifying units
should be allowed. The default is to try to determine this from the data.

i2f=["true"|"false"]
Specify whether to allow int to float conversions. If a column in row 1 contains an integer value, the
data type for that column will be set to int. If a subsequent row contains a float in that same column,
an error will be signaled. This flag specifies that, instead of an error, the float should be silently
truncated to int. Usually, you will want an error to be signaled, so that you can specify the data type

106

using cols= (or by changing the value of the column in row 1).

comeot=["true"|"false"|0|1|2]
Specify whether comment signifies end of table. If comeot is 0 or false, then comments do not signify
end of table and can be interspersed with data rows. If the value is true or 1 (the default for standard
parsers), then non-blank lines (e.g. lines beginning with ’#’) signify end of table but blanks are
allowed between rows. If the value is 2, then all comments, including blank lines, signify end of
table.

lazyeot=["true"|"false"]
Specify whether "lazy" end of table should be permitted (default is true for standard formats, except
rdb format where explicit ^L is required between tables). A lazy EOT can occur when a new table
starts directly after an old one, with no special EOT delimiter. A check for this EOT condition is
begun when a given row contains all string tokens. If, in addition, there is a mismatch between the
number of tokens in the previous row and this row, or a mismatch between the number of string
tokens in the prev row and this row, a new table is assumed to have been started. For example:

 ival1 sval3
 ----- -----
 1 two
 3 four

 jval1 jval2 tval3
 ----- ----- ------
 10 20 thirty
 40 50 sixty

Here the line "jval1 ..." contains all string tokens. In addition, the number of tokens in this line (3)
differs from the number of tokens in the previous line (2). Therefore a new table is assumed to have
started. Similarly:

 ival1 ival2 sval3
 ----- ----- -----
 1 2 three
 4 5 six

 jval1 jval2 tval3
 ----- ----- ------
 10 20 thirty
 40 50 sixty

Again, the line "jval1 ..." contains all string tokens. The number of string tokens in the previous row
(1) differs from the number of tokens in the current row(3). We therefore assume a new table as been
started. This lazy EOT test is not performed if lazyeot is explicitly set to false.

hcolfmt=[header column format]
Some text files have column name and data type information in the header. For example, VizieR
catalogs have headers containing both column names and data types:

107

 #Column e_Kmag (F6.3) ?(k_msigcom) K total magnitude uncertainty (4) [ucd=ERROR]
 #Column Rflg (A3) (rd_flg) Source of JHK default mag (6) [ucd=REFER_CODE]
 #Column Xflg (I1) [0,2] (gal_contam) Extended source contamination (10) [ucd=CODE_MISC]

while Sextractor files have headers containing column names alone:

 # 1 X_IMAGE Object position along x [pixel]
 # 2 Y_IMAGE Object position along y [pixel]
 # 3 ALPHA_J2000 Right ascension of barycenter (J2000) [deg]
 # 4 DELTA_J2000 Declination of barycenter (J2000) [deg]

The hcolfmt specification allows you to describe which header lines contain column name and data
type information. It consists of a string defining the format of the column line, using "$col" (or
"$name") to specify placement of the column name, "$fmt" to specify placement of the data format,
and "$skip" to specify tokens to ignore. You also can specify tokens explicitly (or, for those users
familiar with how sscanf works, you can specify scanf skip specifiers using "%*"). For example, the
VizieR hcolfmt above might be specified in several ways:

 Column $col ($fmt) # explicit specification of "Column" string
 $skip $col ($fmt) # skip one token
 %*s $col ($fmt) # skip one string (using scanf format)

while the Sextractor format might be specified using:

 $skip $col # skip one token
 %*d $col # skip one int (using scanf format)

You must ensure that the hcolfmt statement only senses actual column definitions, with no false
positives or negatives. For example, the first Sextractor specification, "$skip $col", will consider any
header line containing two tokens to be a column name specifier, while the second one, "%*d $col",
requires an integer to be the first token. In general, it is preferable to specify formats as explicitly as
possible.

Note that the VizieR-style header info is sensed automatically by the funtools standard VizieR-like
parser, using the hcolfmt "Column $col ($fmt)". There is no need for explicit use of hcolfmt in this
case.

debug=["true"|"false"]
Display debugging information during parsing.

Environment Variables
Environment variables are defined to allow many of these TEXT() values to be set without having to
include them in TEXT() every time a file is processed:

108

 keyword environment variable
 ------- --------------------
 delims TEXT_DELIMS
 comchars TEXT_COMCHARS
 cols TEXT_COLUMNS
 eot TEXT_EOT
 null1 TEXT_NULL1
 alen TEXT_ALEN
 bincols TEXT_BINCOLS
 hcolfmt TEXT_HCOLFMT

Restrictions and Problems
As with raw event files, the ’+’ (copy extensions) specifier is not supported for programs such as funtable.

String to int and int to string data conversions are allowed by the text parsers. This is done more by force
of circumstance than by conviction: these transitions often happens with VizieR catalogs, which we want
to support fully. One consequence of allowing these transitions is that the text parsers can get confused by
columns which contain a valid integer in the first row and then switch to a string. Consider the following
table:

 xxx yyy zzz
 ---- ---- ----
 111 aaa bbb
 ccc 222 ddd

The xxx column has an integer value in row one a string in row two, while the yyy column has the reverse.
The parser will erroneously treat the first column as having data type int:

 fundisp foo.tab
 XXX YYY ZZZ
 ---------- ------------ ------------
 111 ’aaa’ ’bbb’
 1667457792 ’222’ ’ddd’

while the second column is processed correctly. This situation can be avoided in any number of ways, all
of which force the data type of the first column to be a string. For example, you can edit the file and
explicitly quote the first row of the column:

 xxx yyy zzz
 ---- ---- ----
 "111" aaa bbb
 ccc 222 ddd

 [sh] fundisp foo.tab
 XXX YYY ZZZ
 ------------ ------------ ------------
 ’111’ ’aaa’ ’bbb’
 ’ccc’ ’222’ ’ddd’

You can edit the file and explicitly set the data type of the first column:

109

 xxx:3A yyy zzz
 ------ ---- ----
 111 aaa bbb
 ccc 222 ddd

 [sh] fundisp foo.tab
 XXX YYY ZZZ
 ------------ ------------ ------------
 ’111’ ’aaa’ ’bbb’
 ’ccc’ ’222’ ’ddd’

You also can explicitly set the column names and data types of all columns, without editing the file:

 [sh] fundisp foo.tab’[TEXT(xxx:3A,yyy:3A,zzz:3a)]’
 XXX YYY ZZZ
 ------------ ------------ ------------
 ’111’ ’aaa’ ’bbb’
 ’ccc’ ’222’ ’ddd’

The issue of data type transitions (which to allow and which to disallow) is still under discussion.

Go to Funtools Help Index

Last updated: August 3, 2007

110

Funview: Database View Support for Tables

Summary
This document contains a summary of the options for utilizing database-inspired Views of tables.

Description

Database Views
In database parlance, a View defines a "virtual table", i.e., a description of row and/or column selection
filters (but with no permanent storage space allocated). When used in place of a table, a View selects the
specified rows and/or columns from one or more real tables. Views enable you to see complicated data
tables in a more convenient format. They also can be used as a security mechanism, by restricting user
access to specific columns and/or rows. [See:

http://www.cs.unibo.it/~ciaccia/COURSES/RESOURCES/SQLTutorial/sqlch5.htm

for a good discussion of SQL Views.]

Funtools supports an expanded notion of Views for all tabular data (FITS tables, raw binary tables, and
ASCII column files). Funtools Views allow you to pre-set values for the filter specification, the columns
to activate, and display format (though the latter is for fundisp only). Setting the filter and column
activation values provides functionality equivalent to that of a classical database View, while the ability to
set the format is similar to classical report writing capabilities.

Funtools View Attributes
A Funtools View is a text file containing one or more of the following columns:

 column description
 ------ -----------------------------
 view name of view
 file data file name or template
 filter filter specification
 columns columns to activate
 format fundisp format specification

All of the attribute columns are optional, including the view name itself. This means that a View can be
named or unnamed. Unnamed Views can refer to a specific file or a template of files (obviously if neither
the view or the file column is specified, the input View specification will never be used). You can specify
any combination of filter, column, and format parameters. (It also is possible to apply file-specific View to
other files; see the discussion on View Lists below). Each column has a size limit of 1024 characters.

For example, consider the following View file:

111

 view file format columns filter
 ---- ---------------------- ------ ------------ -------
 x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1
 x2 ${HOME}/data/snr.ev x y pi pha cir 512 512 .1
 x1 ${HOME}/data/snr.ev cir 512 512 .1
 x1a ${HOME}/data/snr.ev x y pi pha
 x0 ${HOME}/data/snr.ev
 xf I=%4d
 xc x y pi pha
 xr cir 512 512 .1
 *.ev x y pi pha
 *.fit x y dx dy cir 400 400 3
 *.fits I=%3d x y dx dy cir 400 400 3

This database example is in rdb format, i.e. using tab delimiters and permitting null values. Any valid
ASCII table format is acceptable, but if you use a format that does not permit null values, it will be
necessary to quote the null strings.

The first five entries (x3, x2, x1, x1a, x0) are named entries defining default values specifically for the
snr.ev data file. Typically, you would use these Views by specifying View name, and the corresponding
file, filter, column, and format values would be used. Note that the x0 View is essentially an alias for the
pathname of this file.

The next three entries define defaults that can be applied to any file. You typically would use these View
names in conjunction with a specific file name (see View Lists below) so that the associated parameter(s)
were applied to that file.

The last three entry in the database define unnamed Views that pertains to all files ending with the
specified templates. In these cases, any View that specifies a file name matching the file template would
be processed with the associated parameter attributes.

Invoking a Funtools View (in Place of an Input File)
To use a Funtools View, you simply pre-pend the "v:" prefix to a View name or a file name where an
input file name usually is specified. For example:

 fundisp v:x3

specifies that the View named x3 (with its file name and associated parameters) is processed as the input
file to fundisp. Using the example database, above, this is equivalent to:

 fundisp -f "I=%4d" ${HOME}/data/snr.ev’[cir 512 512 .1]’ "x y pi pha"

That is, the format is used with fundisp’s -f (format) switch, while the filename and extension are
composed of the x3 View’s filename and region filter.

Similarly, executing a command such as:

 fundisp v:foo.fit

will match the unnamed View associated with the template "*.fit". This is equivalent to executing:

112

 fundisp foo.fit’[cir 400 400 3]’ "x y dx dy"

Of course, if you omit the "v:" prefix, then no View processing takes place:

 fundisp foo.fit # process foo.fit without any View parameters
 fundisp x3 # error (assuming there is no file named x3)

Basic View Matching Rules
When a "v:" prefix is recognized, Funtools searches for a View database file in the following order:

 location description
 ------------ ------------------------------------
 FUN_VIEWFILE environment variable (any file name)
 ./.funtools.vu hidden file, default name
 $HOME/.funtools.vu hidden file, default name

The first View database file located is used to construct a new filename, as well as an activation column
specification and a format specification. The following rules are used:

1. An attempt is made to match the input name (i.e., the part of the input View after the "v:" prefix) against
the view column value (if present) of each row in the database. If a match is found, the values of all
non-blank columns are saved for later use. Also note that the first match terminates the search: i.e., the
order of the database rows matters.

2. If no view match is made, an attempt is made to match the input name against the file column value (if
present). Matching is performed on the full pathname of both the input name and the database file name,
and on the non-directory (root) part of these files. This means that the root specification:

 fundisp v:snr.ev

will match a row in the database that has a full pathname in the file, allowing you to use a file-matched
View without having to specify the full pathname. In this example, the "v:snr.ev" View specification will
match the first row (v:x3) in the database:

 x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1

even though the row contains a fully qualified pathname as the file value. Once again, values of all
non-blank columns are saved, and the first match terminates the search.

3. If neither a view or a view match has been found, then a simple template match is attempted against the
view values. Template matching supports a simplified version of file globbing (not a regular expression),
with support for a single "*" (all characters), "?" (single character), or "[...]" (range) specification.

4. If no template match was found on the view column, then a simple template match is attempted against
the file columns.

5. If no match is found, then the filename (minus the "v:" prefix) is returned.

113

More on View Matching Rules: Single vs. Multiple Matches
The matching rules described above stop after the first match, regardless of whether that match provides
values for all three parameters (filter, columns, and format). In cases where a view or file match does not
provide all three values, it is possible that a template match might do so. With regard to the example View
database above, the x1 View provides only a filter, while omitting both the format and columns values.
But note that the final rows in the database could provide the values via a template match on the filename.
This sort of multiple matching is especially valuable in order to provide "global" values to several Views.

Obviously, multiple matching might not be wanted in every case. Therefore, we support both multiple
matching and single matching according to the value of the FUN_VIEWMATCH environment variable. If
the FUN_VIEWMATCH environment variable exists and if its value begins with "s", then a single match
is used and missing parameters are not filled in with subsequent template matches on the file name. That
is, matching rules above are followed exactly as explained above. If the value of this environment variable
begins with "m" (or does not exist), then multiple matches are used to try to fill in missing parameters. In
this case, template matching always takes place and missing values are taken from these template matches.

Thus, in the example above, the View specification:

 fundisp v:x1

will take the file name and filter value from the x1 View:

 x1 ${HOME}/data/snr.ev cir 512 512 .1

The column value then will be taken from the "*.ev" file template match against the x1 file name:

 *.ev x y pi pha

Note once again that order is important: missing values are taken in the order in which the template
matches are processed.

View Lists: Applying a View to Any File
It is possible to apply a named View, or even several Views, to any data file by appending a viewlist
immediately after the standard "v:" prefix. A viewlist takes the form:

 :v1,v2,...vn:

where v1, v2, etc. are named Views. The two ":" colon characters surrounding the list are required. Thus,
the syntax for applying a viewlist to a file is:

 v::view1,view2,...viewn:filename

Note that the name after the last ":" is assumed to be a file; it is not permissible (or sensible) to use a View
name.

114

For example, the View specification:

 fundisp v::x2:foo

applies the x2 View to the file foo (even if there is a View named foo) and (in using our example database)
is equivalent to:

 ./fundisp foo’[cir 512 512 .1] "x y pi pha"

The same command can be effected using a list of Views:

 fundisp v::x1,x1a:foo

What happens if a viewlist is used and the file also matches a template? Consider, for example, this View
specification:

 fundisp v::x2:foo.fit

Here, the x2 View will supply filter and column values, while the template *.fit can also supply (different)
filter and column values. In this case, the explicitly specified Views of the viewlist trump the matched
view values.

On the other hand, if a file template match can supply a View value that is not supplied by the viewlist,
then that value will be taken from the file template match. For example:

 fundisp v::x2:foo.fits

does not explicitly supply a format value, but the file match on *.fits can and does. You can avoid
supplying missing values using file template matching by replacing the first ":" with a "-" in a viewlist
specification:

 fundisp v:-x2:foo.fits

The use of ":+" to explicitly allow file template matching is also supported, but is the same as the default
case. Note that the nuances of viewlist support are subject to change as our experience and understanding
grow.

Overriding Values Associated with a View
To override values associated with a View, simply supply the override values in the correct place on the
command line. Thus, given the example database described above, the command:

 fundisp v:x3

specifies that the View named x3, along with its file name and associated parameters, be processed as the
input file to fundisp in this way:

 fundisp -f "I=%4d" ${HOME}/data/snr.ev’[cir 512 512 .1]’ "x y pi pha"

To override one or more of these values, simply specify a new value for the format, filter, or columns. For
example, if your input View file contains a filter, then the View will use that filter as an override of the

115

View filter:

 fundisp v:x3’[cir 400 400 3]’

will use the columns and format of the x3 View but not the x3 filter. Further examples are:

 fundisp v:x3 "x y dx dy" # activate a different set of columns
 fundisp -f "I=%3d" v:x3 # use a different format statement

Note that extension names, extension index values, and other non-filter specifications do not override the
View filter. Thus:

 fundisp v:foo.fit[3]

will still use the filter associated with the .fit template (see above), since the "3" is an extension index, not
a filter.

Environment Variables
The following environment variables are used by Funtools Views:

FUN_VIEWNAME
The FUN_VIEWNAME environment variable specifies the name and location of the View database
file. If not present, the files ./.funtools.vu and $HOME/.funtools.vu are searched for, in that order.

FUN_VIEWMATCH
The FUN_VIEWMATCH environment variable specifies whether a single match or multiple match
algorithm is used to locate parameter values. If the value of this environment variable begins with
"s", then a single match is used and missing parameters are not filled in with subsequent template
matches on the file name. If the value begins with "m", then multiple matches are used to try to fill in
missing parameters. The default is to use multiple matches.

Restrictions and Problems
Support for overriding a filter (while not overriding extension names, extension indexes, etc.) requires that
we can sense the presence of a filter in a bracket specification. It is unclear yet whether our algorithm is
perfect.

Go to Funtools Help Index

Last updated: August 3, 2007

116

Funfilters: Filtering Rows in a Table

Summary
This document contains a summary of the user interface for filtering rows in binary tables.

Description
Table filtering allows a program to select rows from an table (e.g., X-ray event list) by checking each row
against one or more expressions involving the columns in the table. When a table is filtered, only valid
rows satisfying these expressions are passed through for processing.

A filter expression is specified using bracket notation appended to the filename of the data being
processed:

 foo.fits[pha==1& π==2]

It is also possible to put region specification inside a file and then pass the filename in bracket notation:

 foo.fits[@my.reg]

Filters must be placed after the extension and image section information, when such information is
present. The correct order is:

file[fileinfo,sectioninfo][filters]
file[fileinfo,sectioninfo,filters]

where:

file is the Funtools file name
fileinfo is an ARRAY, EVENT, FITS extension, or FITS index
sectioninfo is the image section to extract
filters are spatial region and table (row) filters to apply

See Funtools Files for more information on file and image section specifications.

Filter Expressions
Table filtering can be performed on columns of data in a FITS binary table or a raw event file. Table
filtering is accomplished by means of table filter specifications. An table filter specification consists of
one or more filter expressions Filter specifications also can contain comments and local/global processing
directives.

More specifically, a filter specification consist of one or more lines containing:

117

 # comment until end of line
 # include the following file in the table descriptor
 @file
 # each row expression can contain filters separated by operators
 [filter_expression] BOOLOP [filter_expression2], ...
 # each row expression can contain filters separated by the comma operator
 [filter_expression1], [filter_expression2], ...
 # the special row# keyword allows a range of rows to be processed
 row#=m:n
 # or a single row
 row#=m
 # regions are supported -- but are described elsewhere
 [spatial_region_expression]

A single filter expression consists of an arithmetic, logical, or other operations involving one or more
column values from a table. Columns can be compared to other columns, to header values, or to numeric
constants. Standard math functions can be applied to columns. Separate filter expressions can be combined
using boolean operators. Standard C semantics can be used when constructing expressions, with the usual
precedence and associativity rules holding sway:

 Operator Associativity
 -------- -------------
 () left to right
 !! (logical not) right to left
 ! (bitwise not) - (unary minus) right to left
 * / left to right
 + - left to right
 < <= > >= left to right
 == != left to right
 & (bitwise and) left to right
 ^ (bitwise exclusive or) left to right
 | (bitwise inclusive or) left to right
 && (logical and) left to right
 || (logical or) left to right
 = right to left

For example, if energy and pha are columns in a table, then the following are valid expressions:

 pha>1
 energy == pha
 (pha>1) && (energy<=2)
 max(pha,energy)>=2.5

Comparison values can be integers or floats. Integer comparison values can be specified in decimal, octal
(using ’0’ as prefix), hex (using ’0x’ as prefix) or binary (using ’0b’ as prefix). Thus, the following all
specify the same comparison test of a status mask:

 (status & 15) == 8 # decimal
 (status & 017) == 010 # octal
 (status & 0xf) == 0x8 # hex
 (status & 0b1111) == 0b1000 # binary

118

The special keyword row# allows you to process a range of rows. When row# is specified, the filter code
skips to the designated row and only processes the specified number of rows. The "*" character can be
utilized as the high limit value to denote processing of the remaining rows. Thus:

 row#=100:109

processes 10 rows, starting with row 100 (counting from 1), while:

 row#=100:*

specifies that all but the first 99 rows are to be processed.

Spatial region filtering allows a program to select regions of an image or rows of a table (e.g., X-ray
events) using simple geometric shapes and boolean combinations of shapes. For a complete description of
regions, see Spatial Region Filtering.

Separators Also Are Operators
As mentioned previously, multiple filter expressions can be specified in a filter descriptor, separated by
commas or new-lines. When such a comma or new-line separator is used, the boolean AND operator is
automatically generated in its place. Thus and expression such as:

 pha==1,pi=2:4

is equivalent to:

 (pha==1) && (pi>=2& π<=4)

[Note that the behavior of separators is different for filter expressions and spatial region expressions. The
former uses AND as the operator, while the latter user OR. See Combining Region and Table Filters for
more information about these conventions and how they are treated when combined.]

Range Lists
Aside from the standard C syntax, filter expressions can make use of IRAF-style range lists which specify
a range of values. The syntax requires that the column name be followed by an ’=’ sign, which is followed
by one or more comma-delimited range expressions of the form:

 col = vv # col == vv in range
 col = :vv # col <= vv in range
 col = vv: # col >= vv in range
 col = vv1:vv2 # vv1 <= col <= vv2 in range

The vv’s above must be numeric constants; the right hand side of a range list cannot contain a column
name or header value.

Note that, unlike an ordinary comma separator, the comma separator used between two or more range
expressions denotes OR. Thus, when two or more range expressions are combined with a comma
separator, the resulting expression is a shortcut for more complicated boolean logic. For example:

119

 col = :3,6:8,10:

is equivalent to:

 (col<=3) || (col>=6 && col <=8) || (col >=10)

Note also that the single-valued rangelist:

 col = val

is equivalent to the C-based filter expression:

 col == val

assuming, of course, that val is a numeric constant.

Math Operations and Functions
It is permissible to specify C math functions as part of the filter syntax. When the filter parser recognizes a
function call, it automatically includes the math.h and links in the C math library. Thus, it is possible to
filter rows by expressions such as these:

(pi+pha)>(2+log(pi)-pha)
min(pi,pha)*14>x
max(pi,pha)==(pi+1)
feq(pi,pha)
div(pi,pha)>0

The function feq(a,b) returns true (1) if the difference between a and b (taken as double precision values)
is less than approximately 10E-15. The function div(a,b) divides a by b, but returns NaN (not a number) if
b is 0. It is a safe way to avoid floating point errors when dividing one column by another.

Include Files
The special @filename directive specifies an include file containing filter expressions. This file is
processed as part of the overall filter descriptor:

 foo.fits[pha==1,@foo]

Header Parameters
The filter syntax supports comparison between a column value and a header parameter value of a FITS
binary tables (raw event files have no such header). The header parameters can be taken from the binary
table header or the primary header. For example, assuming there is a header value MEAN_PHA in one of
these headers, you can select photons having exactly this value using:

120

pha==MEAN_PHA

Examples
Table filtering is more easily described by means of examples. Consider data containing the following
table structure:

double TIME
int X
int Y
short PI
short PHA
int DX
int DY

Tables can be filtered on these columns using IRAF/QPOE range syntax or any valid C syntax. The
following examples illustrate the possibilities:

pha=10
pha==10

select rows whose pha value is exactly 10

pha=10:50
select rows whose pha value is in the range of 10 to 50

pha=10:50,100
select rows whose pha value is in the range of 10 to 50 or is equal to 100

pha>=10 && pha<=50
select rows whose pha value is in the range of 10 to 50

pi=1,2&&pha>3
select rows whose pha value is 1 or 2 and whose pi value is 3

pi=1,2 || pha>3
select rows whose pha value is 1 or 2 or whose pi value is 3

pha==pi+1
select rows whose pha value is 1 less than the pi value

(pha==pi+1) && (time>50000.0)
select rows whose pha value is 1 less than the pi value and whose time value is greater than 50000

(pi+pha)>20
select rows in which the sum of the pi and pha values is greater than 20

121

pi%2==1
select rows in which the pi value is odd

Currently, integer range list limits cannot be specified in binary notation (use decimal, hex, or octal
instead). Please contact us if this is a problem.

Go to Funtools Help Index

Last updated: November 17, 2005

122

Funidx: Using Indexes to Filter Rows in a Table

Summary
This document contains a summary of the user interface for filtering rows in binary tables with indexes.

Description
Funtools Table Filtering allows rows in a table to be selected based on the values of one or more columns
in the row. Because the actual filter code is compiled on the fly, it is very efficient. However, for very
large files (hundreds of Mb or larger), evaluating the filter expression on each row can take a long time.
Therefore, funtools supports index files for columns, which are used automatically during filtering to
reduce dramatically the number of row evaluations performed. The speed increase for indexed filtering
can be an order of magnitude or more, depending on the size of the file.

The funindex program creates an index on one or more columns in a binary table. For example, to create
an index for the column pi in the file huge.fits, use:

 funindex huge.fits pi

This will create an index named huge_pi.idx.

When a filter expression is initialized for row evaluation, funtools looks for an index file for each column
in the filter expression. If found, and if the file modification date of the index file is later than that of the
data file, then the index will be used to reduce the number of rows that are evaluated in the filter. When
Spatial Region Filtering is part of the expression, the columns associated with the region are checked for
index files.

If an index file is not available for a given column, then in general, all rows must be checked when that
column is part of a filter expression. This is not true, however, when a non-indexed column is part of an
AND expression. In this case, only the rows that pass the other part of the AND expression need to be
checked. Thus, in some cases, filtering speed can increase significantly even if all columns are not
indexed.

Also note that certain types of filter expression syntax cannot make use of indices. For example, calling
functions with column names as arguments implies that all rows must be checked against the function
value. Once again, however, if this function is part of an AND expression, then a significant improvement
in speed still is possible if the other part of the AND expression is indexed.

For example, note below the dramatic speedup in searching a 1 Gb file using an AND filter, even when
one of the columns (pha) has no index:

 time fundisp \
 huge.fits’[idx_activate=0,idx_debug=1,pha=2348&&cir 4000 4000 1]’ \
 "x y pha"
 x y pha
 ---------- ----------- ----------
 3999.48 4000.47 2348

123

 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 42.36u 13.07s 6:42.89 13.7%

 time fundisp \
 huge.fits’[idx_activate=1,idx_debug=1,pha=2348&&cir 4000 4000 1]’ \
 "x y pha"
 x y pha
 ---------- ----------- ----------
 idxeq: [INDEF]
 idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
 idxand(1): INDEF [IDX_OR_SORT]
 idxall(1): [IDX_OR_SORT]
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 3999.48 4000.47 2348
 1.55u 0.37s 1:19.80 2.4%

When all columns are indexed, the increase in speed can be even more dramatic:

 time fundisp \
 huge.fits’[idx_activate=0,idx_debug=1,pi=770&&cir 4000 4000 1]’ \
 "x y pi"
 x y pi
 ---------- ----------- ----------
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770

124

 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 42.60u 12.63s 7:28.63 12.3%

 time fundisp \
 huge.fits’[idx_activate=1,idx_debug=1,pi=770&&cir 4000 4000 1]’ \
 "x y pi"
 x y pi
 ---------- ----------- ----------
 idxeq: pi start=9473025,stop=9492240 => pi[ROW 9473025:9492240]
 idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
 idxor sort/merge: pi[ROW 9473025:9492240] [IDX_OR_SORT]
 idxmerge(5): [IDX_OR_SORT] pi[ROW]
 idxall(1): [IDX_OR_SORT]
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 3999.48 4000.47 770
 1.67u 0.30s 0:24.76 7.9%

The miracle of indexed filtering (and indeed, of any indexing) is the speed of the binary search on the
index, which is of order log2(n) instead of n. (The funtools binary search method is taken from
http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary, to whom grateful acknowledgement is
made.) This means that the larger the file, the better the performance. Conversely, it also means that for
small files, using an index (and the overhead involved) can slow filtering down somewhat. Our tests
indicate that on a file containing a few tens of thousands of rows, indexed filtering can be 10 to 20 percent
slower than non-indexed filtering. Of course, your mileage will vary with conditions (disk access speed,
amount of available memory, process load, etc.)

Any problem encountered during index processing will result in indexing being turned off, and replaced
by filtering all rows. You can turn filtering off manually by setting the idx_activate variable to 0 (in a
filter expression) or the FILTER_IDX_ACTIVATE environment variable to 0 (in the global
environment). Debugging output showing how the indexes are being processed can be displayed to stderr
by setting the idx_debug variable to 1 (in a filter expression) or the FILTER_IDX_DEBUG environment

125

variable to 1 (in the global environment).

Currently, indexed filtering only works with FITS binary tables and raw event files. It does not work with
text files. This restriction might be removed in a future release.

Go to Funtools Help Index

Last updated: August 3, 2007

126

Regions: Spatial Region Filtering

Summary
This document contains a summary of the user interface for spatial region filtering images and tables.

Description
Spatial region filtering allows a program to select regions of an image or rows of a table (e.g., X-ray
events) to process using simple geometric shapes and boolean combinations of shapes. When an image is
filtered, only pixels found within these shapes are processed. When a table is filtered, only rows found
within these shapes are processed.

Spatial region filtering for images and tables is accomplished by means of region specifications. A region
specification consists of one or more region expressions, which are geometric shapes,combined
according to the rules of boolean algebra. Region specifications also can contain comments and
local/global processing directives.

Typically, region specifications are specified using bracket notation appended to the filename of the data
being processed:

 foo.fits[circle(512,512,100)]

It is also possible to put region specification inside a file and then pass the filename in bracket notation:

 foo.fits[@my.reg]

When region filters are passed in bracket notation in this manner, the filtering is set up automatically when
the file is opened and all processing occurs through the filter. Programs also can use the filter library API
to open filters explicitly.

Region Expressions
More specifically, region specifications consist of one or more lines containing:

 # comment until end of line
 global keyword=value keyword=value ... # set global value(s)
 # include the following file in the region descriptor
 @file
 # use the FITS image as a mask (cannot be used with other regions)
 @fitsimage
 # each region expression contains shapes separated by operators
 [region_expression1], [region_expression2], ...
 [region_expression], [region_expression], ...

A single region expression consists of:

127

 # parens and commas are optional, as is the + sign
 [+-]shape(num , num , ...) OP1 shape num num num OP2 shape ...

e.g.:

 ([+-]shape(num , num , ...) && shape num num || shape(num, num)
 # a comment can come after a region -- reserved for local properties
 [+-]shape(num , num , ...) # local properties go here, e.g. color=red

Thus, a region descriptor consists of one or more region expressions or regions, separated by comas,
new-lines, or semi-colons. Each region consists of one or more geometric shapes combined using
standard boolean operation. Several types of shapes are supported, including:

 shape: arguments:
 ----- --
 ANNULUS xcenter ycenter inner_radius outer_radius
 BOX xcenter ycenter xwidth yheight (angle)
 CIRCLE xcenter ycenter radius
 ELLIPSE xcenter ycenter xwidth yheight (angle)
 FIELD none
 LINE x1 y1 x2 y2
 PIE xcenter ycenter angle1 angle2
 POINT x1 y1
 POLYGON x1 y1 x2 y2 ... xn yn

In addition, the following regions accept accelerator syntax:

 shape arguments
 ----- --
 ANNULUS xcenter ycenter radius1 radius2 ... radiusn
 ANNULUS xcenter ycenter inner_radius outer_radius n=[number]
 BOX xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 BOX xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
 CIRCLE xcenter ycenter r1 r2 ... rn # same as annulus
 CIRCLE xcenter ycenter rinner router n=[number] # same as annulus
 ELLIPSE xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 ELLIPSE xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
 PIE xcenter ycenter angle1 angle2 (angle3) (angle4) (angle5) ...
 PIE xcenter ycenter angle1 angle2 (n=[number])
 POINT x1 y1 x2 y2 ... xn yn

Note that the circle accelerators are simply aliases for the annulus accelerators. See region geometry for
more information about accelerators.

Finally, the following are combinations of pie with different shapes (called "panda" for "Pie AND
Annulus") allow for easy specification of radial sections:

 shape: arguments:
 ----- ---------
 PANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
 CPANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
 BPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # box
 EPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # ellipse

The panda and cpanda specify combinations of annulus and circle with pie, respectively and give identical

128

results. The bpanda combines box and pie, while epanda combines ellipse and pie. See region geometry
for more information about pandas.

The following "shapes" are ignored by funtools (generated by ds9):

 shape: arguments:
 ----- ---------
 PROJECTION x1 y1 x2 y2 width # NB: ignored by funtools
 RULER x1 y1 x2 y2 # NB: ignored by funtools
 TEXT x y # NB: ignored by funtools
 GRID # NB: ignored by funtools
 TILE # NB: ignored by funtools
 COMPASS # NB: ignored by funtools

All arguments to regions are real values; integer values are automatically converted to real where
necessary. All angles are in degrees and run from the positive image x-axis to the positive image y-axis. If
a rotation angle is part of the associated WCS header, that angle is added implicitly as well.

Note that 3-letter abbreviations are supported for all shapes, so that you can specify "circle" or "cir".

Columns Used in Region Filtering
By default, the x,y values in a region expression refer to the two "image binning" columns, i.e. the
columns that would be used to bin the data into an image. For images, these are just the 2 dimensions of
the image. For tables, these usually default to x and y but can be changed as required. For example, in
Funtools, new binning columns are specified using a bincols=(col1,col2) statement within the bracket
string on the command line.

Alternate columns for region filtering can be specified by the syntax:

 (col1,col2)=region(...)

e.g.:

 (X,Y)=annulus(x,y,ri,ro)
 (PHA,PI)=circle(x,y,r)
 (DX,DY)=ellipse(x,y,a,b[,angle])

Region Algebra
(See also Region Algebra for more complete information.)

Region shapes can be combined together using Boolean operators:

 Symbol Operation Use
 -------- --------- -----------------------------------
 ! not Exclude this shape from this region
 & or && and Include only the overlap of these shapes
 | or || inclusive or Include all of both shapes
 ^ exclusive or Include both shapes except their overlap

129

Note that the !region syntax must be combined with another region in order that we be able to assign a
region id properly. That is,

 !circle(512,512,10)

is not a legal region because there is no valid region id to work with. To get the full field without a circle,
combine the above with field(), as in:

 field() && !circle(512,512,10)

Region Separators Also Are Operators
As mentioned previously, multiple region expressions can be specified in a region descriptor, separated by
commas, new-lines, or semi-colons. When such a separator is used, the boolean OR operator is
automatically generated in its place but, unlike explicit use of the OR operator, the region ID is
incremented (starting from 1).

For example, the two shapes specified in this example are given the same region value:

 foo.fits[circle(512,512,10)||circle(400,400,20)]

On the other hand, the two shapes defined in the following example are given different region values:

 foo.fits[circle(512,512,10),circle(400,400,20)]

Of course these two examples will both mask the same table rows or pixels. However, in programs that
distinguish region id’s (such as funcnts), they will act differently. The explicit OR operator will result in
one region expression consisting of two shapes having the same region id and funcnts will report a single
region. The comma operator will cause funcnts to report two region expressions, each with one shape, in
its output.

In general, commas are used to separate region expressions entered in bracket notation on the command
line:

 # regions are added to the filename in bracket notation
 foo.fits[circle(512,512,100),circle(400,400,20)]

New-lines are used to separate region expressions in a file:

 # regions usually are separated by new-lines in a file
 # use @filename to include this file on the command line
 circle(512,512,100)
 circle(400,400,20)

Semi-colons are provided for backward compatibility with the original IRAF/PROS implementation and
can be used in either case.

If a pixel is covered by two different regions expressions, it is given the mask value of the first region that
contains that pixel. That is, successive regions do not overwrite previous regions in the mask, as was the
case with the original PROS regions. In this way, an individual pixel is covered by one and only one
region. This means that one must sometimes be careful about the order in which regions are defined. If

130

region N is fully contained within region M, then N should be defined before M, or else it will be
"covered up" by the latter.

Region Exclusion
Shapes also can be globally excluded from all the region specifiers in a region descriptor by using a minus
sign before a region:

 operator arguments:
 -------- -----------
 - Globally exclude the region expression following ’-’ sign
 from ALL regions specified in this file

The global exclude region can be used by itself; in such a case, field() is implied.

A global exclude differs from the local exclude (i.e. a shape prefixed by the logical not "!" symbol) in that
global excludes are logically performed last, so that no region will contain pixels from a globally excluded
shape. A local exclude is used in a boolean expression with an include shape, and only excludes pixels
from that include shape. Global excludes cannot be used in boolean expressions.

Include Files
The @filename directive specifies an include file containing region expressions. This file is processed as
part of the overall region descriptor:

 foo.fits[circle(512,512,10),@foo]

A filter include file simply includes text without changing the state of the filter. It therefore can be used in
expression. That is, if the file foo1 contains "pi==1" and foo2 contains "pha==2" then the following
expressions are equivalent:

 "[@foo1&&@foo2]" is equivalent to "[pi==1&&pha==2]"
 "[pha==1||@foo2]" is equivalent to "[pi==1||pha==2]"
 "[@foo1,@foo2]" is equivalent to "[pi==1,pha==2]"

Be careful that you specify evaluation order properly using parenthesis, especially if the include file
contains multiple filter statements. For example, consider a file containing two regions such as:

 circle 512 512 10
 circle 520 520 10

If you want to include only events (or pixels) that are in these regions and have a pi value of 4, then the
correct syntax is:

 pi==4&&(@foo)

since this is equivalent to:

131

 pi==4 && (circle 512 512 10 || circle 520 520 10)

If you leave out the parenthesis, you are filtering this statement:

 pi==4 && circle 512 512 10 || circle 520 520 10)

which is equivalent to:

 (pi==4 && circle 512 512 10) || circle 520 520 10)

The latter syntax only applies the pi test to the first region.

For image-style filtering, the @filename can specify an 8-bit or 16-bit FITS image. In this case, the pixel
values in the mask image are used as the region mask. The valid pixels in the mask must have positive
values. Zero values are excluded from the mask and negative values are not allowed. Moreover, the region
id value is taken as the image pixel value and the total number of regions is taken to be the highest pixel
value. The dimensions of the image mask must be less than or equal to the image dimensions of the data.
The mask will be replicated as needed to match the size of the image. (Thus, best results are obtained
when the data dimensions are an even multiple of the mask dimensions.)

An image mask can be used in any image filtering operation, regardless of whether the data is of type
image or table. For example, the funcnts) program performs image filtering on images or tables, and so
FITS image masks are valid input for either type of data in this program.. An image mask cannot be used
in a program such as fundisp) when the input data is a table, because fundisp displays rows of a table and
processes these rows using event-style filtering.

Global and Local Properties of Regions
The ds9 image display program describes a host of properties such as color, font, fix/free state, etc. Such
properties can be specified globally (for all regions) or locally (for an individual region). The global
keyword specifies properties and qualifiers for all regions, while local properties are specified in
comments on the same line as the region:

 global color=red
 circle(10,10,2)
 circle(20,20,3) # color=blue
 circle(30,30,4)

The first and third circles will be red, which the second circle will be blue. Note that funtools currently
ignores region properties, as they are used in display only.

Coordinate Systems
For each region, it is important to specify the coordinate system used to interpret the region, i.e., to set the
context in which position and size values are interpreted. For this purpose, the following keywords are
recognized:

132

 name description
 ---- --
 PHYSICAL pixel coords of original file using LTM/LTV
 IMAGE pixel coords of current file
 FK4, B1950 sky coordinate systems
 FK5, J2000 sky coordinate systems
 GALACTIC sky coordinate systems
 ECLIPTIC sky coordinate systems
 ICRS currently same as J2000
 LINEAR linear wcs as defined in file
 AMPLIFIER mosaic coords of original file using ATM/ATV
 DETECTOR mosaic coords of original file using DTM/DTV

Specifying Positions, Sizes, and Angles
The arguments to region shapes can be floats or integers describing positions and sizes. They can be
specified as pure numbers or using explicit formatting directives:

 position arguments description
 ------------------ ------------------------------
 [num] context-dependent (see below)
 [num]d degrees
 [num]r radians
 [num]p physical pixels
 [num]i image pixels
 [num]:[num]:[num] hms for ’odd’ position arguments
 [num]:[num]:[num] dms for ’even’ position arguments
 [num]h[num]m[num]s explicit hms
 [num]d[num]m[num]s explicit dms

 size arguments description
 -------------- -----------
 [num] context-dependent (see below)
 [num]" arc seconds
 [num]’ arc minutes
 [num]d degrees
 [num]r radians
 [num]p physical pixels
 [num]i image pixels

When a "pure number" (i.e. one without a format directive such as ’d’ for ’degrees’) is specified, its
interpretation depends on the context defined by the ’coordsys’ keyword. In general, the rule is:

All pure numbers have implied units corresponding to the current coordinate system.

If no such system is explicitly specified, the default system is implicitly assumed to be PHYSICAL.

In practice this means that for IMAGE and PHYSICAL systems, pure numbers are pixels. Otherwise, for
all systems other than linear, pure numbers are degrees. For LINEAR systems, pure numbers are in the
units of the linear system. This rule covers both positions and sizes.

133

The input values to each shape can be specified in several coordinate systems including:

 name description
 ---- ----------------------------
 IMAGE pixel coords of current file
 LINEAR linear wcs as defined in file
 FK4, B1950 various sky coordinate systems
 FK5, J2000
 GALACTIC
 ECLIPTIC
 ICRS
 PHYSICAL pixel coords of original file using LTM/LTV
 AMPLIFIER mosaic coords of original file using ATM/ATV
 DETECTOR mosaic coords of original file using DTM/DTV

If no coordinate system is specified, PHYSICAL is assumed. PHYSICAL or a World Coordinate System
such as J2000 is preferred and most general. The coordinate system specifier should appear at the
beginning of the region description, on a separate line (in a file), or followed by a new-line or semicolon;
e.g.,

 global coordsys physical
 circle 6500 9320 200

The use of celestial input units automatically implies WORLD coordinates of the reference image. Thus, if
the world coordinate system of the reference image is J2000, then

 circle 10:10:0 20:22:0 3’

is equivalent to:

 circle 10:10:0 20:22:0 3’ # j2000

Note that by using units as described above, you may mix coordinate systems within a region specifier;
e.g.,

 circle 6500 9320 3’ # physical

Note that, for regions which accept a rotation angle:

ellipse (x, y, r1, r2, angle)
box(x, y, w, h, angle)

the angle is relative to the specified coordinate system. In particular, if the region is specified in WCS
coordinates, the angle is related to the WCS system, not x/y image coordinate axis. For WCS systems with
no rotation, this obviously is not an issue. However, some images do define an implicit rotation (e.g., by
using a non-zero CROTA value in the WCS parameters) and for these images, the angle will be relative to
the WCS axes. In such case, a region specification such as:

fk4;ellipse(22:59:43.985, +58:45:26.92,320", 160", 30)

will not, in general, be the same region specified as:

134

physical;ellipse(465, 578, 40, 20, 30)

even when positions and sizes match. The angle is relative to WCS axes in the first case, and relative to
physical x,y axes in the second.

More detailed descriptions are available for: Region Geometry, Region Algebra, Region Coordinates, and
Region Boundaries.

Go to Funtools Help Index

Last updated: November 17, 2005

135

RegGeometry: Geometric Shapes in Spatial Region Filtering

Summary
This document describes the geometry of regions available for spatial filtering in IRAF/PROS analysis.

Geometric shapes
Several geometric shapes are used to describe regions. The valid shapes are:

 shape: arguments:
 ----- --
 ANNULUS xcenter ycenter inner_radius outer_radius
 BOX xcenter ycenter xwidth yheight (angle)
 CIRCLE xcenter ycenter radius
 ELLIPSE xcenter ycenter xwidth yheight (angle)
 FIELD none
 LINE x1 y1 x2 y2
 PIE xcenter ycenter angle1 angle2
 POINT x1 y1
 POLYGON x1 y1 x2 y2 ... xn yn

All arguments are real values; integer values are automatically converted to real where necessary. All
angles are in degrees and specify angles that run counter-clockwise from the positive y-axis.

Shapes can be specified using "command" syntax:

 [shape] arg1 arg2 ...

or using "routine" syntax:

 [shape](arg1, arg2, ...)

or by any combination of the these. (Of course, the parentheses must balance and there cannot be more
commas than necessary.) The shape keywords are case-insensitive. Furthermore, any shape can be
specified by a three-character unique abbreviation. For example, one can specify three circular regions as:

 "foo.fits[CIRCLE 512 512 50;CIR(128 128, 10);cir(650,650,20)]"

(Quotes generally are required to protect the region descriptor from being processed by the Unix shell.)

The annulus shape specifies annuli, centered at xcenter, ycenter, with inner and outer radii (r1, r2). For
example,

 ANNULUS 25 25 5 10

specifies an annulus centered at 25.0 25.0 with an inner radius of 5.0 and an outer radius of 10. Assuming
(as will be done for all examples in this document, unless otherwise noted) this shape is used in a mask of
size 40x40, it will look like this:

136

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:....................111111111...........
 33:...................11111111111..........
 32:.................111111111111111........
 31:.................111111111111111........
 30:................11111111111111111.......
 29:...............1111111.....1111111......
 28:...............111111.......111111......
 27:...............11111.........11111......
 26:...............11111.........11111......
 25:...............11111.........11111......
 24:...............11111.........11111......
 23:...............11111.........11111......
 22:...............111111.......111111......
 21:...............1111111.....1111111......
 20:................11111111111111111.......
 19:.................111111111111111........
 18:.................111111111111111........
 17:...................11111111111..........
 16:....................111111111...........
 15:..
 14:..
 13:..
 12:..
 11:..
 10:..
 9:..
 8:..
 7:..
 6:..
 5:..
 4:..
 3:..
 2:..
 1:..

The box shape specifies an orthogonally oriented box, centered at xcenter, ycenter, of size xwidth,
yheight. It requires four arguments and accepts an optional fifth argument to specify a rotation angle.
When the rotation angle is specified (in degrees), the box is rotated by an angle that runs
counter-clockwise from the positive y-axis.

The box shape specifies a rotated box, centered at xcenter, ycenter, of size xwidth, yheight. The box is
rotated by an angle specified in degrees that runs counter-clockwise from the positive y-axis. If the angle
argument is omitted, it defaults to 0.

137

The circle shape specifies a circle, centered at xcenter, ycenter, of radius r. It requires three arguments.

The ellipse shape specifies an ellipse, centered at xcenter, ycenter, with y-axis width a and the y-axis
length b defined such that:

 x**2/a**2 + y**2/b**2 = 1

Note that a can be less than, equal to, or greater than b. The ellipse is rotated the specified number of
degrees. The rotation is done according to astronomical convention, counter-clockwise from the positive
y-axis. An ellipse defined by:

 ELLIPSE 20 20 5 10 45

will look like this:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:..
 33:..
 32:..
 31:..
 30:..
 29:..
 28:..
 27:............111111......................
 26:............11111111....................
 25:............111111111...................
 24:............11111111111.................
 23:............111111111111................
 22:............111111111111................
 21:.............111111111111...............
 20:.............1111111111111..............
 19:..............111111111111..............
 18:...............111111111111.............
 17:...............111111111111.............
 16:................11111111111.............
 15:..................111111111.............
 14:...................11111111.............
 13:.....................111111.............
 12:..
 11:..
 10:..
 9:..
 8:..
 7:..
 6:..
 5:..

138

 4:..
 3:..
 2:..
 1:..

The field shape specifies the entire field as a region. It is not usually specified explicitly, but is used
implicitly in the case where no regions are specified, that is, in cases where either a null string or some
abbreviation of the string "none" is input. Field takes no arguments.

The pie shape specifies an angular wedge of the entire field, centered at xcenter, ycenter. The wedge runs
between the two specified angles. The angles are given in degrees, running counter-clockwise from the
positive x-axis. For example,

 PIE 20 20 90 180

defines a region from 90 degrees to 180 degrees, i.e., quadrant 2 of the Cartesian plane. The display of
such a region looks like this:

 1234567890123456789012345678901234567890
 --
 40:11111111111111111111....................
 39:11111111111111111111....................
 38:11111111111111111111....................
 37:11111111111111111111....................
 36:11111111111111111111....................
 35:11111111111111111111....................
 34:11111111111111111111....................
 33:11111111111111111111....................
 32:11111111111111111111....................
 31:11111111111111111111....................
 30:11111111111111111111....................
 29:11111111111111111111....................
 28:11111111111111111111....................
 27:11111111111111111111....................
 26:11111111111111111111....................
 25:11111111111111111111....................
 24:11111111111111111111....................
 23:11111111111111111111....................
 22:11111111111111111111....................
 21:11111111111111111111....................
 20:..
 19:..
 18:..
 17:..
 16:..
 15:..
 14:..
 13:..
 12:..
 11:..
 10:..
 9:..
 8:..

139

 7:..
 6:..
 5:..
 4:..
 3:..
 2:..
 1:..

The pie slice specified is always a counter-clockwise sweep between the angles, starting at the first angle
and ending at the second. Thus:

 PIE 10 15 30 60

describes a 30 degree sweep from 2 o’clock to 1 o’clock, while:

 PIE 10 15 60 30

describes a 330 degree counter-clockwise sweep from 1 o’clock to 2 o’clock passing through 12 o’clock
(0 degrees). Note in both of these examples that the center of the slice can be anywhere on the plane. The
second mask looks like this:

 1234567890123456789012345678901234567890
 --
 40:111111111111111111111111................
 39:11111111111111111111111.................
 38:11111111111111111111111.................
 37:1111111111111111111111..................
 36:1111111111111111111111..................
 35:111111111111111111111...................
 34:11111111111111111111....................
 33:11111111111111111111....................
 32:1111111111111111111....................1
 31:1111111111111111111..................111
 30:111111111111111111.................11111
 29:111111111111111111................111111
 28:11111111111111111...............11111111
 27:1111111111111111..............1111111111
 26:1111111111111111.............11111111111
 25:111111111111111............1111111111111
 24:111111111111111..........111111111111111
 23:11111111111111.........11111111111111111
 22:11111111111111........111111111111111111
 21:1111111111111.......11111111111111111111
 20:111111111111......1111111111111111111111
 19:111111111111....111111111111111111111111
 18:11111111111....1111111111111111111111111
 17:11111111111..111111111111111111111111111
 16:1111111111.11111111111111111111111111111
 15:11
 14:11
 13:11
 12:11
 11:11
 10:11
 9:11
 8:11

140

 7:11
 6:11
 5:11
 4:11
 3:11
 2:11
 1:11

The pie slice goes to the edge of the field. To limit its scope, pie usually is is combined with other shapes,
such as circles and annuli, using boolean operations. (See below and in "help regalgebra").

Pie Performance Notes:

Pie region processing time is proportional to the size of the image, and not the size of the region. This is
because the pie shape is the only infinite length shape, and we essentially must check all y rows for
inclusion (unlike other regions, where the y limits can be calculated beforehand). Thus, pie can run very
slowly on large images. In particular, it will run MUCH more slowly than the panda shape in image-based
region operations (such as funcnts). We recommend use of panda over pie where ever possible.

If you must use pie, always try to put it last in a boolean && expression. The reason for this is that the
filter code is optimized to exit as soon as the result is know. Since pie is the slowest region, it is better to
avoid executing it if another region can decide the result. Consider, for example, the difference in time
required to process a Chandra ACIS file when a pie and circle are combined in two different orders:

 time ./funcnts nacis.fits "circle 4096 4096 100 && pie 4096 4096 10 78"
2.87u 0.38s 0:35.08 9.2%

 time ./funcnts nacis.fits "pie 4096 4096 10 78 && circle 4096 4096 100 "
89.73u 0.36s 1:03.50 141.8%

Black-magic performance note:

Panda region processing uses a quick test pie region instead of the normal pie region when combining its
annulus and pie shapes. This qtpie shape differs from the normal pie in that it utilizes the y limits from the
previous region with which it is combined. In a panda shape, which is a series of annuli combined with
pies, the processing time is thus reduced to that of the annuli.

You can use the qtpie shape instead of pie in cases where you are combining pie with another shape using
the && operator. This will cause the pie limits to be set using limits from the other shape, and will speed
up the processing considerably. For example, the above execution of funcnts can be improved
considerably using this technique:

 time ./funcnts nacis.fits "circle 4096 4096 100 && qtpie 4096 4096 10 78"
4.66u 0.33s 0:05.87 85.0%

We emphasize that this is a quasi-documented feature and might change in the future. The qtpie shape is
not recognized by ds9 or other programs.

141

The line shape allows single pixels in a line between (x1,y1) and (x2,y2) to be included or excluded. For
example:

 LINE (5,6, 24,25)

displays as:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:..
 33:..
 32:..
 31:..
 30:..
 29:..
 28:..
 27:..
 26:..
 25:.......................1................
 24:......................1.................
 23:.....................1..................
 22:....................1...................
 21:...................1....................
 20:..................1.....................
 19:.................1......................
 18:................1.......................
 17:...............1........................
 16:..............1.........................
 15:.............1..........................
 14:............1...........................
 13:...........1............................
 12:..........1.............................
 11:.........1..............................
 10:........1...............................
 9:.......1................................
 8:......1.................................
 7:.....1..................................
 6:....1...................................
 5:..
 4:..
 3:..
 2:..
 1:..

The point shape allows single pixels to be included or excluded. Although the (x,y) values are real
numbers, they are truncated to integer and the corresponding pixel is included or excluded, as specified.

Several points can be put in one region declaration; unlike the original IRAF implementation, each now is
given a different region mask value. This makes it easier, for example, for funcnts to determine the
number of photons in the individual pixels. For example,

 POINT (5,6, 10,11, 20,20, 35,30)

will give the different region mask values to all four points, as shown below:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:..
 33:..
 32:..
 31:..
 30:..................................4.....
 29:..
 28:..

142

 27:..
 26:..
 25:..
 24:..
 23:..
 22:..
 21:..
 20:...................3....................
 19:..
 18:..
 17:..
 16:..
 15:..
 14:..
 13:..
 12:..
 11:.........2..............................
 10:..
 9:..
 8:..
 7:..
 6:....1...................................
 5:..
 4:..
 3:..
 2:..
 1:..

The polygon shape specifies a polygon with vertices (x1, y1) ... (xn, yn). The polygon is closed
automatically: one should not specify the last vertex to be the same as the first. Any number of vertices
are allowed. For example, the following polygon defines a right triangle as shown below:

 POLYGON (10,10, 10,30, 30,30)

looks like this:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:..
 33:..
 32:..
 31:..
 30:..........11111111111111111111..........
 29:..........1111111111111111111...........
 28:..........111111111111111111............
 27:..........11111111111111111.............
 26:..........1111111111111111..............
 25:..........111111111111111...............
 24:..........11111111111111................
 23:..........1111111111111.................
 22:..........111111111111..................
 21:..........11111111111...................
 20:..........1111111111....................
 19:..........111111111.....................
 18:..........11111111......................
 17:..........1111111.......................
 16:..........111111........................
 15:..........11111.........................
 14:..........1111..........................
 13:..........111...........................
 12:..........11............................
 11:..........1.............................
 10:..
 9:..
 8:..
 7:..
 6:..
 5:..
 4:..
 3:..
 2:..
 1:..

Note that polygons can get twisted upon themselves if edge lines cross. Thus:

143

 POL (10,10, 20,20, 20,10, 10,20)

will produce an area which is two triangles, like butterfly wings, as shown below:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:..
 33:..
 32:..
 31:..
 30:..
 29:..
 28:..
 27:..
 26:..
 25:..
 24:..
 23:..
 22:..
 21:..
 20:..
 19:..........1........1....................
 18:..........11......11....................
 17:..........111....111....................
 16:..........1111..1111....................
 15:..........1111111111....................
 14:..........1111..1111....................
 13:..........111....111....................
 12:..........11......11....................
 11:..........1........1....................
 10:..
 9:..
 8:..
 7:..
 6:..
 5:..
 4:..
 3:..
 2:..
 1:..

The following are combinations of pie with different shapes (called "panda" for "Pie AND Annulus") allow
for easy specification of radial sections:

 shape: arguments:
 ----- ---------
 PANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
 CPANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
 BPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # box
 EPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # ellipse

The panda (Pies AND Annuli) shape can be used to create combinations of pie and annuli markers. It is
analogous to a Cartesian product on those shapes, i.e., the result is several shapes generated by
performing a boolean AND between pies and annuli. Thus, the panda and cpanda specify combinations of
annulus and circle with pie, respectively and give identical results. The bpanda combines box and pie,
while epanda combines ellipse and pie.

Consider the example shown below:

 PANDA(20,20, 0,360,3, 0,15,4)

Here, 3 pie slices centered at 20, 20 are combined with 4 annuli, also centered at 20, 20. The result is a
mask with 12 regions (displayed in base 16 to save characters):

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..

144

 34:..............44444444444...............
 33:............444444444444444.............
 32:...........88444444444444444............
 31:.........888844443333344444444..........
 30:........88888833333333333444444.........
 29:........88888733333333333344444.........
 28:.......8888877733333333333344444........
 27:......888887777332222233333344444.......
 26:......888877777622222222333334444.......
 25:.....88887777766622222222333334444......
 24:.....88887777666622222222233334444......
 23:.....88887777666651111222233334444......
 22:.....88877776666551111122223333444......
 21:.....88877776666555111122223333444......
 20:.....888777766665559999aaaabbbbccc......
 19:.....888777766665559999aaaabbbbccc......
 18:.....888777766665599999aaaabbbbccc......
 17:.....88887777666659999aaaabbbbcccc......
 16:.....888877776666aaaaaaaaabbbbcccc......
 15:.....888877777666aaaaaaaabbbbbcccc......
 14:......8888777776aaaaaaaabbbbbcccc.......
 13:......888887777bbaaaaabbbbbbccccc.......
 12:.......88888777bbbbbbbbbbbbccccc........
 11:........888887bbbbbbbbbbbbccccc.........
 10:........888888bbbbbbbbbbbcccccc.........
 9:.........8888ccccbbbbbcccccccc..........
 8:...........88ccccccccccccccc............
 7:............ccccccccccccccc.............
 6:..............ccccccccccc...............
 5:..
 4:..
 3:..
 2:..
 1:..

Several regions with different mask values can be combined in the same mask. This supports comparing data
from the different regions. (For information on how to combine different shapes into a single region, see
"help regalgebra".) For example, consider the following set of regions:

 ANNULUS 25 25 5 10
 ELLIPSE 20 20 5 10 315
 BOX 15 15 5 10

The resulting mask will look as follows:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:..
 35:..
 34:....................111111111...........
 33:...................11111111111..........
 32:.................111111111111111........
 31:.................111111111111111........
 30:................11111111111111111.......
 29:...............1111111.....1111111......
 28:...............111111.......111111......
 27:...............11111.222222..11111......
 26:...............111112222222..11111......
 25:...............111112222222..11111......
 24:...............111112222222..11111......
 23:...............111112222222..11111......
 22:...............111111222222.111111......
 21:..............211111112222.1111111......
 20:............322211111111111111111.......
 19:............32222111111111111111........
 18:............22222111111111111111........
 17:............222222211111111111..........
 16:............22222222111111111...........
 15:............222222222...................
 14:............22222222....................
 13:............222222......................
 12:............33333.......................
 11:............33333.......................
 10:..
 9:..
 8:..
 7:..

145

 6:..
 5:..
 4:..
 3:..
 2:..
 1:..

Note that when a pixel is in 2 or more regions, it is arbitrarily assigned to a one of the regions in
question (often based on how a give C compiler optimizes boolean expressions).

Region accelerators
Two types of \fBaccelerators , to simplify region specification, are provided as natural
extensions to the ways shapes are described. These are: extended lists of parameters,
specifying multiple regions, valid for annulus, box, circle, ellipse, pie, and points;
and n=, valid for annulus, box, circle, ellipse, and pie (not point). In both cases,
one specification is used to define several different regions, that is, to define
shapes with different mask values in the region mask.

The following regions accept accelerator syntax:

 shape arguments
 ----- --
 ANNULUS xcenter ycenter radius1 radius2 ... radiusn
 ANNULUS xcenter ycenter inner_radius outer_radius n=[number]
 BOX xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 BOX xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
 CIRCLE xcenter ycenter r1 r2 ... rn # same as annulus
 CIRCLE xcenter ycenter rinner router n=[number] # same as annulus
 ELLIPSE xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 ELLIPSE xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
 PIE xcenter ycenter angle1 angle2 (angle3) (angle4) (angle5) ...
 PIE xcenter ycenter angle1 angle2 (n=[number])
 POINT x1 y1 x2 y2 ... xn yn

Note that the circle accelerators are simply aliases for the annulus accelerators.

For example, several annuli at the same center can be specified in one region
expression by specifying more than two radii. If N radii are specified, then N-1 annuli
result, with the outer radius of each preceding annulus being the inner radius of the
succeeding annulus. Each annulus is considered a separate region, and is given a
separate mask value. For example,

 ANNULUS 20 20 0 2 5 10 15 20

specifies five different annuli centered at 20 20, and is equivalent to:

 ANNULUS 20.0 20.0 0 2
 ANNULUS 20.0 20.0 2 5
 ANNULUS 20.0 20.0 5 10
 ANNULUS 20.0 20.0 10 15
 ANNULUS 20.0 20.0 15 20

The mask is shown below:

 1234567890123456789012345678901234567890
 --
 40:..
 39:.............5555555555555..............
 38:...........55555555555555555............
 37:.........555555555555555555555..........
 36:........55555555555555555555555.........
 35:......555555555555555555555555555.......
 34:.....55555555544444444444555555555......

146

 33:....5555555544444444444444455555555.....
 32:....5555555444444444444444445555555.....
 31:...555555444444444444444444444555555....
 30:..55555544444444444444444444444555555...
 29:..55555544444443333333334444444555555...
 28:.5555554444444333333333334444444555555..
 27:.5555544444433333333333333344444455555..
 26:555555444444333333333333333444444555555.
 25:555554444443333333333333333344444455555.
 24:555554444433333332222233333334444455555.
 23:555554444433333322222223333334444455555.
 22:555554444433333222222222333334444455555.
 21:555554444433333222111222333334444455555.
 20:555554444433333222111222333334444455555.
 19:555554444433333222111222333334444455555.
 18:555554444433333222222222333334444455555.
 17:555554444433333322222223333334444455555.
 16:555554444433333332222233333334444455555.
 15:555554444443333333333333333344444455555.
 14:555555444444333333333333333444444555555.
 13:.5555544444433333333333333344444455555..
 12:.5555554444444333333333334444444555555..
 11:..55555544444443333333334444444555555...
 10:..55555544444444444444444444444555555...
 9:...555555444444444444444444444555555....
 8:....5555555444444444444444445555555.....
 7:....5555555544444444444444455555555.....
 6:.....55555555544444444444555555555......
 5:......555555555555555555555555555.......
 4:........55555555555555555555555.........
 3:.........555555555555555555555..........
 2:...........55555555555555555............
 1:.............5555555555555..............

For boxes and ellipses, if an odd number of arguments is specified, then the last
argument is assumed to be an angle. Otherwise, the angle is assumed to be zero. For
example:

 ellipse 20 20 3 5 6 10 9 15 12 20 45

specifies an 3 ellipses at a 45 degree angle:

 1234567890123456789012345678901234567890
 --
 40:..
 39:..
 38:..
 37:..
 36:........33333333........................
 35:......333333333333......................
 34:.....3333333333333333...................
 33:....333333333333333333..................
 32:....33333332222233333333................
 31:...3333332222222222333333...............
 30:...33333222222222222233333..............
 29:...333332222222222222223333.............
 28:...3333222222211112222223333............
 27:...33332222211111111222223333...........
 26:...333322222111111111122223333..........
 25:...3333222211111111111122223333.........
 24:....3332222111111..1111122223333........
 23:....333322211111.....11112222333........
 22:....33332222111.......11112223333.......
 21:.....33322221111.......11122223333......
 20:.....33332221111.......11112223333......
 19:.....33332222111.......11112222333......
 18:......33332221111.......11122223333.....
 17:.......33322221111.....111112223333.....

147

 16:.......3333222211111..1111112222333.....
 15:........3333222211111111111122223333....
 14:.........333322221111111111222223333....
 13:..........33332222211111111222223333....
 12:...........3333222222111122222223333....
 11:............333322222222222222233333....
 10:.............33333222222222222233333....
 9:..............3333332222222222333333....
 8:...............33333333222223333333.....
 7:.................333333333333333333.....
 6:..................3333333333333333......
 5:.....................333333333333.......
 4:.......................33333333.........
 3:..
 2:..
 1:..

Note in the above example that the lower limit is not part of the region for boxes,
circles, and ellipses. This makes circles and annuli equivalent, i.e.:

 circle 20 20 5 10 15 20
 annulus 20 20 5 10 15 20

both give the following region mask:

 1234567890123456789012345678901234567890
 --
 40:..
 39:.............3333333333333..............
 38:...........33333333333333333............
 37:.........333333333333333333333..........
 36:........33333333333333333333333.........
 35:......333333333333333333333333333.......
 34:.....33333333322222222222333333333......
 33:....3333333322222222222222233333333.....
 32:....3333333222222222222222223333333.....
 31:...333333222222222222222222222333333....
 30:..33333322222222222222222222222333333...
 29:..33333322222221111111112222222333333...
 28:.3333332222222111111111112222222333333..
 27:.3333322222211111111111111122222233333..
 26:333333222222111111111111111222222333333.
 25:333332222221111111111111111122222233333.
 24:33333222221111111.....11111112222233333.
 23:3333322222111111.......1111112222233333.
 22:333332222211111.........111112222233333.
 21:333332222211111.........111112222233333.
 20:333332222211111.........111112222233333.
 19:333332222211111.........111112222233333.
 18:333332222211111.........111112222233333.
 17:3333322222111111.......1111112222233333.
 16:33333222221111111.....11111112222233333.
 15:333332222221111111111111111122222233333.
 14:333333222222111111111111111222222333333.
 13:.3333322222211111111111111122222233333..
 12:.3333332222222111111111112222222333333..
 11:..33333322222221111111112222222333333...
 10:..33333322222222222222222222222333333...
 9:...333333222222222222222222222333333....
 8:....3333333222222222222222223333333.....
 7:....3333333322222222222222233333333.....
 6:.....33333333322222222222333333333......
 5:......333333333333333333333333333.......
 4:........33333333333333333333333.........
 3:.........333333333333333333333..........
 2:...........33333333333333333............
 1:.............3333333333333..............

148

As a final example, specifying several angles in one pie slice expression is equivalent
to specifying several separate slices with the same center. As with the annulus, if N
angles are specified, then N-1 slices result, with the ending angle of each preceding
slice being the starting angle of the succeeding slice. Each slice is considered a
separate region, and is given a separate mask value. For example,

 PIE 12 12 315 45 115 270

specifies three regions as shown below:

 1234567890123456789012345678901234567890
 --
 40:22
 39:2222222222222222222222222222222222222221
 38:2222222222222222222222222222222222222211
 37:2222222222222222222222222222222222222111
 36:2222222222222222222222222222222222221111
 35:3222222222222222222222222222222222211111
 34:3222222222222222222222222222222222111111
 33:3322222222222222222222222222222221111111
 32:3322222222222222222222222222222211111111
 31:3332222222222222222222222222222111111111
 30:3332222222222222222222222222221111111111
 29:3333222222222222222222222222211111111111
 28:3333222222222222222222222222111111111111
 27:3333322222222222222222222221111111111111
 26:3333322222222222222222222211111111111111
 25:3333322222222222222222222111111111111111
 24:3333332222222222222222221111111111111111
 23:3333332222222222222222211111111111111111
 22:3333333222222222222222111111111111111111
 21:3333333222222222222221111111111111111111
 20:3333333322222222222211111111111111111111
 19:3333333322222222222111111111111111111111
 18:3333333332222222221111111111111111111111
 17:3333333332222222211111111111111111111111
 16:3333333333222222111111111111111111111111
 15:3333333333222221111111111111111111111111
 14:3333333333322211111111111111111111111111
 13:3333333333322111111111111111111111111111
 12:33333333333.1111111111111111111111111111
 11:3333333333331111111111111111111111111111
 10:333333333333.111111111111111111111111111
 9:333333333333..11111111111111111111111111
 8:333333333333...1111111111111111111111111
 7:333333333333....111111111111111111111111
 6:333333333333.....11111111111111111111111
 5:333333333333......1111111111111111111111
 4:333333333333.......111111111111111111111
 3:333333333333........11111111111111111111
 2:333333333333.........1111111111111111111
 1:333333333333..........111111111111111111

The annulus, box, circle, ellipse, and pie shapes also accept an n=[int] syntax for
specifying multiple regions. The n=[int] syntax interprets the previous
(shape-dependent) arguments as lower and upper limits for the region and creates n
shapes with evenly spaced boundaries. For example, if n=[int] is specified in an
annulus, the two immediately preceding radii (rn and rm) are divided into int annuli,
such that the inner radius of the first is rn and the outer radius of the last is rm.
For example,

 ANNULUS 20 20 5 20 n=3

is equivalent to:

149

 ANNULUS 20 20 5 10 15 20

If this syntax is used with an ellipse or box, then the two preceding pairs of values
are taken to be lower and upper limits for a set of ellipses or boxes. A circle uses
the two preceding arguments for upper and lower radii. For pie, the two preceding
angles are divided into n wedges such that the starting angle of the first is the lower
bound and the ending angle of the last is the upper bound. In all cases, the n=[int]
syntax allows any single alphabetic character before the "=", i.e, i=3, z=3, etc. are
all equivalent.

Also note that for boxes and ellipses, the optional angle argument is always specified
after the n=[int] syntax. For example:

 ellipse 20 20 4 6 16 24 n=3 45

specifies 3 elliptical regions at an angle of 45 degrees:

 1234567890123456789012345678901234567890
 --
 40:........33333333........................
 39:.....33333333333333.....................
 38:....33333333333333333...................
 37:...33333333333333333333.................
 36:..33333333333333333333333...............
 35:.3333333333222223333333333..............
 34:3333333322222222222233333333............
 33:33333332222222222222223333333...........
 32:333333222222222222222222333333..........
 31:3333322222222222222222222333333.........
 30:33333222222222111122222222333333........
 29:333332222222111111112222222333333.......
 28:3333222222211111111111222222333333......
 27:3333222222111111111111112222233333......
 26:33332222221111111111111112222233333.....
 25:33332222211111111.111111112222233333....
 24:333322222111111......111111222223333....
 23:333322222111111.......111112222233333...
 22:33333222221111.........11111222223333...
 21:333332222211111.........11112222233333..
 20:.33332222211111.........11111222223333..
 19:.33333222221111.........111112222233333.
 18:..33332222211111.........11112222233333.
 17:..333332222211111.......111111222233333.
 16:...333322222111111......111111222223333.
 15:...333332222211111111.111111112222233333
 14:....333332222211111111111111122222233333
 13:.....33333222221111111111111122222233333
 12:.....33333322222211111111111222222233333
 11:......3333332222222111111112222222333333
 10:.......333333222222221111222222222333333
 9:........33333322222222222222222222333333
 8:.........333333222222222222222222333333.
 7:..........33333332222222222222223333333.
 6:...........3333333322222222222233333333.
 5:.............3333333333222223333333333..
 4:..............33333333333333333333333...
 3:................33333333333333333333....
 2:..................33333333333333333.....
 1:....................33333333333333......

Both the variable argument syntax and the n=[int] syntax must occur alone in a region descriptor (aside from the optional angle
for boxes and ellipses). They cannot be combined. Thus, it is not valid to precede or follow an n=[int] accelerator with more
angles or radii, as in this example:

 # INVALID -- one too many angles before a=5 ...
 # and no angles are allowed after a=5
 PIE 12 12 10 25 50 a=5 85 135

Instead, use three separate specifications, such as:

 PIE 12 12 10 25
 PIE 12 12 25 50 a=5
 PIE 12 12 85 135

The original (IRAF) implementation of region filtering permitted this looser syntax, but we found it caused more confusion than it
was worth and therefore removed it.

NB: Accelerators may be combined with other shapes in a boolean expression in any order. (This is a change starting with funtools
v1.1.1. Prior to this release, the accelerator shape had to be specified last). The actual region mask id values returned depend
on the order in which the shapes are specified, although the total number of pixels or rows that pass the filter will be
consistent. For this reason, use of accelerators in boolean expressions is discouraged in programs such as funcnts, where region
mask id values are used to count events or image pixels.

150

[All region masks displayed in this document were generated using the fundisp routine and the undocumented "mask=all" argument
(with spaced removed using sed):

 fundisp "funtools/funtest/test40.fits[ANNULUS 25 25 5 10]" mask=all |\
 sed ’s/ //g’

Note that you must supply an image of the appropriate size -- in this case, a FITS image of dimension 40x40 is used.]

Go to Funtools Help Index

Last updated: March 12, 2007

151

RegAlgebra: Boolean Algebra on Spatial Regions

Summary
This document describes the boolean arithmetic defined for region expressions.

Description
When defining a region, several shapes can be combined using boolean operations. The boolean operators
are (in order of precedence):

 Symbol Operator Associativity
 ------ -------- -------------
 ! not right to left
 & and left to right
 ^ exclusive or left to right
 | inclusive or left to right

For example, to create a mask consisting of a large circle with a smaller box removed, one can use the and
and not operators:

 CIRCLE(11,11,15) & !BOX(11,11,3,6)

and the resulting mask is:

 1234567890123456789012345678901234567890
 --
 1:1111111111111111111111..................
 2:1111111111111111111111..................
 3:11111111111111111111111.................
 4:111111111111111111111111................
 5:111111111111111111111111................
 6:1111111111111111111111111...............
 7:1111111111111111111111111...............
 8:1111111111111111111111111...............
 9:111111111...1111111111111...............
 10:111111111...1111111111111...............
 11:111111111...1111111111111...............
 12:111111111...1111111111111...............
 13:111111111...1111111111111...............
 14:111111111...1111111111111...............
 15:1111111111111111111111111...............
 16:1111111111111111111111111...............
 17:111111111111111111111111................
 18:111111111111111111111111................
 19:11111111111111111111111.................
 20:1111111111111111111111..................
 21:1111111111111111111111..................
 22:111111111111111111111...................
 23:..11111111111111111.....................
 24:...111111111111111......................
 25:.....11111111111........................
 26:..

152

 27:..
 28:..
 29:..
 30:..
 31:..
 32:..
 33:..
 34:..
 35:..
 36:..
 37:..
 38:..
 39:..
 40:..

A three-quarter circle can be defined as:

 CIRCLE(20,20,10) & !PIE(20,20,270,360)

and looks as follows:

 1234567890123456789012345678901234567890
 --
 1:..
 2:..
 3:..
 4:..
 5:..
 6:..
 7:..
 8:..
 9:..
 10:..
 11:...............111111111................
 12:..............11111111111...............
 13:............111111111111111.............
 14:............111111111111111.............
 15:...........11111111111111111............
 16:..........1111111111111111111...........
 17:..........1111111111111111111...........
 18:..........1111111111111111111...........
 19:..........1111111111111111111...........
 20:..........1111111111111111111...........
 21:..........1111111111....................
 22:..........1111111111....................
 23:..........1111111111....................
 24:..........1111111111....................
 25:...........111111111....................
 26:............11111111....................
 27:............11111111....................
 28:..............111111....................
 29:...............11111....................
 30:..
 31:..
 32:..
 33:..
 34:..

153

 35:..
 36:..
 37:..
 38:..
 39:..
 40:..

Two non-intersecting ellipses can be made into the same region:

 ELL(20,20,10,20,90) | ELL(1,1,20,10,0)

and looks as follows:

 1234567890123456789012345678901234567890
 --
 1:11111111111111111111....................
 2:11111111111111111111....................
 3:11111111111111111111....................
 4:11111111111111111111....................
 5:1111111111111111111.....................
 6:111111111111111111......................
 7:1111111111111111........................
 8:111111111111111.........................
 9:111111111111............................
 10:111111111...............................
 11:...........11111111111111111............
 12:........111111111111111111111111........
 13:.....11111111111111111111111111111......
 14:....11111111111111111111111111111111....
 15:..11111111111111111111111111111111111...
 16:.1111111111111111111111111111111111111..
 17:111111111111111111111111111111111111111.
 18:111111111111111111111111111111111111111.
 19:111111111111111111111111111111111111111.
 20:111111111111111111111111111111111111111.
 21:111111111111111111111111111111111111111.
 22:111111111111111111111111111111111111111.
 23:111111111111111111111111111111111111111.
 24:.1111111111111111111111111111111111111..
 25:..11111111111111111111111111111111111...
 26:...11111111111111111111111111111111.....
 27:.....11111111111111111111111111111......
 28:.......111111111111111111111111.........
 29:...........11111111111111111............
 30:..
 31:..
 32:..
 33:..
 34:..
 35:..
 36:..
 37:..
 38:..
 39:..
 40:..

You can use several boolean operations in a single region expression, to create arbitrarily complex

154

regions. With the important exception below, you can apply the operators in any order, using parentheses
if necessary to override the natural precedences of the operators.

NB: Using a panda shape is always much more efficient than explicitly specifying "pie & annulus", due to
the ability of panda to place a limit on the number of pixels checked in the pie shape. If you are going to
specify the intersection of pie and annulus, use panda instead.

As described in "help regreometry", the PIE slice goes to the edge of the field. To limit its scope, PIE
usually is is combined with other shapes, such as circles and annuli, using boolean operations. In this
context, it is worth noting that that there is a difference between -PIE and &!PIE . The former is a global
exclude of all pixels in the PIE slice, while the latter is a local excludes of pixels affecting only the
region(s) with which the PIE is combined. For example, the following region uses &!PIE as a local
exclude of a single circle. Two other circles are also defined and are unaffected by the local exclude:

 CIRCLE(1,8,1)
 CIRCLE(8,8,7)&!PIE(8,8,60,120)&!PIE(8,8,240,300)
 CIRCLE(15,8,2)

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 - - - - - - - - - - - - - - -
 15:
 14: 2 2 2 2 2 2 2
 13: . . . 2 2 2 2 2 2 2 2 2 . . .
 12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 10: 2 2 2 2 2 2 2
 9: 2 2 2 3 3
 8: 1 3 3
 7: 2 2 2 3 3
 6: 2 2 2 2 2 2 2
 5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 3: . . . 2 2 2 2 2 2 2 2 2 . . .
 2: 2 2 2 2 2 2 2
 1:

Note that the two other regions are not affected by the &!PIE , which only affects the circle with which it
is combined.

On the other hand, a -PIE is an global exclude that does affect other regions with which it overlaps:

 CIRCLE(1,8,1)
 CIRCLE(8,8,7)
 -PIE(8,8,60,120)
 -PIE(8,8,240,300)
 CIRCLE(15,8,2)

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 - - - - - - - - - - - - - - -
 15:
 14: 2 2 2 2 2 2 2
 13: . . . 2 2 2 2 2 2 2 2 2 . . .
 12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 11: . . 2 2 2 2 2 2 2 2 2 2 2 . .

155

 10: 2 2 2 2 2 2 2
 9: 2 2 2
 8:
 7: 2 2 2
 6: 2 2 2 2 2 2 2
 5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
 3: . . . 2 2 2 2 2 2 2 2 2 . . .
 2: 2 2 2 2 2 2 2
 1:

The two smaller circles are entirely contained within the two exclude PIE slices and therefore are
excluded from the region.

Go to Funtools Help Index

Last updated: November 17, 2005

156

RegCoords: Spatial Region Coordinates

Summary
This document describes the specification of coordinate systems, and the interpretation of coordinate
values, for spatial region filtering.

Pixel coordinate systems
The default coordinate system for regions is PHYSICAL, which means that region position and size
values are taken from the original data. (Note that this is a change from the original IRAF/PROS
implementation, in which the IMAGE coordinate system was the default.) PHYSICAL coordinates always
refer to pixel positions on the original image (using IRAF LTM and LTV keywords). With PHYSICAL
coordinates, if a set of coordinates specifies the position of an object in an original FITS file, the same
coordinates will specify the same object in any FITS derived from the original. Physical coordinates are
invariant with blocking of FITS files or taking sections of images, even when a blocked section is written
to a new file.

Thus, although a value in pixels refers, by default, to the PHYSICAL coordinate system, you may specify
that position values refer to the image coordinate system using the global or local properties commands:

 global coordsys image
 circle 512 512 100

The global command changes the coordinate system for all regions that follow, while the local command
changes the coordinate system only for the region immediately following:

 local coordsys image
 circle 512 512 100
 circle 1024 1024 200

This changes the coordinate system only for the region that follows. In the above example, the second
region uses the global coordinate system (PHYSICAL by default).

World Coordinate Systems
If World Coordinate System information is contained in the data file being filtered, it also is possible to
define regions using a sky coordinate system. Supported systems include:

 name description
 ---- -----------
 PHYSICAL pixel coords of original file using LTM/LTV
 IMAGE pixel coords of current file
 FK4, B1950 sky coordinate systems
 FK5, J2000 sky coordinate systems
 GALACTIC sky coordinate systems
 ECLIPTIC sky coordinate systems
 ICRS currently same as J2000
 LINEAR linear wcs as defined in file

157

In addition, two mosaic coordinate systems have been defined that utilize the (evolving) IRAF mosaic
keywords:

 name description
 ---- -----------
 AMPLIFIER mosaic coords of original file using ATM/ATV
 DETECTOR mosaic coords of original file using DTM/DTV

Again, to use one of these coordinate systems, the global or local properties commands are used:

 global coordsys galactic

WCS Positions and Sizes
In addition to pixels, positional values in a WCS-enabled region can be specified using sexagesimal or
degrees format:

 position arguments description
 ------------------ -----------
 [num] context-dependent (see below)
 [num]d degrees
 [num]r radians
 [num]p physical pixels
 [num]i image pixels
 [num]:[num]:[num] hms for ’odd’ position arguments
 [num]:[num]:[num] dms for ’even’ position arguments
 [num]h[num]m[num]s explicit hms
 [num]d[num]m[num]s explicit dms

If ’:’ is used as sexagesimal separator, the value is considered to be specifying hours/minutes/seconds if it
is the first argument of a positional pair, and degrees/minutes/seconds for the second argument of a pair
(except for galactic coordinates, which always use degrees):

 argument description
 ----------- -----------
 10:20:30.0 10 hours, 20 minutes, 30 seconds for 1st positional argument
 10 degrees, 20 minutes, 30 seconds for 2nd positional argument
 10h20m30.0 10 hours, 20 minutes, 30 seconds
 10d20m30.0 10 degrees, 20 minutes, 30 seconds
 10.20d 10.2 degrees

Similarly, the units of size values are defined by the formating character(s) attached to a number:

 size arguments description
 -------------- -----------
 [num] context-dependent (see below)
 [num]" arc seconds
 [num]’ arc minutes
 [num]d degrees
 [num]r radians
 [num]p physical pixels
 [num]i image pixels

For example:

158

 argument description
 ----------- -----------
 10 ten pixels
 10’ ten minutes of arc
 10" ten seconds of arc
 10d ten degrees
 10p ten pixels
 0.5r half of a radian

An example of using sky coordinate systems follows:

 global coordsys B1950
 -box 175.54d 20.01156d 10’ 10’
 local coordsys J2000
 pie 179.57d 22.4d 0 360 n=4 && annulus 179.57d 22.4d 3’ 24’ n=5

At the FK4 1950 coordinates 175.54d RA, 20.01156d DEC exclude a 10 minute by 10 minute box. Then
at the FK5 2000 coordinates 179.57d RA 22.4d DEC draw a radial profile regions pattern with 4 quadrants
and 5 annuli ranging from 3 minutes to 24 minutes in diameter. In this example, the default coordinate
system is overridden by the commands in the regions spec.

NB: The Meaning of Pure Numbers Are Context Sensitive
When a "pure number" (i.e. one without a format directive such as ’d’ for ’degrees’) is specified as a
position or size, its interpretation depends on the context defined by the ’coordsys’ keyword. In general,
the rule is:

All pure numbers have implied units corresponding to the current coordinate system.

If no coordinate system is explicitly specified, the default system is implicitly assumed to be PHYSICAL.
In practice this means that for IMAGE and PHYSICAL systems, pure numbers are pixels. Otherwise, for
all systems other than LINEAR, pure numbers are degrees. For LINEAR systems, pure numbers are in the
units of the linear system. This rule covers both positions and sizes.

As a corollary, when a sky-formatted number is used with the IMAGE or PHYSICAL coordinate system
(which includes the default case of no coordsys being specified), the formatted number is assumed to be in
the units of the WCS contained in the current file. If no sky WCS is specified, an error results.

Examples:

 circle(512,512,10)
 ellipse 202.44382d 47.181656d 0.01d 0.02d

In the absence of a specified coordinate system, the circle uses the default PHYSICAL units of pixels,
while the ellipse explicitly uses degrees, presumably to go with the WCS in the current file.

 global coordsys=fk5
 global color=green font="system 10 normal"
 circle 202.44382 47.181656 0.01
 circle 202.44382 47.181656 10p
 ellipse(512p,512p,10p,15p,20)

159

Here, the circles use the FK5 units of degrees (except for the explicit use of pixels in the second radius),
while the ellipse explicitly specifies pixels. The ellipse angle is in degrees.

Note that Chandra data format appears to use "coordsys=physical" implicitly. Therefore, for most Chandra
applications, valid regions can be generated safely by asking ds9 to save/display regions in pixels using
the PHYSICAL coordsys.

Go to Funtools Help Index

Last updated: November 17, 2005

160

RegBounds: Region Boundaries

Summary
Describes how spatial region boundaries are handled.

Description
The golden rule for spatial region filtering was first enunciated by Leon VanSpeybroeck in 1986:

Each photon will be counted once, and no photon will be counted more than once.

This means that we must be careful about boundary conditions. For example, if a circle is contained in an
annulus such that the inner radius of the annulus is the same as the radius of the circle, then photons on
that boundary must always be assigned to one or the other region. That is, the number of photons in both
regions must equal the sum of the number of photons in each region taken separately. With this in mind,
the rules for determining whether a boundary image pixel or table row are assigned to a region are defined
below.

Image boundaries : radially-symmetric shapes (circle, annuli,
ellipse)
For image filtering, pixels whose center is inside the boundary are included. This also applies
non-radially-symmetric shapes. When a pixel center is exactly on the boundary, the pixel assignment rule
is:

the outer boundary of a symmetric shape does not include such pixels
the inner boundary of a symmetric shape (annulus) includes such pixels

In this way, an annulus with radius from 0 to 1, centered exactly on a pixel, includes the pixel on which it
is centered, but none of its neighbors. These rules ensure that when defining concentric shapes, no pixels
are omitted between concentric regions and no pixels are claimed by two regions. When applied to small
symmetric shapes, the shape is less likely to be skewed, as would happen with non-radially-symmetric
rules. These rules differ from the rules for box-like shapes, which are more likely to be positioned
adjacent to one another.

Image Boundaries: non-radially symmetric shapes (polygons,
boxes)
For image filtering, pixels whose center is inside the boundary are included. This also applies
radially-symmetric shapes. When a pixel center is exactly on the boundary of a non-radially symmetric
region, the pixel is included in the right or upper region, but not the left or lower region. This ensures that
geometrically adjoining regions touch but don’t overlap.

161

Row Boundaries are Analytic
When filtering table rows, the boundary rules are the same as for images, except that the calculation is not
done on the center of a pixel, (since table rows, especially X-ray events rows, often have discrete, floating
point positions) but are calculated exactly. That is, an row is inside the boundary without regard to its
integerized pixel value. For rows that are exactly on a region boundary, the above rules are applied to
ensure that all rows are counted once and no row is counted more than once.

Because row boundaries are calculated differently from image boundaries, certain programs will give
different results when filtering the same region file. In particular, fundisp/funtable (which utilize analytic
row filtering) perform differently from funcnts (which performs image filtering, even on tables).

Image Boundaries vs. Row Boundaries: Practical Considerations
You will sometimes notice a discrepancy between running funcnts on an binary table file and running
fundisp on the same file with the same filter. For example, consider the following:

 fundisp test1.fits"[box(4219,3887,6,6,0)]" | wc
 8893 320148 3752846

Since fundisp has a 2-line header, there are actually 8891 photons that pass the filter. But then run funtable
and select only the rows that pass this filter, placing them in a new file:

 ./funtable test1.fits"[box(4219,3887,6,6,0)]" test2.fits

Now run funcnts using the original filter on the derived file:

 ./funcnts test2.fits "physical; box(4219,3887,6,6,0)"

 [... lot of processed output ...]

 # the following source and background components were used:
 source region(s)

 physical; box(4219,3887,6,6,0)

 reg counts pixels
 ---- ------------ ---------
 1 7847.000 36

There are 1044 rows (events) that pass the row filter in fundisp (or funtable) but fail to make it through
funcnts. Why?

The reason can be traced to how analytic row filtering (fundisp, funtable) differs from integerized pixel
filtering(funcnts, funimage). Consider the region:

 box(4219,3887,6,6,0)

Analytically (i.e., using row filtering), positions will pass this filter successfully if:

162

 4216 <= x <= 4222
 3884 <= y <= 3890

For example, photons with position values of x=4216.4 or y=3884.08 will pass.

Integerized image filtering is different in that the pixels that will pass this filter have centers at:

 x = 4217, 4218, 4219, 4220, 4221, 4222
 y = 3885, 3886, 3887, 3888, 3889, 3890

Note that there are 6 pixels in each direction, as specified by the region. That means that positions will
pass the filter successfully if:

 4217 <= (int)x <= 4222
 3885 <= (int)y <= 3890

Photons with position values of x=4216.4 or y=3884.08 will NOT pass.

Note that the position values are integerized, in effect, binned into image values. This means that
x=4222.4 will pass this filter, but not the analytic filter above. We do this to maintain the design goal that
either all counts in a pixel are included in an integerized filter, or else none are included.

[It could be argued that the correct photon limits for floating point row data really should be:

 4216.5 <= x <= 4222.5
 3884.5 <= y <= 3890.5

since each pixel extends for .5 on either side of the center. We chose to the maintain integerized algorithm
for all image-style filtering so that funcnts would give the exact same results regardless of whether a table
or a derived non-blocked binned image is used.]

Go to Funtools Help Index

Last updated: November 16, 2005

163

RegDiff:Differences Between Funtools and IRAF Regions

Summary
Describes the differences between Funtools/ds9 regions and the old IRAF/PROS regions.

Description
We have tried to make Funtools regions compatible with their predecessor, IRAF/PROS regions. For
simple regions and simple boolean algebra between regions, there should be no difference between the
two implementations. The following is a list of differences and incompatibilities between the two:

If a pixel is covered by two different regions expressions, Funtools assigns the mask value of the first
region that contains that pixel. That is, successive regions do not overwrite previous regions in the
mask, as was the case with the original PROS regions. This means that one must define overlapping
regions in the reverse order in which they were defined in PROS. If region N is fully contained
within region M, then N should be defined before M, or else it will be "covered up" by the latter.
This change is necessitated by the use of optimized filter compilation, i.e., Funtools only tests
individual regions until a proper match is made.

The PANDA region has replaced the old PROS syntax in which a PIE accelerator was combined
with an ANNULUS accelerator using AND. That is,

 ANNULUS(20,20,0,15,n=4) & PIE(20,20,0,360,n=3)

has been replaced by:

 PANDA(20,20,0,360,3,0,15,4)

The PROS syntax was inconsistent with the meaning of the AND operator.

The meaning of pure numbers (i.e., without format specifiers) in regions has been clarified, as has the
syntax for specifying coordinate systems. See the general discussion on Spatial Region Filtering for
more information.

Go to Funtools Help Index

Last updated: November 16, 2005

164

FunCombine: Combining Region and Table Filters

Summary
This document discusses the conventions for combining region and table filters, especially with regards to
the comma operator.

Comma Conventions
Filter specifications consist of a series of boolean expressions, separated by commas. These expressions
can be table filters, spatial region filters, or combinations thereof. Unfortunately, common usage requires
that the comma operator must act differently in different situations. Therefore, while its use is intuitive in
most cases, commas can be a source of confusion.

According to long-standing usage in IRAF, when a comma separates two table filters, it takes on the
meaning of a boolean and. Thus:

 foo.fits[pha==1,pi==2]

is equivalent to:

 foo.fits[pha==1 && pi==2]

When a comma separates two spatial region filters, however, it has traditionally taken on the meaning of a
boolean or. Thus:

 foo.fits[circle(10,10,3),ellipse(20,20,8,5)]

is equivalent to:

 foo.fits[circle(10,10,3) || ellipse(20,20,8,5)]

(except that in the former case, each region is given a unique id in programs such as funcnts).

Region and table filters can be combined:

 foo.fits[circle(10,10,3),pi=1:5]

or even:

 foo.fits[pha==1&&circle(10,10,3),pi==2&&ellipse(20,20,8,5)]

In these cases, it is not obvious whether the command should utilize an or or and operator. We therefore
arbitrarily chose to implement the following rule:

if both expressions contain a region, the operator used is or.
if one (or both) expression(s) does not contain a region, the operator used is and.

165

This rule handles the cases of pure regions and pure column filters properly. It unambiguously assigns the
boolean and to all mixed cases. Thus:

 foo.fits[circle(10,10,3),pi=1:5]

and

 foo.fits[pi=1:5,circle(10,10,3)]

both are equivalent to:

 foo.fits[circle(10,10,3) && pi=1:5]

[NB: This arbitrary rule replaces the previous arbitrary rule (pre-funtools 1.2.3) which stated:

if the 2nd expression contains a region, the operator used is or.
if the 2nd expression does not contain a region, the operator used is and.

In that scenario, the or operator was implied by:

 pha==4,circle 5 5 1

while the and operator was implied by

 circle 5 5 1,pha==4

Experience showed that this non-commutative treatment of the comma operator was confusing and led to
unexpected results.]

The comma rule must be considered provisional: comments and complaints are welcome to help clarify
the matter. Better still, we recommend that the comma operator be avoided in such cases in favor of an
explicit boolean operator.

Go to Funtools Help Index

Last updated: November 16, 2005

166

FunEnv: Funtools Environment Variables

Summary
Describes the environment variables which can be used to tailor the overall Funtools environment.

Description
The following environment variables are supported by Funtools:

FITS_EXTNAME
The FITS_EXTNAME environment variable specifies the default FITS extension name when
FunOpen() is called on a file lacking a primary image. Thus,

 setenv FITS_EXTNAME "NEWEV"

will allow you to call FunOpen() on files without specifying NEWEV in the Funtools bracket
specification. If no FITS_EXTNAME variable is defined and the extension name also is not passed in
the bracket specification, then the default will be to look for standard X-ray event table extension
names "EVENTS" or "STDEVT" (we are, after all, and X-ray astronomy group at heart!).

FITS_EXTNUM
The FITS_EXTNUM environment variable specifies the default FITS extension number when
FunOpen() is called on a file lacking a primary image. Thus,

 setenv FITS_EXTNUM 7

will allow you to call FunOpen() on files to open the seventh extension without specifying the
number in the Funtools bracket specification.

FITS_BINCOLS and EVENTS_BINCOLS
These environment variable specifies the default binning key for FITS binary tables and raw event
files, respectively. They can be over-ridden using the bincols=[naxis1,naxis2] keyword in a Funtools
bracket specification. The value of each environment variable is a pair of comma-delimited columns,
enclosed in parentheses, to use for binning. For example, if you want to bin on detx and dety by
default, then use:

 setenv FITS_BINCOLS "(detx,dety)"

in preference to adding a bincols specification to each filename:

 foo.fits[bincols=(detx,dety)]

FITS_BITPIX and EVENTS_BITPIX
These environment variable specifies the default bitpix value for binning FITS binary tables and raw
event files, respectively. They can be over-ridden using the bitpix=[value] keyword in a Funtools
bracket specification. The value of each environment variable is one of the standard FITS bitpix
values (8,16,32,-32,-64). For example, if you want binning routines to create a floating array, then

167

use:

 setenv FITS_BITPIX -32

in preference to adding a bitpix specification to each filename:

 foo.fits[bitpix=-32]

ARRAY
The ARRAY environment variable specifies the default definition of an array file for Funtools. It is
used if there is no array specification passed in the ARRAY() directive in a Non-FITS Array
specification. The value of the environment variable is a valid array specification such as:

 setenv ARRAY "s100.150"
 foo.arr[ARRAY()]

This can be defined in preference to adding the specification to each filename:

 foo.arr[ARRAY(s100.150)]

EVENTS
The EVENTS environment variable specifies the default definition of an raw event file for Funtools.
It is used if there is no EVENTS specification passed in the EVENTS() directive in a Non-FITS
EVENTS specification. The value of the environment variable is a valid EVENTS specification such
as:

 setenv EVENTS "x:J:1024,y:J:1024,pi:I,pha:I,time:D,dx:E:1024,dx:E:1024"
 foo.ev[EVENTS()]

This can be defined in preference to adding the specification to each filename:

 foo.ev[EVENTS(x:J:1024,y:J:1024,pi:I,pha:I,time:D,dx:E:1024,dx:E:1024)]

The following filter-related environment variables are supported by Funtools:

FILTER_PTYPE
The FILTER_PTYPE environment variable specifies how to build a filter. There are three possible
methods:
process or p

The filter is compiled and linked against the funtools library (which must therefore be accessible
in the original install directory) to produce a slave program. This program is fed events or image
data and returns filter results.

dynamic or d (gcc only)
The filter is compiled and linked against the funtools library (which must therefore be accessible
in the original install directory) to produce a dynamic shared object, which is loaded into the
funtools program and executed as a subroutine. (Extensive testing has shown that, contrary to
expectations, this method is no faster than using a slave process.)

contained or c
The filter and all supporting region code is compiled and linked without reference to the
funtools library to produce a slave program (which is fed events or image data and returns filter
results). This method is slower than the other two, because of the time it takes to compile the

168

region filtering code. It is used by stand-alone programs such as ds9, which do not have access
to the funtools library.

By default, dynamic is generally used for gcc compilers and process for other compilers. However
the filter building algorithm will check for required external files and will use contained is these are
missing.

FUN_MAXROW
The FUN_MAXROW environment variable is used by core row-processing Funtools programs
(funtable, fundisp, funcnts, funhist, funmerge, and funcalc) to set the maximum number of rows read
at once (i.e. it sets the third argument to the FunTableRowGet() call). The default is 8192. Note that
this variable is a convention only: it will not be a part of a non-core Funtools program unless code is
explicitly added, since each call to FunTableRowGet() specifies its own maximum number of rows to
read. NB: if you make this value very large, you probably will need to increase
FUN_MAXBUFSIZE (see below) as well.

FUN_MAXBUFSIZE
The FUN_MAXBUFSIZE environment variable is used to limit the max buffer size that will be
allocated to hold table row data. This buffer size is calculated to be the row size of the table
multiplied by the maximum number of rows read at once (see above). Since the row size is unlimited
(and we have examples of it being larger than 5 Mb), it is possible that the total buffer size will
exceed the machine capabilities. We therefore set a default value of 5Mb for the max buffer size, and
adjust maxrow so that the total size calculated is less than this max buffer size. (If the row size is
greater than this max buffer size, then maxrow is set to 1.) This environment variable will change the
max buffer size allowed.

FILTER_CC
The FILTER_CC environment variable specifies the compiler to use for compiling a filter
specification. You also can use the CC environment variable. If neither has been set, then gcc will be
used if available. Otherwise cc is used if available.

FILTER_EXTRA
The FILTER_EXTRA environment variable specifies extra options to add to a filter compile
command line. In principle, you can add libraries, include files, and compiler switches. This variable
should be used with care.

FILTER_TMPDIR
The FILTER_TMPDIR environment variable specifies the temporary directory for filter
compilation intermediate files. You also can use the TMPDIR and TMP variables. By default, /tmp
is used as the temporary directory.

FILTER_KEEP
The FILTER_KEEP environment variable specifies whether the intermediate filter files (i.e. C
source file and compile log file) should be saved after a filter is built. The default is "false", so that
these intermediate files are deleted. This variable is useful for debugging, but care should be taken to
reset its value to false when debugging is complete.

169

Go to Funtools Help Index

Last updated: November 16, 2005

170

Funtools ChangeLog
This ChangeLog covers both the Funtools library and the suite of applications. It will be updated as we
continue to develop and improve Funtools. The up-to-date version can be found here. [The changelog for
the initial development of Funtools, covering the beta releases, can be found here.]

Patch Release 1.4.5 (internal ds9 release)
Removed permission checking from Find() on cygwin systems. This was broken by Windows 7.

Removed addition of -no-cpp-precomp flag from gcc 4.2 and beyond.

Patch Release 1.4.4 (internal ds9 release)
Fixed -J funcone, which was not properly outputting all rows.

Filter: when an image is flipped, the rotation angle must be reversed.

Filter: add support for windows-based ipc communication when using tcc compiler.

Patch Release 1.4.3 (internal ds9 release)
Filter: improve checks for existence of compiler, even if CC is set.

Change launch.h to xlaunch.h to avoid conflict with OS X.

handle flipped images in filtering

Patch Release 1.4.2 (internal ds9 release)
Port to gcc 4.2.

Fix 1-byte filters on intel machines (missing SW1 no-op).

Remove ambiguity from filt.l (and calc.l) using [A-z] in a case-insensitive lexer.

In funsky, the default unit for RA was changed from hours to degrees.

Fixed bug in funtable in which TCRVL header values were output as strings.

Added support for running funtools filters in Rosetta (i.e. running PPC executables on an Intel Mac)
by sensing and handling data swap requirements. Only works with FILTER_PTYPE set to ’c’ (can’t
link against wrong architecture libraries).

171

http://hea-www.harvard.edu/RD/funtools/changelog.html
http://hea-www.harvard.edu/RD/funtools/changelog_beta.html

Fixed bug in FITS library to allow "-" in extension names.

Code and documentation now agree that the copy extension specifier (’+’) comes after the extension
name.

Patch Release 1.4.1 (internal ds9 release)
Modified internal Launch() routine to use posix_spawn(), if necessary. This is required for OS X 10.5
(leopard), which frowns upon use of fork() and exec(). Also modified zprocess routines to use
Launch().

Public Release 1.4.0 (15 August 2007)
Public release of production-quality code, incorporating changes and improvements from previous
beta releases, including:

Support for access to ASCII text column files.
Support for fast indexed access of binary tables.
Support for database views of tables, i.e. pre-set values for the filter specification, the columns
to activate, and display format.
New programs include funcone (cone search), funindex (create index files), and funcen
(calculate centroids within regions).

Release 1.3.0b[n] (mainly internal SAO beta releases)
Added -F[c] switch to change the column delimiter to the specified character.

Extended fundisp’s format switch (-f) so that it can now handle complex formats such as
’x=sometext%3d- y=othertest%3d.ext’.

Added support for creating and processing 1D FITS images.

Added vcol=colname and vcol=/colname to filter specifications to support use of a third value
column when binning 2D images.

Added switches to funcone to write out data rows are not within any cone (-J, -X) and centers which
have no close data rows (-L).

In funjoin, added ability to specify a numeric tolerance for when joining two files.

shared memory support in gio now can create a shared segment if w+ is specified as the open mode.

Changed reggeometry man page so that examples correctly show angles going counter-clockwise
from the x-axis instead of from the y-axis.

172

Added checks to funmerge to ensure that all files have the same columns.

Fixed bug in text support that prevented header-less files from being processed properly.

Added support for 64-bit images (bitpix=64) and table columns (TFORM=K).

Filter code was not applying bscale/bzero to columns.

Fixed funimage bug that caused a .5/block error in WCS CRPIX values generated from binary tables.

Added feq(a,b) and div(a,b) macros to funcalc.

Added support for single-line #define to funcalc.

Updated wcs library to 3.6.6

Fix bug in funcen in which ra,dec was not being calculated correctly if physical and image coords did
not match up.

The filter syntax "col1 = col2" now explicitly generates an error (you really want to do "col1 ==
col2").

Added -o switch to include offset from the nominal target position.

Fundisp now displays multi-dimensional vector columns properly.

Documented support for lists of files processed as a single file using "list: file1 ... filen" syntax.

Fixed bugs in support for pipe file type (i.e. ability to pass commands as a filename using "pipe: cmd
arg1 ... argn" syntax).

Fixed bug in funhist processing of image-based pixel histograms (i.e using "xy" for columns) where a
region was specified. All pixels outside the region were erroneously being added to the bin containing the
0 value.

Disabled multi-file processing in funds9, which was breaking support for pathnames containing
spaces and is not used by ds9 anyway.

Added support for Views of tables, i.e. pre-set values for the filter specification, the columns to
activate, and display format (though the latter is for fundisp only).

Added -l switch to funimage to read x, y, val columns from a list.

Removed useless and meaningless section syntax foo’[*]’ because it breaks pointer de-referencing on
string columns (i.e. foo’[*xxx==’a’]’). Use foo’[*,*]’ instead, as documented.

String variables were not always being terminated properly in the filter code because FITS ’A’ data is
not necessarily null-terminated.

173

Added funtools version number to all usage() displays.

Added explanation of switch arguments to many usage() displays.

The filter keyword row# now supports single row selection as well as range selection, i.e.,
"row#=100" along with previous "row#=100:200".

fundisp now outputs "0x" before hex values.

Fixed bug in filter parser which processed rangelists incorrectly if spaces were put into the rangelist
(i.e. "pha= 1 : 3" instead of pha=1:3).

Fixed a bug in funindex which created a wrongly named index file if more than one "." was in the
input file name.

Added support to funcone to take ra, dec, radius from a list (i.e. columns in a FITS file or a text file).

Fixed a bug in FunColumnActivate so that if some columns are explicitly activated while others are
de-activated, only the explicitly activated columns are activated (code was activating all columns in this
case).

Fixed a bug in funindex which prevented indexing tables containing a column named N.

fundisp now encloses ASCII column values in single quotes (unless -T is specified to output RDB
format).

If a filter specification only involves indexed columns, then the compiled filter is not used.

Funmerge can now be given a list of files to merge using @list syntax. Also removed the restriction
on how many files can be merged (was limited to the max number of open files).

Added ability to edit (add, delete, modify) header parameters in funhead by specifying an output file
(editing acts as a filter) and an edit command file (which can be stdin).

Funtools now contains preliminary code to support (fast) indexed access of binary tables. See
idx.html or "man funidx" for more details.

Funtools now contains preliminary code supporting access to ASCII column files. See text.html or
"man funtext" for more details.

Fixed bug in funcalc in which columns used in an expression were always being replaced by new
columns, with all associated parameters (e.g. WCS) were being deleted. Now this only happens if the
column explicitly changes its data type.

Fixed bug in funcalc in which the raw data and user data became out of sync for one row after every
8192 (FUN_MAXROW) rows.

174

Fixed bug in gio in which gseek returned 0 instead of the current byte offset for disk files.

Added funcone program to perform cone search on RA, Dec columns in a FITS binary table.

Fixed bug in polygon, pie and rotated box region filtering for tables (nearby rows exactly in line
between two non-vertical or non-horizontal vertices were being accepted incorrectly).

Fixed pie and panda regions so that the angles now start from positive x axis == 0 degrees and run
counter-clockwise, as documented. They were going from positive y. NB: a similar change was made to
ds9 release 4.0b3. You must be using ds9 4.0b3 or later in order to have the correct behavior when
generating regions in ds9 and using them in funtools.

Added -p [prog] switch to funcalc to save the generated program. instead of executing (and deleting)
it.

Upgraded zlib to 1.2.3.

Patch Release 1.2.4 (internal SAO and beta release only)
In funcalc, added support for user-specified arguments via the -a [argstr] switch. These arguments are
accessed in the compiled program using the supplied ARGC and ARGV(n) macros.

Added -n (no header display) to fundisp to skip outputting header.

Added checks for various types of blank filters.

Added macros NROW (current row number) and WRITE_ROW (write current row to disk) to
funcalc.

funcalc no longer requires that at least one data column be specified in the compiled expression.

Added FUN_NROWS to FunInfoGet() to return the total number of rows in an input table (i.e. value
of NAXIS2).

The compiled funcalc program now includes stdlib.h and unistd.h.

The util/NaN.h header file is now modified at configure time to contain endian status for the target
architecture. References to specific platforms have been removed.

Added -m switch to funtable to output multiple files, one for each input region (and a separate file for
events that pass the filters but are not in any region).

Added ability to add new parameters (FunParamPutx) after writing data if space is previously
reserved in the form of a blank parameter whose value is the name of the param to be updated. (Also
requires the append argument of FunParamPutx be set to 2).

175

Added ability to build shared libraries. With --enable-shared=yes, shared library is built but not used.
With --enable-shared=link, shared library is linked against (requires proper installation and/or use of
LD_LIBRARY_PATH).

Added -v [column] support to funcnts so that counts in a table can be accumulated using values from
a specified column (instead of the default case where an integral count is accumulated for each event in a
region).

Added funcen program to calculate centroids within regions (binary tables only). Also added support
for a funcen-based centroid tool to funtools.ds9.

Fixed bug which prevented successful filtering of columns containing arrays.

Added filter check to ensure that a column is not incorrectly used as an array.

Fundisp now displays column arrays indexed from 0, not 1.

Added -i [interval] support to funcnts so that multiple intervals can be processed in a single pass
through the data. For example, specifying -i "pha=1:5;pha=6:10;pha=11:15" will generate results in each
of 3 pha bands.

Fixed calculation of LTV quantities when binning floating point column data (value was off by 0.5).

Added support for ’D’ in floating point header values.

Added -a switch to funimage and funtable to append output image or table to an existing FITS file (as
an IMAGE or BINTABLE extension).

Added support for column scaling (TSCAL and TZERO) on input columns. Note that the default
column type is changed to accommodate scaling (e.g. a column of type ’I’ is changed to ’J’, ’J’ is changed
to ’D’) so that the scaled values can be handled properly by programs such as fundisp (which utilize
default types).

Added support to FunColumnSelect() for handling structs of arrays (i.e. where returned columns are
contiguous) instead of the default array of structs (returned row are contiguous). This is done by
specifying "org=structofarrays" in the plist and passing a single struct containing the arrays.

When writing an rdb/starbase file, fundisp now outputs the full column name, regardless of the width
of the column (which ordinarily is truncated to match).

Fixed support for large files by changing all file positions variables from "long" declarations to
"off_t.

Fixed bug in funcalc incorrectly processed multiple array references (e.g.
cur->foo[0]=cur->x;cur->foo[1]=cur->y;) within a single line of code.

Added FILTER_CFLAGS environment variable for all filtering. Also added --with-filter-cc and
--with-filter-cflags options on configure to allow specification of a default C compiler and associated
CFLAGS for filtering. All of this is necessary in order to support 64-bit libraries under Solaris.

176

Added the funtbl script to extract a table from Funtools ASCII output.

Added code to funimage to update IRAF DATASEC keyword.

Added checks to ensure that image dimensions are positive.

Fixed a bug in funimage where int data was being scaled using BSCALE and BZERO but these
keywords also were being retained in the output image header. Now the data are not scaled unless the
output data type is float (in which case the scaling parameters are removed).

Fixed a bug in funmerge which prevented merging of files unless one of the -f, -w, or -x switches
were used.

Fixed a bug in funtable and fundisp which caused the special ’$n’ column to be output incorrectly.

Fixed sort option in funtable, which previously worked only if the record size was an even divisor of
8192 (and returned garbage otherwise).

Fixed bug in filters involving FITS data type ’X’ (bitfield).

Fixed bug in funcnts in which the output angles and radii were being displayed incorrectly when
multiple panda shapes were specified.

Fixed bug in pandas and pies using n= syntax when first angle specified was greater than second. The
resulting mask was of the correct shape but contained only a single region.

Table row access routines will now decrease maxrows if memory cannot be allocated for
maxrows*sizeof(row), i.e. if the size of a row is so large that space for maxrows cannot be allocated.

The FUN_MAXBUFSIZE environment variable was added to limit the max buffer size that will be
allocated to hold table row data. The default is 5Mb.

Generated PostScript and PDF versions of the help pages.

Moved OPTIONS section before (often-lengthy) DESCRIPTION section in man pages.

All memory allocation now does error checking on the result (except wcs library, which is external
code).

Removed some compiler warnings that surfaced when using gcc -O2.

Updated wcs library to 3.5.5.

Upgraded zlib to 1.2.1.

177

Patch Release 1.2.3 (12 January 2004)
Generated man pages from the html pages. These are installed automatically at build time.

Changed instances of sprintf() to snprintf() to protect against buffer overflow.

Fixed a number of compiler warnings in non-ANSI compilers.

Increased SZ_LINE parameter value from 1024 to 4096.

Patch Release 1.2.3b1 (19 August 2003)
The rule for using comma to separate a table filter expression and a region expression has been
changed. The rule now states:

if both expressions contain a region, the operator used is or.
if one (or both) expression(s) does not contain a region, the operator used is and.

This rule handles the cases of pure regions and pure column filters properly. It unambiguously
assigns the boolean and to all mixed cases. Thus:

 foo.fits[circle(10,10,3),pi=1:5]

and

 foo.fits[pi=1:5,circle(10,10,3)]

both are equivalent to:

 foo.fits[circle(10,10,3) && pi=1:5]

When include files are used in filters, they now have implied parentheses surrounding them. Thus, if
a region file foo.reg contains two regions (e.g. circle 1 2 3 and circle 4 5 6), the syntax:

 pha=4:5&&@foo.reg

is equivalent to:

 pha=4:5 && (circle 1 2 3 || cir 4 5 6)

instead of:

 pha=4:5 && circle 1 2 3 || cir 4 5 6

and the pha filter is applied to both regions.

Filters and comments now can be terminated with the string literal "\n" as well as ";" and the
new-line character. This means that a region can have comments embedded in it:

 funcnts foo.fits "circle 512 512 10 # color=red\n circle 512 512 20"

178

Added capability to update the value of an existing parameter after writing the table or image
(assuming the output image is a disk file or is being redirected into a file).

Improved handling of parentheses in filter expressions.

Fixed a bug in image (not event) regions in which circles and annuli with radius of 1 pixel were not
being processed. No counts and no area would be found in such regions.

Fixed a bug in funcnts in which the radii column values for out of sync if multiple annuli were
specified (instead of a single varargs or accel annulus).

By default, fundisp will display integer image data as floats if the BSCALE and BZERO header
parameters are present.

Added -L switch to funhead to output starbase list format.

Changed the name of the routine _FunColumnSelect to FunColumnSelectArr, in order to emphasize
that it is not a private routine.

Funcalc now checks to ensure that a column was specified as part of the expression.

Funcalc local variables in the compiled program now use a "__" prefix to avoid conflicts with
user-defined variables.

Unofficial unsigned short (bitpix=-16) image data now is scaled correctly using BSCALE and
BZERO header parameters.

Ported to Intel icc and gcc 3.3 compilers.

Updated wcs library to 3.5.1.

Changed license from public domain to GNU GPL.

Patch Release 1.2.2 (18 May 2003)
Fixed funcalc so that it now actually compiles an expression and runs it, instead of getting a "filter
compilation error". Oops!

Fixed bug in FunOpen in which the bracket specification was being removed from the filename if a
disk file was opened for "w" or "a".

Fixed bug in FunFlush which prevented two successive calls to FunImagePut from writing the second
extension header properly.

All filter routines now use gerror(stderr, ...) call instead of fprintf(stderr, ...) so that output to stderr
can be turned off (via setgerror(level) or GERROR environment variable).

179

All standard Funtools programs check for GERROR environment variable before setting gerror flag.

Some error messages about invalid region arguments were not being printed.

FITS parameters/headers now conform more closely to FITS standard:
Blank keywords are treated in the same way as COMMENTS and HISTORY cards
XTENSION keywords are now exactly 8 characters long
’E’ is output instead of ’e’ in floating point param values
PCOUNT and GCOUNT are output correctly for image extensions
EXTEND=T is output in primary header
COMMENTS and HISTORY start in column 9

Patch Release 1.2.1 (24 April 2003)
Varargs ellipse and box annular regions were being processed incorrectly when the following
conditions all were met:

the region was specified in physical or wcs coordinates
the data file contained LTM/LTV keywords, i.e., it was blocked with respect to the original data
file
the program being run was an image program (e.g. funcnts, funimage)

Varargs ellipse and boxes are regions of the form:

 ellipse x y a1 b1 a2 b2 ... an bn [angle]
 box x y l1 w1 l2 w2 ... ln wn [angle]

where at least 2 sets of axis (length) values were specified to form an annulus (i.e. simple ellipses and
boxes worked properly). With all of the above conditions met, a region in physical coordinates saw
its second length argument converted incorrectly from physical coordinates to image coordinates. In
simple terms, this means that funcnts did not process elliptical or box regions in physical coords on
blocked images properly. Note that blocking on the command line (e.g. foo.fits[*,*,2]) did work
when no LTM/LTV keywords existed in the file.

The fundisp -f switch now supports specification of column-specific display formats as well as a
more convenient way to specify datatype-specific display formats. Both use keyword=value
specifiers. For columns, use:

 fundisp -f "colname1=format1 colname2=format2 ..." ...

e.g.

 fundisp -f "time=%13.2f pha=%3d" ...

You also can specify display formats for individual datatypes using the FITS binary table TFORM
variables as the keywords:

 fundisp -f "D=double_format E=float_format J=int_format etc."

e.g.

180

 fundisp -f "D=%13.2f I=%3d" ...

The old position-dependent syntax is deprecated.

Fundisp will now print out a single 16-bit (or 32-bit) unsigned int for a column whose data format is
16X (or 32X), instead of printing 2 (or 4) unsigned chars.

Fixed bug in which fundisp was not able to display bitfield data for raw event lists.

Previously, when binning columns used implicitly in a region and explicitly in a filter could suffer
from a case sensitivity problem. This has been fixed.

Fixed internal mask=all switch on fundisp.

Filter include files now simply include text without changing the state of the filter. They therefore
can be used in expression. That is, if foo1 contains "pi==1" and foo2 contains "pha==2" then the
following expressions are equivalent:

 "[@foo1&&@foo2]" is equivalent to "[pi==1&&pha==2]"
 "[pha==1||@foo2]" is equivalent to "[pi==1||pha==2]"
 "[@foo1,@foo2]" is equivalent to "[pi==1,pha==2]"

Fixed bug in filter specification which caused a SEGV if a varargs-style region was enclosed in
parens.

Updated wcs library to 3.3.2.

Public Release 1.2.0 (24 March 2003)
BSCALE and BZERO are now always applied to int pixel data, instead of only being applied if the
desired output is floating point.

Beta Release 1.2.b3 (4 February 2003)
In FunColumnSelect, added the ability to specify an offset into an array in the type specification,
using the extended syntax:

 [@][n]<type>[[poff]][:[tlmin[:tlmax[:binsiz]]]]

The [poff] string specifies the offset. For example, a type specification such as "@I[2]" specifies the
third (i.e., starting from 0) element in the array pointed to by the pointer value. A value of "@2I[4]"
specifies the fifth and sixth values in the array.

Added a non-varargs version of FunColumnSelect called _FunColumnSelect:

int _FunColumnSelect(Fun fun, int size, char *plist,
 char **names, char **types, char **modes, int *offsets,
 int nargs);

181

Added support for sorting binary tables by column name using: funtable -s "col1 col2 ... coln" ...

Added the FUN_RAW macro which, when applied to the "name" parameter of FunParamGets(),
returns the 80-character raw FITS card instead of only the value.

Added support for comparing column values with binary masks of the form 0b[01]+, e.g.:

 (status&0b111)==0b001

Previously, such masks had to be specified in decimal, octal, or hex.

Completed support for type ’L’ (logical) in fundisp and in filtering of binary tables.

Fixed bug in funhist that was improperly setting the number of bins when the data was of type float.

Fixed bug in filter/Makefile where the filter OBJPATH #define was being passed to the wrong
module.

Beta Release 1.2.b2 (7 October 2002)
Updated wcs library to 3.1.3.

Added support for reading gzip’ed files via stdin.

Beta Release 1.2.b1 (24 September 2002)
Added the following accelerators to region filtering:

 shape: arguments:
 ----- ---------
 BOX xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 BOX xcenter ycenter xwlo yhin xwout yhhi n=[number] (angle)
 CIRCLE xcenter ycenter r1 r2 ... rn # same as annulus
 CIRCLE xcenter ycenter rinner router n=[number] # same as annulus
 ELLIPSE xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
 ELLIPSE xcenter ycenter xwlo yhin xwout yhhi n=[number] (angle)

Added the following new pandas (Pie AND Annulus) to region filtering:

 shape: arguments:
 ----- ---------
 CPANDA xcen ycen ang1 ang2 nang irad orad nrad # same as panda
 BPANDA xcen ycen ang1 ang2 nang ixlo iylo ixhi iyhi nrad (ang) # box
 EPANDA xcen ycen ang1 ang2 nang ixlo iylo ixhi iyhi nrad (ang) # ellipse

Added support for filtering images using simple FITS image masks, i.e. 8-bit or 16-bit FITS images
where the value of a pixel is the region id number for that pixel (and therefore must be greater than
0). The image section being filtered must either be the same size as the mask dimensions or else be an
even multiple of the mask. This works with image-style filtering, i.e., funcnts can utilize a mask on
both images and binary tables.

182

Added ’$n’ to fundisp column specification to allow display of ordinal value of each row passing the
filter.

Added code to support region filtering on image sections.

Fixed bugs which prevented filtering more than one ASCII region file.

Fixed bug occasionally causing filter slave processes to become zombies.

Fixed bugs in event filtering: annulus with inner radius of 0 (i.e., a circle) was rejecting events with
coordinates xcen, ycen. Also, pie with angles of 0 and 360 was rejecting some events. Image filtering (e.g.
funcnts) did not have these problems.

Filters now accept global exclude regions without an include region. In such a case, the field region is
implied. That is, "-circle(x,y,r)" is equivalent to "field; -circle(x,y,r)", etc.

Fixed panda so that it can be used as a global exclude.

Allow empty ds9 region file (comments and globals only) to be a valid filter. Totally ignore zero
length region or include file.

Fixed funcnts bug that was displaying 0 value as inner radius of a circle, instead of just one radius
value.

Public Release 1.1.0 (22 April 2002)
New features include:

Funtools programs now accept gzip’ed files as valid input.

Improved security via replacement of system() function.

fundisp, funcnts, funhist can output starbase/rdb format (tabs between columns, form-feeds between
tables).

Improved support for Windows platform, as well as new support for Mac OSX.

Pre-Release 1.1.0e (10 April 2002)
Added enough support to skip over variable length arrays in BINTABLES. We will add full support
if this non-standard construct becomes more widely used.

Fixed bug in underlying fitsy _gread() routine that was returning an arbitrary bytes-read value if the
input fd was invalid.

183

Pre-Release 1.1.0e (19 March 2002)
Added additional check for Windows/PC to filter/Nan.h.

Upgraded zlib library to 1.1.4 (fix double free security hole).

Pre-Release 1.1.0e (27 February 2002)
Changed filter/process.[ch] to filter/zprocess.[ch] to avoid name collision with Cygwin include file.

Added -a switch to funhead to display all headers in a FITS file.

Pre-Release 1.1.0e (11 February 2002)
Fixed filter parser so that it ignores ds9 "ruler" and "text" markers only up to the first \n or ; (was
ignoring to last \n).

The NBLOCK parameter in fitsy/headdata.c was too large for Mac OS X (max size of a declared char
buf seems to be about .5 Mb).

Beta Release 1.0.1b5 (31 January 2002)
Fixed bug introduced in calculated IRAF LTM values in 1.0.1b3.

Fixed bug in filter parser giving wrong answers when two range lists were combined with and
explicit boolean operator:

 $ fundisp $S"[x=512&&y=511,512]"

incorrectly acted like:

 fundisp $S"[(x=512&&y=511)||(y=512)]"

instead of:

 fundisp $S"[x=512&&(y=511||y=512)]"

In general, we recommend use of explicit parentheses.

Fixed filter/NaN.h to recognize Compaq Alpha again (broken by their last change to cc).

Removed redundant varargs definitions that conflicted with Alpha compiler definitions.

Added blank line to inc.sed to work around Apple Mac OS X bug in which the "i" (insert) command
was treating final \\ as continuation \ in the text.

184

Added include of mkrtemp.h to mkrtemp.c to get conditional compilation for Mac OSX.

Added support for --with-zlib to fitsy so that ds9 could use its own copy of zlib (and not build the
copy in fitsy).

Removed config.cache and Makefile files from distribution tar file.

Beta Release 1.0.1b4 (26 January 2002)
Make explicit that column filters are not permitted in an image expression (such as the funcnts region
arguments).

Fix bug in region parser in which a region (without parens), followed immediately by an operator:

 circle 512 512 .5& π==1

was not processing the final argument of the region correctly.

Ignore new "tile" directive in filters (used by ds9).

Beta Release 1.0.1b3 (4 January 2002)
Made modifications to Makefile.in to make releases easier.

Added instructions Makefile.in so that funtools.h will always have correct #defines for
FUN_VERSION, FUN_MAJOR_VERSION, FUN_MINOR_VERSION, and
FUN_PATCH_LEVEL.

Allow #include statements in funcalc program files.

funimage now updates all 4 CDX_Y values by the block factor.

Minor changes to make funtools work under darwin (Mac OS X).

Beta Release 1.0.1b2 (14 November 2001)
Fixed FunOpen() bug (introduced in b1) in which filenames without extensions SEGV’ed on open.
Yikes!

Funmerge now extends the tlmin/tlmax values of the output binning columns so that merged events
from widely separated files are valid in the output table.

In funhist, added -w switch to specify bin width (lo:hi:width) instead of number of bins (lo:hi:num).
Added support for this new width option in funtools.ds9.

185

If a tdbin value was set using bincols=(name:tlmin:tlmax:tdbin, ...), the WCS parameters were not
being updated properly.

Cleaned up build support for zlib.

Beta Release 1.0.1b1 (6 November 2001)
Added support for gzip’ed files to the underlying fitsy/gio library. This means that all funtools
programs now accept gzip’ed files as valid input:

 funcnts foo.fits.gz "circle 504 512 10"

It is no longer necessary to run gunzip and pipe the results to stdin of a funtools program.

Funtools tasks are now placed in a sub-menu in the DS9 Analysis menu, instead of at the top level.

Fixed a bug in funcnts in which the bottom-most pixel of a small circle or annulus region could be
missed when the region is only one pixel wide for that value of y.

Added -n switch to funhist so that table histograms could be normalized by the width of the bin
(val/(hi_edge-lo_edge)).

Added -T switch to fundisp, funcnts, funhist to output in starbase/rdb format (uses tabs instead of
spaces between columns, form-feeds between tables, etc.)

Fixed a bug in which the field() region was not being properly processed in combination with an
image section. This could affect funcnts processing of image data where an image section was
specified (though it usually resulted in a funcnts error).

Fixed bug in display of binary table header for vector columns.

Filters now recognize hex constants (starting with 0x) and long constants (ending with L).

Filenames containing a ’:’ are now only treated as sockets if they actually are in the form of a valid
ip:port.

Replaced funtools.ds9 with a new version that calls a new funds9 script, instead of calling funcnts or
funhist directly. The new script supports gzip’ed files and bracket specifications on filenames at the
same time, which the direct call could not. Also the new script has better error reporting.

Replaced system() call used to compile filter and funcalc expression with a special launch() call,
which performs execvp() directly without going through sh. (launch() works under DOS and has
fewer security problems.)

Fixed image filter code in which the field() region was being ignored if it was combined with one or
more exclude regions (and no other include regions), resulting in no valid pixels.

186

Changed use of getdtable() to FD_SETSIZE in calls to select().

Added code to guard against FITS binary tables without proper TFORMx parameters.

Added support to FunParamGets so that it returns the raw FITS card if the specified input name is
NULL and the input n value is positive.

Fixed bug in underlying fitsy code that set the comment in a header parameter.

Public Release 1.0.0 (31 July 2001)
"a new day with no mistakes ... yet"

Index to the Funtools Help Pages

Last updated: 22 April 2002

187

	
	Funtools: FITS Users Need Tools
	Summary
	Description
	
	
	Last updated: January 6, 2006

	
	Funtools Programs
	Summary
	funcalc - Funtools calculator (for binary tables)
	funcen - find centroid (for binary tables)
	funcnts - count photons in specified regions, with bkgd subtraction
	funcone - cone search of a binary table containing RA, Dec columns
	fundisp - display data in a Funtools data file
	funhead - display a header in a Funtools file
	funhist - create a 1D histogram of a column (from a FITS binary table or raw event file) or an image
	funimage - create a FITS image from a Funtools data file
	funindex - create an index for a column of a FITS binary table
	funjoin - join two or more FITS binary tables on specified columns
	funmerge - merge one or more Funtools table files
	funsky - convert between image and sky coordinates
	funtable - copy selected rows from a Funtools file to a FITS binary table
	funtbl - extract a table from Funtools ASCII output
	
	
	Last updated: April 1, 2007

	
	FunDS9: Funtools and DS9 Image Display
	Summary
	Description
	
	
	Last updated: November 16, 2005

	
	FunLib: the Funtools Programming Interface
	Summary
	Introduction to the Funtools Programming Interface
	Funtools Programming Tutorial
	Compiling and Linking
	A Short Digression on Subroutine Order
	Funtools Programming Examples
	The Funtools Programming Reference Manual
	FunOpen - open a Funtools data file
	FunImageGet - get an image or image section
	FunImagePut - put an image to a Funtools file
	FunImageRowGet - get row(s) of an image
	FunImageRowPut - put row(s) of an image
	FunColumnSelect - select Funtools columns
	FunColumnActivate - activate Funtools columns
	FunColumnLookup - lookup a Funtools column
	FunTableRowGet - get Funtools rows
	FunTableRowPut - put Funtools rows
	FunParamPut - put a Funtools param value
	FunInfoGet - get information from Funtools struct
	FunInfoPut - put information into a Funtools struct
	FunFlush - flush data to output file
	FunClose - close a Funtools data file
	FunRef: the Funtools Reference Handle
	Summary
	Description
	
	
	Last updated: December 1, 2005

	
	FunFiles: Funtools Data Files
	Summary
	Description
	Supported Data Formats
	FITS Images and Binary Tables
	Non-FITS Raw Event Files
	Non-FITS Array Files
	Specifying Image Sections
	Binning FITS Binary Tables and Non-FITS Event Files
	Table and Spatial Region Filters
	Disk Files and Other Supported File Types
	Lists of Files
	
	
	Last updated: February 15, 2006

	
	Funtext: Support for Column-based Text Files
	Summary
	Description
	Standard Text Files
	Comments Convert to Header Params
	Multiple Tables in a Single File
	TEXT() Specifier
	Text() Keyword Options
	Environment Variables
	Restrictions and Problems
	
	
	Last updated: August 3, 2007

	
	Funview: Database View Support for Tables
	Summary
	Description
	Database Views
	Funtools View Attributes
	Invoking a Funtools View (in Place of an Input File)
	Basic View Matching Rules
	More on View Matching Rules: Single vs. Multiple Matches
	View Lists: Applying a View to Any File
	Overriding Values Associated with a View
	Environment Variables
	Restrictions and Problems
	
	
	Last updated: August 3, 2007

	
	Funfilters: Filtering Rows in a Table
	Summary
	Description
	Filter Expressions
	Separators Also Are Operators
	Range Lists
	Math Operations and Functions
	Include Files
	Header Parameters
	Examples
	
	
	Last updated: November 17, 2005

	
	Funidx: Using Indexes to Filter Rows in a Table
	Summary
	Description
	
	
	Last updated: August 3, 2007

	
	Regions: Spatial Region Filtering
	Summary
	Description
	Region Expressions
	Columns Used in Region Filtering
	Region Algebra
	Region Separators Also Are Operators
	Region Exclusion
	Include Files
	Global and Local Properties of Regions
	Coordinate Systems
	Specifying Positions, Sizes, and Angles
	
	
	Last updated: November 17, 2005

	
	RegGeometry: Geometric Shapes in Spatial Region Filtering
	Summary
	Geometric shapes
	Region accelerators
	
	
	Last updated: March 12, 2007

	
	RegAlgebra: Boolean Algebra on Spatial Regions
	Summary
	Description
	
	
	Last updated: November 17, 2005

	
	RegCoords: Spatial Region Coordinates
	Summary
	Pixel coordinate systems
	World Coordinate Systems
	WCS Positions and Sizes
	NB: The Meaning of Pure Numbers Are Context Sensitive
	
	
	Last updated: November 17, 2005

	
	RegBounds: Region Boundaries
	Summary
	Description
	Image boundaries : radially-symmetric shapes (circle, annuli, ellipse)
	Image Boundaries: non-radially symmetric shapes (polygons, boxes)
	Row Boundaries are Analytic
	Image Boundaries vs. Row Boundaries: Practical Considerations
	
	
	Last updated: November 16, 2005

	
	RegDiff:Differences Between Funtools and IRAF Regions
	Summary
	Description
	
	
	Last updated: November 16, 2005

	
	FunCombine: Combining Region and Table Filters
	Summary
	Comma Conventions
	
	
	Last updated: November 16, 2005

	
	FunEnv: Funtools Environment Variables
	Summary
	Description
	
	
	Last updated: November 16, 2005

	
	Funtools ChangeLog
	Patch Release 1.4.5 (internal ds9 release)
	Patch Release 1.4.4 (internal ds9 release)
	Patch Release 1.4.3 (internal ds9 release)
	Patch Release 1.4.2 (internal ds9 release)
	Patch Release 1.4.1 (internal ds9 release)
	Public Release 1.4.0 (15 August 2007)
	Release 1.3.0b[n] (mainly internal SAO beta releases)
	Patch Release 1.2.4 (internal SAO and beta release only)
	Patch Release 1.2.3 (12 January 2004)
	Patch Release 1.2.3b1 (19 August 2003)
	Patch Release 1.2.2 (18 May 2003)
	Patch Release 1.2.1 (24 April 2003)
	Public Release 1.2.0 (24 March 2003)
	Beta Release 1.2.b3 (4 February 2003)
	Beta Release 1.2.b2 (7 October 2002)
	Beta Release 1.2.b1 (24 September 2002)
	Public Release 1.1.0 (22 April 2002)
	Pre-Release 1.1.0e (10 April 2002)
	Pre-Release 1.1.0e (19 March 2002)
	Pre-Release 1.1.0e (27 February 2002)
	Pre-Release 1.1.0e (11 February 2002)
	Beta Release 1.0.1b5 (31 January 2002)
	Beta Release 1.0.1b4 (26 January 2002)
	Beta Release 1.0.1b3 (4 January 2002)
	Beta Release 1.0.1b2 (14 November 2001)
	Beta Release 1.0.1b1 (6 November 2001)
	Public Release 1.0.0 (31 July 2001)
	
	
	Last updated: 22 April 2002

