/* * Smithsonian Astrophysical Observatory, Cambridge, MA, USA * This code has been modified under the terms listed below and is made * available under the same terms. */ /* * Copyright 1995-2004 George A Howlett. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Code for binary data read operation was donated by Harold Kirsch. * */ /* * TODO: * o Add H. Kirsch's vector binary read operation * x binread file0 * x binread -file file0 * * o Add ASCII/binary file reader * x read fileName * * o Allow Tcl-based client notifications. * vector x * x notify call Display * x notify delete Display * x notify reorder #1 #2 */ #include #include #include #include #include #include "tkbltVecInt.h" #include "tkbltOp.h" #include "tkbltNsUtil.h" #include "tkbltSwitch.h" #include "tkbltInt.h" using namespace Blt; extern int Blt_SimplifyLine (Point2d *origPts, int low, int high, double tolerance, int *indices); typedef int (VectorCmdProc)(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]); typedef int (QSortCompareProc) (const void *, const void *); static Blt_SwitchParseProc ObjToFFTVector; static Blt_SwitchCustom fftVectorSwitch = { ObjToFFTVector, NULL, (ClientData)0, }; static Blt_SwitchParseProc ObjToIndex; static Blt_SwitchCustom indexSwitch = { ObjToIndex, NULL, (ClientData)0, }; typedef struct { Tcl_Obj *formatObjPtr; int from, to; } PrintSwitches; static Blt_SwitchSpec printSwitches[] = { {BLT_SWITCH_OBJ, "-format", "string", Tk_Offset(PrintSwitches, formatObjPtr), 0}, {BLT_SWITCH_CUSTOM, "-from", "index", Tk_Offset(PrintSwitches, from), 0, 0, &indexSwitch}, {BLT_SWITCH_CUSTOM, "-to", "index", Tk_Offset(PrintSwitches, to), 0, 0, &indexSwitch}, {BLT_SWITCH_END} }; typedef struct { int flags; } SortSwitches; #define SORT_DECREASING (1<<0) #define SORT_UNIQUE (1<<1) static Blt_SwitchSpec sortSwitches[] = { {BLT_SWITCH_BITMASK, "-decreasing", "", Tk_Offset(SortSwitches, flags), 0, SORT_DECREASING}, {BLT_SWITCH_BITMASK, "-reverse", "", Tk_Offset(SortSwitches, flags), 0, SORT_DECREASING}, {BLT_SWITCH_BITMASK, "-uniq", "", Tk_Offset(SortSwitches, flags), 0, SORT_UNIQUE}, {BLT_SWITCH_END} }; typedef struct { double delta; Vector *imagPtr; /* Vector containing imaginary part. */ Vector *freqPtr; /* Vector containing frequencies. */ VectorInterpData *dataPtr; int mask; /* Flags controlling FFT. */ } FFTData; static Blt_SwitchSpec fftSwitches[] = { {BLT_SWITCH_CUSTOM, "-imagpart", "vector", Tk_Offset(FFTData, imagPtr), 0, 0, &fftVectorSwitch}, {BLT_SWITCH_BITMASK, "-noconstant", "", Tk_Offset(FFTData, mask), 0, FFT_NO_CONSTANT}, {BLT_SWITCH_BITMASK, "-spectrum", "", Tk_Offset(FFTData, mask), 0, FFT_SPECTRUM}, {BLT_SWITCH_BITMASK, "-bartlett", "", Tk_Offset(FFTData, mask), 0, FFT_BARTLETT}, {BLT_SWITCH_DOUBLE, "-delta", "float", Tk_Offset(FFTData, mask), 0, 0, }, {BLT_SWITCH_CUSTOM, "-frequencies", "vector", Tk_Offset(FFTData, freqPtr), 0, 0, &fftVectorSwitch}, {BLT_SWITCH_END} }; static int Blt_ExprIntFromObj(Tcl_Interp* interp, Tcl_Obj *objPtr, int *valuePtr) { // First try to extract the value as a simple integer. if (Tcl_GetIntFromObj((Tcl_Interp *)NULL, objPtr, valuePtr) == TCL_OK) return TCL_OK; // Otherwise try to parse it as an expression. long lvalue; if (Tcl_ExprLong(interp, Tcl_GetString(objPtr), &lvalue) == TCL_OK) { *valuePtr = lvalue; return TCL_OK; } return TCL_ERROR; } static int Blt_ExprDoubleFromObj(Tcl_Interp* interp, Tcl_Obj *objPtr, double *valuePtr) { // First try to extract the value as a double precision number. if (Tcl_GetDoubleFromObj((Tcl_Interp *)NULL, objPtr, valuePtr) == TCL_OK) return TCL_OK; // Interpret the empty string as NaN int length; char *string; string = Tcl_GetStringFromObj(objPtr, &length); if (length == 0) { *valuePtr = NAN; return TCL_OK; } // Then try to parse it as an expression. if (Tcl_ExprDouble(interp, string, valuePtr) == TCL_OK) return TCL_OK; return TCL_ERROR; } static int ObjToFFTVector(ClientData clientData, Tcl_Interp* interp, const char *switchName, Tcl_Obj *objPtr, char *record, int offset, int flags) { FFTData *dataPtr = (FFTData *)record; Vector *vPtr; Vector **vPtrPtr = (Vector **)(record + offset); int isNew; /* Not used. */ char *string; string = Tcl_GetString(objPtr); vPtr = Vec_Create(dataPtr->dataPtr, string, string, string, &isNew); if (vPtr == NULL) { return TCL_ERROR; } *vPtrPtr = vPtr; return TCL_OK; } static int ObjToIndex(ClientData clientData, Tcl_Interp* interp, const char *switchName, Tcl_Obj *objPtr, char *record, int offset, int flags) { Vector *vPtr = (Vector*)clientData; int *indexPtr = (int *)(record + offset); int index; if (Vec_GetIndex(interp, vPtr, Tcl_GetString(objPtr), &index, INDEX_CHECK, (Blt_VectorIndexProc **)NULL) != TCL_OK) { return TCL_ERROR; } *indexPtr = index; return TCL_OK; } static Tcl_Obj* GetValues(Vector *vPtr, int first, int last) { Tcl_Obj *listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); for (double *vp=vPtr->valueArr+first, *vend=vPtr->valueArr+last; vp <= vend; vp++) Tcl_ListObjAppendElement(vPtr->interp, listObjPtr, Tcl_NewDoubleObj(*vp)); return listObjPtr; } static void ReplicateValue(Vector *vPtr, int first, int last, double value) { for (double *vp=vPtr->valueArr+first, *vend=vPtr->valueArr+last; vp <= vend; vp++) *vp = value; vPtr->notifyFlags |= UPDATE_RANGE; } static int CopyList(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { if (Vec_SetLength(interp, vPtr, objc) != TCL_OK) return TCL_ERROR; for (int ii = 0; ii < objc; ii++) { double value; if (Blt_ExprDoubleFromObj(interp, objv[ii], &value) != TCL_OK) { Vec_SetLength(interp, vPtr, ii); return TCL_ERROR; } vPtr->valueArr[ii] = value; } return TCL_OK; } static int AppendVector(Vector *destPtr, Vector *srcPtr) { size_t oldSize = destPtr->length; size_t newSize = oldSize + srcPtr->last - srcPtr->first + 1; if (Vec_ChangeLength(destPtr->interp, destPtr, newSize) != TCL_OK) { return TCL_ERROR; } size_t nBytes = (newSize - oldSize) * sizeof(double); memcpy((char *)(destPtr->valueArr + oldSize), (srcPtr->valueArr + srcPtr->first), nBytes); destPtr->notifyFlags |= UPDATE_RANGE; return TCL_OK; } static int AppendList(Vector *vPtr, int objc, Tcl_Obj* const objv[]) { Tcl_Interp* interp = vPtr->interp; int oldSize = vPtr->length; if (Vec_ChangeLength(interp, vPtr, vPtr->length + objc) != TCL_OK) return TCL_ERROR; int count = oldSize; for (int i = 0; i < objc; i++) { double value; if (Blt_ExprDoubleFromObj(interp, objv[i], &value) != TCL_OK) { Vec_ChangeLength(interp, vPtr, count); return TCL_ERROR; } vPtr->valueArr[count++] = value; } vPtr->notifyFlags |= UPDATE_RANGE; return TCL_OK; } // Vector instance option commands static int AppendOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { for (int i = 2; i < objc; i++) { Vector* v2Ptr = Vec_ParseElement((Tcl_Interp *)NULL, vPtr->dataPtr, Tcl_GetString(objv[i]), (const char **)NULL, NS_SEARCH_BOTH); int result; if (v2Ptr != NULL) result = AppendVector(vPtr, v2Ptr); else { int nElem; Tcl_Obj **elemObjArr; if (Tcl_ListObjGetElements(interp, objv[i], &nElem, &elemObjArr) != TCL_OK) { return TCL_ERROR; } result = AppendList(vPtr, nElem, elemObjArr); } if (result != TCL_OK) return TCL_ERROR; } if (objc > 2) { if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); } return TCL_OK; } static int ClearOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Vec_FlushCache(vPtr); return TCL_OK; } static int DeleteOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { // FIXME: Don't delete vector with no indices if (objc == 2) { Vec_Free(vPtr); return TCL_OK; } // Allocate an "unset" bitmap the size of the vector unsigned char* unsetArr = (unsigned char*)calloc(sizeof(unsigned char), (vPtr->length + 7) / 8); #define SetBit(i) (unsetArr[(i) >> 3] |= (1 << ((i) & 0x07))) #define GetBit(i) (unsetArr[(i) >> 3] & (1 << ((i) & 0x07))) for (int i = 2; i < objc; i++) { char* string = Tcl_GetString(objv[i]); if (Vec_GetIndexRange(interp, vPtr, string, (INDEX_COLON | INDEX_CHECK), (Blt_VectorIndexProc **) NULL) != TCL_OK) { free(unsetArr); return TCL_ERROR; } // Mark the range of elements for deletion for (int j = vPtr->first; j <= vPtr->last; j++) SetBit(j); } int count = 0; for (int i = 0; i < vPtr->length; i++) { // Skip elements marked for deletion if (GetBit(i)) continue; if (count < i) { vPtr->valueArr[count] = vPtr->valueArr[i]; } count++; } free(unsetArr); vPtr->length = count; if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); return TCL_OK; } static int DupOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { for (int i = 2; i < objc; i++) { char* name = Tcl_GetString(objv[i]); int isNew; Vector* v2Ptr = Vec_Create(vPtr->dataPtr, name, name, name, &isNew); if (v2Ptr == NULL) return TCL_ERROR; if (v2Ptr == vPtr) continue; if (Vec_Duplicate(v2Ptr, vPtr) != TCL_OK) return TCL_ERROR; if (!isNew) { if (v2Ptr->flush) Vec_FlushCache(v2Ptr); Vec_UpdateClients(v2Ptr); } } return TCL_OK; } static int FFTOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { FFTData data; memset(&data, 0, sizeof(data)); data.delta = 1.0; char* realVecName = Tcl_GetString(objv[2]); int isNew; Vector* v2Ptr = Vec_Create(vPtr->dataPtr, realVecName, realVecName, realVecName, &isNew); if (v2Ptr == NULL) return TCL_ERROR; if (v2Ptr == vPtr) { Tcl_AppendResult(interp, "real vector \"", realVecName, "\"", " can't be the same as the source", (char *)NULL); return TCL_ERROR; } if (ParseSwitches(interp, fftSwitches, objc - 3, objv + 3, &data, BLT_SWITCH_DEFAULTS) < 0) return TCL_ERROR; if (Vec_FFT(interp, v2Ptr, data.imagPtr, data.freqPtr, data.delta, data.mask, vPtr) != TCL_OK) return TCL_ERROR; // Update bookkeeping if (!isNew) { if (v2Ptr->flush) Vec_FlushCache(v2Ptr); Vec_UpdateClients(v2Ptr); } if (data.imagPtr != NULL) { if (data.imagPtr->flush) Vec_FlushCache(data.imagPtr); Vec_UpdateClients(data.imagPtr); } if (data.freqPtr != NULL) { if (data.freqPtr->flush) Vec_FlushCache(data.freqPtr); Vec_UpdateClients(data.freqPtr); } return TCL_OK; } static int InverseFFTOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { char* name = Tcl_GetString(objv[2]); Vector *srcImagPtr; if (Vec_LookupName(vPtr->dataPtr, name, &srcImagPtr) != TCL_OK ) return TCL_ERROR; name = Tcl_GetString(objv[3]); int isNew; Vector* destRealPtr = Vec_Create(vPtr->dataPtr, name, name, name, &isNew); name = Tcl_GetString(objv[4]); Vector* destImagPtr = Vec_Create(vPtr->dataPtr, name, name, name, &isNew); if (Vec_InverseFFT(interp, srcImagPtr, destRealPtr, destImagPtr, vPtr) != TCL_OK ) return TCL_ERROR; if (destRealPtr->flush) Vec_FlushCache(destRealPtr); Vec_UpdateClients(destRealPtr); if (destImagPtr->flush) Vec_FlushCache(destImagPtr); Vec_UpdateClients(destImagPtr); return TCL_OK; } static int IndexOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { char* string = Tcl_GetString(objv[2]); if (Vec_GetIndexRange(interp, vPtr, string, INDEX_ALL_FLAGS, (Blt_VectorIndexProc **) NULL) != TCL_OK) return TCL_ERROR; int first = vPtr->first; int last = vPtr->last; if (objc == 3) { Tcl_Obj *listObjPtr; if (first == vPtr->length) { Tcl_AppendResult(interp, "can't get index \"", string, "\"", (char *)NULL); return TCL_ERROR; /* Can't read from index "++end" */ } listObjPtr = GetValues(vPtr, first, last); Tcl_SetObjResult(interp, listObjPtr); } else { // FIXME: huh? Why set values here? if (first == SPECIAL_INDEX) { Tcl_AppendResult(interp, "can't set index \"", string, "\"", (char *)NULL); // Tried to set "min" or "max" return TCL_ERROR; } double value; if (Blt_ExprDoubleFromObj(interp, objv[3], &value) != TCL_OK) return TCL_ERROR; if (first == vPtr->length) { if (Vec_ChangeLength(interp, vPtr, vPtr->length + 1) != TCL_OK) return TCL_ERROR; } ReplicateValue(vPtr, first, last, value); Tcl_SetObjResult(interp, objv[3]); if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); } return TCL_OK; } static int LengthOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { if (objc == 3) { int nElem; if (Tcl_GetIntFromObj(interp, objv[2], &nElem) != TCL_OK) return TCL_ERROR; if (nElem < 0) { Tcl_AppendResult(interp, "bad vector size \"", Tcl_GetString(objv[2]), "\"", (char *)NULL); return TCL_ERROR; } if ((Vec_SetSize(interp, vPtr, nElem) != TCL_OK) || (Vec_SetLength(interp, vPtr, nElem) != TCL_OK)) return TCL_ERROR; if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); } Tcl_SetIntObj(Tcl_GetObjResult(interp), vPtr->length); return TCL_OK; } static int MapOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { if (objc > 2) { if (Vec_MapVariable(interp, vPtr, Tcl_GetString(objv[2])) != TCL_OK) return TCL_ERROR; } if (vPtr->arrayName != NULL) Tcl_SetStringObj(Tcl_GetObjResult(interp), vPtr->arrayName, -1); return TCL_OK; } static int MaxOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Tcl_SetDoubleObj(Tcl_GetObjResult(interp), Vec_Max(vPtr)); return TCL_OK; } static int MergeOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { // Allocate an array of vector pointers of each vector to be // merged in the current vector. Vector** vecArr = (Vector**)malloc(sizeof(Vector *) * objc); Vector** vPtrPtr = vecArr; int refSize = -1; int nElem = 0; for (int i = 2; i < objc; i++) { Vector *v2Ptr; if (Vec_LookupName(vPtr->dataPtr, Tcl_GetString(objv[i]), &v2Ptr) != TCL_OK) { free(vecArr); return TCL_ERROR; } // Check that all the vectors are the same length int length = v2Ptr->last - v2Ptr->first + 1; if (refSize < 0) refSize = length; else if (length != refSize) { Tcl_AppendResult(vPtr->interp, "vectors \"", vPtr->name, "\" and \"", v2Ptr->name, "\" differ in length", (char *)NULL); free(vecArr); return TCL_ERROR; } *vPtrPtr++ = v2Ptr; nElem += refSize; } *vPtrPtr = NULL; double* valueArr = (double*)malloc(sizeof(double) * nElem); if (valueArr == NULL) { Tcl_AppendResult(vPtr->interp, "not enough memory to allocate ", Itoa(nElem), " vector elements", (char *)NULL); return TCL_ERROR; } // Merge the values from each of the vectors into the current vector double* valuePtr = valueArr; for (int i = 0; i < refSize; i++) { for (Vector** vpp = vecArr; *vpp != NULL; vpp++) { *valuePtr++ = (*vpp)->valueArr[i + (*vpp)->first]; } } free(vecArr); Vec_Reset(vPtr, valueArr, nElem, nElem, TCL_DYNAMIC); return TCL_OK; } static int MinOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Tcl_SetDoubleObj(Tcl_GetObjResult(interp), Vec_Min(vPtr)); return TCL_OK; } static int NormalizeOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Vec_UpdateRange(vPtr); double range = vPtr->max - vPtr->min; if (objc > 2) { char* string = Tcl_GetString(objv[2]); int isNew; Vector* v2Ptr = Vec_Create(vPtr->dataPtr, string, string, string, &isNew); if (v2Ptr == NULL) return TCL_ERROR; if (Vec_SetLength(interp, v2Ptr, vPtr->length) != TCL_OK) return TCL_ERROR; for (int i = 0; i < vPtr->length; i++) v2Ptr->valueArr[i] = (vPtr->valueArr[i] - vPtr->min) / range; Vec_UpdateRange(v2Ptr); if (!isNew) { if (v2Ptr->flush) { Vec_FlushCache(v2Ptr); } Vec_UpdateClients(v2Ptr); } } else { Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); for (int i = 0; i < vPtr->length; i++) { double norm = (vPtr->valueArr[i] - vPtr->min) / range; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(norm)); } Tcl_SetObjResult(interp, listObjPtr); } return TCL_OK; } static int NotifyOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { enum optionIndices { OPTION_ALWAYS, OPTION_NEVER, OPTION_WHENIDLE, OPTION_NOW, OPTION_CANCEL, OPTION_PENDING }; static const char *optionArr[] = { "always", "never", "whenidle", "now", "cancel", "pending", NULL }; int option; if (Tcl_GetIndexFromObj(interp, objv[2], optionArr, "qualifier", TCL_EXACT, &option) != TCL_OK) return TCL_OK; switch (option) { case OPTION_ALWAYS: vPtr->notifyFlags &= ~NOTIFY_WHEN_MASK; vPtr->notifyFlags |= NOTIFY_ALWAYS; break; case OPTION_NEVER: vPtr->notifyFlags &= ~NOTIFY_WHEN_MASK; vPtr->notifyFlags |= NOTIFY_NEVER; break; case OPTION_WHENIDLE: vPtr->notifyFlags &= ~NOTIFY_WHEN_MASK; vPtr->notifyFlags |= NOTIFY_WHENIDLE; break; case OPTION_NOW: // FIXME: How does this play when an update is pending? Blt_Vec_NotifyClients(vPtr); break; case OPTION_CANCEL: if (vPtr->notifyFlags & NOTIFY_PENDING) { vPtr->notifyFlags &= ~NOTIFY_PENDING; Tcl_CancelIdleCall(Blt_Vec_NotifyClients, (ClientData)vPtr); } break; case OPTION_PENDING: int boll = (vPtr->notifyFlags & NOTIFY_PENDING); Tcl_SetBooleanObj(Tcl_GetObjResult(interp), boll); break; } return TCL_OK; } static int PopulateOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { char* string = Tcl_GetString(objv[2]); int isNew; Vector* v2Ptr = Vec_Create(vPtr->dataPtr, string, string, string, &isNew); if (v2Ptr == NULL) return TCL_ERROR; // Source vector is empty if (vPtr->length == 0) return TCL_OK; int density; if (Tcl_GetIntFromObj(interp, objv[3], &density) != TCL_OK) return TCL_ERROR; if (density < 1) { Tcl_AppendResult(interp, "bad density \"", Tcl_GetString(objv[3]), "\"", (char *)NULL); return TCL_ERROR; } int size = (vPtr->length - 1) * (density + 1) + 1; if (Vec_SetLength(interp, v2Ptr, size) != TCL_OK) return TCL_ERROR; int count = 0; double* valuePtr = v2Ptr->valueArr; int i; for (i = 0; i < (vPtr->length - 1); i++) { double range = vPtr->valueArr[i + 1] - vPtr->valueArr[i]; double slice = range / (double)(density + 1); for (int j = 0; j <= density; j++) { *valuePtr = vPtr->valueArr[i] + (slice * (double)j); valuePtr++; count++; } } count++; *valuePtr = vPtr->valueArr[i]; if (!isNew) { if (v2Ptr->flush) Vec_FlushCache(v2Ptr); Vec_UpdateClients(v2Ptr); } return TCL_OK; } static int ValuesOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { PrintSwitches switches; switches.formatObjPtr = NULL; switches.from = 0; switches.to = vPtr->length - 1; indexSwitch.clientData = vPtr; if (ParseSwitches(interp, printSwitches, objc - 2, objv + 2, &switches, BLT_SWITCH_DEFAULTS) < 0) return TCL_ERROR; if (switches.from > switches.to) { // swap positions int tmp = switches.to; switches.to = switches.from; switches.from = tmp; } if (switches.formatObjPtr == NULL) { Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); for (int i = switches.from; i <= switches.to; i++) Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(vPtr->valueArr[i])); Tcl_SetObjResult(interp, listObjPtr); } else { Tcl_DString ds; Tcl_DStringInit(&ds); const char* fmt = Tcl_GetString(switches.formatObjPtr); for (int i = switches.from; i <= switches.to; i++) { char buffer[200]; sprintf(buffer, fmt, vPtr->valueArr[i]); Tcl_DStringAppend(&ds, buffer, -1); } Tcl_DStringResult(interp, &ds); Tcl_DStringFree(&ds); } return TCL_OK; } static int RangeOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { int first; int last; if (objc == 2) { first = 0; last = vPtr->length - 1; } else if (objc == 4) { if ((Vec_GetIndex(interp, vPtr, Tcl_GetString(objv[2]), &first, INDEX_CHECK, (Blt_VectorIndexProc **) NULL) != TCL_OK) || (Vec_GetIndex(interp, vPtr, Tcl_GetString(objv[3]), &last, INDEX_CHECK, (Blt_VectorIndexProc **) NULL) != TCL_OK)) return TCL_ERROR; } else { Tcl_AppendResult(interp, "wrong # args: should be \"", Tcl_GetString(objv[0]), " range ?first last?", (char *)NULL); return TCL_ERROR; } Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); if (first > last) { // Return the list reversed for (int i=last; i<=first; i++) Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(vPtr->valueArr[i])); } else { for (int i=first; i<=last; i++) Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(vPtr->valueArr[i])); } Tcl_SetObjResult(interp, listObjPtr); return TCL_OK; } static int InRange(double value, double min, double max) { double range = max - min; if (range < DBL_EPSILON) return (fabs(max - value) < DBL_EPSILON); double norm = (value - min) / range; return ((norm >= -DBL_EPSILON) && ((norm - 1.0) < DBL_EPSILON)); } enum NativeFormats { FMT_UNKNOWN = -1, FMT_UCHAR, FMT_CHAR, FMT_USHORT, FMT_SHORT, FMT_UINT, FMT_INT, FMT_ULONG, FMT_LONG, FMT_FLOAT, FMT_DOUBLE }; /* *--------------------------------------------------------------------------- * * GetBinaryFormat * * Translates a format string into a native type. Valid formats are * * signed i1, i2, i4, i8 * unsigned u1, u2, u4, u8 * real r4, r8, r16 * * There must be a corresponding native type. For example, this for * reading 2-byte binary integers from an instrument and converting them * to unsigned shorts or ints. * *--------------------------------------------------------------------------- */ static enum NativeFormats GetBinaryFormat(Tcl_Interp* interp, char *string, int *sizePtr) { char c = tolower(string[0]); if (Tcl_GetInt(interp, string + 1, sizePtr) != TCL_OK) { Tcl_AppendResult(interp, "unknown binary format \"", string, "\": incorrect byte size", (char *)NULL); return FMT_UNKNOWN; } switch (c) { case 'r': if (*sizePtr == sizeof(double)) return FMT_DOUBLE; else if (*sizePtr == sizeof(float)) return FMT_FLOAT; break; case 'i': if (*sizePtr == sizeof(char)) return FMT_CHAR; else if (*sizePtr == sizeof(int)) return FMT_INT; else if (*sizePtr == sizeof(long)) return FMT_LONG; else if (*sizePtr == sizeof(short)) return FMT_SHORT; break; case 'u': if (*sizePtr == sizeof(unsigned char)) return FMT_UCHAR; else if (*sizePtr == sizeof(unsigned int)) return FMT_UINT; else if (*sizePtr == sizeof(unsigned long)) return FMT_ULONG; else if (*sizePtr == sizeof(unsigned short)) return FMT_USHORT; break; default: Tcl_AppendResult(interp, "unknown binary format \"", string, "\": should be either i#, r#, u# (where # is size in bytes)", (char *)NULL); return FMT_UNKNOWN; } Tcl_AppendResult(interp, "can't handle format \"", string, "\"", (char *)NULL); return FMT_UNKNOWN; } static int CopyValues(Vector *vPtr, char *byteArr, enum NativeFormats fmt, int size, int length, int swap, int *indexPtr) { if ((swap) && (size > 1)) { int nBytes = size * length; for (int i = 0; i < nBytes; i += size) { unsigned char* p = (unsigned char *)(byteArr + i); int left, right; for (left = 0, right = size - 1; left < right; left++, right--) { p[left] ^= p[right]; p[right] ^= p[left]; p[left] ^= p[right]; } } } int newSize = *indexPtr + length; if (newSize > vPtr->length) { if (Vec_ChangeLength(vPtr->interp, vPtr, newSize) != TCL_OK) return TCL_ERROR; } #define CopyArrayToVector(vPtr, arr) \ for (int i = 0, n = *indexPtr; i < length; i++, n++) { \ (vPtr)->valueArr[n] = (double)(arr)[i]; \ } switch (fmt) { case FMT_CHAR: CopyArrayToVector(vPtr, (char *)byteArr); break; case FMT_UCHAR: CopyArrayToVector(vPtr, (unsigned char *)byteArr); break; case FMT_INT: CopyArrayToVector(vPtr, (int *)byteArr); break; case FMT_UINT: CopyArrayToVector(vPtr, (unsigned int *)byteArr); break; case FMT_LONG: CopyArrayToVector(vPtr, (long *)byteArr); break; case FMT_ULONG: CopyArrayToVector(vPtr, (unsigned long *)byteArr); break; case FMT_SHORT: CopyArrayToVector(vPtr, (short int *)byteArr); break; case FMT_USHORT: CopyArrayToVector(vPtr, (unsigned short int *)byteArr); break; case FMT_FLOAT: CopyArrayToVector(vPtr, (float *)byteArr); break; case FMT_DOUBLE: CopyArrayToVector(vPtr, (double *)byteArr); break; case FMT_UNKNOWN: break; } *indexPtr += length; return TCL_OK; } /* *--------------------------------------------------------------------------- * * BinreadOp -- * * Reads binary values from a TCL channel. Values are either appended to * the end of the vector or placed at a given index (using the "-at" * option), overwriting existing values. Data is read until EOF is found * on the channel or a specified number of values are read. (note that * this is not necessarily the same as the number of bytes). * * The following flags are supported: * -swap Swap bytes * -at index Start writing data at the index. * -format fmt Specifies the format of the data. * * This binary reader was created and graciously donated by Harald Kirsch * (kir@iitb.fhg.de). Anything that's wrong is due to my (gah) munging * of the code. * * Results: * Returns a standard TCL result. The interpreter result will contain the * number of values (not the number of bytes) read. * * Caveats: * Channel reads must end on an element boundary. * *--------------------------------------------------------------------------- */ static int BinreadOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { enum NativeFormats fmt; char* string = Tcl_GetString(objv[2]); int mode; Tcl_Channel channel = Tcl_GetChannel(interp, string, &mode); if (channel == NULL) return TCL_ERROR; if ((mode & TCL_READABLE) == 0) { Tcl_AppendResult(interp, "channel \"", string, "\" wasn't opened for reading", (char *)NULL); return TCL_ERROR; } int first = vPtr->length; fmt = FMT_DOUBLE; int size = sizeof(double); int swap = 0; int count = 0; if (objc > 3) { string = Tcl_GetString(objv[3]); if (string[0] != '-') { long int value; // Get the number of values to read. if (Tcl_GetLongFromObj(interp, objv[3], &value) != TCL_OK) return TCL_ERROR; if (value < 0) { Tcl_AppendResult(interp, "count can't be negative", (char *)NULL); return TCL_ERROR; } count = (size_t)value; objc--, objv++; } } // Process any option-value pairs that remain. for (int i = 3; i < objc; i++) { string = Tcl_GetString(objv[i]); if (strcmp(string, "-swap") == 0) swap = 1; else if (strcmp(string, "-format") == 0) { i++; if (i >= objc) { Tcl_AppendResult(interp, "missing arg after \"", string, "\"", (char *)NULL); return TCL_ERROR; } string = Tcl_GetString(objv[i]); fmt = GetBinaryFormat(interp, string, &size); if (fmt == FMT_UNKNOWN) return TCL_ERROR; } else if (strcmp(string, "-at") == 0) { i++; if (i >= objc) { Tcl_AppendResult(interp, "missing arg after \"", string, "\"", (char *)NULL); return TCL_ERROR; } string = Tcl_GetString(objv[i]); if (Vec_GetIndex(interp, vPtr, string, &first, 0, (Blt_VectorIndexProc **)NULL) != TCL_OK) return TCL_ERROR; if (first > vPtr->length) { Tcl_AppendResult(interp, "index \"", string, "\" is out of range", (char *)NULL); return TCL_ERROR; } } } #define BUFFER_SIZE 1024 int arraySize = (count == 0) ? BUFFER_SIZE*size : count*size; char* byteArr = (char*)malloc(arraySize); // FIXME: restore old channel translation later? if (Tcl_SetChannelOption(interp, channel, "-translation","binary") != TCL_OK) return TCL_ERROR; int total = 0; while (!Tcl_Eof(channel)) { int bytesRead = Tcl_Read(channel, byteArr, arraySize); if (bytesRead < 0) { Tcl_AppendResult(interp, "error reading channel: ", Tcl_PosixError(interp), (char *)NULL); return TCL_ERROR; } if ((bytesRead % size) != 0) { Tcl_AppendResult(interp, "error reading channel: short read", (char *)NULL); return TCL_ERROR; } int length = bytesRead / size; if (CopyValues(vPtr, byteArr, fmt, size, length, swap, &first) != TCL_OK) return TCL_ERROR; total += length; if (count > 0) break; } free(byteArr); if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); // Set the result as the number of values read Tcl_SetIntObj(Tcl_GetObjResult(interp), total); return TCL_OK; } static int SearchOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { int wantValue = 0; char* string = Tcl_GetString(objv[2]); if ((string[0] == '-') && (strcmp(string, "-value") == 0)) { wantValue = 1; objv++, objc--; } double min; if (Blt_ExprDoubleFromObj(interp, objv[2], &min) != TCL_OK) return TCL_ERROR; double max = min; if (objc > 4) { Tcl_AppendResult(interp, "wrong # arguments: should be \"", Tcl_GetString(objv[0]), " search ?-value? min ?max?", (char *)NULL); return TCL_ERROR; } if ((objc > 3) && (Blt_ExprDoubleFromObj(interp, objv[3], &max) != TCL_OK)) return TCL_ERROR; // Bogus range. Don't bother looking if ((min - max) >= DBL_EPSILON) return TCL_OK; Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); if (wantValue) { for (int i = 0; i < vPtr->length; i++) { if (InRange(vPtr->valueArr[i], min, max)) Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(vPtr->valueArr[i])); } } else { for (int i = 0; i < vPtr->length; i++) { if (InRange(vPtr->valueArr[i], min, max)) Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewIntObj(i + vPtr->offset)); } } Tcl_SetObjResult(interp, listObjPtr); return TCL_OK; } static int OffsetOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { if (objc == 3) { int newOffset; if (Tcl_GetIntFromObj(interp, objv[2], &newOffset) != TCL_OK) return TCL_ERROR; vPtr->offset = newOffset; } Tcl_SetIntObj(Tcl_GetObjResult(interp), vPtr->offset); return TCL_OK; } static int RandomOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { for (int i = 0; i < vPtr->length; i++) vPtr->valueArr[i] = drand48(); if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); return TCL_OK; } static int SeqOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { double start; if (Blt_ExprDoubleFromObj(interp, objv[2], &start) != TCL_OK) return TCL_ERROR; double stop; if (Blt_ExprDoubleFromObj(interp, objv[3], &stop) != TCL_OK) return TCL_ERROR; int n = vPtr->length; if ((objc > 4) && (Blt_ExprIntFromObj(interp, objv[4], &n) != TCL_OK)) return TCL_ERROR; if (n > 1) { if (Vec_SetLength(interp, vPtr, n) != TCL_OK) return TCL_ERROR; double step = (stop - start) / (double)(n - 1); for (int i = 0; i < n; i++) vPtr->valueArr[i] = start + (step * i); if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); } return TCL_OK; } static int SetOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { int nElem; Tcl_Obj **elemObjArr; // The source can be either a list of numbers or another vector. Vector* v2Ptr = Vec_ParseElement((Tcl_Interp *)NULL, vPtr->dataPtr, Tcl_GetString(objv[2]), NULL, NS_SEARCH_BOTH); int result; if (v2Ptr != NULL) { if (vPtr == v2Ptr) { // Source and destination vectors are the same. Copy the source // first into a temporary vector to avoid memory overlaps. Vector* tmpPtr = Vec_New(vPtr->dataPtr); result = Vec_Duplicate(tmpPtr, v2Ptr); if (result == TCL_OK) { result = Vec_Duplicate(vPtr, tmpPtr); } Vec_Free(tmpPtr); } else result = Vec_Duplicate(vPtr, v2Ptr); } else if (Tcl_ListObjGetElements(interp, objv[2], &nElem, &elemObjArr) == TCL_OK) result = CopyList(vPtr, interp, nElem, elemObjArr); else return TCL_ERROR; if (result == TCL_OK) { // The vector has changed; so flush the array indices (they're wrong // now), find the new range of the data, and notify the vector's //clients that it's been modified. if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); } return result; } static int SimplifyOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { double tolerance = 10.0; int nPoints = vPtr->length / 2; int* simple = (int*)malloc(nPoints * sizeof(int)); Point2d* reduced = (Point2d*)malloc(nPoints * sizeof(Point2d)); Point2d* orig = (Point2d *)vPtr->valueArr; int n = Blt_SimplifyLine(orig, 0, nPoints - 1, tolerance, simple); for (int i = 0; i < n; i++) reduced[i] = orig[simple[i]]; free(simple); Vec_Reset(vPtr, (double *)reduced, n * 2, vPtr->length, TCL_DYNAMIC); // The vector has changed; so flush the array indices (they're wrong // now), find the new range of the data, and notify the vector's // clients that it's been modified. if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); return TCL_OK; } static int SplitOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { int nVectors = objc - 2; if ((vPtr->length % nVectors) != 0) { Tcl_AppendResult(interp, "can't split vector \"", vPtr->name, "\" into ", Itoa(nVectors), " even parts.", (char *)NULL); return TCL_ERROR; } if (nVectors > 0) { int extra = vPtr->length / nVectors; for (int i = 0; i < nVectors; i++) { char* string = Tcl_GetString(objv[i+2]); int isNew; Vector* v2Ptr = Vec_Create(vPtr->dataPtr, string, string, string, &isNew); int oldSize = v2Ptr->length; int newSize = oldSize + extra; if (Vec_SetLength(interp, v2Ptr, newSize) != TCL_OK) return TCL_ERROR; int j,k; for (j = i, k = oldSize; j < vPtr->length; j += nVectors, k++) v2Ptr->valueArr[k] = vPtr->valueArr[j]; Vec_UpdateClients(v2Ptr); if (v2Ptr->flush) { Vec_FlushCache(v2Ptr); } } } return TCL_OK; } // Pointer to the array of values currently being sorted. static Vector **sortVectors; // Indicates the ordering of the sort. If non-zero, the vectors are sorted in // decreasing order static int sortDecreasing; static int nSortVectors; static int CompareVectors(void *a, void *b) { int sign = (sortDecreasing) ? -1 : 1; for (int i = 0; i < nSortVectors; i++) { Vector* vPtr = sortVectors[i]; double delta = vPtr->valueArr[*(int *)a] - vPtr->valueArr[*(int *)b]; if (delta < 0.0) return (-1 * sign); else if (delta > 0.0) return (1 * sign); } return 0; } size_t* Blt::Vec_SortMap(Vector **vectors, int nVectors) { Vector *vPtr = *vectors; int length = vPtr->last - vPtr->first + 1; size_t* map = (size_t*)malloc(sizeof(size_t) * length); for (int i = vPtr->first; i <= vPtr->last; i++) map[i] = i; // Set global variables for sorting routine sortVectors = vectors; nSortVectors = nVectors; qsort((char *)map, length, sizeof(size_t),(QSortCompareProc *)CompareVectors); return map; } static size_t* SortVectors(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Vector** vectors = (Vector**)malloc(sizeof(Vector *) * (objc + 1)); vectors[0] = vPtr; size_t* map = NULL; for (int i = 0; i < objc; i++) { Vector* v2Ptr; if (Vec_LookupName(vPtr->dataPtr, Tcl_GetString(objv[i]), &v2Ptr) != TCL_OK) goto error; if (v2Ptr->length != vPtr->length) { Tcl_AppendResult(interp, "vector \"", v2Ptr->name, "\" is not the same size as \"", vPtr->name, "\"", (char *)NULL); goto error; } vectors[i + 1] = v2Ptr; } map = Vec_SortMap(vectors, objc + 1); error: free(vectors); return map; } static int SortOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { sortDecreasing = 0; SortSwitches switches; switches.flags = 0; int i = ParseSwitches(interp, sortSwitches, objc - 2, objv + 2, &switches, BLT_SWITCH_OBJV_PARTIAL); if (i < 0) return TCL_ERROR; objc -= i, objv += i; sortDecreasing = (switches.flags & SORT_DECREASING); size_t *map = (objc > 2) ? SortVectors(vPtr, interp, objc - 2, objv + 2) : Vec_SortMap(&vPtr, 1); if (map == NULL) return TCL_ERROR; int sortLength = vPtr->length; // Create an array to store a copy of the current values of the // vector. We'll merge the values back into the vector based upon the // indices found in the index array. size_t nBytes = sizeof(double) * sortLength; double* copy = (double*)malloc(nBytes); memcpy((char *)copy, (char *)vPtr->valueArr, nBytes); if (switches.flags & SORT_UNIQUE) { int count =1; for (int n = 1; n < sortLength; n++) { size_t next = map[n]; size_t prev = map[n - 1]; if (copy[next] != copy[prev]) { map[count] = next; count++; } } sortLength = count; nBytes = sortLength * sizeof(double); } if (sortLength != vPtr->length) Vec_SetLength(interp, vPtr, sortLength); for (int n = 0; n < sortLength; n++) vPtr->valueArr[n] = copy[map[n]]; if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); // Now sort any other vectors in the same fashion. The vectors must be // the same size as the map though int result = TCL_ERROR; for (int i = 2; i < objc; i++) { Vector *v2Ptr; if (Vec_LookupName(vPtr->dataPtr, Tcl_GetString(objv[i]), &v2Ptr) != TCL_OK) goto error; if (sortLength != v2Ptr->length) Vec_SetLength(interp, v2Ptr, sortLength); memcpy((char *)copy, (char *)v2Ptr->valueArr, nBytes); for (int n = 0; n < sortLength; n++) v2Ptr->valueArr[n] = copy[map[n]]; Vec_UpdateClients(v2Ptr); if (v2Ptr->flush) Vec_FlushCache(v2Ptr); } result = TCL_OK; error: free(copy); free(map); return result; } static int InstExprOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { if (Blt_ExprVector(interp, Tcl_GetString(objv[2]), (Blt_Vector *)vPtr) != TCL_OK) return TCL_ERROR; if (vPtr->flush) Vec_FlushCache(vPtr); Vec_UpdateClients(vPtr); return TCL_OK; } static int ArithOp(Vector *vPtr, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { double value; double scalar; Vector* v2Ptr = Vec_ParseElement((Tcl_Interp *)NULL, vPtr->dataPtr, Tcl_GetString(objv[2]), NULL, NS_SEARCH_BOTH); if (v2Ptr != NULL) { int length = v2Ptr->last - v2Ptr->first + 1; if (length != vPtr->length) { Tcl_AppendResult(interp, "vectors \"", Tcl_GetString(objv[0]), "\" and \"", Tcl_GetString(objv[2]), "\" are not the same length", (char *)NULL); return TCL_ERROR; } char* string = Tcl_GetString(objv[1]); Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); switch (string[0]) { case '*': for (int i = 0, j = v2Ptr->first; i < vPtr->length; i++, j++) { value = vPtr->valueArr[i] * v2Ptr->valueArr[j]; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '/': for (int i = 0, j = v2Ptr->first; i < vPtr->length; i++, j++) { value = vPtr->valueArr[i] / v2Ptr->valueArr[j]; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '-': for (int i = 0, j = v2Ptr->first; i < vPtr->length; i++, j++) { value = vPtr->valueArr[i] - v2Ptr->valueArr[j]; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '+': for (int i = 0, j = v2Ptr->first; i < vPtr->length; i++, j++) { value = vPtr->valueArr[i] + v2Ptr->valueArr[j]; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; } Tcl_SetObjResult(interp, listObjPtr); } else if (Blt_ExprDoubleFromObj(interp, objv[2], &scalar) == TCL_OK) { Tcl_Obj* listObjPtr = Tcl_NewListObj(0, (Tcl_Obj **)NULL); char* string = Tcl_GetString(objv[1]); switch (string[0]) { case '*': for (int i = 0; i < vPtr->length; i++) { value = vPtr->valueArr[i] * scalar; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '/': for (int i = 0; i < vPtr->length; i++) { value = vPtr->valueArr[i] / scalar; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '-': for (int i = 0; i < vPtr->length; i++) { value = vPtr->valueArr[i] - scalar; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; case '+': for (int i = 0; i < vPtr->length; i++) { value = vPtr->valueArr[i] + scalar; Tcl_ListObjAppendElement(interp, listObjPtr, Tcl_NewDoubleObj(value)); } break; } Tcl_SetObjResult(interp, listObjPtr); } else return TCL_ERROR; return TCL_OK; } static Blt_OpSpec vectorInstOps[] = { {"*", 1, (void*)ArithOp, 3, 3, "item",}, /*Deprecated*/ {"+", 1, (void*)ArithOp, 3, 3, "item",}, /*Deprecated*/ {"-", 1, (void*)ArithOp, 3, 3, "item",}, /*Deprecated*/ {"/", 1, (void*)ArithOp, 3, 3, "item",}, /*Deprecated*/ {"append", 1, (void*)AppendOp, 3, 0, "items ?items...?",}, {"binread", 1, (void*)BinreadOp, 3, 0, "channel ?numValues? ?flags?",}, {"clear", 1, (void*)ClearOp, 2, 2, "",}, {"delete", 2, (void*)DeleteOp, 2, 0, "index ?index...?",}, {"dup", 2, (void*)DupOp, 3, 0, "vecName",}, {"expr", 1, (void*)InstExprOp, 3, 3, "expression",}, {"fft", 1, (void*)FFTOp, 3, 0, "vecName ?switches?",}, {"index", 3, (void*)IndexOp, 3, 4, "index ?value?",}, {"inversefft",3, (void*)InverseFFTOp,4, 4, "vecName vecName",}, {"length", 1, (void*)LengthOp, 2, 3, "?newSize?",}, {"max", 2, (void*)MaxOp, 2, 2, "",}, {"merge", 2, (void*)MergeOp, 3, 0, "vecName ?vecName...?",}, {"min", 2, (void*)MinOp, 2, 2, "",}, {"normalize", 3, (void*)NormalizeOp, 2, 3, "?vecName?",}, /*Deprecated*/ {"notify", 3, (void*)NotifyOp, 3, 3, "keyword",}, {"offset", 1, (void*)OffsetOp, 2, 3, "?offset?",}, {"populate", 1, (void*)PopulateOp, 4, 4, "vecName density",}, {"random", 4, (void*)RandomOp, 2, 2, "",}, /*Deprecated*/ {"range", 4, (void*)RangeOp, 2, 4, "first last",}, {"search", 3, (void*)SearchOp, 3, 5, "?-value? value ?value?",}, {"seq", 3, (void*)SeqOp, 4, 5, "begin end ?num?",}, {"set", 3, (void*)SetOp, 3, 3, "list",}, {"simplify", 2, (void*)SimplifyOp, 2, 2, }, {"sort", 2, (void*)SortOp, 2, 0, "?switches? ?vecName...?",}, {"split", 2, (void*)SplitOp, 2, 0, "?vecName...?",}, {"values", 3, (void*)ValuesOp, 2, 0, "?switches?",}, {"variable", 3, (void*)MapOp, 2, 3, "?varName?",}, }; static int nInstOps = sizeof(vectorInstOps) / sizeof(Blt_OpSpec); int Blt::Vec_InstCmd(ClientData clientData, Tcl_Interp* interp, int objc, Tcl_Obj* const objv[]) { Vector* vPtr = (Vector*)clientData; vPtr->first = 0; vPtr->last = vPtr->length - 1; VectorCmdProc *proc = (VectorCmdProc*)GetOpFromObj(interp, nInstOps, vectorInstOps, BLT_OP_ARG1, objc, objv, 0); if (proc == NULL) return TCL_ERROR; return (*proc) (vPtr, interp, objc, objv); } #define MAX_ERR_MSG 1023 static char message[MAX_ERR_MSG + 1]; char* Blt::Vec_VarTrace(ClientData clientData, Tcl_Interp* interp, const char *part1, const char *part2, int flags) { Blt_VectorIndexProc *indexProc; Vector* vPtr = (Vector*)clientData; if (part2 == NULL) { if (flags & TCL_TRACE_UNSETS) { free((void*)(vPtr->arrayName)); vPtr->arrayName = NULL; if (vPtr->freeOnUnset) Vec_Free(vPtr); } return NULL; } int first; int last; int varFlags; if (Vec_GetIndexRange(interp, vPtr, part2, INDEX_ALL_FLAGS, &indexProc) != TCL_OK) goto error; first = vPtr->first; last = vPtr->last; varFlags = TCL_LEAVE_ERR_MSG | (TCL_GLOBAL_ONLY & flags); if (flags & TCL_TRACE_WRITES) { // Tried to set "min" or "max" if (first == SPECIAL_INDEX) return (char *)"read-only index"; Tcl_Obj* objPtr = Tcl_GetVar2Ex(interp, part1, part2, varFlags); if (objPtr == NULL) goto error; double value; if (Blt_ExprDoubleFromObj(interp, objPtr, &value) != TCL_OK) { // Single numeric index. Reset the array element to // its old value on errors if ((last == first) && (first >= 0)) Tcl_SetVar2Ex(interp, part1, part2, objPtr, varFlags); goto error; } if (first == vPtr->length) { if (Vec_ChangeLength((Tcl_Interp *)NULL, vPtr, vPtr->length + 1) != TCL_OK) return (char *)"error resizing vector"; } // Set possibly an entire range of values ReplicateValue(vPtr, first, last, value); } else if (flags & TCL_TRACE_READS) { Tcl_Obj *objPtr; if (vPtr->length == 0) { if (Tcl_SetVar2(interp, part1, part2, "", varFlags) == NULL) goto error; return NULL; } if (first == vPtr->length) return (char *)"write-only index"; if (first == last) { double value; if (first >= 0) value = vPtr->valueArr[first]; else { vPtr->first = 0, vPtr->last = vPtr->length - 1; value = (*indexProc) ((Blt_Vector *) vPtr); } objPtr = Tcl_NewDoubleObj(value); if (Tcl_SetVar2Ex(interp, part1, part2, objPtr, varFlags) == NULL) { Tcl_DecrRefCount(objPtr); goto error; } } else { objPtr = GetValues(vPtr, first, last); if (Tcl_SetVar2Ex(interp, part1, part2, objPtr, varFlags) == NULL) Tcl_DecrRefCount(objPtr); goto error; } } else if (flags & TCL_TRACE_UNSETS) { if ((first == vPtr->length) || (first == SPECIAL_INDEX)) return (char *)"special vector index"; // Collapse the vector from the point of the first unset element. // Also flush any array variable entries so that the shift is // reflected when the array variable is read. for (int i = first, j = last + 1; j < vPtr->length; i++, j++) vPtr->valueArr[i] = vPtr->valueArr[j]; vPtr->length -= ((last - first) + 1); if (vPtr->flush) Vec_FlushCache(vPtr); } else return (char *)"unknown variable trace flag"; if (flags & (TCL_TRACE_UNSETS | TCL_TRACE_WRITES)) Vec_UpdateClients(vPtr); Tcl_ResetResult(interp); return NULL; error: strncpy(message, Tcl_GetStringResult(interp), MAX_ERR_MSG); message[MAX_ERR_MSG] = '\0'; return message; }