# interpolate.tcl -- # # Package for interpolation methods (one- and two-dimensional) # # Remarks: # None of the methods deal gracefully with missing values # # To do: # Add B-splines as methods # For spatial interpolation in two dimensions also quadrant method? # Method for destroying a table # Proper documentation # Proper test cases # # version 0.1: initial implementation, january 2003 # version 0.2: added linear and Lagrange interpolation, straightforward # spatial interpolation, april 2004 # version 0.3: added Neville algorithm. # version 1.0: added cubic splines, september 2004 # # Copyright (c) 2004 by Arjen Markus. All rights reserved. # Copyright (c) 2004 by Kevin B. Kenny. All rights reserved. # # See the file "license.terms" for information on usage and redistribution # of this file, and for a DISCLAIMER OF ALL WARRANTIES. # # RCS: @(#) $Id: interpolate.tcl,v 1.10 2009/10/22 18:19:52 arjenmarkus Exp $ # #---------------------------------------------------------------------- package require Tcl 8.4 package require struct::matrix # ::math::interpolate -- # Namespace holding the procedures and variables # namespace eval ::math::interpolate { variable search_radius {} variable inv_dist_pow 2 namespace export interp-1d-table interp-table interp-linear \ interp-lagrange namespace export neville } # defineTable -- # Define a two-dimensional table of data # # Arguments: # name Name of the table to be created # cols Names of the columns (for convenience and for counting) # values List of values to fill the table with (must be sorted # w.r.t. first column or first column and first row) # # Results: # Name of the new command # # Side effects: # Creates a new command, which is used in subsequent calls # proc ::math::interpolate::defineTable { name cols values } { set table ::math::interpolate::__$name ::struct::matrix $table $table add columns [llength $cols] $table add row $table set row 0 $cols set row 1 set first 0 set nocols [llength $cols] set novals [llength $values] while { $first < $novals } { set last [expr {$first+$nocols-1}] $table add row $table set row $row [lrange $values $first $last] incr first $nocols incr row } return $table } # inter-1d-table -- # Interpolate in a one-dimensional table # (first column is independent variable, all others dependent) # # Arguments: # table Name of the table # xval Value of the independent variable # # Results: # List of interpolated values, including the x-variable # proc ::math::interpolate::interp-1d-table { table xval } { # # Search for the records that enclose the x-value # set xvalues [lrange [$table get column 0] 2 end] foreach {row row2} [FindEnclosingEntries $xval $xvalues] break incr row incr row2 set prev_values [$table get row $row] set next_values [$table get row $row2] set xprev [lindex $prev_values 0] set xnext [lindex $next_values 0] if { $row == $row2 } { return [concat $xval [lrange $prev_values 1 end]] } else { set wprev [expr {($xnext-$xval)/($xnext-$xprev)}] set wnext [expr {1.0-$wprev}] set results {} foreach vprev $prev_values vnext $next_values { set vint [expr {$vprev*$wprev+$vnext*$wnext}] lappend results $vint } return $results } } # interp-table -- # Interpolate in a two-dimensional table # (first column and first row are independent variables) # # Arguments: # table Name of the table # xval Value of the independent row-variable # yval Value of the independent column-variable # # Results: # Interpolated value # # Note: # Use bilinear interpolation # proc ::math::interpolate::interp-table { table xval yval } { # # Search for the records that enclose the x-value # set xvalues [lrange [$table get column 0] 2 end] foreach {row row2} [FindEnclosingEntries $xval $xvalues] break incr row incr row2 # # Search for the columns that enclose the y-value # set yvalues [lrange [$table get row 1] 1 end] foreach {col col2} [FindEnclosingEntries $yval $yvalues] break set yvalues [concat "." $yvalues] ;# Prepend a dummy column! set prev_values [$table get row $row] set next_values [$table get row $row2] set x1 [lindex $prev_values 0] set x2 [lindex $next_values 0] set y1 [lindex $yvalues $col] set y2 [lindex $yvalues $col2] set v11 [lindex $prev_values $col] set v12 [lindex $prev_values $col2] set v21 [lindex $next_values $col] set v22 [lindex $next_values $col2] # # value = v0 + a*(x-x1) + b*(y-y1) + c*(x-x1)*(y-y1) # if x == x1 and y == y1: value = v11 # if x == x1 and y == y2: value = v12 # if x == x2 and y == y1: value = v21 # if x == x2 and y == y2: value = v22 # set a 0.0 if { $x1 != $x2 } { set a [expr {($v21-$v11)/($x2-$x1)}] } set b 0.0 if { $y1 != $y2 } { set b [expr {($v12-$v11)/($y2-$y1)}] } set c 0.0 if { $x1 != $x2 && $y1 != $y2 } { set c [expr {($v11+$v22-$v12-$v21)/($x2-$x1)/($y2-$y1)}] } set result \ [expr {$v11+$a*($xval-$x1)+$b*($yval-$y1)+$c*($xval-$x1)*($yval-$y1)}] return $result } # FindEnclosingEntries -- # Search within a sorted list # # Arguments: # val Value to be searched # values List of values to be examined # # Results: # Returns a list of the previous and next indices # proc FindEnclosingEntries { val values } { set found 0 set row2 1 foreach v $values { if { $val <= $v } { set row [expr {$row2-1}] set found 1 break } incr row2 } # # Border cases: extrapolation needed # if { ! $found } { incr row2 -1 set row $row2 } if { $row == 0 } { set row $row2 } return [list $row $row2] } # interp-linear -- # Use linear interpolation # # Arguments: # xyvalues List of x/y values to be interpolated # xval x-value for which a value is sought # # Results: # Estimated value at $xval # # Note: # The list xyvalues must be sorted w.r.t. the x-value # proc ::math::interpolate::interp-linear { xyvalues xval } { # # Border cases first # if { [lindex $xyvalues 0] > $xval } { return [lindex $xyvalues 1] } if { [lindex $xyvalues end-1] < $xval } { return [lindex $xyvalues end] } # # The ordinary case # set idxx -2 set idxy -1 foreach { x y } $xyvalues { if { $xval < $x } { break } incr idxx 2 incr idxy 2 } set x2 [lindex $xyvalues $idxx] set y2 [lindex $xyvalues $idxy] if { $x2 != $x } { set yval [expr {$y+($y2-$y)*($xval-$x)/($x2-$x)}] } else { set yval $y } return $yval } # interp-lagrange -- # Use the Lagrange interpolation method # # Arguments: # xyvalues List of x/y values to be interpolated # xval x-value for which a value is sought # # Results: # Estimated value at $xval # # Note: # The list xyvalues must be sorted w.r.t. the x-value # Furthermore the Lagrange method is not a very practical # method, as potentially the errors are unbounded # proc ::math::interpolate::interp-lagrange { xyvalues xval } { # # Border case: xval equals one of the "nodes" # foreach { x y } $xyvalues { if { $x == $xval } { return $y } } # # Ordinary case # set nonodes2 [llength $xyvalues] set yval 0.0 for { set i 0 } { $i < $nonodes2 } { incr i 2 } { set idxn 0 set xn [lindex $xyvalues $i] set yn [lindex $xyvalues [expr {$i+1}]] foreach { x y } $xyvalues { if { $idxn != $i } { set yn [expr {$yn*($x-$xval)/($x-$xn)}] } incr idxn 2 } set yval [expr {$yval+$yn}] } return $yval } # interp-spatial -- # Use a straightforward interpolation method with weights as # function of the inverse distance to interpolate in 2D and N-D # space # # Arguments: # xyvalues List of coordinates and values at these coordinates # coord List of coordinates for which a value is sought # # Results: # Estimated value(s) at $coord # # Note: # The list xyvalues is a list of lists: # { {x1 y1 z1 {v11 v12 v13 v14} # {x2 y2 z2 {v21 v22 v23 v24} # ... # } # The last element of each inner list is either a single number # or a list in itself. In the latter case the return value is # a list with the same number of elements. # # The method is influenced by the search radius and the # power of the inverse distance # proc ::math::interpolate::interp-spatial { xyvalues coord } { variable search_radius variable inv_dist_pow set result {} foreach v [lindex [lindex $xyvalues 0] end] { lappend result 0.0 } set total_weight 0.0 if { $search_radius != {} } { set max_radius2 [expr {$search_radius*$search_radius}] } else { set max_radius2 {} } foreach point $xyvalues { set dist 0.0 foreach c [lrange $point 0 end-1] cc $coord { set dist [expr {$dist+($c-$cc)*($c-$cc)}] } # # Take care of coincident points # if { $dist == 0.0 } { return [lindex $point end] } # # The general case # if { $max_radius2 == {} || $dist <= $max_radius2 } { if { $inv_dist_pow == 1 } { set dist [expr {sqrt($dist)}] } set total_weight [expr {$total_weight+1.0/$dist}] set idx 0 foreach v [lindex $point end] r $result { lset result $idx [expr {$r+$v/$dist}] incr idx } } } if { $total_weight == 0.0 } { set idx 0 foreach r $result { lset result $idx {} incr idx } } else { set idx 0 foreach r $result { lset result $idx [expr {$r/$total_weight}] incr idx } } return $result } # interp-spatial-params -- # Set the parameters for spatial interpolation # # Arguments: # max_search Search radius (if none: use {} or "") # power Power for the inverse distance (1 or 2, defaults to 2) # # Results: # None # proc ::math::interpolate::interp-spatial-params { max_search {power 2} } { variable search_radius variable inv_dist_pow set search_radius $max_search if { $power == 1 } { set inv_dist_pow 1 } else { set inv_dist_pow 2 } } #---------------------------------------------------------------------- # # neville -- # # Interpolate a function between tabulated points using Neville's # algorithm. # # Parameters: # xtable - Table of abscissae. # ytable - Table of ordinates. Must be a list of the same # length as 'xtable.' # x - Abscissa for which the function value is desired. # # Results: # Returns a two-element list. The first element is the # requested ordinate. The second element is a rough estimate # of the absolute error, that is, the magnitude of the first # neglected term of a power series. # # Side effects: # None. # #---------------------------------------------------------------------- proc ::math::interpolate::neville { xtable ytable x } { set n [llength $xtable] # Initialization. Set c and d to the ordinates, and set ns to the # index of the nearest abscissa. Set y to the zero-order approximation # of the nearest ordinate, and dif to the difference between x # and the nearest tabulated abscissa. set c [list] set d [list] set i 0 set ns 0 set dif [expr { abs( $x - [lindex $xtable 0] ) }] set y [lindex $ytable 0] foreach xi $xtable yi $ytable { set dift [expr { abs ( $x - $xi ) }] if { $dift < $dif } { set ns $i set y $yi set dif $dift } lappend c $yi lappend d $yi incr i } # Compute successively higher-degree approximations to the fit # function by using the recurrence: # d_m[i] = ( c_{m-1}[i+1] - d{m-1}[i] ) * (x[i+m]-x) / # (x[i] - x[i+m]) # c_m[i] = ( c_{m-1}[i+1] - d{m-1}[i] ) * (x[i]-x) / # (x[i] - x[i+m]) for { set m 1 } { $m < $n } { incr m } { for { set i 0 } { $i < $n - $m } { set i $ip1 } { set ip1 [expr { $i + 1 }] set ipm [expr { $i + $m }] set ho [expr { [lindex $xtable $i] - $x }] set hp [expr { [lindex $xtable $ipm] - $x }] set w [expr { [lindex $c $ip1] - [lindex $d $i] }] set q [expr { $w / ( $ho - $hp ) }] lset d $i [expr { $hp * $q }] lset c $i [expr { $ho * $q }] } # Take the straighest path possible through the tableau of c # and d approximations back to the tabulated value if { 2 * $ns < $n - $m } { set dy [lindex $c $ns] } else { incr ns -1 set dy [lindex $d $ns] } set y [expr { $y + $dy }] } # Return the approximation and the highest-order correction term. return [list $y [expr { abs($dy) }]] } # prepare-cubic-splines -- # Prepare interpolation based on cubic splines # # Arguments: # xcoord The x-coordinates # ycoord Y-values for these x-coordinates # Result: # Intermediate parameters describing the spline function, # to be used in the second step, interp-cubic-splines. # Note: # Implicitly it is assumed that the function decribed by xcoord # and ycoord has a second derivative 0 at the end points. # To minimise the work if more than one value is needed, the # algorithm is divided in two steps # (Derived from the routine SPLINT in Davis and Rabinowitz: # Methods for Numerical Integration, AP, 1984) # proc ::math::interpolate::prepare-cubic-splines {xcoord ycoord} { if { [llength $xcoord] < 3 } { return -code error "At least three points are required" } if { [llength $xcoord] != [llength $ycoord] } { return -code error "Equal number of x and y values required" } set m2 [expr {[llength $xcoord]-1}] set s 0.0 set h {} set c {} for { set i 0 } { $i < $m2 } { incr i } { set ip1 [expr {$i+1}] set h1 [expr {[lindex $xcoord $ip1]-[lindex $xcoord $i]}] lappend h $h1 if { $h1 <= 0.0 } { return -code error "X values must be strictly ascending" } set r [expr {([lindex $ycoord $ip1]-[lindex $ycoord $i])/$h1}] lappend c [expr {$r-$s}] set s $r } set s 0.0 set r 0.0 set t {--} lset c 0 0.0 for { set i 1 } { $i < $m2 } { incr i } { set ip1 [expr {$i+1}] set im1 [expr {$i-1}] set y2 [expr {[lindex $c $i]+$r*[lindex $c $im1]}] set t1 [expr {2.0*([lindex $xcoord $im1]-[lindex $xcoord $ip1])-$r*$s}] set s [lindex $h $i] set r [expr {$s/$t1}] lset c $i $y2 lappend t $t1 } lappend c 0.0 for { set j 1 } { $j < $m2 } { incr j } { set i [expr {$m2-$j}] set ip1 [expr {$i+1}] set h1 [lindex $h $i] set yp1 [lindex $c $ip1] set y1 [lindex $c $i] set t1 [lindex $t $i] lset c $i [expr {($h1*$yp1-$y1)/$t1}] } set b {} set d {} for { set i 0 } { $i < $m2 } { incr i } { set ip1 [expr {$i+1}] set s [lindex $h $i] set yp1 [lindex $c $ip1] set y1 [lindex $c $i] set r [expr {$yp1-$y1}] lappend d [expr {$r/$s}] set y1 [expr {3.0*$y1}] lset c $i $y1 lappend b [expr {([lindex $ycoord $ip1]-[lindex $ycoord $i])/$s -($y1+$r)*$s}] } lappend d 0.0 lappend b 0.0 return [list $d $c $b $ycoord $xcoord] } # interp-cubic-splines -- # Interpolate based on cubic splines # # Arguments: # coeffs Coefficients resulting from the preparation step # x The x-coordinate for which to estimate the value # Result: # Interpolated value at x # proc ::math::interpolate::interp-cubic-splines {coeffs x} { foreach {dcoef ccoef bcoef acoef xcoord} $coeffs {break} # # Check the bounds - no extrapolation # if { $x < [lindex $xcoord 0] } {error "X value too small"} if { $x > [lindex $xcoord end] } {error "X value too large"} # # Which interval? # set idx -1 foreach xv $xcoord { if { $xv > $x } { break } incr idx } set a [lindex $acoef $idx] set b [lindex $bcoef $idx] set c [lindex $ccoef $idx] set d [lindex $dcoef $idx] set dx [expr {$x-[lindex $xcoord $idx]}] return [expr {(($d*$dx+$c)*$dx+$b)*$dx+$a}] } # # Announce our presence # package provide math::interpolate 1.1