[comment {-*- tclrep -*- doctools manpage}] [manpage_begin tclrep/machineparameters n 1.0] [copyright {2008 Michael Baudin }] [moddesc tclrep] [require snit] [require math::machineparameters 0.1] [titledesc {Compute double precision machine parameters.}] [description] The [emph math::machineparameters] package is the Tcl equivalent of the DLAMCH LAPACK function. In floating point systems, a floating point number is represented by [example { x = +/- d1 d2 ... dt basis^e }] where digits satisfy [example { 0 <= di <= basis - 1, i = 1, t }] with the convention : [list_begin itemized] [item] t is the size of the mantissa [item] basis is the basis (the "radix") [list_end] [para] The [method compute] method computes all machine parameters. Then, the [method get] method can be used to get each parameter. The [method print] method prints a report on standard output. [section EXAMPLE] In the following example, one compute the parameters of a desktop under Linux with the following Tcl 8.4.19 properties : [example { % parray tcl_platform tcl_platform(byteOrder) = littleEndian tcl_platform(machine) = i686 tcl_platform(os) = Linux tcl_platform(osVersion) = 2.6.24-19-generic tcl_platform(platform) = unix tcl_platform(tip,268) = 1 tcl_platform(tip,280) = 1 tcl_platform(user) = tcl_platform(wordSize) = 4 }] The following example creates a machineparameters object, computes the properties and displays it. [example { set pp [machineparameters create %AUTO%] $pp compute $pp print $pp destroy }] This prints out : [example { Machine parameters Epsilon : 1.11022302463e-16 Beta : 2 Rounding : proper Mantissa : 53 Maximum exponent : 1024 Minimum exponent : -1021 Overflow threshold : 8.98846567431e+307 Underflow threshold : 2.22507385851e-308 }] That compares well with the results produced by Lapack 3.1.1 : [example { Epsilon = 1.11022302462515654E-016 Safe minimum = 2.22507385850720138E-308 Base = 2.0000000000000000 Precision = 2.22044604925031308E-016 Number of digits in mantissa = 53.000000000000000 Rounding mode = 1.00000000000000000 Minimum exponent = -1021.0000000000000 Underflow threshold = 2.22507385850720138E-308 Largest exponent = 1024.0000000000000 Overflow threshold = 1.79769313486231571E+308 Reciprocal of safe minimum = 4.49423283715578977E+307 }] The following example creates a machineparameters object, computes the properties and gets the epsilon for the machine. [example { set pp [machineparameters create %AUTO%] $pp compute set eps [$pp get -epsilon] $pp destroy }] [section REFERENCES] [list_begin itemized] [item] "Algorithms to Reveal Properties of Floating-Point Arithmetic", Michael A. Malcolm, Stanford University, Communications of the ACM, Volume 15 , Issue 11 (November 1972), Pages: 949 - 951 [item] "More on Algorithms that Reveal Properties of Floating, Point Arithmetic Units", W. Morven Gentleman, University of Waterloo, Scott B. Marovich, Purdue University, Communications of the ACM, Volume 17 , Issue 5 (May 1974), Pages: 276 - 277 [list_end] [section {CLASS API}] [list_begin definitions] [call [cmd machineparameters] create [arg objectname] [opt [arg options]...]] The command creates a new machineparameters object and returns the fully qualified name of the object command as its result. [list_begin options] [opt_def -verbose [arg verbose]] Set this option to 1 to enable verbose logging. This option is mainly for debug purposes. The default value of [arg verbose] is 0. [list_end] [list_end] [section {OBJECT API}] [list_begin definitions] [call [arg objectname] [method configure] [opt [arg options]...]] The command configure the options of the object [arg objectname]. The options are the same as the static method [method create]. [call [arg objectname] [method cget] [arg opt]] Returns the value of the option which name is [arg opt]. The options are the same as the method [method create] and [method configure]. [call [arg objectname] [method destroy]] Destroys the object [arg objectname]. [call [arg objectname] [method compute]] Computes the machine parameters. [call [arg objectname] [method get] [arg key]] Returns the value corresponding with given key. The following is the list of available keys. [list_begin itemized] [item] -epsilon : smallest value so that 1+epsilon>1 is false [item] -rounding : The rounding mode used on the machine. The rounding occurs when more than t digits would be required to represent the number. Two modes can be determined with the current system : "chop" means than only t digits are kept, no matter the value of the number "proper" means that another rounding mode is used, be it "round to nearest", "round up", "round down". [item] -basis : the basis of the floating-point representation. The basis is usually 2, i.e. binary representation (for example IEEE 754 machines), but some machines (like HP calculators for example) uses 10, or 16, etc... [item] -mantissa : the number of bits in the mantissa [item] -exponentmax : the largest positive exponent before overflow occurs [item] -exponentmin : the largest negative exponent before (gradual) underflow occurs [item] -vmax : largest positive value before overflow occurs [item] -vmin : largest negative value before (gradual) underflow occurs [list_end] [call [arg objectname] [method tostring]] Return a report for machine parameters. [call [arg objectname] [method print]] Print machine parameters on standard output. [list_end] [vset CATEGORY math] [include ../doctools2base/include/feedback.inc] [manpage_end]