# symdiff.tcl -- # # Symbolic differentiation package for Tcl # # This package implements a command, "math::calculus::symdiff::symdiff", # which accepts a Tcl expression and a variable name, and if the expression # is readily differentiable, returns a Tcl expression that evaluates the # derivative. # # Copyright (c) 2005, 2010 by Kevin B. Kenny. All rights reserved. # # See the file "license.terms" for information on usage and redistribution # of this file, and for a DISCLAIMER OF ALL WARRANTIES. # # RCS: @(#) $Id: symdiff.tcl,v 1.2 2011/01/13 02:49:53 andreas_kupries Exp $ # This package requires the 'tclparser' from http://tclpro.sf.net/ # to analyze the expressions presented to it. package require Tcl 8.4 package require grammar::aycock 1.0 package provide math::calculus::symdiff 1.0.1 namespace eval math {} namespace eval math::calculus {} namespace eval math::calculus::symdiff { namespace export jacobian symdiff namespace eval differentiate {} } # math::calculus::symdiff::jacobian -- # # Differentiate a set of expressions with respect to a set of # model variables # # Parameters: # model -- A list of alternating {variable name} {expr} # # Results: # Returns a list of lists. The ith sublist is the gradient vector # of the ith expr in the model; that is, the jth element of # the ith sublist is the derivative of the ith expr with respect # to the jth variable. # # Returns an error if any expression cannot be differentiated with # respect to any of the elements of the list, or if the list has # no elements or an odd number of elements. proc math::calculus::symdiff::jacobian {list} { set l [llength $list] if {$l == 0 || $l%2 != 0} { return -code error "list of variables and expressions must have an odd number of elements" } set J {} foreach {- expr} $list { set gradient {} foreach {var -} $list { lappend gradient [symdiff $expr $var] } lappend J $gradient } return $J } # math::calculus::symdiff::symdiff -- # # Differentiate an expression with respect to a variable. # # Parameters: # expr -- expression to differentiate (Must be a Tcl expression, # without command substitution.) # var -- Name of the variable to differentiate the expression # with respect to. # # Results: # Returns a Tcl expression that evaluates the derivative. proc math::calculus::symdiff::symdiff {expr var} { variable parser set parsetree [$parser parse {*}[Lexer $expr] [namespace current]] return [ToInfix [differentiate::MakeDeriv $parsetree $var]] } # math::calculus::symdiff::Parser -- # # Parser for the mathematical expressions that this package can # differentiate. namespace eval math::calculus::symdiff { variable parser [grammar::aycock::parser { expression ::= expression addop term { set result [${clientData}::MakeOperator [lindex $_ 1]] lappend result [lindex $_ 0] [lindex $_ 2] } expression ::= term { lindex $_ 0 } addop ::= + { lindex $_ 0 } addop ::= - { lindex $_ 0 } term ::= term mulop factor { set result [${clientData}::MakeOperator [lindex $_ 1]] lappend result [lindex $_ 0] [lindex $_ 2] } term ::= factor { lindex $_ 0 } mulop ::= * { lindex $_ 0 } mulop ::= / { lindex $_ 0 } factor ::= addop factor { set result [${clientData}::MakeOperator [lindex $_ 0]] lappend result [lindex $_ 1] } factor ::= expon { lindex $_ 0 } expon ::= primary ** expon { set result [${clientData}::MakeOperator [lindex $_ 1]] lappend result [lindex $_ 0] [lindex $_ 2] } expon ::= primary { lindex $_ 0 } primary ::= {$} bareword { ${clientData}::MakeVariable [lindex $_ 1] } primary ::= number { ${clientData}::MakeConstant [lindex $_ 0] } primary ::= bareword ( arglist ) { set result [${clientData}::MakeOperator [lindex $_ 0]] lappend result {*}[lindex $_ 2] } primary ::= ( expression ) { lindex $_ 1 } arglist ::= expression { set _ } arglist ::= arglist , expression { linsert [lindex $_ 0] end [lindex $_ 2] } }] } # math::calculus::symdiff::Lexer -- # # Lexer for the arithmetic expressions that the 'symdiff' package # can differentiate. # # Results: # Returns a two element list. The first element is a list of the # lexical values of the tokens that were found in the expression; # the second is a list of the semantic values of the tokens. The # two sublists are the same length. proc math::calculus::symdiff::Lexer {expression} { set start 0 set tokens {} set values {} while {$expression ne {}} { if {[regexp {^\*\*(.*)} $expression -> rest]} { # Exponentiation lappend tokens ** lappend values ** } elseif {[regexp {^([-+/*$(),])(.*)} $expression -> token rest]} { # Single-character operators lappend tokens $token lappend values $token } elseif {[regexp {^([[:alpha:]][[:alnum:]_]*)(.*)} \ $expression -> token rest]} { # Variable and function names lappend tokens bareword lappend values $token } elseif {[regexp -nocase -expanded { ^((?: (?: [[:digit:]]+ (?:[.][[:digit:]]*)? ) | (?: [.][[:digit:]]+ ) ) (?: e [-+]? [[:digit:]]+ )? ) (.*) }\ $expression -> token rest]} { # Numbers lappend tokens number lappend values $token } elseif {[regexp {^[[:space:]]+(.*)} $expression -> rest]} { # Whitespace } else { # Anything else is an error return -code error \ -errorcode [list MATH SYMDIFF INVCHAR \ [string index $expression 0]] \ [list invalid character [string index $expression 0]] \ } set expression $rest } return [list $tokens $values] } # math::calculus::symdiff::ToInfix -- # # Converts a parse tree to infix notation. # # Parameters: # tree - Parse tree to convert # # Results: # Returns the parse tree as a Tcl expression. proc math::calculus::symdiff::ToInfix {tree} { set a [lindex $tree 0] set kind [lindex $a 0] switch -exact $kind { constant - text { set result [lindex $tree 1] } var { set result \$[lindex $tree 1] } operator { set name [lindex $a 1] if {([string is alnum $name] && $name ne {eq} && $name ne {ne}) || [llength $tree] == 2} { set result $name append result \( set sep "" foreach arg [lrange $tree 1 end] { append result $sep [ToInfix $arg] set sep ", " } append result \) } elseif {[llength $tree] == 3} { set result \( append result [ToInfix [lindex $tree 1]] append result " " $name " " append result [ToInfix [lindex $tree 2]] append result \) } else { error "symdiff encountered a malformed parse, can't happen" } } default { error "symdiff can't synthesize a $kind expression" } } return $result } # math::calculus::symdiff::differentiate::MakeDeriv -- # # Differentiates a Tcl expression represented as a parse tree. # # Parameters: # tree -- Parse tree from MakeParseTreeForExpr # var -- Variable to differentiate with respect to # # Results: # Returns the parse tree of the derivative. proc math::calculus::symdiff::differentiate::MakeDeriv {tree var} { return [eval [linsert $tree 1 $var]] } # math::calculus::symdiff::differentiate::ChainRule -- # # Applies the Chain Rule to evaluate the derivative of a unary # function. # # Parameters: # var -- Variable to differentiate with respect to. # derivMaker -- Command prefix for differentiating the function. # u -- Function argument. # # Results: # Returns a parse tree representing the derivative of f($u). # # ChainRule differentiates $u with respect to $var by calling MakeDeriv, # makes the derivative of f($u) with respect to $u by calling derivMaker # passing $u as a parameter, and then returns a parse tree representing # the product of the results. proc math::calculus::symdiff::differentiate::ChainRule {var derivMaker u} { lappend derivMaker $u set result [MakeProd [MakeDeriv $u $var] [eval $derivMaker]] } # math::calculus::symdiff::differentiate::constant -- # # Differentiate a constant. # # Parameters: # var -- Variable to differentiate with respect to - unused # constant -- Constant expression to differentiate - ignored # # Results: # Returns a parse tree of the derivative, which is, of course, the # constant zero. proc math::calculus::symdiff::differentiate::constant {var constant} { return [MakeConstant 0.0] } # math::calculus::symdiff::differentiate::var -- # # Differentiate a variable expression. # # Parameters: # var - Variable with which to differentiate. # exprVar - Expression being differentiated, which is a single # variable. # # Results: # Returns a parse tree of the derivative. # # The derivative is the constant unity if the variables are the same # and the constant zero if they are different. proc math::calculus::symdiff::differentiate::var {var exprVar} { if {$exprVar eq $var} { return [MakeConstant 1.0] } else { return [MakeConstant 0.0] } } # math::calculus::symdiff::differentiate::operator + -- # # Forms the derivative of a sum. # # Parameters: # var -- Variable to differentiate with respect to. # args -- One or two arguments giving augend and addend. If only # one argument is supplied, this is unary +. # # Results: # Returns a parse tree representing the derivative. # # Of course, the derivative of a sum is the sum of the derivatives. proc {math::calculus::symdiff::differentiate::operator +} {var args} { if {[llength $args] == 1} { set u [lindex $args 0] set result [eval [linsert $u 1 $var]] } elseif {[llength $args] == 2} { foreach {u v} $args break set du [eval [linsert $u 1 $var]] set dv [eval [linsert $v 1 $var]] set result [MakeSum $du $dv] } else { error "symdiff encountered a malformed parse, can't happen" } return $result } # math::calculus::symdiff::differentiate::operator - -- # # Forms the derivative of a difference. # # Parameters: # var -- Variable to differentiate with respect to. # args -- One or two arguments giving minuend and subtrahend. If only # one argument is supplied, this is unary -. # # Results: # Returns a parse tree representing the derivative. # # Of course, the derivative of a sum is the sum of the derivatives. proc {math::calculus::symdiff::differentiate::operator -} {var args} { if {[llength $args] == 1} { set u [lindex $args 0] set du [eval [linsert $u 1 $var]] set result [MakeUnaryMinus $du] } elseif {[llength $args] == 2} { foreach {u v} $args break set du [eval [linsert $u 1 $var]] set dv [eval [linsert $v 1 $var]] set result [MakeDifference $du $dv] } else { error "symdiff encounered a malformed parse, can't happen" } return $result } # math::calculus::symdiff::differentiate::operator * -- # # Forms the derivative of a product. # # Parameters: # var -- Variable to differentiate with respect to. # u, v -- Multiplicand and multiplier. # # Results: # Returns a parse tree representing the derivative. # # The familiar freshman calculus product rule. proc {math::calculus::symdiff::differentiate::operator *} {var u v} { set du [eval [linsert $u 1 $var]] set dv [eval [linsert $v 1 $var]] set result [MakeSum [MakeProd $dv $u] [MakeProd $du $v]] return $result } # math::calculus::symdiff::differentiate::operator / -- # # Forms the derivative of a quotient. # # Parameters: # var -- Variable to differentiate with respect to. # u, v -- Dividend and divisor. # # Results: # Returns a parse tree representing the derivative. # # The familiar freshman calculus quotient rule. proc {math::calculus::symdiff::differentiate::operator /} {var u v} { set du [eval [linsert $u 1 $var]] set dv [eval [linsert $v 1 $var]] set result [MakeQuotient \ [MakeDifference \ $du \ [MakeQuotient \ [MakeProd $dv $u] \ $v]] \ $v] return $result } # math::calculus::symdiff::differentiate::operator acos -- # # Differentiates the 'acos' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the acos() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(acos(u))=-D(u)/sqrt(1 - u*u) # (Might it be better to factor 1-u*u into (1+u)(1-u)? Less likely to be # catastrophic cancellation if u is near 1?) proc {math::calculus::symdiff::differentiate::operator acos} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient [MakeUnaryMinus $du] \ [MakeFunCall sqrt \ [MakeDifference [MakeConstant 1.0] \ [MakeProd $u $u]]]] return $result } # math::calculus::symdiff::differentiate::operator asin -- # # Differentiates the 'asin' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the asin() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(asin(u))=D(u)/sqrt(1 - u*u) # (Might it be better to factor 1-u*u into (1+u)(1-u)? Less likely to be # catastrophic cancellation if u is near 1?) proc {math::calculus::symdiff::differentiate::operator asin} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient $du \ [MakeFunCall sqrt \ [MakeDifference [MakeConstant 1.0] \ [MakeProd $u $u]]]] return $result } # math::calculus::symdiff::differentiate::operator atan -- # # Differentiates the 'atan' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the atan() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(atan(u))=D(u)/(1 + $u*$u) proc {math::calculus::symdiff::differentiate::operator atan} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient $du \ [MakeSum [MakeConstant 1.0] \ [MakeProd $u $u]]] } # math::calculus::symdiff::differentiate::operator atan2 -- # # Differentiates the 'atan2' function. # # Parameters: # var -- Variable to differentiate with respect to. # f, g -- Arguments to the atan() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain and Quotient Rules: # D(atan2(f, g)) = (D(f)*g - D(g)*f)/(f*f + g*g) proc {math::calculus::symdiff::differentiate::operator atan2} {var f g} { set df [eval [linsert $f 1 $var]] set dg [eval [linsert $g 1 $var]] return [MakeQuotient \ [MakeDifference \ [MakeProd $df $g] \ [MakeProd $f $dg]] \ [MakeSum \ [MakeProd $f $f] \ [MakeProd $g $g]]] } # math::calculus::symdiff::differentiate::operator cos -- # # Differentiates the 'cos' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the cos() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(cos(u))=-sin(u)*D(u) proc {math::calculus::symdiff::differentiate::operator cos} {var u} { return [ChainRule $var MakeMinusSin $u] } proc math::calculus::symdiff::differentiate::MakeMinusSin {operand} { return [MakeUnaryMinus [MakeFunCall sin $operand]] } # math::calculus::symdiff::differentiate::operator cosh -- # # Differentiates the 'cosh' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the cosh() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(cosh(u))=sinh(u)*D(u) proc {math::calculus::symdiff::differentiate::operator cosh} {var u} { set result [ChainRule $var [list MakeFunCall sinh] $u] return $result } # math::calculus::symdiff::differentiate::operator exp -- # # Differentiate the exponential function # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument of the exponential function. # # Results: # Returns a parse tree of the derivative. # # Uses the Chain Rule D(exp(u)) = exp(u)*D(u). proc {math::calculus::symdiff::differentiate::operator exp} {var u} { set result [ChainRule $var [list MakeFunCall exp] $u] return $result } # math::calculus::symdiff::differentiate::operator hypot -- # # Differentiate the 'hypot' function # # Parameters: # var - Variable to differentiate with respect to. # f, g - Arguments to the 'hypot' function # # Results: # Returns a parse tree of the derivative # # Uses a number of algebraic simplifications to arrive at: # D(hypot(f,g)) = (f*D(f)+g*D(g))/hypot(f,g) proc {math::calculus::symdiff::differentiate::operator hypot} {var f g} { set df [eval [linsert $f 1 $var]] set dg [eval [linsert $g 1 $var]] return [MakeQuotient \ [MakeSum \ [MakeProd $df $f] \ [MakeProd $dg $g]] \ [MakeFunCall hypot $f $g]] } # math::calculus::symdiff::differentiate::operator log -- # # Differentiates a logarithm. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the log() function. # # Results: # Returns a parse tree of the derivative. # # D(log(u))==D(u)/u proc {math::calculus::symdiff::differentiate::operator log} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient $du $u] return $result } # math::calculus::symdiff::differentiate::operator log10 -- # # Differentiates a common logarithm. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the log10() function. # # Results: # Returns a parse tree of the derivative. # # D(log(u))==D(u)/(u * log(10)) proc {math::calculus::symdiff::differentiate::operator log10} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient $du \ [MakeProd [MakeConstant [expr log(10.)]] $u]] return $result } # math::calculus::symdiff::differentiate::operator ** -- # # Differentiate an exponential. # # Parameters: # var -- Variable to differentiate with respect to # f, g -- Base and exponent # # Results: # Returns the parse tree of the derivative. # # Handles the special case where g is constant as # D(f**g) == g*f**(g-1)*D(f) # Otherwise, uses the general power formula # D(f**g) == (f**g) * (((D(f)*g)/f) + (D(g)*log(f))) proc {math::calculus::symdiff::differentiate::operator **} {var f g} { set df [eval [linsert $f 1 $var]] if {[IsConstant $g]} { set gm1 [MakeConstant [expr {[ConstantValue $g] - 1}]] set result [MakeProd $df [MakeProd $g [MakePower $f $gm1]]] } else { set dg [eval [linsert $g 1 $var]] set result [MakeProd [MakePower $f $g] \ [MakeSum \ [MakeQuotient [MakeProd $df $g] $f] \ [MakeProd $dg [MakeFunCall log $f]]]] } return $result } interp alias {} {math::calculus::symdiff::differentiate::operator pow} \ {} {math::calculus::symdiff::differentiate::operator **} # math::calculus::symdiff::differentiate::operator sin -- # # Differentiates the 'sin' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the sin() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(sin(u))=cos(u)*D(u) proc {math::calculus::symdiff::differentiate::operator sin} {var u} { set result [ChainRule $var [list MakeFunCall cos] $u] return $result } # math::calculus::symdiff::differentiate::operator sinh -- # # Differentiates the 'sinh' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the sinh() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(sin(u))=cosh(u)*D(u) proc {math::calculus::symdiff::differentiate::operator sinh} {var u} { set result [ChainRule $var [list MakeFunCall cosh] $u] return $result } # math::calculus::symdiff::differentiate::operator sqrt -- # # Differentiate the 'sqrt' function. # # Parameters: # var -- Variable to differentiate with respect to # u -- Parameter of 'sqrt' as a parse tree. # # Results: # Returns a parse tree representing the derivative. # # D(sqrt(u))==D(u)/(2*sqrt(u)) proc {math::calculus::symdiff::differentiate::operator sqrt} {var u} { set du [eval [linsert $u 1 $var]] set result [MakeQuotient $du [MakeProd [MakeConstant 2.0] \ [MakeFunCall sqrt $u]]] return $result } # math::calculus::symdiff::differentiate::operator tan -- # # Differentiates the 'tan' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the tan() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(tan(u))=D(u)/(cos(u)*cos(u)) proc {math::calculus::symdiff::differentiate::operator tan} {var u} { set du [eval [linsert $u 1 $var]] set cosu [MakeFunCall cos $u] return [MakeQuotient $du [MakeProd $cosu $cosu]] } # math::calculus::symdiff::differentiate::operator tanh -- # # Differentiates the 'tanh' function. # # Parameters: # var -- Variable to differentiate with respect to. # u -- Argument to the tanh() function. # # Results: # Returns a parse tree of the derivative. # # Applies the Chain Rule: D(tanh(u))=D(u)/(cosh(u)*cosh(u)) proc {math::calculus::symdiff::differentiate::operator tanh} {var u} { set du [eval [linsert $u 1 $var]] set coshu [MakeFunCall cosh $u] return [MakeQuotient $du [MakeProd $coshu $coshu]] } # math::calculus::symdiff::MakeFunCall -- # # Makes a parse tree for a function call # # Parameters: # fun -- Name of the function to call # args -- Arguments to the function, expressed as parse trees # # Results: # Returns a parse tree for the result of calling the function. # # Performs the peephole optimization of replacing a function with # constant parameters with its value. proc math::calculus::symdiff::MakeFunCall {fun args} { set constant 1 set exp $fun append exp \( set sep "" foreach a $args { if {[IsConstant $a]} { append exp $sep [ConstantValue $a] set sep "," } else { set constant 0 break } } if {$constant} { append exp \) return [MakeConstant [expr $exp]] } set result [MakeOperator $fun] foreach arg $args { lappend result $arg } return $result } # math::calculus::symdiff::MakeSum -- # # Makes the parse tree for a sum. # # Parameters: # left, right -- Parse trees for augend and addend # # Results: # Returns the parse tree for the sum. # # Performs the following peephole optimizations: # (1) a + (-b) = a - b # (2) (-a) + b = b - a # (3) 0 + a = a # (4) a + 0 = a # (5) The sum of two constants may be reduced to a constant proc math::calculus::symdiff::MakeSum {left right} { if {[IsUnaryMinus $right]} { return [MakeDifference $left [UnaryMinusArg $right]] } if {[IsUnaryMinus $left]} { return [MakeDifference $right [UnaryMinusArg $left]] } if {[IsConstant $left]} { set v [ConstantValue $left] if {$v == 0} { return $right } elseif {[IsConstant $right]} { return [MakeConstant [expr {[ConstantValue $left] + [ConstantValue $right]}]] } } elseif {[IsConstant $right]} { set v [ConstantValue $right] if {$v == 0} { return $left } } set result [MakeOperator +] lappend result $left $right return $result } # math::calculus::symdiff::MakeDifference -- # # Makes the parse tree for a difference # # Parameters: # left, right -- Minuend and subtrahend, expressed as parse trees # # Results: # Returns a parse tree expressing the difference # # Performs the following peephole optimizations: # (1) a - (-b) = a + b # (2) -a - b = -(a + b) # (3) 0 - b = -b # (4) a - 0 = a # (5) The difference of any two constants can be reduced to a constant. proc math::calculus::symdiff::MakeDifference {left right} { if {[IsUnaryMinus $right]} { return [MakeSum $left [UnaryMinusArg $right]] } if {[IsUnaryMinus $left]} { return [MakeUnaryMinus [MakeSum [UnaryMinusArg $left] $right]] } if {[IsConstant $left]} { set v [ConstantValue $left] if {$v == 0} { return [MakeUnaryMinus $right] } elseif {[IsConstant $right]} { return [MakeConstant [expr {[ConstantValue $left] - [ConstantValue $right]}]] } } elseif {[IsConstant $right]} { set v [ConstantValue $right] if {$v == 0} { return $left } } set result [MakeOperator -] lappend result $left $right return $result } # math::calculus::symdiff::MakeProd -- # # Constructs the parse tree for a product, left*right. # # Parameters: # left, right - Multiplicand and multiplier # # Results: # Returns the parse tree for the result. # # Performs the following peephole optimizations. # (1) If either operand is a unary minus, it is hoisted out of the # expression. # (2) If either operand is the constant 0, the result is the constant 0 # (3) If either operand is the constant 1, the result is the other operand. # (4) If either operand is the constant -1, the result is unary minus # applied to the other operand # (5) If both operands are constant, the result is a constant containing # their product. proc math::calculus::symdiff::MakeProd {left right} { if {[IsUnaryMinus $left]} { return [MakeUnaryMinus [MakeProd [UnaryMinusArg $left] $right]] } if {[IsUnaryMinus $right]} { return [MakeUnaryMinus [MakeProd $left [UnaryMinusArg $right]]] } if {[IsConstant $left]} { set v [ConstantValue $left] if {$v == 0} { return [MakeConstant 0.0] } elseif {$v == 1} { return $right } elseif {$v == -1} { return [MakeUnaryMinus $right] } elseif {[IsConstant $right]} { return [MakeConstant [expr {[ConstantValue $left] * [ConstantValue $right]}]] } } elseif {[IsConstant $right]} { set v [ConstantValue $right] if {$v == 0} { return [MakeConstant 0.0] } elseif {$v == 1} { return $left } elseif {$v == -1} { return [MakeUnaryMinus $left] } } set result [MakeOperator *] lappend result $left $right return $result } # math::calculus::symdiff::MakeQuotient -- # # Makes a parse tree for a quotient, n/d # # Parameters: # n, d - Parse trees for numerator and denominator # # Results: # Returns the parse tree for the quotient. # # Performs peephole optimizations: # (1) If either operand is a unary minus, it is hoisted out. # (2) If the numerator is the constant 0, the result is the constant 0. # (3) If the demominator is the constant 1, the result is the numerator # (4) If the denominator is the constant -1, the result is the unary # negation of the numerator. # (5) If both numerator and denominator are constant, the result is # a constant representing their quotient. proc math::calculus::symdiff::MakeQuotient {n d} { if {[IsUnaryMinus $n]} { return [MakeUnaryMinus [MakeQuotient [UnaryMinusArg $n] $d]] } if {[IsUnaryMinus $d]} { return [MakeUnaryMinus [MakeQuotient $n [UnaryMinusArg $d]]] } if {[IsConstant $n]} { set v [ConstantValue $n] if {$v == 0} { return [MakeConstant 0.0] } elseif {[IsConstant $d]} { return [MakeConstant [expr {[ConstantValue $n] * [ConstantValue $d]}]] } } elseif {[IsConstant $d]} { set v [ConstantValue $d] if {$v == 0} { return -code error "requested expression will result in division by zero at run time" } elseif {$v == 1} { return $n } elseif {$v == -1} { return [MakeUnaryMinus $n] } } set result [MakeOperator /] lappend result $n $d return $result } # math::calculus::symdiff::MakePower -- # # Make a parse tree for an exponentiation operation # # Parameters: # a -- Base, expressed as a parse tree # b -- Exponent, expressed as a parse tree # # Results: # Returns a parse tree for the expression # # Performs peephole optimizations: # (1) The constant zero raised to any non-zero power is 0 # (2) The constant 1 raised to any power is 1 # (3) Any non-zero quantity raised to the zero power is 1 # (4) Any non-zero quantity raised to the first power is the base itself. # (5) MakeFunCall will optimize any other case of a constant raised # to a constant power. proc math::calculus::symdiff::MakePower {a b} { if {[IsConstant $a]} { if {[ConstantValue $a] == 0} { if {[IsConstant $b] && [ConstantValue $b] == 0} { error "requested expression will result in zero to zero power at run time" } return [MakeConstant 0.0] } elseif {[ConstantValue $a] == 1} { return [MakeConstant 1.0] } } if {[IsConstant $b]} { if {[ConstantValue $b] == 0} { return [MakeConstant 1.0] } elseif {[ConstantValue $b] == 1} { return $a } } return [MakeFunCall pow $a $b] } # math::calculus::symdiff::MakeUnaryMinus -- # # Makes the parse tree for a unary negation. # # Parameters: # operand -- Parse tree for the operand # # Results: # Returns the parse tree for the expression # # Performs the following peephole optimizations: # (1) -(-$a) = $a # (2) The unary negation of a constant is another constant proc math::calculus::symdiff::MakeUnaryMinus {operand} { if {[IsUnaryMinus $operand]} { return [UnaryMinusArg $operand] } if {[IsConstant $operand]} { return [MakeConstant [expr {-[ConstantValue $operand]}]] } else { return [list [list operator -] $operand] } } # math::calculus::symdiff::IsUnaryMinus -- # # Determines whether a parse tree represents a unary negation # # Parameters: # x - Parse tree to examine # # Results: # Returns 1 if the parse tree represents a unary minus, 0 otherwise proc math::calculus::symdiff::IsUnaryMinus {x} { return [expr {[llength $x] == 2 && [lindex $x 0] eq [list operator -]}] } # math::calculus::symdiff::UnaryMinusArg -- # # Extracts the argument from a unary negation. # # Parameters: # x - Parse tree to examine, known to represent a unary negation # # Results: # Returns a parse tree representing the operand. proc math::calculus::symdiff::UnaryMinusArg {x} { return [lindex $x 1] } # math::calculus::symdiff::MakeOperator -- # # Makes a partial parse tree for an operator # # Parameters: # op -- Name of the operator # # Results: # Returns the resulting parse tree. # # The caller may use [lappend] to place any needed operands proc math::calculus::symdiff::MakeOperator {op} { if {$op eq {?}} { return -code error "symdiff can't differentiate the ternary ?: operator" } elseif {[namespace which [list differentiate::operator $op]] ne {}} { return [list [list operator $op]] } elseif {[string is alnum $op] && ($op ni {eq ne in ni})} { return -code error "symdiff can't differentiate the \"$op\" function" } else { return -code error "symdiff can't differentiate the \"$op\" operator" } } # math::calculus::symdiff::MakeVariable -- # # Makes a partial parse tree for a single variable # # Parameters: # name -- Name of the variable # # Results: # Returns a partial parse tree giving the variable proc math::calculus::symdiff::MakeVariable {name} { return [list var $name] } # math::calculus::symdiff::MakeConstant -- # # Make the parse tree for a constant. # # Parameters: # value -- The constant's value # # Results: # Returns a parse tree. proc math::calculus::symdiff::MakeConstant {value} { return [list constant $value] } # math::calculus::symdiff::IsConstant -- # # Test if an expression represented by a parse tree is a constant. # # Parameters: # Item - Parse tree to test # # Results: # Returns 1 for a constant, 0 for anything else proc math::calculus::symdiff::IsConstant {item} { return [expr {[lindex $item 0] eq {constant}}] } # math::calculus::symdiff::ConstantValue -- # # Recovers a constant value from the parse tree representing a constant # expression. # # Parameters: # item -- Parse tree known to be a constant. # # Results: # Returns the constant value. proc math::calculus::symdiff::ConstantValue {item} { return [lindex $item 1] } # Define the parse tree fabrication routines in the 'differentiate' # namespace as well as the 'symdiff' namespace, without exporting them # from the package. interp alias {} math::calculus::symdiff::differentiate::IsConstant \ {} math::calculus::symdiff::IsConstant interp alias {} math::calculus::symdiff::differentiate::ConstantValue \ {} math::calculus::symdiff::ConstantValue interp alias {} math::calculus::symdiff::differentiate::MakeConstant \ {} math::calculus::symdiff::MakeConstant interp alias {} math::calculus::symdiff::differentiate::MakeDifference \ {} math::calculus::symdiff::MakeDifference interp alias {} math::calculus::symdiff::differentiate::MakeFunCall \ {} math::calculus::symdiff::MakeFunCall interp alias {} math::calculus::symdiff::differentiate::MakePower \ {} math::calculus::symdiff::MakePower interp alias {} math::calculus::symdiff::differentiate::MakeProd \ {} math::calculus::symdiff::MakeProd interp alias {} math::calculus::symdiff::differentiate::MakeQuotient \ {} math::calculus::symdiff::MakeQuotient interp alias {} math::calculus::symdiff::differentiate::MakeSum \ {} math::calculus::symdiff::MakeSum interp alias {} math::calculus::symdiff::differentiate::MakeUnaryMinus \ {} math::calculus::symdiff::MakeUnaryMinus interp alias {} math::calculus::symdiff::differentiate::MakeVariable \ {} math::calculus::symdiff::MakeVariable interp alias {} math::calculus::symdiff::differentiate::ExtractExpression \ {} math::calculus::symdiff::ExtractExpression