
XPA: Public Access to Data and Algorithms

Summary
This document is the Table of Contents for XPA.

Description
The XPA messaging system provides seamless communication between many kinds of Unix
programs, including X programs and Tcl/Tk programs. It also provides an easy way for users to
communicate with XPA-enabled programs by executing XPA client commands in the shell or by
utilizing such commands in scripts. Because XPA works both at the programming level and the shell
level, it is a powerful tool for unifying any analysis environment: users and programmers have great
flexibility in choosing the best level or levels at which to access XPA services, and client access can
be extended or modified easily at any time.

A program becomes an XPA-enabled server by defining named points of public access through
which data and commands can be exchanged with other client programs (and users). Using standard
TCP sockets as a transport mechanism, XPA supports both single-point and broadcast messaging to
and from these servers. It supports direct communication between clients and servers, or indirect
communication via an intermediate message bus emulation program. Host-based access control is
implemented, as is as the ability to communicate with XPA servers across a network.

XPA implements a layered interface that is designed to be useful both to software developers and to
users. The interface consists of a library of XPA client and server routines for use in C/C++ programs
and a suite of high-level user programs built on top of these libraries. Using the XPA library, access
points can be added to Tcl/Tk programs, Xt programs, or to Unix programs that use the XPA event
loop or any event loop based on select(). Client access subroutines can be added to any Tcl/Tk, Xt, or
Unix program. Client access also is supported at the command line via a suite of high-level programs.

Choose from the following topics:

................. 1Introduction to XPA

............. 3Access Point Names and Templates

.......... 5Getting Common Information About Access Points

................ 8Communication Methods

.............. 10Communication Between Hosts

................. 14Distinguishing Users

................. 15XPA User Programs

............... 16xpaget: get data and info

.............. 15xpaset: send data and info

............... 16xpainfo: send info alert

............. 17xpaaccess: get access point info

............. 19xpamb: message bus emulation

.............. 22xpans: the XPA name server

1

.................. 25XPA Server Routines

............. 26XPANew: define a new access point

.......... 29XPACmdNew: define a new command access point

.............. 30XPACmdAdd: add a command

.............. 30XPACmdDel: delete a command

............ 31XPAInfoNew: define an info access point

............... 32XPAFree: free an access point

............ 32XPAMainLoop: event loop for select server

............... 33XPAPoll: poll for XPA events

........... 34XPACleanup: release reserved XPA memory

.......... 34XPA Server Macros: accessing structure internals

............ 35XPA Race Conditions: how to avoid them

............. 37XPA Out of Memory (OOM) errors

.................. 38XPA Client Routines

........... 46XPAOpen: open a persistent client connection

........... 46XPAClose: close persistent client connection

................. 39XPAGet: get data

.............. 40XPASet: send data or commands

............... 42XPAInfo: send an info alert

............. 43XPAGetFd: get data and write to an fd

............ 44XPASetFd: read data from and fd and send

............ 47XPANSLookup: look up an access point

............... 48XPAAccess: get access info

............ 50The XPA/Xt Interface: Xt interface to XPA

........... 51The XPA/Tcl Interface: Tcl interface to XPA
Tailoring the XPA Environment

................ 55Environment Variables

.................. 61Access Control
Miscellaneous

.................. 63XPA ChangeLog

.............. 75Where to Find Example/Test Code

............ 76User Changes Between XPA 1.0 and 2.0

............ 77API Changes Between XPA 1.0 and 2.0

............. 80What Does XPA Stand For, Anyway?

Last updated: September 10, 2003

2

XPAIntro: Introduction to the XPA Messaging System

Summary
A brief introduction to the XPA messaging system, which provides seamless communication between all
kinds of Unix event-driven programs, including X programs, Tcl/Tk programs, and Perl programs.

Description
The XPA messaging system provides seamless communication between all kinds of Unix programs,
including X programs, Tcl/Tk programs, and Perl programs. It also provides an easy way for users to
communicate with these XPA-enabled programs by executing XPA client commands in the shell or by
utilizing such commands in scripts. Because XPA works both at the programming level and the shell level,
it is a powerful tool for unifying any analysis environment: users and programmers have great flexibility
in choosing the best level or levels at which to access XPA services, and client access can be extended or
modified easily at any time.

A program becomes an XPA-enabled server by defining named points of public access through which data
and commands can be exchanged with other client programs (and users). Using standard TCP sockets as a
transport mechanism, XPA supports both single-point and broadcast messaging to and from these servers.
It supports direct communication between clients and servers, or indirect communication via an
intermediate message bus emulation program. Host-based access control is implemented, as is as the
ability to communicate with XPA servers across a network.

XPA implements a layered interface that is designed to be useful both to software developers and to users.
The interface consists of a library of XPA client and server routines for use in programs and a suite of
high-level user programs built on top of these libraries. Using the XPA library, access points can be added
to Tcl/Tk programs, Xt programs, or to Unix programs that use the XPA event loop or any event loop
based on select(). Client access subroutines can be added to any Tcl/Tk or Unix program. Client access
also is supported at the command line via a suite of high-level programs.

The major components of the XPA layered interface are:

A set of XPA server routines, centered on XPANew(), which are used by XPA server programs to tag
public access points with string identifiers and to register send and receive callbacks for these access
points.
A set of XPA client routines, centered on the XPASet() and XPAGet(), which are used by external
client applications to exchange data and commands with an XPA server.
High-level programs, centered on xpaset and xpaget, which allow data and information to be
exchanged with XPA server programs from the command line and from scripts. These programs have
the command syntax:

 [data] | xpaset [qualifiers ...]
 xpaget [qualifiers ...]

An XPA name server program, xpans, through which XPA access point names are registered by
servers and distributed to clients.

1

Defining an XPA access point is easy: a server application calls XPANew(), XPACmdNew(), or the
experimental XPAInfoNew() routine to create a named public access point. An XPA service can specify
"send" and "receive" callback procedures (or an "info" procedure in the case of XPAInfoNew()) to be
executed by the program when an external process either sends data or commands to this access point or
requests data or information from this access point. Either of the callbacks can be omitted, so that a
particular access point can be specified as read-only, read-write, or write-only. Application-specific client
data can be associated with these callbacks. Having defined one or more public access points in this way,
an XPA server program enters its usual event loop (or uses the standard XPA event loop).

Clients communicate with these XPA public access points using programs such as xpaget, xpaset, and
xpainfo (at the command line), or routines such as XPAGet(), XPASet(), and XPAInfo() within a program.
Both methods require specification of the name of the access point. The xpaget program returns data or
other information from an XPA server to its standard output, while the xpaset program sends data or
commands from its standard input to an XPA application. The corresponding API routines set/get data
to/from memory, returning error messages and other info as needed. If a template is used to specify the
access point name (e.g., "ds9*"), then communication will take place with all servers matching that
template.

Please note that XPA currently is not thread-safe. All XPA calls must be in the same thread.

Go to XPA Help Index

Last updated: March 10, 2007

2

XPATemplate: Access Point Names and Templates

Summary
XPA access points are composed of two parts: a general class and a specific name. Both parts accept
template characters so that you can send/retrieve data to/from multiple servers at one time.

Description
When XPA servers call XPANew(), or XPACmdNew() to define XPA access points, they specify a string
identifier composed of a class and a name. When clients communicate with XPA access points, they
specify which access points to communicate with using an identifier of the form:

 class:name

All registered XPA access points that match the specified identifier will be available for communication
(subject to access control rules, etc.)

As of XPA 2.1.5, the length of both the class and name designations are limited to 1024 characters.

The XPA class:name identifier actually is a template: it accepts wild cards in its syntax, so a single
specifier can match more than one XPA access point. (Note that the class is optional and defaults to "*".)
The allowed syntax for clients to specify the class:name template is of the form shown below. (Note that
"*" is used to denote a generic wild card, but other wild cards characters are supported, as described
below).

 template explanation
 -------- -----------
 class:name exact match of class and name
 name match any class with this name
 *:name match any class with this name
 class:* match any name of this class
 : match any access point

In general, the following wild-cards can be applied to class and name:

 wildcard explanation
 -------- -----------
 ? match any character, but there must be one
 * match anything, or nothing
 [...] match an inclusive set

Although the class:name template normally is used to refer to XPA access points, these also can be
specified using their individual socket identifiers. For inet sockets, the socket identifier is ip:port , where
ip can be the DNS-registered name, the ASCII IP number (e.g. 123.45.67.890) or the hex IP number (e.g.
838f3a60). For unix sockets, the identifier is the socket file name. These socket identifiers are displayed
as the fourth argument in the xpans display of registered access points. For example, consider the ds9
program started using inet sockets. The xpans name server will register something like this:

3

 csh> xpaget xpans
 DS9 ds9 gs saord.harvard.edu:3236 eric

You can access ds9 using ip:3236 in any of the three forms:

 csh> xpaget saord:3236 file
 /home/eric/data/snr.ev

 csh> xpaget 123.45.67.890:3236 file
 /home/eric/data/snr.ev

 csh> xpaget 838f3a60:3236 file
 /home/eric/data/snr.ev

In the case of unix sockets, the socket identifier is a file:

 csh> xpaget xpans
 DS9 ds9 gs /tmp/.xpa/DS9_ds9.2631 eric

 csh> xpaget /tmp/.xpa/DS9_ds9.2631 file
 /home/eric/data/snr.ev

This feature can be useful in distinguishing between multiple instances of a program that all have the same
class:name designation.

Go to XPA Help Index

Last updated: September 10, 2003

4

XPACommon: Getting Common Information About Access
Points

Summary
There are various kinds of generic information you can retrieve about an XPA access point by using the
xpaget command.

Description
You can find out which XPA access points have been registered with the currently running XPA name
server by executing the xpaget command to retrieve info from the XPA name server:

 xpaget xpans

If, for example, the stest test server program is running, the following XPA access points will be returned
(the specifics of the returned info will vary for different machines and users):

 XPA xpa gs 838e2f67:1262 eric
 XPA xpa1 gs 838e2f67:1266 eric
 XPA c_xpa gs 838e2f67:1267 eric
 XPA i_xpa i 838e2f67:1268 eric

Note that access to this information is subject to the usual XPA Access Control restrictions.

Each XPA access point supports a number of reserved sub-commands that provide access to different
kinds of information, e.g. the access control for that access point. These sub-commands can be executed
by using xpaset or xpaget at the command line, or XPAGet() or XPASet() in programs, e.g:

 xpaget ds9 -acl
 xpaget ds9 -help
 xpaget ds9 env FOO

 xpaset -p ds9 env FOO foofoo

With the exception of -help and -version, reserved sub-commands are available only on the machine on
which the XPA server itself is running. The following reserved sub-commands are defined for all access
points:

-acl get (set) the access control list [options: host type acl, for set]
The ’xpaset’ option allows you to add a new acl for a given host, or change the acl for an existing
host. See XPA Access Control for more information. This access point is available only on the server
machine.

-env get (set) an environment variable [options: name (value, for set)]
The ’xpaget’ option will return the value of the named environment variable. The ’xpaset’ option will
set the value of the names variable to the specified value. This access point is available only on the
server machine. (Please be advised that we have had problems setting environment variables in static

5

Tcl/Tk programs such as ds9 running under Linux.)

-clipboard set(get) information on a named clipboard
Clients can store ASCII state information on any number of named clipboards. Clipboards of the
same name created by clients on different machines are kept separate. The syntax for creating a
clipboard is:

 [data] | xpaset [server] -clipboard add|append [clipboard_name]
 xpaset -p [server] -clipboard delete [clipboard_name]

Use "add" to create a new clipboard or replace the contents of an existing one. Use "append" to
append to an existing clipboard.

Information on a named clipboard is retrieved using:

 xpaget [server] -clipboard [clipboard_name]

-exec set: execute commands from buffer [options: none]
If -exec is specified in the paramlist of an ’xpaset’ call, then further sub-commands will be retrieved
from the data buffer.

-help get: return help string for this XPA or sub-command [options: name (for sub-commands)]
Each XPA access point and each XPA sub-command can have a help string associated with it that is
specified when the access point is defined. The -help option will return this help string. For XPA
access points that contain user-defined sub-commands, you can get the help string for a particular
sub-command by specifying its name, or else get the help strings for all sub-commands if not name is
specified.

-ltimeout get (set) the long timeout value [options: seconds|reset]
The ’xpaget’ option will return the value of the long timeout (in seconds). The ’xpaset’ option will set
the value of the long timeout. If "reset" is specified, then the timeout value will be reset to the default
value.

-nsconnect set: re-establish name server connection to all XPA’s [options: none]
If the XPA Name Server (xpans) process has terminated unexpectedly and then re-started, this
sub-command can be used to re-establish the connection. You use it by sending the command to the
[name:port] or [file] of the access point instead of to the XPA name (since the latter requires the
xpans connection!):

 xpaset -p 838e2f67:1268 -nsconnect

See xpans for more information.

-nsdisconnect set: break name server connection to all XPA’s [options: none]
This sub-command will terminate the connection to the XPA Name Server (xpans), thereby making
all access points inaccessible except through their underlying [name:port] or [file] identifiers. I forget
why we added it, it seems pretty useless.

6

-stimeout get (set) the short timeout value [options: seconds|reset]
The ’xpaget’ option will return the value of the short timeout (in seconds). The ’xpaset’ option will
set the value of the short timeout. If "reset" is specified, then the timeout value will be reset to the
default value.

-remote set: register xpa with remote server [options: host[:port] [acl]] [-proxy]
This sub-command will register the XPA access point with the XPA name server (xpans) on the
specified host (which must already be running). The specified host also is given access control to the
access point, using the specified acl or the default acl of "+" (meaning the remote host can xpaset,
xpaget, xpainfo or xpaaccess). If the acl is specified as "-", then the access point is unregistered. See
Communication Between Machines for more information on how this sub-command is used.

-version get: return XPA version string [options: none]
The version refers to the version of XPA used to define this access point (currently something like
2.0).

You can add your own reserved commands to all XPA access points by using the XPACmdAdd() routine,
passing the XPA handle returned by XPA XPAGetReserved(void) as the first argument. Note again that
these will only be available on the machine where the XPA service is running.

Go to XPA Help Index

Last updated: September 10, 2003

7

XPAMethod: XPA Communication Methods

Summary
XPA supports both inet and unix (local) socket communication.

Description
XPA uses sockets for communication between processes. It supports three methods of socket
communication: inet, localhost, and unix. In general, the same method should be employed for all XPA
processes in a session and the global environment variable XPA_METHOD should be used to set up the
desired method. By default, the preferred method is "inet", which is appropriate for most users. You can
set up a different method by typing something like:

 setenv XPA_METHOD local # unix csh
 XPA_METHOD=local; export XPA_METHOD # unix sh, bash, windows/cygwin
 set XPA_METHOD=localhost # dos/windows

The options for XPA_METHOD are: inet, unix (or local), and localhost. On Unix machines, this
environment setup command can be placed in your shell init file (.cshrc, .profile, .bashrc, etc.) On
Windows platforms, it can be placed in your AUTOEXEC.BAT file (I think!).

By default, inet sockets are used by XPA. These are the standard Internet sockets that are used by
programs such as Netscape, ftp. etc. Inet sockets utilize the IP address of the given machine and a (usually
random) port number to communicate between processes on the same machine or between different
machines on the Internet. (Note that XPA has an Access Control mechanism to prevent unauthorized
access of XPA access points by other computers on the Net). For users connected to the Internet, this
usually is the appropriate communication method. For more information about setting up XPA
communication between machines, see Communication Between Machines.

In you are using XPA on a machine without an Internet connection, then inet sockets are not appropriate.
In fact, an XPA process often will hang for many seconds while waiting for a response from the Domain
Name Service (DNS) when using inet sockets. Instead of inet sockets, users on Unix platforms can also
use unix sockets (also known as local sockets). These sockets are based on the local file system and do not
make use of the DNS. They generally are considered to be faster than inet sockets, but they are not
implemented under Windows. Use local sockets as a first resort if you are on a Unix machine that is not
connected to the Internet.

Users not connected to the Internet also can use localhost sockets. These are also inet-type sockets but the
IP address used for the local machine is the localhost address, 0x7F000001, instead of the real IP of the
machine. Depending on how sockets are set up for a given platform, communication with the DNS usually
is not required in this case (though of course, XPA cannot interact with other machines). The localhost
method will generally work on both Unix and Windows platforms, but whether the DNS is required or not
is subject to individual configurations.

8

A final warning/reminder: if your XPA-enabled server hangs at startup time and your XPA_METHOD is
inet, the problem probably is related to an incorrect Internet configuration. This can be confirmed by using
the unix method or (usually) the localhost method. You can use these alternate methods if other hosts do
not need access to the XPA server.

Go to XPA Help Index

Last updated: September 10, 2003

9

XPAInet: XPA Communication Between Hosts

Summary
XPA uses standard inet sockets to support communication between two or more host computers.

Description
When the Communication Method is set to inet (as it is by default), XPA can be used to communicate
between different computers on the Internet. INET sockets utilize the IP address of the given machine and
a (usually random) port number to communicate between processes on the same machine or between
different machines on the Internet. These standard Internet sockets are also used by programs such as
Netscape, ftp. etc.

XPA supports a host-based Access Control mechanism to prevent unauthorized access of XPA access
points by other computers on the Net. By default, only the machine on which the XPA server is running
can access XPA services. Therefore, setting up communication between a local XPA server machine and a
remote client machine requires a two-part registration process:

the XPA service on the local machine must be made known to the remote machine
the remote machine must be given permission to access the local XPA service

Three methods by which this remote registration can be accomplished are described below.

Manual Registration
The first method is the most basic and does not require the remote client to have xpans running. To use it,
the local server simply gives a remote client machine access to one or more XPA access points using
xpaset and the -acl sub-command. For example, consider the XPA test program "stest" running on a local
machine. By default the access control for the access point named "xpa" is restricted to that machine:

 [sh]$ xpaget xpa -acl
 : 123.456.78.910 gisa
 : localhost gisa

Using xpaset and the -acl sub-command, a remote client machine can be given permission to perform
xpaget, xpaset, xpaaccess, or xpainfo operations. For example, to allow the xpaget operation, the
following command can be issued on the local machine:

 [sh]$ xpaset -p xpa -acl "remote_machine g"

This results in the following access permissions on the local machine:

 [sh]$ xpaget xpa -acl
 XPA:xpa 234.567.89.012 g
 : 123.456.78.910 gisa
 : localhost gisa

10

The remote client can now use the local server’s xpans name server to establish communication with the
local XPA service. This can be done on a call-by-call basis using the -i switch on xpaset, xpaget, etc:

 [sh]$ xpaget -i "local_machine:12345" xpa
 class: XPA
 name: xpa
 method: 88877766:2778
 sendian: little
 cendian: big

Alternatively, the XPA_NSINET variable on the remote machine can be set to point directly to xpans on
the local machine, removing the need to override this value each time an XPA program is run:

 [csh]$ setenv XPA_NSINET ’karapet:$port’
 [csh]$ xpaget xpa
 class: XPA
 name: xpa
 method: 88877766:2778
 sendian: little
 cendian: big

Here, ’$port’ means to use the default XPA name service port (14285). not a port environment variable.

Access permission for remote client machines can be stored in a file on the local machine pointed to by the
XPA_ACLFILE environment variable or using the XPA_DEFACL environment variable. See XPA
Access Control for more information.

Remote Registration
If xpans is running on the remote client machine, then a local xpaset command can be used with the
-remote sub-command to register the local XPA service in the remote name service, while at the same
time giving the remote machine permission to access the local service. For example, assume again that
"stest" is running on the local machine and that xpans is also running on the remote machine. To register
access of this local xpa on the remote machine, use the xpaset and the -remote sub-command:

 [sh]$./xpaset -p xpa -remote ’remote_machine:$port’ +

To register the local xpa access point on the remote machine with xpaget access only, execute:

 [sh]$./xpaset -p xpa -remote ’remote_machine:$port’ g

Once the remote registration command is executed, the remote client machine will have an entry such as
the following in its own xpans name service:

 [csh]$ xpaget xpans
 XPA xpa gs 88877766:2839 eric

The xpa access point can now be utilized on the remote machine without further setup:

11

 [csh]$ xpaget xpa
 class: XPA
 name: xpa
 method: 838e2f68:2839
 sendian: little
 cendian: big

To unregister remote access from the local machine, use the same command but with a ’-’ argument:

 [sh]$ xpaset -p xpa -remote ’remote_machine:$port’ -

The benefit of using remote registration is that communication with remote access points can be mixed
with that of other access points on the remote machine. Using Access Point Names and Templates, one
XPA command can be used to send or receive messages to the remote and local services.

XPANS Proxy Registration
The two methods described above are useful when the local and remote machines are able to communicate
freely to one another. This would be the case on most Local Area Networks (LANs) where all machines
are behind the same firewall and there is no port blocking between machines on the same LAN. The
situation is more complicated when the XPA server is behind a firewall, where outgoing connections are
allowed, but incoming port blocking is implemented to prevent machines outside the firewall from
connecting to machines inside the firewall. Such incoming port blocking will prevent xpaset and xpaget
from connecting to an XPA server inside a firewall.

To allow locally fire-walled XPA services to register with remote machines, we have implemented a
proxy service within the xpans name server. To register remote proxy service, xpaset and the -remote
sub-command is again used, but with an additional -proxy argument added to the end of the command:

 [sh]$./xpaset -p xpa -remote ’remote_machine:$port’ g -proxy

Once a remote proxy registration command is executed, the remote machine will have an entry such as the
following in its own xpans name service:

 [csh]$ xpaget xpans
 XPA xpa gs @88877766:2839 eric

The ’@’ sign in the name service entry indicates that xpans proxy processing is being used for this access
point. Other than that, from the user’s point of view, there is no difference in how this XPA access point is
contacted using XPA programs (xpaset, xpaget, etc.) or libraries:

 [csh]$ xpaget xpa
 class: XPA
 name: xpa
 method: 88877766:3053
 sendian: little
 cendian: big

Of course, the underlying processing of the XPA requests is very much different when xpans proxy is
involved. Instead of an XPA program such contacting the XPA service directly, it contacts the local xpans.
Acting as a proxy server, xpans communicates with the XPA service using the command channel
established at registration time. Commands (including establishing a new data channel) are sent between

12

xpans and the XPA service to set up a new message transfer, and then data is fed to/from the xpa request,
through xpans, from/to the XPA service. In this way, it can be arranged so that connections between the
fire-walled XPA service and the remote client are always initiated by the XPA service itself. Thus,
incoming connections that would be blocked by the firewall are avoided. Note that there is a performance
penalty for using the xpans/proxy service. Aside from extra overhead to set up proxy communication, all
data must be sent through the intermediate proxy process.

The xpans proxy scheme requires that the remote client allow the local XPA server machine to connect to
the remote xpans/proxy server. If the remote client machine also is behind a port-blocking firewall, such
connections will be disallowed. In this case, the only solution is to open up some ports on the remote client
machine to allow incoming connections to xpans/proxy. Two ports must be opened (for command and
data channel connections). By default, these two ports are 14285 and 14287. The port numbers can be
changed using the XPA_NSINET environment variable. This variable takes the form:

 setenv XPA_NSINET machine:port1[,port2[,port3]]

where port1 is the main connecting port, port2 is the XPA access port, and port3 is the secondary data
connecting port. The second and third ports are optional and default to port1+1 and port1+2, respectively.
It is port1 and port3 that must be left open for incoming connections.

For example, to change the port assignments so that xpans listens for registration commands on port 12345
and data commands on port 28573:

 setenv XPA_NSINET myhost:12345

Alternatively, all three ports can be assigned explicitly:

 setenv XPA_NSINET remote:12345,3000,12346

In this case 12345 and 12346 should be open for incoming connections. The XPA access port (which need
not be open to the outside world) is set to 3000.

Finally, note that we currently have no mechanism to cope with Internet proxy servers (such as SOCKS
servers). If an XPA service is running on a machine that cannot connect directly to outside machines, but
goes through a proxy server instead, there currently is no way to register that XPA service with a remote
machine. We hope to implement support for SOCKS proxy in a future release.

Go to XPA Help Index

Last updated: September 10, 2003

13

XPAUsers: Distinguishing Users

Summary
XPA normally distinguishes between users on a given host, but it is possible to send data to access points
belonging to other users.

Description
A single XPA name service typically serves all users on a given machine. Two users can register the same
XPA access points on the same machine without conflict, because the user’s username is registered with
each access point and, by default, programs such as xpaget and xpaset only process access points of the
appropriate user. For example:

 XPA xpa1 gs 838e2f67:1262 eric
 XPA xpa2 gs 838e2f67:1266 eric
 XPA xpa1 gs 838e2f67:2523 john
 XPA xpa2 gs 838e2f67:2527 john

Here the users "eric" and "john" both have registered the access points xpa1 and xpa2. When either "john"
or "eric" retrieves information from xpa1, they will process only the access point registered in their user
name.

If you want to access another user’s XPA access points on a single machine, use the -u [user] option on
xpaset, xpaget, etc. For example, if eric executes:

 xpaget -u john xpa1

he will access John’s xpa1 access point.Use "*" to access all users on a given machine:

 xpaget -u "*" xpa1

Note that the XPA Environment Variable XPA_NSUSERS can be used to specify the default list of users
to process:

 setenv XPA_NSUSERS "eric,john"

will cause access points from both "eric" and "john" to be processed by default.

Go to XPA Help Index

Last updated: September 10, 2003

14

XPA Programs

Summary
Use the XPA programs to send/receive data to/from XPA servers from the command line or from scripts.

 <data> | xpaset [-h] [-i nsinet] [-m method] [-n] [-p] [-s] [-t sval,lval] [-u users] [-v] <template> [paramlist]

 xpaget [-h] [-i nsinet] [-m method] [-s] [-t sval,lval] [-u users] <template> [paramlist]

 xpainfo [-h] [-i nsinet] [-m method] [-n] [-s] [-t sval,lval] [-u users] <template> [paramlist]

 xpaaccess [-c] [-h] [-i nsinet] [-m method] [-n] [-u users] [-v|-V] <template> [type]

xpaset: send data to one or more XPA servers
<data> | xpaset [-h] [-i nsinet] [-m method] [-n] [-p] [-s] [-t sval,lval] [-u users] [-v] <template|host:port> [paramlist]

 -h print help message
 -i access XPA point on different machine (override XPA_NSINET)
 -m override XPA_METHOD environment variable
 -n don’t wait for the status message after server completes
 -p don’t read (or send) buf data from stdin
 -s enter server mode
 -t [s,l] set short and long timeouts (override XPA_[SHORT,LONG]_TIMEOUT)
 -u [users] XPA points can be from specified users (override XPA_NSUSERS)
 -v verify message to stdout
 --version display version and exit

Data read from stdin will be sent to access points matching the template or host:port. A set of qualifying
parameters can be appended.

Normally, xpaset reads data input from stdin until EOF and sends those data to the XPA target, along with
parameters entered on the command line. For example to send a FITS file to the ds9 image display:

 cat foo.fits | xpaset ds9 fits

Sometimes, however, it is desirable to send only parameters to an XPA access point, without sending data.
For such cases, use the -p switch to indicate that there is no data being send to stdin. For example, to
change the colormap used by the ds9 image display program, use:

 csh> xpaset -p ds9 cmap Heat

Of course, this also can be accomplished by sending EOF to stdin in any of the usual ways:

 csh> echo "" | xpaset ds9 cmap Heat
 csh> xpaget ds9 cmap Heat < /dev/null
 csh> xpaset ds9 cmap Heat
 ^D # Ctl-D signals EOF

The -s switch puts xpaset into server mode, in which commands and data can be sent to access points
without having to run xpaset multiple times. (Its not clear if this buys you much!) The syntax for sending
commands in server mode is:

15

 csh> xpaset -s
 xpaset ds9 colormap I8
 ^D
 xpaset ds9 regions
 circle 200 300 40
 circle 300 400 50
 ^D
etc.

After the required "xpaset" command is specified, optional ASCII data can be appended (as in the region
example). A single data/command set is delimited by ^D. Note that typing ^D when a command is
expected terminates the program.

NB: server mode only works from the terminal and only ASCII data can be sent in this way.

Examples:

 csh> xpaset ds9 file < foo.fits
 csh> echo "stop" | xpaset myhost:12345

xpaget: retrieve data from one or more XPA servers
xpaget [-h] [-i nsinet] [-m method] [-s] [-t sval,lval] [-u users] <template|host:port> [paramlist]

 -h print help message
 -i access XPA point on different machine (override XPA_NSINET)
 -m override XPA_METHOD environment variable
 -n don’t wait for the status message after server completes
 -s enter server mode
 -t [s,l] set short and long timeouts (override XPA_[SHORT,LONG]_TIMEOUT)
 -u [users] XPA points can be from specified users (override XPA_NSUSERS)
 --version display version and exit

Data will be retrieved from access points matching the template or host:port. A set of qualifying
parameters can be appended.

Examples:

 csh> xpaget ds9 images
 csh> xpaget myhost.harvard.edu:12345

xpainfo: send short message to one or more XPA servers
xpainfo [-h] [-i nsinet] [-m method] [-n] [-s] [-t sval,lval] [-u users] <template|host:port> [paramlist]

 -h print help message
 -i access XPA point on different machine (override XPA_NSINET)
 -m override XPA_METHOD environment variable
 -n don’t wait for the status message after server completes
 -s enter server mode
 -t [s,l] set short and long timeouts (override XPA_[SHORT,LONG]_TIMEOUT)
 -u [users] XPA points can be from specified users (override XPA_NSUSERS)
 --version display version and exit

16

Info will be sent to access points matching the template or host:port. A set of qualifying parameters can be
appended.

Examples:

 csh> xpainfo IMAGE ds9 image

xpaaccess: see if template matches registered XPA access points
xpaaccess [-c] [-h] [-i nsinet] [-m method] [-n] [-t sval,lval] [-u users] -v <template> [type]

 -c contact each access point individually
 -h print help message
 -i access XPA point on different machine (override XPA_NSINET)
 -m override XPA_METHOD environment variable
 -n return number of matches instead of "yes" or "no"
 -t [s,l] set short and long timeouts (override XPA_[SHORT,LONG]_TIMEOUT)
 -u [users] XPA points can be from specified users (override XPA_NSUSERS)
 -v print info about each successful access point
 -V print info or error about each access point
 --version display version and exit

xpaaccess returns "yes" to stdout (with a return error code if 1) if there are existing XPA access points that
match the template (and optional access type: g,i,s). Otherwise, it returns "no" (with a return error code of
0). If -n is specified, the number of matches is returned instead (both to stdout and in the returned error
code). If -v is specified, each access point is displayed to stdout instead of the number of matches.

By default, xpaaccess simply contacts the xpans name server to find the list of registered access points that
match the specified template. It also checks to make sure the specified types are supported by that access
point. This is the fastest way to determine available access points. However, an access point might
registered but not yet available, if, for example, the server program has not entered its event loop to
process XPA requests. To find access points that are guaranteed to be available for processing, use the -c
(contact) switch. With this switch, xpaaccess contacts each matching XPA server (rather than the name
server) to make sure the registered access point really is ready for processing. In this mode, if an access
point is registered but not available, xpaaccess will pause for a period of time equal to the
XPA_LONG_TIMEOUT, in order to give the server a chance to ready itself. By default, this timeout is 30
seconds. You can shorten the time of delay using the -t "short,long" switch. For example, to shorten the
delay time to 2 seconds, use:

 xpaaccess -c -t "2,2" ds9

The first argument is the short delay value, and is ignored in this operation. The second is the long delay
timeout.

Note also that the default xpaaccess method (no -c switch) does not check access control (acls) but rather
only checks whether the access point is both registered with the xpans name server and provides the
specified type of access. In other words, the default xpaaccess could return ’yes’ when you might not
actually have access. This mode also always returns ’yes’ for the xpans name server itself, regardless of
whether the name server is active. The -c (contact) switch, which contacts the access point directly, can
and does check the access control (only for servers using version 2.1 and above) and also returns the real

17

status of xpans.

Go to XPA Help Index

Last updated: September 10, 2003

18

xpamb: the XPA Message Bus

Summary
The xpamb program can act as a "classical" message bus interface between clients and servers. A client
can send a data request to the message bus, which then interfaces with multiple servers and returns the
data back to the client.

Description
A "classical" message bus (such as ToolTalk) consists of servers and clients, along with a mediating
program that transfers data between different processes. XPA takes a slightly different approach in that
communication between clients and servers is direct. This generally is the correct technique when there is
only one connection (or even a small number of connections), but can become inefficient for the serving
program if a large amount of data is being transferred to many clients. For example, if a real-time data
acquisition program is broadcasting a FITS image to several clients, it would need to transmit that image
to each client individually. This might interfere with its own processing cycles. The preferable mechanism
would be to pass the image off to an intermediate program that can then broadcast the data to the several
clients.

The xpamb program can alleviate such problems by functioning as a message bus in cases where such an
intermediary process is wanted. It pre-defines a single access point named XPAMB:xpamb to which data
can be sent for re-broadcast. You also can tell xpamb to save the data, and associate with that data a new
access point, so that it can be retrieved later on.

All interaction with xpamb is performed through xpaset and xpaget (or the corresponding API routines,
XPASet() and XPAGet()) to the XPAMB:xpamb access point. That is, xpamb is just another
XPA-enabled program that responds to requests from clients. The paramlist is used to specify the targets
to which the data will be for re-broadcast, as well as the re-broadcast paramlist:

 data | xpaset xpamb [switches] broadcast-target broadcast-paramlist

Optional switches are used to store data, and manipulate stored data, and are described below.

In its simplest form, you can, for example, send a FITS image to xpamb for broadcasting to all ds9 image
simply by executing:

 cat foo.fits | xpaset xpamb "DS9:*" fits foo.fits

Since DS9 is the class name for the ds9 image display program, this will result in the FITS image being
re-sent to all fits access points for all active image display programs.

You can send stored data and new data to the same set of access points at the same time. The stored data
always is send first, followed by the new data:

19

 cat foo2.fits | xpaset xpamb -send foo "DS9:*" fits foo.fits

will first send the foo.fits file, and then the foo2.fits file to all access points of class DS9. Notice that in
this example, the foo2.fits file is not stored, but it could be stored by using the -store [name] switch on the
command line.

The xpaget command can be used to retrieve a data from XPA access points or from a stored data buffer,
or retrieve information about a stored data buffer. If no arguments are given:

 xpaget xpamb

then information about all currently stored data buffers is returned. This information includes the data and
time at which the data was stored, the size in bytes of the data, and the supplied info string.

If arguments are specified, they will be in the form:

 xpaget xpamb [-info] [-data] [name [paramlist]]

If the optional -info and/or -data switches are specified, then information and/or data will be returned for
the named data buffer following the switches. You can use either or both of these switches in a single
command. For example, if the -info switch is used:

 xpaget xpamb -info foo

then the info about that stored data buffer will be returned. If the -data is used with a specific name:

 xpaget xpamb -data foo

then the stored data itself will be returned. If both are used:

 xpaget xpamb -info -data foo

then the info will be returned, followed by the data. Note that it is an error to specify one of these switches
without a data buffer name and that the paramlist will be ignored.

If neither the -info or -data switch is specified, then the name refers to an XPA access point (with an
optional paramlist following). For example:

 xpaget xpamb ds9 file

is equivalent to:

 xpaget ds9 file

Options
For xpaset, several optional switches are used to save data and manipulate the stored data:

-data [name]
Add the supplied data buffer to a pool of stored data buffers, using the specified name as a unique
identifier for later retrieval. An error occurs if the name already exists (use either replace or del to
rectify this). The -add switch is supported for backwards compatibility with xpa 2.0.

20

-replace [name]
Replace previously existing stored data having the same unique name with new data. This essentially
is a combination of the del and data commands.

-info ["’info string’"]
When adding a data buffer, you can specify an informational string to be stored with that data. This
string will be returned by xpaget:

 xpaget xpamb foo -info

(along with other information such as the date/time of storage and the size of the data buffer) if the
-info switch is specified. If the info string contains spaces, you must enclose it in two sets of quotes:

 cat foo | xpaset xpamb -store foo -info "’this is info on foo’"

The first set of quotes is removed by the shell while the second is used to delineate the info string.

-send [name]
Broadcast the stored data buffer to the named template.

-del [name]
Delete the named data buffer and free all allocated space.

Switches can be used in any combination that makes sense. For example:

 cat foo.fits | xpaset xpamb -store foo -info "FITS" "DS9:*" fits foo.fits

will broadcast the foo.fits image to all access points of class DS9. In addition, the foo.fits file will be
stored under the name of foo for later manipulation such as:

 xpaset -p xpamb -send foo "DS9:*" fits foo.fits

will re-broadcast the foo.fits image to all access points of class "DS9".

Go to XPA Help Index

Last updated: September 10, 2003

21

xpans: the XPA Name Server

Summary
 xpans [-h] [-e] [-k sec] [-p port] [-l log] [-s security log] [-P n]

 -h print help message
 -e exit when there are no more XPA connections
 -k send keepalive messages every n sec
 -l log data base entries to specified file
 -p listen for connections on specified port
 -s log security info for each connection to specified file
 -P accept proxy requests (P=1) using separate thread (P=2)
 --version display version and exit

The xpans name server is an XPA-enabled program that is used to manage the names and ports of XPA
access points. It is started automatically when an XPA access point is registered. You can access the name
server using xpaget to get a list of registered access points.

The xpans name server provides a crucial link between XPA clients and servers. When an XPA server
defines an access point using XPANew(), XPACmdNew(), or XPAInfoNew(), the name of the access
point is registered in the name service, along with connection information. The name server then matches
class:name templates passed to it by XPA clients with these registered entries, so that the clients can
communicate with the appropriate servers.

The socket connection between an XPA-enabled program and xpans is kept open until the former exits (or
explicitly closes the connection). Apparently, some Internet equipment (e.g. DSL modems) can cause such
a connection to time-out after a period of inactivity. To prevent this from happening, you can use the -k
[sec] switch to send a short keep-alive message to each open connection after the specified time delay.
(Note that this application level use of keep-alive is necessary only if you are serving XPA-enabled clients
over the Internet and have to deal with long-term connections involving DSL or similar equipment. XPA
uses the ordinary socket-level keep-alive, which works for all other cases.) NB (12/2/2009): Out-of-band
(URG) TCP data, used by xpans keep-alive, is changed by some Cisco routers into in-band data.
Encountering such a router will break the keep-alive function and may break your XPA server as
well. Proceed with caution!

The xpans program will be started automatically (assuming it can be found in the user’s path) when the
first XPA access point is registered. It therefore need not be started explicitly. However, when started
automatically, the -e switch is used, so that the name server will exit when there are no more XPA access
points registered. If you wish to keep the name server running continually, simply start it manually
without the -e switch.

The name server will keep a log of registered access points if the -l [log] switch is used on the command
line (this is the case for automatic start-up). The log contains enough name and connection information to
allow you to re-register all XPA access points in case the name server process is terminated prematurely.
For example, after the ds9 access point is registered,the log will contain the entry:

22

 add 838e2f67:1863 ds9 ds9 gs eric

If xpans is terminated but ds9 still is running, you can re-register both access points for the ds9 process by
running:

 xpaset -p 838e2f67:1863 -nsconnect

Notice that the ip:port specifier is used with xpaset to bypass the need for contacting the name server
(which does not have the name registered yet!)

The name server will keep a log of security information if the -s [security log] switch is used on the
command line. For each accepted connection, (including connections via the xpaget command),
information will be logged about the host issuing the command and the parameters passed into the
program. This is most useful when xpans is accepting connections from untrusted machines.

When an XPA access point is removed by a server using XPAFree(), the access information is removed
from the name server. If an XPA-enabled process is terminated, all names registered by that process will
be removed automatically. The log file is always updated to reflect the currently registered access points.

The name server itself has an XPA access point names xpans registered through which you can find out
information about currently registered access points (assuming you have access to the name server; see
XPA Access Control for more information). For each registered access point, the following information is
returned:

 class # class of the access point
 name # name of the access point
 access # allowed access (g=xpaget,s=xpaset,i=xpainfo)
 id # socket access method (host:port for inet, file for local/unix)
 user # user name of access point owner

For example, to display all currently registered access points, simply execute:

 xpaget xpans

Continuing the example of ds9 above, this will return:

 DS9 ds9 gs 838e2f67:1863 eric

If the same program has been started with different XPA access names, you can look up only names
matching a specified template. For example, assume that ds9 has been started up using:

 ds9 &
 ds9 -title ds9-1-eric &
 ds9 -title ds9-2-eric &

To lookup all ds9 access points which end in ".eric" and which can be accessed using xpaset, use:

 xpaget xpans "DS9:*.eric" "s" "*"

This will return:

23

 DS9 ds9-2-eric gs 838e29d3:42102 eric
 DS9 ds9-1-eric gs 838e29d3:42105 eric

The third argument "*" requests all access points from all users. You also can specify a specific user name
and only access points registered by that user will be returned.

The name server uses the XPA_METHOD environment variable to determine whether it should listen for
requests on INET or LOCAL sockets. Since XPA access points also use this environment variable, the
choice of socket method will be consistent. Note that, when INET sockets are used, a local server can be
accessed from remote machines if the XPA_NSINET environment variable is set to point to the local
machine. See XPA Environment Variables for more information.

An experimental feature of xpans is its ability to act as a proxy to XPA servers behind firewalls that want
to communicate with external processes. The basic idea is the following: an XPA server (call it "foo") on
host1, possibly behind a firewall, makes a remote connection to a proxy-enabled xpans program on host2
(specifying host2’s XPA method). For example:

 xpaset -p foo -remote ’host2:28571’ + -proxy # on host1

When this is done, host2 can use xpaset, xpaget, and xpainfo calls to communicate with the XPA server
foo. All command communication is performed via the xpans socket connection between foo on host1 and
xpans on host2 (which was initiated by foo from inside the firewall). Data communication is similarly
performed using a socket connection initiated on host1 (usually with a port value two greater than the port
value of the main xpans socket connection). An xpaset or xpaget call on host2 contacts xpans, which
performs an XPASet() or XPAGet() call to foo, passing commands and data back and forth between the
two programs.

By default, proxy connections are not allowed by xpans. If the -P switch is specified with a value of 1,
proxy connection are allowed, but all proxy communication is performed in the same thread as xpans
processing. If a value of 2 is specified, the proxy processing is performed in a separate thread (assuming
pthreads are supported on your system). Because xpa callback processing of any type can take a long time
and therefore can interfere with normal xpans processing, threaded proxy connections (-P 2) are
recommended. When using proxy connections, it might also be useful to set the XPA_IOCALLSXPA
environment variable, so that multiple proxy requests can be handled at the same time, instead of serially.

Note that this proxy interface to xpans is experimental. It is used to provide remote data analysis
capabilities on the Chandra-Ed system using ds9. (See http://chandra-ed.cfa.harvard.edu and
http://hea-www.harvard.edu/saord/ds9 for more details). As always, please contact us if you have
problems or questions.

Go to XPA Help Index

Last updated: January 24, 2005

24

XPAServer: The XPA Server-side Programming Interface

Summary
A description of the XPA server-side programming interface.

Introduction to XPA Server Programming
Creating an XPA server is easy: you generally only need to call the XPANew() subroutine to define a
named XPA access point and set up the send and receive callback routines. You then enter an event loop
such as XPAMainLoop() to field XPA requests.

 #include <xpa.h>

 XPA XPANew(char *class, char *name, char *help,
 int (*send_callback)(), void *send_data, char *send_mode,
 int (*rec_callback)(), void *rec_data, char *rec_mode);

 XPA XPACmdNew(char *class, char *name);

 XPACmd XPACmdAdd(XPA xpa,
 char *name, char *help,
 int (*send_callback)(), void *send_data, char *send_mode,
 int (*rec_callback)(), void *rec_data, char *rec_mode);

 void XPACmdDel(XPA xpa, XPACmd cmd);

 XPA XPAInfoNew(char *class, char *name,
 int (*info_callback)(), void *info_data, char *info_mode);

 int XPAFree(XPA xpa);

 void XPAMainLoop(void);

 int XPAPoll(int msec, int maxreq);

 void XPAAtExit(void);

 void XPACleanup(void);

Introduction
To use the XPA application programming interface, a software developer generally will include the xpa.h
definitions file:

 #include <xpa.h>

in the software module that defines or accesses an XPA access point, and then will link against the
libxpa.a library:

25

 gcc -o foo foo.c libxpa.a

XPA has been compiled using both C and C++ compilers.

A server program generally defines an XPA access point by calling the XPANew() routine and specifies
"send" and/or "receive" callback procedures to be executed by the program when an external process
either sends data or commands to this access point or requests data or information from this access point.
A program also can define several sub-commands for a single access point by calling XPACmdNew() and
XPACmdAdd() instead. Having defined one or more public access points in this way, an XPA server
program enters its usual event loop (or uses the standard XPA event loop).

XPANew: create a new XPA access point
 #include <xpa.h>

 XPA XPANew(char *class, char *name, char *help,
 int (*send_callback)(),
 void *send_data, char *send_mode,
 int (*rec_callback)(),
 void *rec_data, char *rec_mode);

Create a new XPA public access point with the class:name identifier template and enter this access point
into the XPA name server, so that it can be accessed by external processes. XPANew() returns an XPA
struct. Note that the length of the class and name designations must be less than or equal to 1024
characters each.

The XPA name server daemon, xpans, will be started automatically if it is not running already (assuming
it can be found in the path). The program’s ip address and listening port are specified by the environment
variable XPA_NSINET, which takes the form :. If no such environment variable exists, then xpans is
started on the current machine listening on port 14285. It also uses 14286 as a known port for its public
access point (so that routines do not have to go to the name server to find the name server ip and port!) As
of XPA 2.1.1, version information is exchanged between the xpans process and the new access point. If
the access point uses an XPA major/minor version newer than xpans, a warning is issued by both
processes, since mixing of new servers and old xpa programs (xpaset, xpaget, xpans, etc.) is not likely to
work. You can turn off the warning message by setting the XPA_VERSIONCHECK environment variable
to "false".

The help string is meant to be returned by a request from xpaget:

 xpaget class:name -help

A send_callback and/or a receive_callback can be specified; at least one of them must be specified.

A send_callback can be specified that will be executed in response to an external request from the xpaget
program, the XPAGet() routine, or XPAGetFd() routine. This callback is used to send data to the
requesting client.

26

The calling sequence for send_callback() is:

 int send_callback(void *send_data, void *call_data,
 char *paramlist, char **buf, size_t *len)
 {
 XPA xpa = (XPA)call_data;
 ...
 return(stat);
 }

The send_mode string is of the form: "key1=value1,key2=value2,..." The following keywords are
recognized:

 key value default explanation
 ------ -------- -------- -----------
 acl true/false true enable access control
 freebuf true/false true free buf after callback completes

The call_data should be recast to the XPA struct as shown. In addition, client-specific data can be passed
to the callback in send_data.

The paramlist will be supplied by the client as qualifying parameters for the callback. There are two ways
in which the send_callback() routine can send data back to the client:

1. The send_callback() routine can fill in a buffer and pass back a pointer to this buffer. An integer len also
is returned to specify the number of bytes of data in buf. XPA will send this buffer to the client after the
callback is complete.

2. The send_callback can send data directly to the client by writing to the fd pointed by the macro:

 xpa_datafd(xpa)

Note that this fd is of the kind returned by socket() or open().

If a buf has been allocated by a standard malloc routine, filled, and returned to XPA, then freebuf
generally is set so that the buffer will be freed automatically when the callback is completed and data has
been sent to the client. If a static buf is returned, freebuf should be set to false to avoid a system error
when freeing static storage. Note that default value for freebuf implies that the callback will allocate a
buffer rather than use static storage.

On the other hand, if buf is dynamically allocated using a method other than a standard
malloc/calloc/realloc routine (e.g. using Perl’s memory allocation and garbage collection scheme), then it
is necessary to tell XPA how to free the allocated buffer. To do this, use the XPASetFree() routine within
your callback:

 void XPASetFree(XPA xpa, void (*myfree)(void *), void *myfree_ptr);

The first argument is the usual XPA handle. The second argument is the special routine to call to free your
allocated memory. The third argument is an optional pointer. If not NULL, the specified free routine is
called with that pointer as its sole argument. If NULL, the free routine is called with the standard buf
pointer as its sole argument. This is useful in cases where there is a mapping between the buffer pointer

27

and the actual allocated memory location, and the special routine is expecting to be passed the former.

If, while the callback performs its processing, an error occurs that should be communicated to the client,
then the routine XPAError should be called:

 XPAError(XPA xpa, char *s);

where s is an arbitrary error message. The returned error message string will be of the form:

 XPA$ERROR [error] (class:name ip:port)

If the callback wants to send a specific acknowledgment message back to the client, the routine
XPAMessage can be called:

 XPAMessage(XPA xpa, char *s);

where s is an arbitrary error message. The returned error message string will be of the form:

 XPA$MESSAGE [message] (class:name ip:port)

Otherwise, a standard acknowledgment is sent back to the client after the callback is completed.

The callback routine should return 0 if no error occurs, or -1 to signal an error.

A receive_callback can be specified that will be executed in response to an external request from the
xpaset program, or the XPASet (or XPASetFd()) routine. This callback is used to process data received
from an external process.

The calling sequence for receive_callback is:

 int receive_callback(void *receive_data, void *call_data,
 char *paramlist, char *buf, size_t len)
 {
 XPA xpa = (XPA)call_data;
 ...
 return(stat);
 }

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 acl true/false true enable access control
 buf true/false true server expects data bytes from client
 fillbuf true/false true read data into buf before executing callback
 freebuf true/false true free buf after callback completes

The call_data should be recast to the XPA struct as shown. In addition, client-specific data can be passed
to the callback in receive_data.

28

The paramlist will be supplied by the client. In addition, if the receive_mode keywords buf and fillbuf are
true, then on entry into the receive_callback() routine, buf will contain the data sent by the client. If buf is
true but fillbuf is false, it becomes the callback’s responsibility to retrieve the data from the client, using
the data fd pointed to by the macro xpa_datafd(xpa). If freebuf is true, then buf will be freed when the
callback is complete.

If, while the callback is performing its processing, an error occurs that should be communicated to the
client, then the routine XPAError can be called:

 XPAError(XPA xpa, char *s);

where s is an arbitrary error message.

The callback routine should return 0 if no error occurs, or -1 to signal an error.

XPACmdNew: create a new XPA public access point for
commands
 #include <xpa.h>

 XPA XPACmdNew(char *class, char *name);

Create a new XPA public access point for commands that will share a common identifier class:name.
Enter this access point into the XPA name server, so that it can be accessed by external processes.
XPACmdNew() returns an XPA struct.

It often is more convenient to have one public access point that can manage a number of commands, rather
than having individual access points for each command. For example, it is easier to command the ds9
image display using:

 echo "colormap I8" | xpaset ds9
 echo "scale log" | xpaset ds9
 echo "file foo.fits" | xpaset ds9

then to use:

 echo "I8" | xpaset ds9_colormap
 echo "log" | xpaset ds9_scale
 echo "foo.fits" | xpaset ds9_file

In the first case, the commands remain the same regardless of the target XPA name. In the second case,
the command names must change for each instance of ds9. That is, if a second instance of ds9 called DS9
were running, it would be commanded either as:

 echo "colormap I8" | xpaset DS9
 echo "scale log" | xpaset DS9
 echo "file foo.fits" | xpaset DS9

29

or as:

 echo "I8" | xpaset DS9_colormap
 echo "log" | xpaset DS9_scale
 echo "foo.fits" | xpaset DS9_file

Thus, in cases where a program is going to manage many commands, it generally is easier to define them
as commands associated with the XPACmdNew() routine, rather than as separate access points using
XPANew().

When XPACmdNew() is called, only the class:name identifier is specified. Each sub-command is
subsequently defined using the XPACmdAdd() routine.

XPACmdAdd: add a command to an XPA command public
access point
 #include <xpa.h>

 XPACmd XPACmdAdd(XPA xpa, char *name, char *help,
 int (*send_callback)(),
 void *send_data, char *send_mode,
 int (*rec_callback)(),
 void *rec_data, char *rec_mode);

Add a command to an XPA command access point. The XPA argument specifies the XPA struct returned
by a call to XPANewCmd(). The name argument is the name of the command. The other arguments
function identically to the arguments in the XPANew() command, i.e., the send_callback and rec_callback
routines have identical calling sequences to their XPANew() counterparts, with the exceptions noted
below.

When help is requested for a command access point using:

 xpaget -h class:name

all of the command help strings are listed. To get help for a given command, use:

 xpaget -h class:name cmd

Also, the acl keyword in the send_mode and receive_mode strings is global to the access point, not local
to the command. Thus, the value for the acl mode should be the same in all send_mode (or receive_mode)
strings for each command in a command access point. (The acl for send_mode need not be the same as the
acl for receive_mode, though).

XPACmdDel: remove a command from an XPA command
public access point

30

 #include <xpa.h>

 void XPACmdDel(XPA xpa, XPACmd cmd);

This routine removes a command from the list of available commands in a given XPA. That command
will no longer be available for processing.

XPAInfoNew: define an XPA info public access point
 #include <xpa.h>

 XPA XPAInfoNew(char *class, char *name,
 int (*info_callback)(),
 void *info_data, char *info_mode);

[NB: this is an experimental interface, new to XPA 2.0, whose value and best use is evolving.]

A program can register interest in receiving a short message about a particular topic from any other
process that cares to send such a message. Neither has to be an XPA server. For example, if a user starts to
work with a new image file called new.fits, she might wish to alert interested programs about this new file
by sending a short message using xpainfo:

 xpainfo IMAGEFILE /data/new.fits

In this example, each process that has used the XPAInfoNew() call to register interest in messages
associated with the identifier IMAGEFILE will have its info_callback() executed with the following
calling sequence:

 int info_cb(void *info_data, void *call_data, char *paramlist)
 {
 XPA xpa = (XPA)call_data;
 }

The arguments passed to this routine are equivalent to those sent in the send_callback() routine. The main
difference is that there is no buf sent to the info callback: this mechanism is meant for short announcement
of messages of interest to many clients.

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 acl true/false true enable access control

Because no buf is passed to this callback, the usual buf-related keywords are not applicable here.

The information sent in the parameter list is arbitrary. However, we envision sending information such as
file names or XPA access points from which to collect more data. Note that the xpainfo program and the
XPAInfo() routine that cause the info_callback to execute do not wait for the callback to complete before
returning.

31

XPAFree: remove an XPA public access point
 #include <xpa.h>

 int XPAFree(XPA xpa);

Remove the specified XPA public access point from the name server and free all associated storage. Note
that removal from the name server happens automatically when the process terminates, so this call is not
generally needed. It is used when public access points are being defined temporarily and then destroyed
when no longer needed. For example, ds9 temporarily creates a public access point when it loads a new
image for display and destroys it when the image is unloaded.

XPAMainLoop: optional main loop for XPA
 #include <xpa.h>

 void XPAMainLoop();

Once XPA access points have been defined, a program must enter an event loop to watch for requests
from external programs. This can be done in a variety of ways, depending on whether the event loop is
processing events other than XPA events. In cases where there are no non-XPA events to be processed, the
program can simply call the XPAMainLoop() event loop. This loop is implemented essentially as follows
(error checking is simplified in this example):

 FD_ZERO(&readfds);
 while(XPAAddSelect(NULL, &readfds)){
 if(sgot = select(swidth, &readfds, NULL, NULL, NULL) >0)
 XPAProcessSelect(&readfds, 0);
 else
 break;
 FD_ZERO(&readfds);
 }

The XPAAddSelect() routine sets up the select() readfds variable so that select() will wait for I/O on all
the active XPA channels. It returns the number of XPAs that are active; the loop will end when there are
no active XPAs. The standard select() routine is called to wait for an external I/O request. Since no
timeout struct is passed in argument 5, the select() call hangs until there is an external request. When an
external I/O request is made, the XPAProcessSelect() routine is executed to process the pending requests.
In this routine, the maxreq value determines how many requests will be processed: if maxreq <=0, then all
currently pending requests will be processed. Otherwise, up to maxreq requests will be processed. (The
most usual values for maxreq is 0 to process all requests.)

If a program has its own Unix select() loop, then XPA access points can be added to it by using a variation
of the standard XPAMainLoop:

32

 XPAAddSelect(xpa, &readfds);
 [app-specific ...]
 if(select(width, &readfds, ...)){
 XPAProcessSelect(&readfds, maxreq);
 [app-specific ...]
 FD_ZERO(&readfds);
 }

XPAAddSelect() is called before select() to add the access points. If the first argument is NULL, then all
active XPA access points are added. Otherwise only the specified access point is added. After select() is
called, the XPAProcessSelect() routine can be called to process XPA requests. Once again, the maxreq
value determines how many requests will be processed: if maxreq <=0, then all currently pending requests
will be processed. Otherwise, up to maxreq requests will be processed.

XPA access points can be added to Xt event loops (using XtAppMainLoop()) and Tcl/Tk event loops
(using vwait and the Tk loop). When using XPA with these event loops, you only need to call:

int XPAXtAddInput(XtAppContext app, XPA xpa)

or

 int XPATclAddInput(XPA xpa)

respectively before entering the loop.

XPAPoll: execute existing XPA requests
 #include <xpa.h>

 int XPAPoll(int msec, int maxreq);

It is sometimes desirable to implement a polling loop, i.e., where one checks for and processes XPA
requests without blocking. For this situation, use the XPAPoll() routine:

 XPAPoll(int msec, int maxreq);

The XPAPoll() routine will perform XPAAddSelect() and select(), but with a timeout specified in
millisecs by the msec argument. If one or more XPA requests are made before the timeout expires, the
XPAProcessSelect() routine is called to process those requests. The maxreq value determines how many
requests will be processed: if maxreq < 0, then no events are processed, but instead, the return value
indicates the number of events that are pending. If maxreq == 0, then all currently pending requests will be
processed. Otherwise, up to maxreq requests will be processed. (The most usual values for maxreq are 0 to
process all requests and 1 to process one request).

XPAAtExit: install exit handler
 #include <xpa.h>

 void XPAAtExit(void);

33

XPAAtExit() will install an exit handler using atexit() to run XPAFree on all XPA access points. This
might be useful in cases where Unix sockets are being used: if an explicit call to XPAFree() is not made
by the program, the Unix socket file will not be deleted immediately without an atexit handler. (NB: this
call should not be made in a Tcl/Tk application. Accessing the Tcl native file system after Tcl has shut
down all file systems causes the Tcl/Tl program to crash).

XPACleanup: release reserved XPA memory
 #include <xpa.h>

 void XPACleanup(void);

When XPA is initialized, it allocates a small amount of memory for the access control list, temp directory
path, and reserved commands. This memory is found by valgrind to be "still reachable", meaning that
"your program didn’t free some memory it could have". Calling the XPACleanup() routine before exiting
the program will free this memory and make valgrind happy.

XPA Server Callback Macros
 #include <xpa.h>

 xpa_class, xpa_name, xpa_method, xpa_cmdfd, xpa_datafd,
 xpa_sendian, xpa_cendian

Server routines have access to information about the XPA being called via the following macros (each of
which takes the xpa handle as an argument):

 macro explanation
 ------ -----------
 xpa_class class of this xpa
 xpa_name name of this xpa
 xpa_method method string (inet or local connect info)
 xpa_cmdfd fd of command socket
 xpa_datafd fd of data socket
 xpa_sendian endian-ness of server ("little" or "big")
 xpa_cendian endian-ness of client ("little" or "big"

The argument to these macros is the call_data pointer that is passed to the server procedure. This pointer
should be type case to XPA in the server routine:

 XPA xpa = (XPA)call_data;

The most important of these macros is xpa_datafd(). A server routine that sets "fillbuf=false" in
receive_mode or send_mode can use this macro to perform I/O directly to/from the client, rather than
using buf.

The xpa_cendian and xpa_sendian macros can be used together to determine if the data transferred from
the client is byte swapped with respect to the server. Values for these macros are: "little", "big", or "?". In
order to do a proper conversion, you still need to know the format of the data (i.e., byte swapping is
dependent on the size of the data element being converted).

34

XPA Race Conditions
Potential XPA race conditions and how to avoid them.

Currently, there is only one known circumstance in which XPA can get (temporarily) deadlocked in a race
condition: if two or more XPA servers send messages to one another using an XPA client routine such as
XPASet(), they can deadlock while each waits for the other server to respond. (This can happen if the
servers call XPAPoll() with a time limit, and send messages in between the polling call.) The reason this
happens is that both client routines send a string to the other server to establish the handshake and then
wait for the server response. Since each client is waiting for a response, neither is able to enter its
event-handling loop and respond to the other’s request. This deadlock will continue until one of the
timeout periods expire, at which point an error condition will be triggered and the timed-out server will
return to its event loop.

Starting with version 2.1.6, this rare race condition can be avoided by setting the XPA_IOCALLSXPA
environment variable for servers that will make client calls. Setting this variable causes all XPA socket IO
calls to process outstanding XPA requests whenever the primary socket is not ready for IO. This means
that a server making a client call will (recursively) process incoming server requests while waiting for
client completion. It also means that a server callback routine can handle incoming XPA messages if it
makes its own XPA call. The semi-public routine oldvalue=XPAIOCallsXPA(newvalue) can be used to
turn this behavior off and on temporarily. Passing a 0 will turn off IO processing, 1 will turn it back on.
The old value is returned by the call.

By default, the XPA_IOCALLSXPA option is turned off, because we judge that the added code
complication and overhead involved will not be justified by the amount of its use. Moreover, processing
XPA requests within socket IO can lead to non-intuitive results, since incoming server requests will not
necessarily be processed to completion in the order in which they are received.

Aside from setting XPA_IOCALLSXPA, the simplest way to avoid this race condition is to multi-process:
when you want to send a client message, simply start a separate process to call the client routine, so that
the server is not stopped. It probably is fastest and easiest to use fork() and then have the child call the
client routine and exit. But you also can use either the system() or popen() routine to start one of the
command line programs and do the same thing. Alternatively, you can use XPA’s internal launch() routine
instead of system(). Based on fork() and exec(), this routine is more secure than system() because it does
not call /bin/sh.

Starting with version 2.1.5, you also can send an XPAInfo() message with the mode string "ack=false".
This will cause the client to send a message to the server and then exit without waiting for any return
message from the server. This UDP-like behavior will avoid the server deadlock when sending short
XPAInfo messages.

Go to XPA Help Index

35

Last updated: September 10, 2003

36

Xpaoom: What happens when XPA runs out of memory?

Summary
When XPA can’t allocate memory, it exits. You can arrange to have it call longjmp() instead.

Description
When an XPA server or client cannot allocate memory, it will attempt to output an error message and then
exit. If this is not satisfactory (e.g., perhaps your program is interactive and can recover from OOM
errors), you can tell XPA to call longjmp() to go to a recovery branch. To pass the requisite jmp_buf
variable to XPA, make the following call:

 XPASaveJmp(void *env);

The value of env is the address of a jmp_buf variable that was previously passed to setjmp(). For example:

 jmp_buf env;
 ...
 if(setjmp(jmp_buf) != 0){
 /* out of memory -- take corrective action, if possible */
 } else {
 /* save env for XPA */
 XPASaveJmp((void *)&jmp_buf);
 }
 // enter main loop ...

Go to XPA Help Index

Last updated: April 7, 2009

37

XPAClient: The XPA Client-side Programming Interface

Summary
A description of the XPA client-side programming interface.

Introduction to XPA Client Programming
Sending/receiving data to/from an XPA access point is easy: you generally only need to call the XPAGet()
or XPASet() subroutines.

 #include <xpa.h>

 int XPAGet(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **bufs, size_t *lens, char **names, char **messages, int n);

 int XPASet(XPA xpa,
 char *template, char *paramlist, char *mode,
 char *buf, size_t len, char **names, char **messages, int n);

 int XPAInfo(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **names, char **messages, int n);

 int XPAAccess(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **names, char **messages, int n);

 int XPAGetFd(XPA xpa,
 char *template, char *paramlist, char *mode,
 int *fds, char **names, char **messages, int n);

 int XPASetFd(XPA xpa,
 char *template, char *paramlist, char *mode,
 int fd, char **names, char **messages, int n);

 XPA XPAOpen(char *mode);

 void XPAClose(XPA xpa);

 int XPANSLookup(XPA xpa,
 char *template, char *type,
 char ***classes, char ***names, char ***methods, char ***infos);

Introduction
To use the XPA application programming interface, a software developer generally will include the xpa.h
definitions file:

38

 #include <xpa.h>

in the software module that defines or accesses an XPA access point and then will link against the libxpa.a
library:

 gcc -o foo foo.c libxpa.a

XPA has been compiled using both C and C++ compilers.

Client communication with XPA public access points generally is accomplished using XPAGet() or
XPASet() within a program (or xpaget and xpaset at the command line). Both routines require
specification of the name of the access point. If a template is used to specify the access point name (e.g.,
"ds9*"), then communication will take place with all servers matching that template.

XPAGet: retrieve data from one or more XPA servers
 #include <xpa.h>

 int XPAGet(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **bufs, size_t *lens, char **names, char **messages,
 int n);

Retrieve data from one or more XPA servers whose class:name identifier matches the specified template.

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most n
matching XPA servers. A connection is established with each of these servers and the paramlist string is
passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call, then the
persistent connections are updated as described above. Otherwise, temporary connections are made to the
servers (which will be closed when the call completes).

The XPAGet() routine then retrieves data from at most n XPA servers, places these data into n allocated
buffers and places the buffer pointers in the bufs array. The length of each buffer is stored in the lens
array. A string containing the class:name and ip:port is stored in the name array. If a given server returned
an error or the server callback sends a message back to the client, then the message will be stored in the
associated element of the messages array. NB: if specified, the name and messages arrays must be of size
n or greater.

The returned message string will be of the form:

 XPA$ERROR error-message (class:name ip:port)

or

 XPA$MESSAGE message (class:name ip:port)

Note that when there is an error stored in an messages entry, the corresponding bufs and lens entry may or
may not be NULL and 0 (respectively), depending on the particularities of the server.

39

The return value will contain the actual number of servers that were processed. This value thus will hold
the number of valid entries in the bufs, lens, names, and messages arrays, and can be used to loop through
these arrays. In names and/or messages is NULL, no information is passed back in that array.

The bufs, names, and messages arrays should be freed upon completion (if they are not NULL);

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server (after callback completes)
 doxpa true/false true client processes xpa requests

The ack keyword is not very useful, since the server completes the callback in order to return the data
anyway. It is here for completion (and perhaps for future usefulness).

Normally, an XPA client will process incoming XPA server requests while awaiting the completion of the
client request. Setting this variable to "false" will prevent XPA server requests from being processed by
the client.

Example:

 #include <xpa.h>

 #define NXPA 10
 int i, got;
 size_t lens[NXPA];
 char *bufs[NXPA];
 char *names[NXPA];
 char *messages[NXPA];
 got = XPAGet(NULL, "ds9", "file", NULL, bufs, lens, names, messages,
 NXPA);
 for(i=0; i<got; i++){
 if(messages[i] == NULL){
 /* process buf contents */
 ProcessImage(bufs[i], ...);
 free(bufs[i]);
 }
 else{
 /* error processing */
 fprintf(stderr, "ERROR: %s (%s)\n", messages[i], names[i]);
 }
 if(names[i])
 free(names[i]);
 if(messages[i])
 free(messages[i]);
 }

XPASet: send data to one or more XPA servers
 #include <xpa.h>

40

 int XPASet(XPA xpa,
 char *template, char *paramlist, char *mode,
 char *buf, size_t len, char **names, char **messages,
 int n);

Send data to one or more XPA servers whose class:name identifier matches the specified template.

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most n
matching XPA servers. A connection is established with each of these servers and the paramlist string is
passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call, the
persistent connections are updated as described above. Otherwise, temporary connections are made to the
servers (which will be closed when the call completes).

The XPASet() routine transfers data from buf to the XPA servers. The length of buf (in bytes) should be
placed in the len variable.

A string containing the class:name and ip:port of each of these server is returned in the name array. If a
given server returned an error or the server callback sends a message back to the client, then the message
will be stored in the associated element of the messages array. NB: if specified, the name and messages
arrays must be of size n or greater.

The returned message string will be of the form:

 XPA$ERROR [error] (class:name ip:port)

or

 XPA$MESSAGE [message] (class:name ip:port)

The return value will contain the actual number of servers that were processed. This value thus will hold
the number of valid entries in the names and messages arrays, and can be used to loop through these
arrays. In names and/or messages is NULL, no information is passed back in that particular array.

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server (after callback completes)
 verify true/false false send buf from XPASet[Fd] to stdout
 doxpa true/false true client processes xpa requests

The ack keyword is useful in cases where one does not want to wait for the server to complete, e.g. if a lot
of processing needs to be done by the server on the passed data or when the success of the server operation
is not relevant to the client.

Normally, an XPA client will process incoming XPA server requests while awaiting the completion of the
client request. Setting this variable to "false" will prevent XPA server requests from being processed by
the client.

Example:

41

 #include <xpa.h>

 #define NXPA 10
 int i, got;
 size_t len;
 char *buf;
 char *names[NXPA];
 char *messages[NXPA];
 ...
 [fill buf with data and set len to the length, in bytes, of the data]
 ...
 /* send data to all access points */
 got = XPASet(NULL, "ds9", "fits", NULL, buf, len, names, messages, NXPA);
 /* error processing */
 for(i=0; i<got; i++){
 if(messages[i]){
 fprintf(stderr, "ERROR: %s (%s)\n", messages[i], names[i]);
 }
 if(names[i]) free(names[i]);
 if(messages[i]) free(messages[i]);
 }

XPAInfo: send short message to one or more XPA servers
 #include <xpa.h>

 int XPAInfo(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **names, char **messages, int n);

Send a short paramlist message to one or more XPA servers whose class:name identifier matches the
specified template.

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most n
matching XPA servers. A connection is established with each of these servers and the paramlist string is
passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call, then the
persistent connections are updated as described above. Otherwise, temporary connections are made to the
servers (which will be closed when the call completes).

The XPAInfo() routine does not send data from a buf to the XPA servers. Only the paramlist is sent. The
semantics of the paramlist is not formalized, but at a minimum is should tell the server how to get more
information. For example, it might contain the class:name of the XPA access point from which the server
(acting as a client) can obtain more info using XPAGet.

A string containing the class:name and ip:port of each server is returned in the name array. If a given
server returned an error or the server callback sends a message back to the client, then the message will be
stored in the associated element of the messages array. The returned message string will be of the form:

 XPA$ERROR error-message (class:name ip:port)

or

42

 XPA$MESSAGE message (class:name ip:port)

The return value will contain the actual number of servers that were processed. This value thus will hold
the number of valid entries in the names and messages arrays, and can be used to loop through these
arrays. In names and/or messages is NULL, no information is passed back in that array.

The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server

When ack is false, XPAInfo() will not wait for an error return from the XPA server. This means, in effect,
that XPAInfo will send its paramlist string to the XPA server and then exit: no information will be sent
from the server to the client. This UDP-like behavior is essential to avoid race conditions in cases where
XPA servers are sending info messages to other servers. If two servers try to send each other an info
message at the same time and then wait for an ack, a race condition will result and one or both will time
out.

Example:

 (void)XPAInfo(NULL, "IMAGE", "ds9 image", NULL, NULL, NULL, 0);

XPAGetFd: retrieve data from one or more XPA servers and
write to files
 #include <xpa.h>

 int XPAGetFd(XPA xpa,
 char *template, char *paramlist, char *mode,
 int *fds, char **names, char **messages, int n);

Retrieve data from one or more XPA servers whose class:name identifier matches the specified template
and write it to files associated with one or more standard I/O fds (i.e, handles returned by open()).

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most
ABS(n) matching XPA servers. A connection is established with each of these servers and the paramlist
string is passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call,
then the persistent connections are updated as described above. Otherwise, temporary connections are
made to the servers (which will be closed when the call completes).

The XPAGetFd() routine then retrieves data from the XPA servers, and write these data to the fds
associated with one or more fds (i.e., results from open). Is n is positive, then there will be n fds and the
data from each server will be sent to a separate fd. If n is negative, then there is only 1 fd and all data is
sent to this single fd. (The latter is how xpaget is implemented.)

A string containing the class:name and ip:port is stored in the name array. If a given server returned an
error or the server callback sends a message back to the client, then the message will be stored in the
associated element of the messages array. NB: if specified, the name and messages arrays must be of size

43

n or greater.

The returned message string will be of the form:

 XPA$ERROR error-message (class:name ip:port)

or

 XPA$MESSAGE message (class:name ip:port)

Note that when there is an error stored in an messages entry, the corresponding bufs and lens entry may or
may not be NULL and 0 (respectively), depending on the particularities of the server.

The return value will contain the actual number of servers that were processed. This value thus will hold
the number of valid entries in the bufs, lens, names, and messages arrays, and can be used to loop through
these arrays. In names and/or messages is NULL, no information is passed back in that array.

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server (after callback completes)

The ack keyword is not very useful, since the server completes the callback in order to return the data
anyway. It is here for completion (and perhaps for future usefulness).

Example:

 #include <xpa.h>
 #define NXPA 10
 int i, got;
 int fds[NXPA];
 char *names[NXPA];
 char *messages[NXPA];
 for(i=0; i<NXPA; i++)
 fds[i] = open(...);
 got = XPAGetFd(NULL, "ds9", "file", NULL, fds, names, messages, NXPA);
 for(i=0; i<got; i++){
 if(messages[i] != NULL){
 /* error processing */
 fprintf(stderr, "ERROR: %s (%s)\n", messages[i], names[i]);
 }
 if(names[i])
 free(names[i]);
 if(messages[i])
 free(messages[i]);
 }

XPASetFd: send data from stdin to one or more XPA servers
 #include <xpa.h>

44

 int XPASetFd(XPA xpa,
 char *template, char *paramlist, char *mode,
 int fd, char **names, char **messages, int n)

Read data from a standard I/O fd and send it to one or more XPA servers whose class:name identifier
matches the specified template.

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most n
matching XPA servers. A connection is established with each of these servers and the paramlist string is
passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call, then the
persistent connections are updated as described above. Otherwise, temporary connections are made to the
servers (which will be closed when the call completes).

The XPASetFd() routine then reads bytes from the specified fd until EOF and sends these bytes to the
XPA servers. The final parameter n specifies the maximum number of servers to contact. A string
containing the class:name and ip:port of each server is returned in the name array. If a given server
returned an error, then the error message will be stored in the associated element of the messages array.
NB: if specified, the name and messages arrays must be of size n or greater.

The return value will contain the actual number of servers that were processed. This value thus will hold
the number of valid entries in the names and messages arrays, and can be used to loop through these
arrays. In names and/or messages is NULL, no information is passed back in that array.

The mode string is of the form: "key1=value1,key2=value2,..." The following keywords are recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server (after callback completes)
 verify true/false false send buf from XPASet[Fd] to stdout

The ack keyword is useful in cases where one does not want to wait for the server to complete, e.g. is a lot
of processing needs to be done on the passed data or when the success of the server operation is not
relevant to the client.

Example:

 #include <xpa.h>

 #define NXPA 10
 int i, got;
 int fd;
 char *names[NXPA];
 char *messages[NXPA];
 fd = open(...);
 got = XPASetFd(NULL, "ds9", "fits", NULL, fd, names, messages, NXPA);
 for(i=0; i<got; i++){
 if(messages[i] != NULL){
 /* error processing */
 fprintf(stderr, "ERROR: %s (%s)\n", messages[i], names[i]);
 }
 if(names[i])

45

 free(names[i]);
 if(messages[i])
 free(messages[i]);
 }

XPAOpen: allocate a persistent client handle
 #include <xpa.h>

 XPA XPAOpen(char *mode);

XPAOpen() allocates a persistent XPA struct that can be used with calls to XPAGet(), XPASet(),
XPAInfo(), XPAGetFd(), and XPASetFd(). Persistence means that a connection to an XPA server is not
closed when one of the above calls is completed but will be re-used on successive calls. Using XPAOpen()
therefore saves the time it takes to connect to a server, which could be significant with slow connections or
if there will be a large number of exchanges with a given access point. The mode argument currently is
ignored ("reserved for future use").

An XPA struct is returned if XPAOpen() was successful; otherwise NULL is returned. This returned struct
can be passed as the first argument to XPAGet(), etc. Those calls will update the list of active XPA
connections. Already connected servers (from a previous call) are left connected and new servers also will
be connected. Old servers (from a previous call) that are no longer needed are disconnected. The
connected servers will remain connected when the next call to XPAGet() is made and connections are
once again updated.

Example:

 #include <xpa.h>

 XPA xpa;
 xpa = XPAOpen(NULL);

XPAClose: close a persistent XPA client handle
 #include <xpa.h>

 void XPAClose(XPA xpa);

XPAClose closes the persistent connections associated with this XPA struct and frees all allocated space.
It also closes the open sockets connections to all XPA servers that were opened using this handle.

Example:

 #include <xpa.h>

 XPA xpa;
 XPAClose(xpa);

46

XPANSLookup: lookup registered XPA access points
 #include <xpa.h>

 int XPANSLookup(XPA xpa,
 char *template, char type,
 char ***classes, char ***names,
 char ***methods, char ***infos)

XPA routines act on a class:name identifier in such a way that all access points that match the identifier
are processed. It is sometimes desirable to choose specific access points from the candidates that match the
template. In order to do this, the XPANSLookup routine can be called to return a list of matches, so that
specific class:name instances can then be fed to XPAGet(), XPASet(), etc.

The first argument is an optional XPA struct. If non-NULL, the existing name server connection
associated with the specified xpa is used to query the xpans name server for matching templates.
Otherwise, a new (temporary) connection is established with the name server.

The second argument to XPANSLookup is the class:name template to match.

The third argument for XPANSLookup() is the type of access and can be any combination of:

 type explanation
 ------ -----------
 g xpaget calls can be made on this access point
 s xpaset calls can be made on this access point
 i xpainfo calls can be made on this access point

The call typically specifies only one of these at a time.

The final arguments are pointers to arrays that will be filled in and returned by the name server. The name
server will allocate and return arrays filled with the classes, names, and methods of all XPA access points
that match the template and have the specified type. Also returned are info strings, which generally are
used internally by the client routines. These can be ignored (but the strings must be freed). The function
returns the number of matches. The returned value can be used to loop through the matches: Example:

 #include <xpa.h>

 char **classes;
 char **names;
 char **methods;
 char **infos;
 int i, n;
 n = XPANSLookup(NULL, "foo*", "g", &classes, &names, &methods, &infos);
 for(i=0; i<n; i++){
 [more specific checks on possibilities ...]
 [perhaps a call to XPAGet for those that pass, etc. ...]
 /* don’t forget to free alloc’ed strings when done */
 free(classes[i]);
 free(names[i]);
 free(methods[i]);
 free(infos[i]);
 }

47

 /* free up arrays alloc’ed by names server */
 if(n > 0){
 free(classes);
 free(names);
 free(methods);
 free(infos);
 }

The specified template also can be a host:port specification, for example:

 myhost:12345

In this case, no connection is made to the name server. Instead, the call will return one entry such that the
ip array contains the ip for the specified host and the port array contains the port. The class and name
entries are set to the character "?", since the class and name of the access point are not known.

XPAAccess: return XPA access points matching template (XPA
2.1 and above)
 #include <xpa.h>

 int XPAAccess(XPA xpa,
 char *template, char *paramlist, char *mode,
 char **names, char **messages, int n);

The XPAAccess routine returns the public access points that match the specified second argument
template and have the specified access type.

A template of the form "class1:name1" is sent to the XPA name server, which returns a list of at most n
matching XPA servers. A connection is established with each of these servers and the paramlist string is
passed to the server as the data transfer request is initiated. If an XPA struct is passed to the call, then the
persistent connections are updated as described above. Otherwise, temporary connections are made to the
servers (which will be closed when the call completes).

The XPAAccess() routine retrieves names from at most n XPA servers that match the specified template
and that were checked for access using the specified mode. The return string contains both the class:name
and ip:port. If a given server returned an error or the server callback sends a message back to the client,
then the message will be stored in the associated element of the messages array. NB: if specified, the name
and messages arrays must be of size n or greater.

The returned message string will be of the form:

 XPA$ERROR error-message (class:name ip:port)

Note that names of matching registered access points are always returned but may not be valid; it is not
sufficient to assume that the returned number of access points is the number of valid access points. Rather,
it is essential to check the messages array for error messages. Any string in the messages array is an error
message and indicated that the associated access point is not available.

48

For example, assume that a server registers a number of access points but delays entering its event loop. If
a call to XPAAccess() is made before the event loop is entered, the call will timeout (after waiting for the
long timeout period) and return an error of the form:

 XPA$ERROR: timeout waiting for server authentication (XPA:xpa1)

The error means that the XPA access point has been registered but is not yet available (because events are
not being processed). When the server finally enters its event loop, subsequent calls to XPAAccess() will
return successfully.

NB: This routine only works with XPA servers built with XPA 2.1.x and later. Servers with older versions
of XPA will return the error message: XPA$ERROR invalid xpa command in initialization string If you
get this error message, then the old server actually is ready for access, since it got to the point of fielding
the query! The xpaaccess program, for example, ignores this message in order to work properly with older
servers.

The third argument for XPAAccess() is the type of access and can be any combination of:

 type explanation
 ------ -----------
 g xpaget calls can be made on this access point
 s xpaset calls can be made on this access point
 i xpainfo calls can be made on this access point

The mode string argument is of the form: "key1=value1,key2=value2,..." The following keywords are
recognized:

 key value default explanation
 ------ -------- -------- -----------
 ack true/false true if false, don’t wait for ack from server (after callback completes)

The ack keyword is not very useful, since the server completes the callback in order to return the data
anyway. It is here for completion (and perhaps for future usefulness).

Go to XPA Help Index

Last updated: March 10, 2007

49

XPAXt: the XPA Interface to Xt (X Windows)

Summary
Describes how XPA access points can be added to X Toolkit (Xt) programs.

Description
XPA supports Xt programs: you can call XPANew(), XPACmdNew(), or XPAInfoNew() within any C
routine to add XPA server callbacks to an Xt program. Since an Xt program has its own event loop call
(i.e., XtAppMainLoop()), it therefore does not need or want to use the XPA even loop. Thus, in order to
add XPA access points to the standard Xt event loop, the following routine should be called before
entering the loop:

 int XPAXtAddInput(XtAppContext app, XPA xpa)

The XPAAddAddInput() routine will add XPA access points to the Xt event loop by making calls to the
standard XtAppAddInput() routine. (If the XtAppContext argument is NULL, then the alternate
XtAddInput() routine is used instead.) If the xpa argument is NULL, then all active XPA access points are
added to the loop. If xpa is not NULL, then only the specified access point is added. The latter type of call
is used to add new access points from within a callback, after the program has entered the
XtAppMainLoop() even loop.

Go to XPA Help Index

Last updated: September 10, 2003

50

XPATcl: the XPA Interface to the Tcl/Tk Environment

Summary
Tcl/Tk programs can act as XPA clients and/or servers using the Tcl interface to XPA that is contained in
the libtclxpa.so shared object.

Server Routines
 set xpa [xpanew class name help sproc sdata smode rproc rdata rmode]
 xpafree xpa
 set xpa [xpanew class name help iproc idata imode]
 set xpa [xpacmdnew class name]
 xpacmdadd xpa name help sproc sdata smode rproc rdata rmode
 xpacmddel xpa cmd
 set val [xparec xpa option]
 options: name, class, method, cmdfd, datafd, cmdchan, datachan
 xpasetbuf xpa buf len
 xpaerror xpa message
 xpamessage xpa message

Client Routines
 set xpa [xpaopen mode]
 xpaclose xpa
 set got [xpaget xpa template paramlist mode bufs lens names errs n]
 set got [xpaget xpa template paramlist mode chans names errs n]
 set got [xpaset xpa template paramlist mode buf len names errs n]
 set got [xpasetfd xpa template paramlist mode chan names errs n]
 set got [xpainfo xpa template paramlist mode names errs n]
 # NB: 2.1 calling sequence change
 # set got [xpaaccess template type] (2.0.5)
 set got [xpaaccess xpa template paramlist mode names errs n]
 set got [xpanslookup template type classes names methods]

Description
You can call XPANew(), XPACmdNew(), or XPAInfoNew() within a C routine to add C-based XPA
server callbacks to a TCL/Tk program that uses a Tcl/Tk event loop (either vwait() or the Tk event loop);
Such a program does not need or want to use the XPA event loop. Therefore, in order to add XPA access
points to the Tcl/Tk loop, the following routine should be called beforehand:

 int XPATclAddInput(XPA xpa);

Normally, the xpa argument is NULL, meaning that all current XPA access points are registered with the
event loop. However, if a single XPA access point is to be added (i.e., after the event loop is started) then
the handle of that XPA access point can be passed to this routine.

51

The significance of the XPA/TCL interface goes beyond the support for using XPA inside C code. The
interface allows you to write XPA servers and to make calls to the XPA client interface within the Tcl
environment using the Tcl language directly. The XPA/Tcl interface can be loaded using the following
package command:

 package require tclxpa 2.0

Alternatively, you can load the shared object (called libtclxpa.so) directly:

 load .../libtclxpa.so tclxpa

Once the tclxpa package is loaded, you can use Tcl versions of XPA routines to define XPA servers or
make client XPA calls. The interface for these routines is designed to match the Unix XPA interface as
nearly as possible. Please refer to XPA Servers and XPA Clients for general information about these
routines.

The file test.tcl in the XPA source directory gives examples for using the XPA/Tcl interface.

The following notes describe the minor differences between the interfaces.

XPANew
 set xpa [xpanew class name help sproc sdata smode rproc rdata rmode]

rproc and sproc routines are routines. The calling sequence of the rproc routine is identical to its C
counterpart:

 proc rec_cb { xpa client_data paramlist buf len } { ... }

The sproc routine, however is slightly different from its C counterpart because of the difficulty of passing
data back from the callback to C:

 proc sendcb { xpa client_data paramlist } { ... }

Note that the C-based server’s char **buf and int *len arguments are missing from the Tcl callback. This
is because we did not know how to fill buf with data and pass it back to the C routines for communication
with the client. Instead, the Tcl server callback uses the following routine to set buf and len:

 xpasetbuf xpa buf len

where:

 arg explanation
 ------ -----------
 xpa the first argument of the server callback
 buf the data to be returned to the client
 len data length in bytes, (if absent, use length of the buf object)

When this routine is called, a copy of buf is saved for transmission to the client.

52

The fact that buf is duplicated means that TCL server writers might wish to perform the I/O directly within
the callback, rather than have XPA do it automatically at the end of the routine. To do this, set:

 fillbuf=false

in the xpanew smode and then perform I/O through the Tcl channel obtained from:

 set dchan [xparec $xpa datachan]

where:

 arg explanation
 ------ -----------
 xpa the first argument of the server callback
 datachan literal string "datachan" that returns the data channel
 len data length in bytes, (if absent, use length of the buf object)

NB: datachan and cmdchan are not available under Windows. It is necessary to use the "raw"
equivalents: datafd and cmdfd.

The same considerations apply to the rproc for receive servers: a copy of the incoming data is generated to
pass to the receive callback. This copy again can be avoided by using "fillbuf=false" in the rmode and then
reading the incoming data from datachan.

The send and receive callback routines can use the xpaerror and xpamessage routines to send errors and
messages back to the client. If you also want tcl itself to field an error condition, use the standard return
call:

 return ?-code c? ?-errorinfo i? ?-errorcode ec? string

See the Tcl man page for more info.

XPARec
The Tcl xparec procedure supplies server routines with access to information that is available via macros
in the C interface:

 set val [xparec xpa <option>]

where option is: name, class, method, cmdfd, datafd, cmdchan, datachan. Note that two additional
identifiers, cmdchan and datachan, have been added to to provide Tcl channels corresponding to datafd
and cmdfd. (These latter might still be retrieved in Tcl and passed back to a C routines.) An additional
option called "version" can be used to determine the XPA version used to build the Tcl interface. Note that
the standard options require a valid XPA handle, but "version" does not (since it simply reports the value
of the XPA_VERSION definition in the XPA source include file).

NB: datachan and cmdchan are not available under Windows. It is necessary to use the "raw"
equivalents: datafd and cmdfd.

53

 macro explanation
 ------ -----------
 class class of this xpa
 name name of this xpa
 method method string (inet or local connect info)
 cmdchan Tcl channel of command socket
 datachan Tcl channel of data socket
 cmdfd fd of command socket
 datafd fd of data socket
 sendian endian-ness of server ("little" or "big")
 cendian endian-ness of client ("little" or "big"
 version XPA version used to build this code

Under Windows, the Tcl event handler cannot automatically sense when an XPA socket is ready for IO
(i.e. Tcl_CreateFileHandler() is not available under Windows). The Windows Tcl event handler therefore
must be awakened occasionally for check for XPA events. This is done using the standard
Tcl_SetMaxBlockTime() call. The time parameter is defined in tclloop.c and is currently set to 1000
microseconds (1/1000 of a second).

The version option can be used to differentiate between source code versions. It was created to support
legacy Tcl code that needs to maintain the 2.0.5 calling sequence for xpaaccess. You can use a version test
such as:

 if [catch { xparec "" version } version] {
 puts "pre-2.1.0e"
 } else {
 puts [split $version .]
 }

Go to XPA Help Index

Last updated: September 10, 2003

54

XPAEnv: Environment Variables for XPA Messaging

Summary
Describes the environment variables which can be used to tailor the overall XPA environment.

Description
The following environment variables are supported by XPA:

XPA_ACL
If XPA_ACL is true, then host-based XPA Access Control is turned on and only specified machines
can access specified access points. If false, then access control is turned off and any machine can
access point. The default is turn turn access control on.

XPA_ACLFILE
If XPA Access Control is turned on, this variable specifies the name of the file containing access
control information for all access points started by this user. The default file name is:
$HOME/acls.xpa.

XPA_CONNECT_TIMEOUT
When an XPA server first starts up, it immediately tries to connect to the XPA name server program
(xpans) on the host specified by the XPA_NSINET variable. (If this connection fails on the local host,
and if xpans can be found in the path, then the name server is started automatically.) Unfortunately, a
mis-configured network can cause this connect attempt to hang for many seconds while the connect()
system call times out. Therefore, an alarm is started to interrupt the connect() call and prevent a long
hang. The initial value of the alarm timeout is 10 seconds, but can be changed by setting this
environment variable. If you want to disable the alarm and allow the initial connect() to time out, set
the value of this variable to 0. Normally, users would not change this variable at all.

XPA_CLIENT_DOXPA
Normally, an XPA client (xpaget, xpaset, etc.) will process incoming XPA server requests while
awaiting the completion of the client request. Setting this variable to "false" will prevent XPA server
requests from being processed by the client.

XPA_DEFACL
If XPA Access Control is turned on, this variable specifies the default access control condition for all
access points, if the XPA_ACLFILE file does not exist. The default acl is: $host:* $host +, meaning
that all processes on the host machine have full access to all access points.

XPA_HOST
For the INET socket method, XPA utilizes the canonical hostname (as returned by the gethostname()
routine) to construct the IP part of the method id. Under some circumstances, this might not be a
correct choice of name and IP. For example, if an XPA server is started on a machine running VPN,
you might want to use the VPN name and IP instead of the canonical host name, so that other
machines in the VPN network can access the server. In this case, you can set the XPA_HOST to be

55

the VPN name (if resolvable) or, more easily, the VPN IP.

XPA_IOCALLSXPA
Setting this variable causes all XPA socket IO calls to process outstanding XPA requests whenever
the primary socket is not ready for IO. This means that a server making a client call will (recursively)
process incoming server requests while waiting for client completion. This inter-IO XPA processing
avoids a rare XPA Race Condition: two or more XPA servers sending messages to one another using
an XPA client routine such as XPASet() can deadlock while each waits for the other server to
respond. This can happen, for example, if the servers call XPAPoll() with a time limit, and send
messages in between the polling call.

By default, this option is turned off, because we judge that the added code complication and overhead
involved will not be justified by the amount of its use. Moreover, processing XPA requests within
socket IO can lead to non-intuitive results, since incoming server requests will not necessarily be
processed to completion in the order in which they are received.

XPA_LOGNAME
XPA preferentially uses the de facto standard environment variable LOGNAME to determine the
username when registering an access point in the name server. If this environment variable has been
used for something other than the actual user name (such as a log file name), unexpected results can
ensue. In such cases, use the XPA_LOGNAME variable to set the user name. (If neither exists, then
getpwuid(geteuid()) is used as a last resort).

XPA_LONG_TIMEOUT
XPA is designed to allow data to be sent from one process to another over a long period of time (i.e.,
a program that generates image data sends that data to an image display, but slowly) but it also seeks
to prevent hangs. This is done by supporting 2 timeout periods: a short timeout for protocol
communication and a long for data communication.

The XPA_LONG_TIMEOUT variable controls the long timeout and is used to prevent hangs in cases
where communication between the client and server that is not controlled by the XPA interface itself.
Transfer of data between client and server, or a client’s wait for a status message after completion of
the server callback, are two examples of this sort of communication. By default, the long timeout is
set to 180 seconds. Setting the value to -1 will disable long timeouts and allow an infinite amount of
time.

XPA_MAXHOSTS
The maximum number of access points that the programs xpaset, xpaget, and xpainfo will
communicate with at one time. The default is 64, meaning, for example, that the xpaset program will
not send a message to more than 100 access points at one time and xpaget will not retrieve from more
than 100 access points at one time.

XPA_METHOD
Determines the socket connection method used by this session of XPA. The choices are: inet (to use
INET or Internet-based sockets), localhost (to use the machines localhost inet socket), or local (unix)
(to use UNIX sockets). The default is INET. Using the inet method will allow access from other
machines (subject to access controls) but using localhost or local will not. Localhost is most useful
for private access and when the machine in question is not connected to the Internet. The unix

56

method also can be used for private access and non-Internet connections (Unix platforms only).

Once defined, the first registration of an XPA access point will ensure that an instance of the XPA
Name Server (xpans) is running that handles that connection method. All new access points will use
the new connection method but existing access points will use the original method.

XPA_NSINET
For the inet method of socket connection, this variable specifies the host and port on which the XPA
Name Server (xpans) is listens for new access points. The default is $host:$port, meaning that the
default XPA port (14285) on the current machine (as returned by gethostname()) is used. If several
machines were all accessing the same XPA access points, you would use this variable to specify that
they all use the same name server to find out about these access points. For example, a value of
myhost:$port would mean that the xpans name server is running on myhost and uses the default port
12345. All machines would then get the XPA access points registered with that name server, subject
to access controls.

The port used by xpans to register its XPA access point normally is taken to be one greater than the
port on which it receives new access points from XPA servers. You can specify a specific access
point port using the syntax machine:port1,port2, i.e., the access point port is specified after the
comma. For example, $host:12345,23456 will listen for new access ports on 12345 and will accept
XPA commands on 23456.

XPA_NSREGISTER
This boolean variable specifies whether a server registers its XPA access point with the specified
xpans name server. The default is true. If set to false, the access point still is set up but it is not
registered with xpans and therefore cannot be accessed by name. (It can be accessed by method, if the
latter is known.) Note that an access point can be registered later on (using -remote or -proxy, for
example). This variable mainly is useful in cases where the Internet configuration is broken (so that
registration causes a DNS hang) but you still wish to and can use the server with a remote xpans (e.g.,
ds9’s Virtual Observatory capability).

XPA_NSUNIX
For the local method of socket connection, this variable specifies the name of the Unix file that will
be used to access the XPA Name Server (xpans). The default is xpans_unix. This variable is not
usually needed. Note that is the local socket method is used, then remote machines will not be able to
access the xpans name server or the registered XPA access points.

XPA_NSUSERS
This variable specifies whether other users’ access points will be returned by the XPA Name Server
(xpans) for use by xpaget, xpaset, etc. Generally speaking, it is sufficient to run one xpans name
server per machine and register the access points for all users with that xpans. This means, for
example, that if you request information from ds9 by running:

 xpaget ds9 colormap

you might get information from your own ds9 as well as from another user running ds9 on the same
machine. The XPA_NSUSERS variable controls whether you want such access to the access points of
other users. By default, only your own access points are returned, so that, in the example above, you

57

would only get the colormap information from the ds9 you registered. If, however, you had set the
value of the XPA_NSUSERS variable to eric,fred, then you would be able to communicate with both
eric and fred’s access points. Note that this variable can be overridden using the -u switch on the
xpaget, xpaset, and xpainfo programs.

XPA_PORT
A semi-colon delimited list of user specified ports to use for specific XPA access points. The format
is each specification is:

class:template port1[port2]

where port1 is the main (command) port for the access point and port2 is the (secondary) data port.
If port2 is not specified, it defaults to a value of 0 (meaning the system assigns the port).

Specification of specific ports is useful, for example, when a machine outside a firewall needs to
communicate with a machine inside a firewall. In such a case, the firewall should be configured to
allow socket connections to both the command and data port from the outside machine, and the inside
XPA program should be started up with the outside machine in its ACL list. Then, when the inside
program is started with specified ports, outside XPA programs can use "machine:port" to contact the
inside access points, instead of the access point names. That is, the machine outside the firewall does
not need access to the XPA name server:

export XPA_PORT="DS9:ds9 12345 12346" # on machine "inside"
cat foo.fits | xpaset inside:12345 fits # on machine "outside"

Note that 2 ports are required for full XPA communication and therefore 2 ports should be specified
to go through a firewall. The second port assignment is not important if you simply are assigning the
command port in order to communicate commands with a known port (e.g., to bypass the xpans name
server). If only one (command) port is specified, the system will negotiate a random data port and
everything will work properly.

This support is somewhat experimental. If you run into problems, please let us know.

XPA_PORTFILE
A list of user-specified port to use for specific xpa access points. The format of the file is:

class:template port1 [port2]

where port1 is the main port for the access point and port2 is the data port. If port2 is not specified,
it defaults to a value of 0 (meaning the system assigns the port). See XPA_PORT above for an
explanation of user-specified ports.

XPA_SHORT_TIMEOUT
XPA is designed to allow data to be sent from one process to another over a long period of time (i.e.,
a program that generates image data sends that data to an image display, but slowly) but it also seeks
to prevent hangs. This is done by supporting 2 timeout periods: a short timeout for protocol
communication and a long for data communication.

58

The XPA_SHORT_TIMEOUT variable controls the short timeout and is used to prevent hangs in
cases where the XPA protocol requires internal communication between the client and server that is
controlled by the XPA interface itself. Authentication is an example of this sort of communication, as is
the establishment of a data channel between the two processes. The default value for the short is 30
seconds (which is a pretty long time, actually). Setting the value to -1 will disable short timeouts and
allow an infinite amount of time.

XPA_SIGUSR1
If the value of this variable is true, then XPA will catch SIGUSR1 signals when performing an I/O
operation in order to curtail that operation. This facility allows users to send a SIGUSR1 signal to an
XPA server if a client is hanging up the server by sending or receiving data too slowly (timeouts also
can be used -- see above). When enabled in this way, the SIGUSR1 signal is ignored at all other
times, so that its safe to send the signal at any time. If the variable is set to false, then SIGUSR1 is not
used at all. Turning off SIGUSR1 would be desired in cases there the program uses SIGUSR1 for
some other reason and does not want XPA interfering. The default is to use the signal.

XPA_TIMESTAMP_ERRORS
If XPA_TIMESTAMP_ERRORS is true, then error messages will include a date/time string. This can
be useful when XPA errors are being saved in an error log (e.g. Web/CGI use). The default is false.

XPA_TMPDIR
This variable specifies the directory into which XPA logs, Unix socket files (when XPA_METHOD is
local), etc. are stored. The default is /tmp/.xpa.

XPA_VERBOSITY
Specify the verbosity level of error messages. If the value is set to 0, false, or off, then no error messages
are printed to stderr. If the value is 1, then important XPA error messages will be output. If the value is set
to 2, XPA warnings about out-of-sync messages will also be output. These latter almost always can be
ignored.

XPA_VERSIONCHECK
Specify whether a new access point should check its major and minor XPA version number against the
version used by the xpans name server at registration time. The default is true. When checking is
performed, a warning is issued if the server major version is found to be greater than the xpans version.
Note that the check is performed both by the XPA server and by the xpans process and warnings will be
issued by each. Also, instead of the values of true or false, you can give this variable an integer value n. In
this case, each version checking process (i.e., the XPA-enabled server or xpans) will print out a maximum
of n warning messages (after which version warnings are silently swallowed).

In general, it is a bad idea to run an XPA-enabled server program using a version of XPA newer than the
basic xpaset, xpaget, xpaaccess, xpans programs. This sort of mismatch usually will not work due to
protocol changes.

Go to XPA Help Index

59

Last updated: December 23, 2009

60

XPAAcl: Access Control for XPA Messaging

Summary
XPA supports host-based access control for each XPA access point. You can enable/disable access control
using the XPA_ACL environment variable. You can specify access to specific XPA access points for
specific machines using the XPA_DEFACL and XPA_ACLFILE environment variables. By default, an
XPA access point is accessible only to processes running on the same machine (same as X Windows).

Description
When INET sockets are in use (the default, as specified by the XPA_METHOD environment variable),
XPA supports a host-based access control mechanism for individual access points. This mean that access
can be specified for get, set, or info operations for each access point on a machine by machine basis. For
LOCAL sockets, access is restricted (by definition) to the host machine.

XPA access control is enabled by default, but can be turned off by setting the XPA_ACL environment
variable to false. In this case, any process can access any XPA server.

Assuming that access control is turned on, the ACL for an individual XPA access point is set up when that
access point is registered (although it can be changed later on; see below). This can be done in one of two
ways: Firstly, the XPA_ACLFILE environment variable can defined to point to a file of access controls for
individual access points. The format of this file is:

 class:name ip acl

The first argument is a template that specifies the class:name of the access point covered by this ACL. See
XPA Access Points and Templates for more information about xpa templates.

The second argument is the IP address (in human-readable format) of the machine which is being given
access. This argument can be * to match all IP addresses. It also can be $host to match the IP address of
the current host.

The third argument is a string combination of s, g, or i to allow xpaset, xpaget, or xpainfo access
respectively. The ACL argument can be + to give sgi access or it can be - to turn off all access.

For example,

 *:xpa1 somehost sg
 *:xpa1 myhost +
 * * g

will allow processes on the machine somehost to make xpaget and xpaset calls, allow processes on myhost
to make any call, and allow all other hosts to make xpaget (but not xpaset) calls. Secondly, if the
XPA_ACLFILE does not exist, then a single default value for all access points can be specified using the
XPA_DEFACL environment variable. The default value for this variable is:

61

 #define XPA_DEFACL "*:* $host +"

meaning that all access points are fully accessible to all processes on the current host. Thus, in the absence
of any ACL environment variables, processes on the current host have full access to all access points
created on that host. This parallels the X11 xhost mechanism.

Access to an individual XPA access point can be changed using the -acl parameter for that access point.
For example:

 xpaset -p xpa1 -acl "somehost -"

will turn off all access control for somehost to the xpa1 access point, while:

 xpaset -p XPA:xpa1 -acl "beberly gs"

will give beberly xpaget and xpaset access to the access point whose class is XPA and whose name is
xpa1.

Similarly, the current ACL for a given access point can be retrieved using:

 xpaget xpa1 -acl

Of course, you must have xpaget access to this XPA access point to retrieve its ACL.

Note that the XPA access points registered in the xpans program also behave according to the ACL rules.
That is, you cannot use xpaget to view the access points registered with xpans unless you have the proper
ACL.

Note also when a client request is made to an XPA server, the access control is checked when the initial
connection is established. This access in effect at this time remains in effect so long as the client
connection is maintained, regardless of whether the access fro that XPA is changed later on.

We recognize that host-based access control is only relatively secure and will consider more stringent
security (e.g., private key) in the future if the community requires such support.

Go to XPA Help Index

Last updated: September 10, 2003

62

XPA ChangeLog
This ChangeLog covers the XPA 2 implementation. It will be updated as we continue to develop and
improve XPA. The up-to-date version can be found here.

Public Release 2.1.15 (July 23, 2013)
Added support for large data transfers

XPAGet and XPASet now pass size_t instead of int for lengths

Send and receive callbacks now pass size_t instead of int for lengths

Port to mingw (Windows)

Public Release 2.1.14 (June 7, 2012)
Fixed several memory leaks in the Tcl wrappers (tcl.c).

Use Tcl stubs library for linking shared Tcl, if available.

Public Release 2.1.13 (April 14, 2011)
An atexit handler is no longer installed automatically (it crashes Tcl 8.5.8 applications). Call
XPAAtExit(void) to install the handler.

Removed permission checking from Find() on cygwin systems. This was broken by Windows 7.

Removed addition of -no-cpp-precomp flag from gcc 4.2 and beyond (Mac).

Public Release 2.1.12 (January 26, 2010)
Added XPA_HOST environment variable to allow users to specify the hostname (and hence, ip)
component of the INET method id. This is useful, for example, if you want to register an access point
using a VPN-generated IP instead of the canonical IP.

Fix typo in Tcl binding to xpainfo causing a crash after 2 invocations.

Public Release 2.1.11 (December 7, 2009)
Generalized XPANSKeepAlive() to send messages to xpans, proxy xpans, or both. The default is to
send just to proxies (e.g. chandra-ed).

63

http://hea-www.harvard.edu/RD/xpa/changelog.html

Changed XPANSKeepAlive() to send an in-band new-line char to xpans, changed xpans to handle an
in-band new-line as a keep-alive message. Necessitated by Cisco routers that clear the URG flag in a TCP
packet, breaking OOB data transfer for the whole Internet, as well as the OOB-based keep-alive
implemented in xpans.

In xpans, print warning when the keep-alive option switch is used.

Port to mingw (thanks to B.Schoenhammer)

Change OOB character sent by xpans keepalive to a space, trying to working around cisco routers
that force OOB data into the inbound stream.

fix gcc fprintf warning in xpans.c

Public Release 2.1.10 (September 1, 2009)
Update mklib and configure.ac to support 64-bit builds on Macs.

Fixed bug in XPAAccess() in which the returned names could have an extra (bogus) character when
the target is an explicit ip:port or local socket file.

Add setjmp/longjmp support to xalloc.

Add XPASaveJmp(void *env) as a high-level interface to xalloc_savejmp();

Internal Release 2.1.9
Fixed a bug that prevented an access point starting with a number from being recognized peoperly.
NB: a pure number still signifies a port on the current machine. Also num:num signifies ip:port,
where ip can be a pure hex value or the canonical form vvv.xxx.yyy.zzz.

Modified internal Launch() routine to use posix_spawn(), if necessary. This is required for OS X 10.5
(leopard), which frowns upon use of fork() and exec(). Also modified zprocess routines to use
Launch().

Added XPASetFree(xpa, void (*myfree)(void *)) routine to allow callbacks to specify a free routine
other than malloc free (e.g. Perl garbage collection).

XPACmdAdd() now checks to ensure that it was passed an XPA struct created by XPACmdNew().

Change launch.h to xlaunch.h to avoid conflict with OS X.

Public Release 2.1.8 (1 November 2007)
A public release to complete current XPA development work.

64

Patch Release 2.1.7b[1,2] (Feb 22, 2006; March 8, 2007)
Added a convenience null to the end of the buffers returned by XPAGet.

Added code to avoid calling atexit routine if a fork’ed child calls exit() instead of _exit().

Added XPA_CLIENT_DOXPA environment variable to turn off client processing of xpa server
requests.

Added --version to xpaset, xpaget, xpainfo, xpaaccess, xpans to display XPA version and exit.

Added support for integrating XPA into a Gtk loop.

xpaaccess now returns its answer in the error code as well as to stdout (without the -n switch, it
returns 1 for a match, with the -n switch, the number of matches is returned).

Fixed bug which prevented xpans from being started up automatically by an xpa server if its
pathname contained a space character.

Fixed bug in MINGW port of xpans in which an XPA server that terminated via an interrupt was not
being properly removed from the list of registered access points.

Added XPA_LOGNAME to override LOGNAME when registering username

Upgraded swish-e indexing code to 2.4.5.

Patch Release 2.1.6 (4 May 2005)
Added -P switch to xpans to enable experimental proxy support (default is disabled). An argument of
1 processes proxy requests in the same thread as xpans requests, while an argument of 2 processes
proxy requests in a separate thread. (The latter is recommended to avoid xpans timeouts, since xpa
callback processing can take a long time.)

Added ability to build shared libraries (done automatically with configure --enable-shared) with
compilers other than gcc.

Made yet another attempt to build shared libraries under OS X.

Fixed a server bug in Tcl support under Windows (introduced early in 2.1.6) which caused an
occasional SEGV.

Fixed race condition in cases where 2 or more servers makes client calls to one another.

Fixed bug in the XPA handler routine in which an access point was turned off if an error occurred in
that routine (as opposed to the user-defined callback routine).

65

Fixed race condition when "ack=false" flag (or -n) is used with XPASet() (or xpaset).

Added defensive code to XPA handler to ensure that the passed XPA record is valid.

Tcl/XPA servers such as ds9 were not turning off select() on the xpa channels inside an xpa callback,
as required. This is now fixed.

Added timestamps to most server and client error messages if the XPA_TIMESTAMP_ERRORS
variable is set. This is useful when XPA errors are being logged in an error log (e.g. Web/CGI use).

Generated PostScript and PDF versions of the help pages.

Moved OPTIONS section before (often-lengthy) DESCRIPTION section in man pages.

All memory allocation now performs error checking on the result.

Removed some compiler warnings that surfaced when using gcc -O2.

Updated configure.ac to better support Tcl in Panther with Apple Frameworks.

Patch Release 2.1.5 (12 January 2004)
Fixed bug in XPAPoll(). Erroneously, no requests were being processed when maxreq==0. Now, all
pending events are processed, as per the documentation.

Added ack=false to XPAInfo() (and corresponding -n to xpainfo) so that client does not wait for a
response from the server. This is essential in cases where XPA servers wish to send info messages to
one another without causing a race condition.

Generated man pages from the html pages. These are installed automatically at build time.

The xpans program with Unix sockets now uses a lock file to signal that it is running, in order to
avoid a potential (but rare) race condition at startup.

Code that calls Unix-type bind() now manipulate umask() to ensure that all users have write
permissions to the socket file (OS X apparently uses these permissions while previous platforms
ignore them).

Configure now checks for socklen_t type (OS X does not define it).

Added an atexit function to run XPAFree. The aim here is to delete Unix socket files on exiting.

Under Windows, the Tcl event-handling code now blocks for 1/1000 of a second instead of not
blocking at all (which inadvertently used 100% of cpu).

Upgraded Tcl/Tk support to 8.4.

66

Made another round of checks was made through all instances of strcat, strcpy, etc. to look for
potential buffer overflows. Changed all instances of sprintf() to snprintf().

Class and name designators are now limited to 1024 characters, for no particular reason.

The obsolete $SAORD_BIN variable was being added to the path when searching for xpans. This is
no longer the case.

Fixed non-ANSI compiler errors in both xpa.c and xpans.c.

Fixed minor problems to support compilation with g++.

Ported to Intel icc and gcc 3.3 compilers.

Upgraded autoconf to 2.57. Included in this upgrade is a change that makes gcc the default compiler
(use "configure CC=cc" to change this). Also, by default, the Tcl shared object is no longer automatically
built if the Tcl libraries are used. Use the --enable-tclshlib switch in configure to enable this feature.

Changed license from public domain to GNU GPL.

Patch Release 2.1.4 (24 March 2003)
Made inet method unique, even when hosts are behind a firewall using the same ports (on different
local machines).

The initial connection from an xpa server to a local xpans now is controlled by a timeout (default 5
sec, controlled by XPA_CONNECT_TIMEOUT variable). This should prevent a hang on connect()
if the network is not set up correctly.

Fixed rare race condition when an XPA server callback performed its own XPAGet or XPASet call to
another XPA server.

Use POSIX O_NONBLOCK for non-blocking I/O in fcntl call if it exists, instead of O_NDELAY.

Patch Release 2.1.3 (26 September 2002)
Added -k [sec] switch to xpans to support sending one-byte keepalive messages from xpans to
registered xpa servers.

Added XPANSKeepAlive routine (and Tcl equivalent) to allow xpa servers to send a one-byte
keepalive message to xpans.

Patch Release 2.1.2 (18 July 2002)
The "-help" reserved command now also displays the XPA version, if no explicit sub-commands are
specified.

67

Change internal state of xpans proxy to save ip:port value of a server behind a NAT firewall. This is
required to give some hope of distinguishing multiple instances of ds9 running behind NAT.

Patch Release 2.1.1 (20 June 2002)
Added a version check between xpans and an access point, performed when it gets registered by an
XPA server. If the server has a version greater than the xpans version, a warning is issued by both
programs.

Added a boolean XPA_NSREGISTER environment variable to allow an XPA server to skip xpans
registration. The default is to register with the name server. If set to "false", the access point still is set
up but it is not registered with an xpans. It can be registered later on (using -remote or -proxy, for
example).

Fixed bug in which xpans was still listening on any interface when XPA_METHOD was localhost
(instead of just listening on localhost).

Public Release 2.1.0 (22 April 2002)
New features include:

Support for proxy access to XPA servers (e.g. ds9) situated behind a firewall (useful for NVO-type
applications).

Improved support for allowing remote machines access rights to the XPA access points (useful for
NVO-type applications).

Ability for XPAAccess() routine and xpaaccess program to contact XPA directly.

Support for a clipboard access point that allows clients to store ASCII state information in an
XPA-enabled server.

Improved support for Windows platform, as well as new support for Mac OSX.

Pre-Release 2.1.0e (2 April 2002)
Removed the environment variable generated by each XPA access point (of the form
XPA_name=method). The putenv() call was causing ds9 to crash under both Linux and LinuxPPC
during a socket operation. We suspect a bug in putenv but cannot prove it and this feature is not
essential, so ...

Pre-Release 2.1.0e (1 April 2002)
Fixed an uninitialized variable in xpamb which prevented it from working at all on some systems.

68

Changed xpamb switch from "-add" to "-data" (to store named data).

Changed how xpamb works with xpaget so that xpamb can return data from XPA access points as
well as from stored data. (Previous versions only returned stored data.) Now, you can retrieve stored data
explicitly using the -info and/or -data switches. For example:

 xpaget xpamb -info foo

will return info about the previously stored data named foo. If neither switch is present, then the name
is assumed to be an XPA access point.

Pre-Release 2.1.0e (25 March 2002)
Changed symbol for default port from "*" to "$port" to avoid a syntactical conflict between class:*
and machine:* when processing an XPA access point class:name specification. Thus, the default inet
method now is ’$host:$port’ instead of ’$host:*’.

Pre-Release 2.1.0e (19 March 2002)
Removed timeout check when reading data (in clients using xpaget and servers filling the data
buffer). We have more and more cases where we need to wait a long time to retrieve data (e.g., slow
networks or receiving data being compressed on the fly).

Moved call to sigaction(SIGCHLD,...) out of XPAOpen(), so that it is only executed when needed by
XPAGet()/XPASet() routines called from within xpans/proxy. But then changed logic to use a double
fork() instead of sigaction() to prevent zombies (Stevens Adv. Programming p 202).

Each XPA access point now generates an environment variable of the form XPA_name=method so
that children can communicate with the parent access point more easily.

Added version option to Tcl xparec:

 if [catch { xparec "" version } version] {
 puts "pre-2.1.0e"
 } else {
 puts [split $version .]
 }

to help differentiate between XPA versions within Tcl code.

Pre-Release 2.1.0e (14 February 2002)
Fixed client handling of out-of-sync messages.

69

Pre-Release 2.1.0e (11 February 2002)
Fixed client.c/xopen() so that it does not open an extra socket.

Fixed xpainfo/xopen() to prevent client from hanging waiting for ack.

Modified stest to generate xpaaccess points xpa, xpa1, c_xpa, and i_xpa (or more generally, , 1, c_, i)
to allow more flexible testing of templates. Also added -a for testing XPAAccess().

Beta Release 2.1.0b10 (31 January 2002)
Added support for Mac OSX/Darwin to configure file.

Beta Release 2.1.0b9 (26 January 2002)
Fixed bug in client library that caused XPAAccess() call to hang.

Beta Release 2.1.0b8 (4 January 2002)
Made modifications to Makefile.in to make releases easier.

Added instructions to Makefile.in so that xpa.h will always have correct #defines for
XPA_VERSION, XPA_MAJOR_VERSION, XPA_MINOR_VERSION, and
XPA_PATCH_LEVEL.

Beta Release 2.1.0b7 (21 December 2001)
Added -proxy switch to -remote sub-command to allow remote access through a firewall, using xpans
as a proxy server. The support for proxy processing required a change to the client/server protocol.
This means that new xpa servers will not work with old xpa clients (although new xpa clients will
work with old xpa servers). For details about proxy firewall support, see
http://hea-www.harvard.edu/RD/xpa/inet.html.

Fixed Tcl support for XPA under Windows/Cygwin by re-writing the code used to add XPA to the
Tcl event loop. This fix makes ds9 support for XPA much more stable under Windows.

Added the shutdown() call to XPA under Cygwin/Windows before closing send() sockets. It appears
that a Cygwin recv() socket call does not always sense when the other end closes the socket using
close(). This measure must be considered a hack, since the actual problem was never resolved.

Added code to protect accept() and select() calls from interrupts.

Extended syntax of the environment variable XPA_NSINET to:

70

 setenv XPA_NSINET host:port[,port[,port]]

to allow specification of the XPA access point port for xpans, as well as the proxy data port.

Modified xpans log file so that it contains the xpaset commands required to reconnect with xpa
servers.

xpans now deletes its Unix socket files.

Beta Release 2.1.0b6 (29 October 2001)
Implemented a reserve public access point named -clipboard so that clients can store ASCII state
information on any number of named clipboards. Clipboards of the same name created by clients on
different machines are kept separate. The syntax for creating a clipboard is:

 [data] | xpaset [server] -clipboard add|append [clipboard_name]
 xpaset -p [server] -clipboard delete [clipboard_name]
 xpaget [server] -clipboard [clipboard_name]

Use "add" to create a new clipboard or replace the contents of an existing one. Use "append" to
append to an existing clipboard.

Beta Release 2.1.0b5 (22 October 2001)
Use FD_SETSIZE instead of getdtablesize() to determine how many files to check during select();

Under Cygwin, the launch() routine now uses the Cygwin spawnvp() instead of fork()/exec() where
possible (i.e., if no stdfiles are being redirected). This is recommended by Cygwin’s (skimpy) on-line
documentation and seems to fix the problems ds9 had when starting xpans automatically.

Added error check to select() call in xpans.

Beta Release 2.1.0b4 (24 September 2001)
The launch() now can return an error code if the execv() system call fails (something system() does
not do).

INET socket calls between xpa clients and servers now will use localhost if they are on the same
machine. This protects against Linux systems where the hostname is hardwired (wrongly) in a DHCP
environment.

Beta Release 2.1.0b3 (6 September 2001)
Modified xpans so that, in the case of a firewall, it tries to correct the specified ip:port by matching
against the ip found in the socket packet at accept() time.

71

Replaced system() call used to start xpans automatically with a special launch() call, which performs
execvp() directly without going through sh. (launch() works under DOS and has fewer security problems.)

Fixed bug in xpans in which its xpa port was always being set to 14286.

Beta Release 2.1.0b2 (17 August 2001)
Added support for -remote command, which registers the access point in the XPA name server of the
specified remote server, and gives the remote server access rights to the access point. This is used, for
example, to give data servers xpa access to ds9 so that data can be sent to ds9 as a result of a
CGI-based Web query.

Reserved commands (except "-help" and "-version") now can only be executed on the machine on
which the xpa service is running (not through -remote servers).

Fixed bug in xpans in which a bad telnet command could hang the program.

Added -s [security file] to xpans to allow logging of all external connections.

Beta Release 2.1.0b1 (6 August 2001)
The xpaaccess client program and XPAAccess() client subroutine were modified so that an
access-type query can directly contact the xpa servers matching the requested xpa template, instead of
just querying the name server for registered access points. This avoid the race condition in which an
access point is registered but is not yet available, perhaps because the server has not yet entered its
event loop. Note that the calling sequence of the XPAAccess() routine was changed to return all
matching access points and their availability status (instead of just returning the number of registered
access points). Because of this, we are calling this a minor release instead of a patch.

Added support for XPA_PORT and XPA_PORTFILE environment variables to allow specification
of the port to be used by the command channel (and data channel, if an optional second port is
specified) for a given access point.

Added -m switch to xpaget, xpaset, xpainfo, xpaaccess to allow override of the XPA_METHOD
environment variable.

Changed the default name of the ACL file from xpa.acl to acls.xpa.

Fixed bug in which it was not possible to send a "set ACL" command to an XPA server which did not
have a receive callback (i.e., did not allow xpaset). The xpans program is one such server. It now is
possible to set the ACL on xpans.

We have discovered that Tcl support for datachan and cmdchan is broken under Windows due to an
unexplained incompatibility between Cygwin sockets and Win32 sockets. We therefore have
removed datachan and cmdchan from the Windows/Tcl support until further notice.

72

Extended the behavior of the XPA_DEFACL environment variable so that it can support more than
one acl, using a list of semi-colon delimited controls such as: setenv XPA_DEFACL ’*:* $host +; *:foo1
otherhost +’.

Fixed bug in which the class:name specifier "*:*" was erroneously trying to access the xpans name
server, instead of accessing all access points.

Support TMPDIR and TMP environment variables as well as XPA_TMPDIR.

Patch Release 2.0.5 (10 November 2000)
Added support for Tcl on Windows where there is no select()-based event loop (i.e., where there is no
Tcl_CreateFileHandler call in Tcl)

Minor fixes in Makefile for installing on Windows

Minor compiler fixes from gcc -Wall.

Patch Release 2.0.4 (20 September 2000)
Removed extraneous include of varargs.h from find.c.

Ported to SGI C compiler, which caught lots of unused variables, etc.

Ported to Cygwin/Windows, which required that we change socket read() and write() calls to recv()
and send() respectively. Also had to ensure that we only did socket I/O on sockets (no fileio).

Patch Release 2.0.3 (15 June 2000)
Fixed the client XPASet() and XPASetFd() calls to handle the specified max number of connections
(they were ignoring this argument, leading to memory overwrites).

Fixed Makefile.in so that CFLAGS and LDFLAGS are not hard-wired values.

Fixed word.h to load malloc.h and stdlib.h only if they exist.

Documentation fixes to programs.html (in xpaaccess) and client.html (XPANSLookup).

Added explicit typecast to strlen() argument to MAX #define in XPAClientStart (strlen() is unsigned
in Linux, which can break MAX).

Removed bogus Imakefile from directory.

Changed directory name to include patch level (i.e., xpa-2.0.3).

73

Patch Release 2.0.2 (9 September 1999)
Fixed server mode (-s) in the xpaset program by properly cleaning up the input buffers (sending
commands and data in server mode was broken).

Patch Release 2.0.1 (6 August 1999)
Fixed the Tcl binding code (tcl.c) for 64-bit machines (Dec Alpha) (erroneously used %x instead of
%p when converting pointers to ASCII).

Got rid of a few compiler warnings on 64-bit machines (a few are unavoidable since we must cast int
to void * and back when passing around client data).

Public Release 2.0 (27 May 1999)
"a new day with no mistakes ... yet"

Index to the XPA Help Pages

Last updated: 22 April 2002

74

XPACode: Where to Find Example/Test Code

Summary
The XPA source code directory contains two test programs, stest.c, and ctest.c that can serve as examples
for writing XPA servers and clients, respectively. They also can be used to test various features of XPA.

Description
To build the XPA test programs, execute:

 make All

in the XPA source directory to generate the stest and ctest programs. (NB: this should work on all
platforms, although we have had problems with unresolved externals on one Sun/Solaris machine, for
reasons still unknown.)

The stest program can be executed with no arguments to start an XPA server that contains the access
points: xpa, xpa1, c_xpa (containing sub-commands cmd1 and cmd2), and i_xpa. You then can use xpaset
and xpaget to interact with these access points:

 cat xpa.c | xpaset xpa # send to xpa
 cat xpa.c | xpaset "xpa*" # send to xpa and xpa1
 xpaget xpa # receive from xpa
 xpaget xpa* # receive from xpa and xpa1

etc. You also can use ctest to do the same thing, or to iterate:

 ctest -s -l 100 xpa # send to xpa 100 times
 ctest -s -l 100 "xpa*" # send to xpa and xpa1 100 times
 ctest -g -l 100 xpa # receive from xpa 100 times
 ctest -g -l 100 "xpa*" # receive from xpa and xpa1 100 times

More options are available: see the stest.c and ctest.c code itself, which were used extensively to debug
XPA.

The file test.tcl in the XPA source directory gives examples for using the XPATclInterface.

Go to XPA Help Index

Last updated: September 10, 2003

75

XPA Changes: Changes For Users from XPA 1.0 and 2.0

Summary
This document describes changes that will affect users who migrate from XPA 1.0 to XPA 2.0.

Description
There have been a few changes that affect users who upgrade XPA from version 1.0 to version 2.0. These
changes are detailed below.

XPA commands no longer have a resolver routine (this is open to negotiations, but we decided the
idea was dumb). For the SAOtng program, this means that you must explicitly specify the access
point, i.e.,:

 cat foo.fits | xpaset SAOtng fits

instead of:

 cat foo.fits | xpaset SAOtng

By default, xpaset, xpaget, etc. now wait for the server callback to complete; i.e., the old -W is
implied (and the switch is ignored). This allows support for better error handling. If you want xpaset,
etc. to return before the callback is complete, use -n switch:

 echo "file foo.fits" | xpaset -n SAOtng

The old -w switch in xpaset and xpaget is no longer necessary (and is ignored), since you can have
more than one process communicating with an xpa access point at one time.

The new -p switch on xpaset means you need not read from stdout:

 xpaset -p SAOtng colormap I8

will send the paramlist to the SAOtng callback without reading from stdin.

Go to XPA Help Index

Last updated: September 10, 2003

76

XPAConvert: Converting the XPA API to 2.0

Summary
This document describes tips for converting from xpa 1.0 (Xt-based xpa) to xpa 2.0 (socket-based xpa).

Description
The following are tips for converting from xpa 1.0 (Xt-based xpa) to xpa 2.0 (socket-based xpa). The
changes are straight-forward and almost can be done automatically (we used editor macros for most of the
conversion).

The existence of the cpp XPA_VERSION directive to distinguish between 1.0 (where it is not
defined) and 2.0 (where it is defined).

Remove the first widget argument from all send and receive server callbacks. Also change first 2
arguments from XtPointer to void *. For example:

#ifdef XPA_VERSION
static void XPAReceiveFile(client_data, call_data, paramlist, buf, len)
 void *client_data;
 void *call_data;
 char *paramlist;
 char *buf;
 int len;
#else
static void XPAReceiveFile(w, client_data, call_data, paramlist, buf, len)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 char *paramlist;
 char *buf;
 int len;
#endif

Server callbacks should be declared as returning int instead of void. They now should return 0 for no
errors, -1 for error.

The mode flags have changed when defining XPA server callbacks. The old S flag (save buffer) is
replaced by freebuf=false. The old E flag (empty buffer is OK) is no longer used (it was an artifact of
the X implementation).

Change NewXPACommand() to XPAcmdNew(), with the new calling sequence:

 xpa = NewXPACommand(toplevel, NULL, prefix, NULL);

is changed to:

77

 xpa = XPACmdNew(xclass, name);

Change the AddXPACommand() subroutine name to XPACmdAdd (with the same calling sequence):

 AddXPACommand(xpa, "file",
 "\tdisplay a new file\n\t\t requires: filename",
 NULL, NULL, NULL, XPAReceiveFile, text, NULL);

is changed to:

 XPACmdAdd(xpa, "file",
 "\tdisplay a new file\n\t\t requires: filename",
 NULL, NULL, NULL, XPAReceiveFile, text, NULL);

The XPAXtAppInput() routine should be called just before XtAppMainLoop() to add xpa fds to the
Xt event loop:

 /* add the xpas to the Xt loop */
 XPAXtAddInput(app, NULL);

 /* process events */
 XtAppMainLoop(app);

Change NewXPA() to XPANew() and call XPAXtAddInput() if the XtAppMainLoop routine already
has been entered:

 xpa = NewXPA(saotng->xim->toplevel, prefix, xparoot,
 "FITS data or image filename\n\t\t options: file type",
 XPASendData, new, NULL,
 XPAReceiveData, new, "SE");

is changed to:

 sprintf(tbuf, "%s.%s", prefix, xparoot);
 xpa = XPANew("SAOTNG", tbuf,
 "FITS data or image filename\n\t\t options: file type",
 XPASendData, new, NULL,
 XPAReceiveData, new, "SE");
 XPAXtAddInput(XtWidgetToApplicationContext(saotng->xim->toplevel), xpa);

Change XPAInternalReceiveCommand() to XPACmdInternalReceive() remove first argument in the
calling sequence):

 XPAInternalReceiveCommand(im->saotng->xim->toplevel,
 im->saotng, im->saotng->commands,
 "zoom reset", NULL, 0);

is changed to:

 XPACmdInternalReceive(im->saotng, im->saotng->commands,
 "zoom reset", NULL, 0);

78

Change DestroyXPA to XPAFree:

 DestroyXPA(im->dataxpa);

is changed to:

 XPAFree(im->dataxpa);

Go to XPA Help Index

Last updated: September 10, 2003

79

XPAName: What does XPA stand for?

Summary
What does XPA stand for? Who knows anymore!

Description
What does XPA stand for? Dunno! The XPA messaging system originally was built on top of the X
Window System and XPA was the mnemonic for X Public Access, to emphasize that we were providing
public access to previously private data and algorithms in Xt programs. Now that XPA no longer is tied to
X, it can be argued that we ought to change the name (how about SPAM: simple public access
mechanism), but XPA is in wide-spread use in the astronomical community of its birth, and the name has
taken on a life of its own. If anyone can think of what XPA now means, please let us know.

If you think this is bad, consider the MMT Telescope on Mount Hopkins, Arizona. When first installed
twenty years ago, it featured an array of six 72-inch diameter mirrors. from which came its name: the
Multiple Mirror Telescope. In spring of 1999, these mirrors were replaced by a single 21 and 1/2 -foot
diameter primary mirror, the largest single-piece glass reflector on the North American continent. And
now MMT stands for ... MMT!

Go to XPA Help Index

Last updated: September 10, 2003

80

	
	XPA: Public Access to Data and Algorithms
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPAIntro: Introduction to the XPA Messaging System
	Summary
	Description
	
	
	Last updated: March 10, 2007

	
	XPATemplate: Access Point Names and Templates
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPACommon: Getting Common Information About Access Points
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPAMethod: XPA Communication Methods
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPAInet: XPA Communication Between Hosts
	Summary
	Description
	Manual Registration
	Remote Registration
	XPANS Proxy Registration
	
	
	Last updated: September 10, 2003

	
	XPAUsers: Distinguishing Users
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPA Programs
	Summary
	xpaset: send data to one or more XPA servers
	xpaget: retrieve data from one or more XPA servers
	xpainfo: send short message to one or more XPA servers
	xpaaccess: see if template matches registered XPA access points
	
	
	Last updated: September 10, 2003

	
	xpamb: the XPA Message Bus
	Summary
	Description
	Options
	
	
	Last updated: September 10, 2003

	
	xpans: the XPA Name Server
	Summary
	
	
	Last updated: January 24, 2005

	
	XPAServer: The XPA Server-side Programming Interface
	Summary
	Introduction to XPA Server Programming
	Introduction
	XPANew: create a new XPA access point
	XPACmdNew: create a new XPA public access point for commands
	XPACmdAdd: add a command to an XPA command public access point
	XPACmdDel: remove a command from an XPA command public access point
	XPAInfoNew: define an XPA info public access point
	XPAFree: remove an XPA public access point
	XPAMainLoop: optional main loop for XPA
	XPAPoll: execute existing XPA requests
	XPAAtExit: install exit handler
	XPACleanup: release reserved XPA memory
	XPA Server Callback Macros
	XPA Race Conditions
	
	
	Last updated: September 10, 2003

	
	Xpaoom: What happens when XPA runs out of memory?
	Summary
	Description
	
	
	Last updated: April 7, 2009

	
	XPAClient: The XPA Client-side Programming Interface
	Summary
	Introduction to XPA Client Programming
	Introduction
	XPAGet: retrieve data from one or more XPA servers
	XPASet: send data to one or more XPA servers
	XPAInfo: send short message to one or more XPA servers
	XPAGetFd: retrieve data from one or more XPA servers and write to files
	XPASetFd: send data from stdin to one or more XPA servers
	XPAOpen: allocate a persistent client handle
	XPAClose: close a persistent XPA client handle
	XPANSLookup: lookup registered XPA access points
	XPAAccess: return XPA access points matching template (XPA 2.1 and above)
	
	
	Last updated: March 10, 2007

	
	XPAXt: the XPA Interface to Xt (X Windows)
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPATcl: the XPA Interface to the Tcl/Tk Environment
	Summary
	Server Routines
	Client Routines
	Description
	XPANew
	XPARec
	
	
	Last updated: September 10, 2003

	
	XPAEnv: Environment Variables for XPA Messaging
	Summary
	Description
	
	
	Last updated: December 23, 2009

	
	XPAAcl: Access Control for XPA Messaging
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPA ChangeLog
	Public Release 2.1.15 (July 23, 2013)
	Public Release 2.1.14 (June 7, 2012)
	Public Release 2.1.13 (April 14, 2011)
	Public Release 2.1.12 (January 26, 2010)
	Public Release 2.1.11 (December 7, 2009)
	Public Release 2.1.10 (September 1, 2009)
	Internal Release 2.1.9
	Public Release 2.1.8 (1 November 2007)
	Patch Release 2.1.7b[1,2] (Feb 22, 2006; March 8, 2007)
	Patch Release 2.1.6 (4 May 2005)
	Patch Release 2.1.5 (12 January 2004)
	Patch Release 2.1.4 (24 March 2003)
	Patch Release 2.1.3 (26 September 2002)
	Patch Release 2.1.2 (18 July 2002)
	Patch Release 2.1.1 (20 June 2002)
	Public Release 2.1.0 (22 April 2002)
	Pre-Release 2.1.0e (2 April 2002)
	Pre-Release 2.1.0e (1 April 2002)
	Pre-Release 2.1.0e (25 March 2002)
	Pre-Release 2.1.0e (19 March 2002)
	Pre-Release 2.1.0e (14 February 2002)
	Pre-Release 2.1.0e (11 February 2002)
	Beta Release 2.1.0b10 (31 January 2002)
	Beta Release 2.1.0b9 (26 January 2002)
	Beta Release 2.1.0b8 (4 January 2002)
	Beta Release 2.1.0b7 (21 December 2001)
	Beta Release 2.1.0b6 (29 October 2001)
	Beta Release 2.1.0b5 (22 October 2001)
	Beta Release 2.1.0b4 (24 September 2001)
	Beta Release 2.1.0b3 (6 September 2001)
	Beta Release 2.1.0b2 (17 August 2001)
	Beta Release 2.1.0b1 (6 August 2001)
	Patch Release 2.0.5 (10 November 2000)
	Patch Release 2.0.4 (20 September 2000)
	Patch Release 2.0.3 (15 June 2000)
	Patch Release 2.0.2 (9 September 1999)
	Patch Release 2.0.1 (6 August 1999)
	Public Release 2.0 (27 May 1999)
	
	
	Last updated: 22 April 2002

	
	XPACode: Where to Find Example/Test Code
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPA Changes: Changes For Users from XPA 1.0 and 2.0
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPAConvert: Converting the XPA API to 2.0
	Summary
	Description
	
	
	Last updated: September 10, 2003

	
	XPAName: What does XPA stand for?
	Summary
	Description
	
	
	Last updated: September 10, 2003

