1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
|
/*
*class++
* Name:
* PolyMap
* Purpose:
* Map coordinates using polynomial functions.
* Constructor Function:
c astPolyMap
f AST_POLYMAP
* Description:
* A PolyMap is a form of Mapping which performs a general polynomial
* transformation. Each output coordinate is a polynomial function of
* all the input coordinates. The coefficients are specified separately
* for each output coordinate. The forward and inverse transformations
* are defined independantly by separate sets of coefficients. If no
* inverse transformation is supplied, the default behaviour is to use
* an iterative method to evaluate the inverse based only on the forward
* transformation (see attribute IterInverse).
* Inheritance:
* The PolyMap class inherits from the Mapping class.
* Attributes:
* In addition to those attributes common to all Mappings, every
* PolyMap also has the following attributes:
*
* - IterInverse: Provide an iterative inverse transformation?
* - NiterInverse: Maximum number of iterations for iterative inverse
* - TolInverse: Target relative error for iterative inverse
* Functions:
c In addition to those functions applicable to all Objects, the
c following functions may also be applied to all Mappings:
f In addition to those routines applicable to all Objects, the
f following routines may also be applied to all Mappings:
*
c - astPolyCoeffs: Retrieve the coefficients of a PolyMap transformation
c - astPolyTran: Fit a PolyMap inverse or forward transformation
f - AST_POLYCOEFFS: Retrieve the coefficients of a PolyMap transformation
f - AST_POLYTRAN: Fit a PolyMap inverse or forward transformation
* Copyright:
* Copyright (C) 2017 East Asian Observatory.
* Copyright (C) 1997-2006 Council for the Central Laboratory of the
* Research Councils
* Copyright (C) 2011 Science & Technology Facilities Council.
* All Rights Reserved.
* Licence:
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* License along with this program. If not, see
* <http://www.gnu.org/licenses/>.
* Authors:
* DSB: D.S. Berry (Starlink)
* History:
* 27-SEP-2003 (DSB):
* Original version.
* 13-APR-2005 (DSB):
* Changed the keys used by the Dump/astLoadPolyMap functions. They
* used to exceed 8 characters and consequently caused problems for
* FitsChans.
* 20-MAY-2005 (DSB):
* Correct the indexing of keywords produced in the Dump function.
* 20-APR-2006 (DSB):
* Guard against undefined transformations in Copy.
* 10-MAY-2006 (DSB):
* Override astEqual.
* 4-JUL-2008 (DSB):
* Fixed loop indexing problems in Equal function.
* 27-MAY-2011 (DSB):
* Added public method astPolyTran.
* 18-JUL-2011 (DSB):
* - Added attributes IterInverse, NiterInverse and TolInverse.
* - Do not report an error if astPolyTran fails to fit an inverse.
* 15-OCT-2011 (DSB):
* Improve argument checking and error reporting in PolyTran
* 8-MAY-2014 (DSB):
* Move to using CMinPack for minimisations.
* 11-NOV-2016 (DSB):
* - Fix bug in MapMerge that could cause a seg fault. It did not
* check that the PolyMap had a defined transformation before accessing
* the transformation's coefficient array.
* - Fix similar bugs in Equal that could cause seg faults.
* 15-MAR-2017 (DSB):
* - Change the GetTranForward and GetTranInverse functions so that they
* take into account the state of the Invert attribute.
* - Improve docs for the IterInverse attribute to explain that the
* inverse transformation replaced is always the original inverse
* transformation, as defined by the arguments supplied to the PolyMap
* constructor, regardless of the state of the Invert attribute.
* 17-MAR-2017 (DSB):
* - Add the astPolyCoeffs method.
* 30-MAR-2017 (DSB):
* Modify the astPolyTran method so that it can be used by the
* ChebyMap class to determine new transformations implemented as
* Chebyshev polynomials.
* 27-JUN-2017 (DSB):
* In SamplePoly1D/2D ensure the final sample on each axis does not
* go above the supplied upper bound. This can happen due to rounding
* error. This is important for ChebyMaps since points outside the
* bounds are set bad when transformed using a ChebyMap, causing NaNs
* to be generated in lmder1 (cminpack minimisation function).
* 3-JUL-2017 (DSB):
* Within FitPoly1D and FitPoly2D, use an initial guess that represents
* a unit mapping between normalised input and output values, rather
* than unnormalised PolyMap values. This is in case the PolyMap being
* fitted includes a change of scale (e.g. the PolyMap input is in "mm"
* but the output is in "rads" and includes some large scaling factor
* to do the conversion).
* 9-JAN-2018 (DSB):
* Correct Transform to take account of AST__BAD coeffs correctly.
* Previously bad coeffs could generate NaN output values.
* 27-APR-2018 (DSB):
* When calculating the iterative inverse, use an initial guess based
* on the linear truncation of the PolyMap rather than a UnitMap.
* 3-MAY-2018 (DSB):
* Clear the IterInverse attribute in the PolyMap returned by
* astPolyTran (why would you want to use the iterative inverse if
* you have just created an inverse fit?).
* 4-MAY-2018 (DSB):
* Fix various places where there was confusion over whether the
* "forward transformation" refers to the forward transformation
* of the original uninverted PolyMap, or the current forward
* transformation of the PolyMap (i.e. taking the "Invert" flag into
* account).
*class--
*/
/* Module Macros. */
/* ============== */
/* Set the name of the class we are implementing. This indicates to
the header files that define class interfaces that they should make
"protected" symbols available. */
#define astCLASS PolyMap
/* Include files. */
/* ============== */
/* Interface definitions. */
/* ---------------------- */
#include "globals.h" /* Thread-safe global data access */
#include "error.h" /* Error reporting facilities */
#include "memory.h" /* Memory allocation facilities */
#include "object.h" /* Base Object class */
#include "pointset.h" /* Sets of points/coordinates */
#include "matrixmap.h" /* Matrix multiplication mappings */
#include "shiftmap.h" /* Shift of origin mappings */
#include "mapping.h" /* Coordinate mappings (parent class) */
#include "cmpmap.h" /* Compound mappings */
#include "polymap.h" /* Interface definition for this class */
#include "unitmap.h" /* Unit mappings */
#include "cminpack/cminpack.h" /* Levenberg - Marquardt minimization */
#include "pal.h" /* SLALIB function definitions */
/* Error code definitions. */
/* ----------------------- */
#include "ast_err.h" /* AST error codes */
/* C header files. */
/* --------------- */
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <float.h>
/* Module Variables. */
/* ================= */
/* Address of this static variable is used as a unique identifier for
member of this class. */
static int class_check;
/* Pointers to parent class methods which are extended by this class. */
static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static const char *(* parent_getattrib)( AstObject *, const char *, int * );
static int (* parent_testattrib)( AstObject *, const char *, int * );
static void (* parent_clearattrib)( AstObject *, const char *, int * );
static void (* parent_setattrib)( AstObject *, const char *, int * );
static int (* parent_getobjsize)( AstObject *, int * );
#if defined(THREAD_SAFE)
static int (* parent_managelock)( AstObject *, int, int, AstObject **, int * );
#endif
#ifdef THREAD_SAFE
/* Define how to initialise thread-specific globals. */
#define GLOBAL_inits \
globals->Class_Init = 0; \
globals->GetAttrib_Buff[ 0 ] = 0;
/* Create the function that initialises global data for this module. */
astMAKE_INITGLOBALS(PolyMap)
/* Define macros for accessing each item of thread specific global data. */
#define class_init astGLOBAL(PolyMap,Class_Init)
#define class_vtab astGLOBAL(PolyMap,Class_Vtab)
#define getattrib_buff astGLOBAL(LutMap,GetAttrib_Buff)
#include <pthread.h>
#else
static char getattrib_buff[ 101 ];
/* Define the class virtual function table and its initialisation flag
as static variables. */
static AstPolyMapVtab class_vtab; /* Virtual function table */
static int class_init = 0; /* Virtual function table initialised? */
#endif
/* External Interface Function Prototypes. */
/* ======================================= */
/* The following functions have public prototypes only (i.e. no
protected prototypes), so we must provide local prototypes for use
within this module. */
AstPolyMap *astPolyMapId_( int, int, int, const double[], int, const double[], const char *, ... );
/* Prototypes for Private Member Functions. */
/* ======================================== */
static AstMapping *LinearGuess( AstPolyMap *, int * );
static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
static AstPolyMap **GetJacobian( AstPolyMap *, int * );
static AstPolyMap *PolyTran( AstPolyMap *, int, double, double, int, const double *, const double *, int * );
static double **SamplePoly1D( AstPolyMap *, int, double **, double, double, int, int *, double[2], int * );
static double **SamplePoly2D( AstPolyMap *, int, double **, const double *, const double *, int, int *, double[4], int * );
static double *FitPoly1D( AstPolyMap *, int, int, double, int, double **, double[2], int *, double *, int * );
static double *FitPoly2D( AstPolyMap *, int, int, double, int, double **, double[4], int *, double *, int * );
static int Equal( AstObject *, AstObject *, int * );
static int GetObjSize( AstObject *, int * );
static int GetTranForward( AstMapping *, int * );
static int GetTranInverse( AstMapping *, int * );
static int MPFunc1D( void *, int, int, const double *, double *, double *, int, int );
static int MPFunc2D( void *, int, int, const double *, double *, double *, int, int );
static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
static int ReplaceTransformation( AstPolyMap *, int, double, double, int, const double *, const double *, int * );
static void Copy( const AstObject *, AstObject *, int * );
static void Delete( AstObject *obj, int * );
static void Dump( AstObject *, AstChannel *, int * );
static void FitPoly1DInit( AstPolyMap *, int, double **, AstMinPackData *, double *, int *);
static void FitPoly2DInit( AstPolyMap *, int, double **, AstMinPackData *, double *, int *);
static void FreeArrays( AstPolyMap *, int, int * );
static void IterInverse( AstPolyMap *, AstPointSet *, AstPointSet *, int * );
static void LMFunc1D( const double *, double *, int, int, void * );
static void LMFunc2D( const double *, double *, int, int, void * );
static void LMJacob1D( const double *, double *, int, int, void * );
static void LMJacob2D( const double *, double *, int, int, void * );
static void PolyCoeffs( AstPolyMap *, int, int, double *, int *, int * );
static void PolyPowers( AstPolyMap *, double **, int, const int *, double **, int, int, int * );
static void StoreArrays( AstPolyMap *, int, int, const double *, int * );
#if defined(THREAD_SAFE)
static int ManageLock( AstObject *, int, int, AstObject **, int * );
#endif
static const char *GetAttrib( AstObject *, const char *, int * );
static int TestAttrib( AstObject *, const char *, int * );
static void ClearAttrib( AstObject *, const char *, int * );
static void SetAttrib( AstObject *, const char *, int * );
static int GetIterInverse( AstPolyMap *, int * );
static int TestIterInverse( AstPolyMap *, int * );
static void ClearIterInverse( AstPolyMap *, int * );
static void SetIterInverse( AstPolyMap *, int, int * );
static int GetNiterInverse( AstPolyMap *, int * );
static int TestNiterInverse( AstPolyMap *, int * );
static void ClearNiterInverse( AstPolyMap *, int * );
static void SetNiterInverse( AstPolyMap *, int, int * );
static double GetTolInverse( AstPolyMap *, int * );
static int TestTolInverse( AstPolyMap *, int * );
static void ClearTolInverse( AstPolyMap *, int * );
static void SetTolInverse( AstPolyMap *, double, int * );
/* Member functions. */
/* ================= */
static void ClearAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* ClearAttrib
* Purpose:
* Clear an attribute value for a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* void ClearAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* PolyMap member function (over-rides the astClearAttrib protected
* method inherited from the Mapping class).
* Description:
* This function clears the value of a specified attribute for a
* PolyMap, so that the default value will subsequently be used.
* Parameters:
* this
* Pointer to the PolyMap.
* attrib
* Pointer to a null-terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstPolyMap *this; /* Pointer to the PolyMap structure */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Check the attribute name and clear the appropriate attribute. */
/* IterInverse. */
/* ------------ */
if ( !strcmp( attrib, "iterinverse" ) ) {
astClearIterInverse( this );
/* NiterInverse. */
/* ------------- */
} else if ( !strcmp( attrib, "niterinverse" ) ) {
astClearNiterInverse( this );
/* TolInverse. */
/* ----------- */
} else if ( !strcmp( attrib, "tolinverse" ) ) {
astClearTolInverse( this );
/* If the attribute is still not recognised, pass it on to the parent
method for further interpretation. */
} else {
(*parent_clearattrib)( this_object, attrib, status );
}
}
static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
/*
* Name:
* Equal
* Purpose:
* Test if two PolyMaps are equivalent.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* int Equal( AstObject *this, AstObject *that, int *status )
* Class Membership:
* PolyMap member function (over-rides the astEqual protected
* method inherited from the astMapping class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* two PolyMaps are equivalent.
* Parameters:
* this
* Pointer to the first Object (a PolyMap).
* that
* Pointer to the second Object.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if the PolyMaps are equivalent, zero otherwise.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstPolyMap *that;
AstPolyMap *this;
int i, j, k;
int nin;
int nout;
int result;
int tmp;
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain pointers to the two PolyMap structures. */
this = (AstPolyMap *) this_object;
that = (AstPolyMap *) that_object;
/* Check the second object is a PolyMap. We know the first is a
PolyMap since we have arrived at this implementation of the virtual
function. */
if( astIsAPolyMap( that ) ) {
/* Get the number of inputs and outputs and check they are the same for both. */
nin = astGetNin( this );
nout = astGetNout( this );
if( astGetNin( that ) == nin && astGetNout( that ) == nout ) {
/* If the Invert flags for the two PolyMaps differ, it may still be possible
for them to be equivalent. First compare the PolyMaps if their Invert
flags are the same. In this case all the attributes of the two PolyMaps
must be identical. */
if( astGetInvert( this ) == astGetInvert( that ) ) {
/* Assume they are the same until we find a difference. */
result = 1;
/* The "_f" and "_i" suffixes in the PolyMap structure array names refer
to the forward and inverse transformations of the original uninverted
PolyMap. So we need to ensure the "nout" and "nin" values also refer
to the uninverted values. So if the PolyMaps are inverted, swap nout
and nin. */
if( astGetInvert( this ) ) {
tmp = nin;
nin = nout;
nout = tmp;
}
/* Check properties of the forward transformation. */
if( this->ncoeff_f && that->ncoeff_f ) {
for( i = 0; i < nout && result; i++ ) {
if( this->ncoeff_f[ i ] != that->ncoeff_f[ i ] ){
result = 0;
}
}
} else if( this->ncoeff_f || that->ncoeff_f ) {
result = 0;
}
if( this->mxpow_f && that->mxpow_f ) {
for( i = 0; i < nout && result; i++ ) {
if( this->mxpow_f[ i ] != that->mxpow_f[ i ] ){
result = 0;
}
}
} else if( this->mxpow_f || that->mxpow_f ) {
result = 0;
}
if( this->coeff_f && that->coeff_f ) {
for( i = 0; i < nout && result; i++ ) {
for( j = 0; j < this->ncoeff_f[ i ] && result; j++ ) {
if( !astEQUAL( this->coeff_f[ i ][ j ],
that->coeff_f[ i ][ j ] ) ) {
result = 0;
}
}
}
} else if( this->coeff_f || that->coeff_f ) {
result = 0;
}
if( this->power_f && that->power_f ) {
for( i = 0; i < nout && result; i++ ) {
for( j = 0; j < this->ncoeff_f[ i ] && result; j++ ) {
for( k = 0; k < nin && result; k++ ) {
if( this->power_f[ i ][ j ][ k ] !=
that->power_f[ i ][ j ][ k ] ) {
result = 0;
}
}
}
}
} else if( this->power_f || that->power_f ) {
result = 0;
}
/* Check properties of the inverse transformation. */
if( this->ncoeff_i && that->ncoeff_i ) {
for( i = 0; i < nout && result; i++ ) {
if( this->ncoeff_i[ i ] != that->ncoeff_i[ i ] ){
result = 0;
}
}
} else if( this->ncoeff_i || that->ncoeff_i ) {
result = 0;
}
if( this->mxpow_i && that->mxpow_i ) {
for( i = 0; i < nout && result; i++ ) {
if( this->mxpow_i[ i ] != that->mxpow_i[ i ] ){
result = 0;
}
}
} else if( this->mxpow_i || that->mxpow_i ) {
result = 0;
}
if( this->coeff_f && that->coeff_f ) {
for( i = 0; i < nout && result; i++ ) {
for( j = 0; j < this->ncoeff_f[ i ] && result; j++ ) {
if( !astEQUAL( this->coeff_f[ i ][ j ],
that->coeff_f[ i ][ j ] ) ) {
result = 0;
}
}
}
} else if( this->coeff_f || that->coeff_f ) {
result = 0;
}
if( this->power_f && that->power_f ) {
for( i = 0; i < nout && result; i++ ) {
for( j = 0; j < this->ncoeff_f[ i ] && result; j++ ) {
for( k = 0; k < nin && result; k++ ) {
if( this->power_f[ i ][ j ][ k ] !=
that->power_f[ i ][ j ][ k ] ) {
result = 0;
}
}
}
}
} else if( this->power_f || that->power_f ) {
result = 0;
}
/* If the Invert flags for the two PolyMaps differ, the attributes of the two
PolyMaps must be inversely related to each other. */
} else {
/* In the specific case of a PolyMap, Invert flags must be equal. */
result = 0;
}
}
}
/* If an error occurred, clear the result value. */
if ( !astOK ) result = 0;
/* Return the result, */
return result;
}
static double *FitPoly1D( AstPolyMap *this, int forward, int nsamp, double acc,
int order, double **table, double scales[2], int *ncoeff,
double *racc, int *status ){
/*
* Name:
* FitPoly1D
* Purpose:
* Fit a (1-in,1-out) polynomial to a supplied set of data.
* Type:
* Private function.
* Synopsis:
* double *FitPoly1D( AstPolyMap *this, int forward, int nsamp, double acc,
* int order, double **table, double scales[2], int *ncoeff,
* double *racc, int *status )
* Description:
* This function fits a least squares 1D polynomial curve to the
* positions in a supplied table, and returns the coefficients of a
* PolyMap to describe the fit. For the purposes of this function,
* the input to the fit is refered to as x1 and the output as y1. So
* the returned coefficients describe a PolyMap with forward
* transformation:
*
* y1 = P1( x1 )
* Parameters:
* this
* Pointer to the PolyMap.
* forward
* Non-zero if the forward transformation of "this" is being
* replaced. Zero if the inverse transformation of "this" is being
* replaced.
* nsamp
* The number of (x1,y1) positions in the supplied table.
* acc
* The required accuracy, expressed as a geodesic distance within
* the polynomials output space (not the normalised tabular space).
* order
* The maximum power (plus one) of x1 within P1. So for instance, a
* value of 3 refers to a quadratic polynomial.
* table
* Pointer to an array of 2 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the normalised and sampled
* values for x1 and y1 in that order.
* scales
* Array holding the scaling factors used to produced the normalised
* values in the two columns of the table. Multiplying the normalised
* table values by the scale factor produces input or output axis
* values for the returned PolyMap
* ncoeff
* Pointer to an int in which to return the number of coefficients
* described by the returned array.
* racc
* Pointer to a double in which to return the achieved accuracy
* (which may be greater than "acc").
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to an array of doubles defining the polynomial in the
* form required by the PolyMap contructor. The number of coefficients
* is returned via "ncoeff". If the polynomial could not be found,
* then NULL is returned. The returned pointer should be freed using
* astFree when no longer needed.
*/
/* Local Variables: */
AstMinPackData data;
double *coeffs;
double *pc;
double *pr;
double *pxp1;
double *result;
double *work1;
double *work2;
double *work4;
double f1;
double f2;
double maxterm;
double term;
double tv;
int *work3;
int info;
int k;
int ncof;
int w1;
/* Initialise returned value */
result = NULL;
*ncoeff = 0;
*racc = 10*acc;
/* Check inherited status */
if( !astOK ) return result;
/* Number of coefficients per poly. */
ncof = order;
/* Initialise the elements of the structure. */
data.order = order;
data.nsamp = nsamp;
data.init_jac = 1;
data.xp1 = astMalloc( nsamp*order*sizeof( double ) );
data.xp2 = NULL;
data.y[ 0 ] = table[ 1 ];
data.y[ 1 ] = NULL;
/* Work space to hold coefficients. */
coeffs = astMalloc( ncof*sizeof( double ) );
/* Other work space. */
work1 = astMalloc( nsamp*sizeof( double ) );
work2 = astMalloc( ncof*nsamp*sizeof( double ) );
work3 = astMalloc( ncof*sizeof( int ) );
work4 = astMalloc( (5*ncof+nsamp)*sizeof( double ) );
if( astOK ) {
/* Find all the required powers of x1 and store them in the "xp1"
component of the data structure. The required initialisation is done
differently for different subclasses of PolyMap, so we need to wrap
it up in a virtual function. */
astFitPoly1DInit( this, forward, table, &data, scales );
/* The initial guess at the coefficient values represents a unit
transformation in (normalised) tabulated (x,y) values. Using normalised
values means that we are, effectively, including a guess at the linear
scaling factor between input and output of the PolyMap (e.g. the PolyMap
may have inputs in mm and outputs in radians). */
for( k = 0; k < ncof; k++ ) coeffs[ k ] = 0.0;
coeffs[ 1 ] = 1.0;
/* Find the best coefficients */
info = lmder1( MPFunc1D, &data, nsamp, ncof, coeffs, work1, work2, nsamp,
sqrt(DBL_EPSILON), work3, work4, (5*ncof+nsamp) );
if( info == 0 ) astError( AST__MNPCK, "astPolyMap(PolyTran): Minpack error "
"detected (possible programming error).", status );
/* Return the achieved accuracy. The "work1" array holds the normalised Y
residuals at each tabulated point. */
pr = work1;
tv = 0.0;
for( k = 0; k < nsamp; k++,pr++ ) tv += (*pr)*(*pr);
*racc = scales[ 1 ]*sqrt( tv/nsamp );
/* The best fitting polynomial coefficient found above relate to the
polynomial between the scaled positions stored in "table". These
scaled positions are related to PolyMap input/output axis values via
the scale factors supplied in "scales". Find the initial factor for the
current output. */
f1 = scales[ 1 ];
f2 = 1.0;
/* Look at each coefficient. */
pc = coeffs;
for( w1 = 0; w1 < order; w1++,pc++ ) {
/* Get a pointer to the powers of X1 appropriate for the current coefficient,
at the first sample. */
pxp1 = data.xp1 + w1;
/* We find the contribution which this coefficient makes to the total
polynomial value. Find the maximum contribution made at any sample
points. */
maxterm = 0.0;
for( k = 0; k < nsamp; k++ ) {
/* Get the absolute value of the polynomial term that uses the current
coefficient. */
term = fabs( ( *pc )*( *pxp1 ) );
/* Update the maximum term found at any sample. */
if( term > maxterm ) maxterm = term;
/* Increment the pointers to refer to the next sample. */
pxp1 += order;
}
/* If the maximum contribution made by this term is less than the
required accuracy, set the coefficient value to zero. */
if( maxterm*f1 < acc ) {
*pc = 0.0;
/* Scale the best fitting polynomial coefficient found above to take
account of the fact that the tabulated input and output positions in
"table" were are not actual PolyMap input and output axis values, but
are scaled by the factors stored in "scales". */
} else {
*pc *= f1/f2;
}
f2 *= scales[ 0 ];
}
/* Convert the array of coefficients into PolyMap form. */
result = astMalloc( ncof*3*sizeof( double ) );
*ncoeff = 0;
pr = result;
pc = coeffs;
for( w1 = 0; w1 < order; w1++,pc++ ) {
if( *pc != 0.0 ) {
*(pr++) = *pc;
*(pr++) = 1;
*(pr++) = w1;
(*ncoeff)++;
}
}
/* Truncate the returned array. */
result = astRealloc( result, (*ncoeff)*3*sizeof( double ) );
}
/* Free resources. */
coeffs = astFree( coeffs );
data.xp1 = astFree( data.xp1 );
work1 = astFree( work1 );
work2 = astFree( work2 );
work3 = astFree( work3 );
work4 = astFree( work4 );
/* Return the coefficient array. */
return result;
}
static void FitPoly1DInit( AstPolyMap *this, int forward, double **table,
AstMinPackData *data, double *scales, int *status ){
/*
*+
* Name:
* astFitPoly1DInit
* Purpose:
* Perform initialisation needed for FitPoly1D
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* void astFitPoly1DInit( AstPolyMap *this, int forward, double **table,
* AstMinPackData *data, double *scales,
* int *status )
* Class Membership:
* PolyMap virtual function.
* Description:
* This function performs initialisation needed for FitPoly1D.
* Parameters:
* this
* Pointer to the PolyMap.
* forward
* Non-zero if the forward transformation of "this" is being
* replaced. Zero if the inverse transformation of "this" is being
* replaced.
* table
* Pointer to an array of 2 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the scaled and sampled values
* for x1 and y1 in that order.
* data
* Pointer to a structure holding information to pass the the
* service function invoked by the minimisation function.
* scales
* Array holding the scaling factors for the two columns of the table.
* Multiplying the table values by the scale factor produces PolyMap
* input or output axis values.
*-
*/
/* Local Variables; */
double *px1;
double *pxp1;
double tv;
double x1;
int k;
int w1;
/* Check the local error status. */
if ( !astOK ) return;
/* Get pointers to the supplied x1 values. */
px1 = table[ 0 ];
/* Get pointers to the location for the next power of x1. */
pxp1 = data->xp1;
/* Loop round all samples. */
for( k = 0; k < data->nsamp; k++ ) {
/* Get the current x1 value. */
x1 = *(px1++);
/* Find all the required powers of x1 and store them in the "xp1"
component of the data structure. */
tv = 1.0;
for( w1 = 0; w1 < data->order; w1++ ) {
*(pxp1++) = tv;
tv *= x1;
}
}
}
static double *FitPoly2D( AstPolyMap *this, int forward, int nsamp, double acc,
int order, double **table, double scales[4],
int *ncoeff, double *racc, int *status ){
/*
* Name:
* FitPoly2D
* Purpose:
* Fit a (2-in,2-out) polynomial to a supplied set of data.
* Type:
* Private function.
* Synopsis:
* double *FitPoly2D( AstPolyMap *this, int forward, int nsamp, double acc,
* int order, double **table, double scales[4],
* int *ncoeff, double *racc, int *status )
* Description:
* This function fits a pair of least squares 2D polynomial surfaces
* to the positions in a supplied table, and returns the coefficients
* of a PolyMap to describe the fit. For the purposes of this function,
* the inputs to the fit is refered to as (x1,x2) and the output as
* (y1,y2). So the returned coefficients describe a PolyMap with forward
* transformations:
*
* y1 = P1( x1, x2 )
* y2 = P2( x1, x2 )
*
* P1 and P2 have the same maximum power on each input (specified by
* the "order" parameter).
* Parameters:
* this
* Pointer to the PolyMap.
* forward
* Non-zero if the forward transformation of "this" is being
* replaced. Zero if the inverse transformation of "this" is being
* replaced.
* nsamp
* The number of (x1,x2,y1,y2) positions in the supplied table.
* acc
* The required accuracy, expressed as a geodesic distance within
* the polynomials output space (not the normalised tabular space).
* order
* The maximum power (plus one) of x1 or x2 within P1 and P2. So for
* instance, a value of 3 refers to a quadratic polynomial. Note, cross
* terms with total powers greater than or equal to "order" are not
* included in the fit. So the maximum number of terms in the fitted
* polynomial is order*(order+1)/2.
* table
* Pointer to an array of 4 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the normalised and sampled
* values for x1, x2, y1 or y2 in that order.
* scales
* Array holding the scaling factors used to produced the normalised
* values in the four columns of the table. Multiplying the normalised
* table values by the scale factor produces input or output axis
* values for the returned PolyMap
* ncoeff
* Pointer to an ant in which to return the number of coefficients
* described by the returned array.
* racc
* Pointer to a double in which to return the achieved accuracy
* (which may be greater than "acc").
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to an array of doubles defining the polynomial in the
* form required by the PolyMap contructor. The number of coefficients
* is returned via "ncoeff". If the polynomial could not be found with
* sufficient accuracy , then NULL is returned. The returned pointer
* should be freed using astFree when no longer needed.
*/
/* Local Variables: */
AstMinPackData data;
double *coeffs;
double *pc;
double *pr;
double *pxp1;
double *pxp2;
double *result;
double *work1;
double *work2;
double *work4;
double f1;
double f20;
double f2;
double f3;
double facc;
double maxterm;
double term;
double tv;
int *work3;
int info;
int iout;
int k;
int ncof;
int w12;
int w1;
int w2;
/* Initialise returned value */
result = NULL;
*ncoeff = 0;
*racc = 10*acc;
/* Check inherited status */
if( !astOK ) return result;
/* Number of coefficients per poly. */
ncof = order*( order + 1 )/2;
/* Initialise the elements of the structure. */
data.order = order;
data.nsamp = nsamp;
data.init_jac = 1;
data.xp1 = astMalloc( nsamp*order*sizeof( double ) );
data.xp2 = astMalloc( nsamp*order*sizeof( double ) );
data.y[ 0 ] = table[ 2 ];
data.y[ 1 ] = table[ 3 ];
/* Work space to hold coefficients. */
coeffs = astMalloc( 2*ncof*sizeof( double ) );
/* Other work space. */
work1 = astMalloc( 2*nsamp*sizeof( double ) );
work2 = astMalloc( 4*ncof*nsamp*sizeof( double ) );
work3 = astMalloc( 2*ncof*sizeof( int ) );
work4 = astMalloc( 2*(5*ncof+nsamp)*sizeof( double ) );
if( astOK ) {
/* Find all the required powers of x1 and x2 and store them in the "xp1"
and "xp2" components of the data structure. The required initialisation
is done differently for different subclasses of PolyMap, so we need to
wrap it up in a virtual function. */
astFitPoly2DInit( this, forward, table, &data, scales );
/* The initial guess at the coefficient values represents a unit
transformation in (normalised) tabulated (x,y) values. Using normalised
values means that we are, effectively, including a guess at the linear
scaling factor between input and output of the PolyMap (e.g. the PolyMap
may have inputs in mm and outputs in radians). */
for( k = 0; k < 2*ncof; k++ ) coeffs[ k ] = 0.0;
coeffs[ 1 ] = 1.0;
coeffs[ 5 ] = 1.0;
/* Find the best coefficients */
info = lmder1( MPFunc2D, &data, 2*nsamp, 2*ncof, coeffs, work1, work2,
2*nsamp, sqrt(DBL_EPSILON), work3, work4, 2*(5*ncof+nsamp) );
if( info == 0 ) astError( AST__MNPCK, "astPolyMap(PolyTran): Minpack error "
"detected (possible programming error).", status );
/* Return the achieved accuracy. */
pr = work1;
tv = 0.0;
for( k = 0; k < 2*nsamp; k++,pr++ ) tv += (*pr)*(*pr);
facc = 1.0/(scales[2]*scales[2]) + 1.0/(scales[3]*scales[3]);
*racc = sqrt( tv/(2*nsamp*facc) );
/* Pointer to the first coefficient. */
pc = coeffs;
/* Look at coefficients for each output in turn. */
for( iout = 0; iout < 2 && astOK; iout++ ) {
/* The best fitting polynomial coefficient found above relate to the
polynomial between the scaled positions stored in "table". These
scaled positions are related to PolyMap input/output axis values via
the scale factors supplied in "scales". Find the initial factor for the
current output. */
f1 = scales[ 2 + iout ];
/* Look at each coefficient for the current output. */
f20 = 1.0;
for( w12 = 0; w12 < order; w12++ ) {
f3 = 1.0;
f2 = f20;
for( w2 = 0; w2 <= w12; w2++,pc++ ) {
w1 = w12 - w2;
/* Get pointers to the powers of X1 and X2 appropriate for the current
coefficient, at the first sample. */
pxp1 = data.xp1 + w1;
pxp2 = data.xp2 + w2;
/* We find the contribution which this coefficient makes to the total
polynomial value. Find the maximum contribution made at any sample
points. */
maxterm = 0.0;
for( k = 0; k < nsamp; k++ ) {
/* Get the absolute value of the polynomial term that uses the current
coefficient. */
term = fabs( ( *pc )*( *pxp1 )*( *pxp2 ) );
/* Update the maximum term found at any sample. */
if( term > maxterm ) maxterm = term;
/* Increment the pointers to refer to the next sample. */
pxp1 += order;
pxp2 += order;
}
/* If the maximum contribution made by this term is less than the
required accuracy, set the coefficient value to zero. */
if( maxterm*f1 < acc ) {
*pc = 0.0;
/* Scale the best fitting polynomial coefficient found above to take
account of the fact that the tabulated input and output positions in
"table" were are not actual PolyMap input and output axis values, but
are scaled by the factors stored in "scales". */
} else {
*pc *= f1/( f2*f3 );
}
f2 /= scales[ 0 ];
f3 *= scales[ 1 ];
}
f20 *= scales[ 0 ];
}
}
/* Convert the array of coefficients into PolyMap form. */
result = astMalloc( 2*ncof*4*sizeof( double ) );
*ncoeff = 0;
pr = result;
pc = coeffs;
for( iout = 0; iout < 2 && astOK; iout++ ) {
for( w12 = 0; w12 < order; w12++ ) {
for( w2 = 0; w2 <= w12; w2++,pc++ ) {
w1 = w12 - w2;
if( *pc != 0.0 ) {
*(pr++) = *pc;
*(pr++) = iout + 1;
*(pr++) = w1;
*(pr++) = w2;
(*ncoeff)++;
}
}
}
}
/* Truncate the returned array. */
result = astRealloc( result, (*ncoeff)*4*sizeof( double ) );
}
/* Free resources. */
coeffs = astFree( coeffs );
data.xp1 = astFree( data.xp1 );
data.xp2 = astFree( data.xp2 );
work1 = astFree( work1 );
work2 = astFree( work2 );
work3 = astFree( work3 );
work4 = astFree( work4 );
/* Return the coefficient array. */
return result;
}
static void FitPoly2DInit( AstPolyMap *this, int forward, double **table,
AstMinPackData *data, double *scales, int *status ){
/*
*+
* Name:
* astFitPoly2DInit
* Purpose:
* Perform initialisation needed for FitPoly2D
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* void astFitPoly2DInit( AstPolyMap *this, int forward, double **table,
* AstMinPackData *data, double *scales,
* int *status )
* Class Membership:
* PolyMap virtual function.
* Description:
* This function performs initialisation needed for FitPoly2D.
* Parameters:
* this
* Pointer to the PolyMap.
* forward
* Non-zero if the forward transformation of "this" is being
* replaced. Zero if the inverse transformation of "this" is being
* replaced.
* table
* Pointer to an array of 4 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the scaled and sampled values
* for x1, x2, y1 or y2 in that order.
* data
* Pointer to a structure holding information to pass the the
* service function invoked by the minimisation function.
* scales
* Array holding the scaling factors for the four columns of the table.
* Multiplying the table values by the scale factor produces PolyMap
* input or output axis values.
*-
*/
/* Local Variables; */
double *px1;
double *px2;
double *pxp1;
double *pxp2;
double tv;
double x1;
double x2;
int k;
int w1;
int w2;
/* Check the local error status. */
if ( !astOK ) return;
/* Get pointers to the supplied x1 and x2 values. */
px1 = table[ 0 ];
px2 = table[ 1 ];
/* Get pointers to the location for the next power of x1 and x2. */
pxp1 = data->xp1;
pxp2 = data->xp2;
/* Loop round all samples. */
for( k = 0; k < data->nsamp; k++ ) {
/* Get the current x1 and x2 values. */
x1 = *(px1++);
x2 = *(px2++);
/* Find all the required powers of x1 and store them in the "xp1"
component of the data structure. */
tv = 1.0;
for( w1 = 0; w1 < data->order; w1++ ) {
*(pxp1++) = tv;
tv *= x1;
}
/* Find all the required powers of x2 and store them in the "xp2"
comonent of the data structure. */
tv = 1.0;
for( w2 = 0; w2 < data->order; w2++ ) {
*(pxp2++) = tv;
tv *= x2;
}
}
}
static void FreeArrays( AstPolyMap *this, int forward, int *status ) {
/*
* Name:
* FreeArrays
* Purpose:
* Free the dynamic arrays contained within a PolyMap
* Type:
* Private function.
* Synopsis:
* void FreeArrays( AstPolyMap *this, int forward, int *status )
* Description:
* This function frees all the dynamic arrays allocated as part of a
* PolyMap.
* Parameters:
* this
* Pointer to the PolyMap.
* forward
* If non-zero, the arrays for the forward transformation are freed.
* Otherwise, the arrays for the inverse transformation are freed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* This function attempts to execute even if the global error status is
* set.
*/
/* Local Variables: */
int nin; /* Number of inputs */
int nout; /* Number of outputs */
int i; /* Loop count */
int j; /* Loop count */
/* Get the number of inputs and outputs of the uninverted Mapping. */
nin = ( (AstMapping *) this )->nin;
nout = ( (AstMapping *) this )->nout;
/* Free the dynamic arrays for the forward transformation. */
if( forward != astGetInvert( this ) ) {
if( this->coeff_f ) {
for( i = 0; i < nout; i++ ) {
this->coeff_f[ i ] = astFree( this->coeff_f[ i ] );
}
this->coeff_f = astFree( this->coeff_f );
}
if( this->power_f ) {
for( i = 0; i < nout; i++ ) {
if( this->ncoeff_f && this->power_f[ i ] ) {
for( j = 0; j < this->ncoeff_f[ i ]; j++ ) {
this->power_f[ i ][ j ] = astFree( this->power_f[ i ][ j ] );
}
}
this->power_f[ i ] = astFree( this->power_f[ i ] );
}
this->power_f = astFree( this->power_f );
}
this->ncoeff_f = astFree( this->ncoeff_f );
this->mxpow_f = astFree( this->mxpow_f );
/* Free the dynamic arrays for the inverse transformation. */
} else {
if( this->coeff_i ) {
for( i = 0; i < nin; i++ ) {
this->coeff_i[ i ] = astFree( this->coeff_i[ i ] );
}
this->coeff_i = astFree( this->coeff_i );
}
if(this->power_i ) {
for( i = 0; i < nin; i++ ) {
if( this->ncoeff_i && this->power_i[ i ] ) {
for( j = 0; j < this->ncoeff_i[ i ]; j++ ) {
this->power_i[ i ][ j ] = astFree( this->power_i[ i ][ j ] );
}
}
this->power_i[ i ] = astFree( this->power_i[ i ] );
}
this->power_i = astFree( this->power_i );
}
this->ncoeff_i = astFree( this->ncoeff_i );
this->mxpow_i = astFree( this->mxpow_i );
}
}
static const char *GetAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* GetAttrib
* Purpose:
* Get the value of a specified attribute for a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* const char *GetAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* PolyMap member function (over-rides the protected astGetAttrib
* method inherited from the Mapping class).
* Description:
* This function returns a pointer to the value of a specified
* attribute for a PolyMap, formatted as a character string.
* Parameters:
* this
* Pointer to the PolyMap.
* attrib
* Pointer to a null-terminated string containing the name of
* the attribute whose value is required. This name should be in
* lower case, with all white space removed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* - Pointer to a null-terminated string containing the attribute
* value.
* Notes:
* - The returned string pointer may point at memory allocated
* within the PolyMap, or at static memory. The contents of the
* string may be over-written or the pointer may become invalid
* following a further invocation of the same function or any
* modification of the PolyMap. A copy of the string should
* therefore be made if necessary.
* - A NULL pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstPolyMap *this; /* Pointer to the PolyMap structure */
const char *result; /* Pointer value to return */
double dval; /* Floating point attribute value */
int ival; /* Integer attribute value */
/* Initialise. */
result = NULL;
/* Check the global error status. */
if ( !astOK ) return result;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(this_object);
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Compare "attrib" with each recognised attribute name in turn,
obtaining the value of the required attribute. If necessary, write
the value into "getattrib_buff" as a null-terminated string in an appropriate
format. Set "result" to point at the result string. */
/* IterInverse. */
/* ------------ */
if ( !strcmp( attrib, "iterinverse" ) ) {
ival = astGetIterInverse( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%d", ival );
result = getattrib_buff;
}
/* NiterInverse. */
/* ------------- */
} else if ( !strcmp( attrib, "niterinverse" ) ) {
ival = astGetNiterInverse( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%d", ival );
result = getattrib_buff;
}
/* TolInverse. */
/* ----------- */
} else if ( !strcmp( attrib, "tolinverse" ) ) {
dval = astGetTolInverse( this );
if ( astOK ) {
(void) sprintf( getattrib_buff, "%.*g", AST__DBL_DIG, dval );
result = getattrib_buff;
}
/* If the attribute name was not recognised, pass it on to the parent
method for further interpretation. */
} else {
result = (*parent_getattrib)( this_object, attrib, status );
}
/* Return the result. */
return result;
}
static AstPolyMap **GetJacobian( AstPolyMap *this, int *status ){
/*
* Name:
* GetJacobian
* Purpose:
* Get a description of a Jacobian matrix for the original
* fwd transformation of a PolyMap.
* Type:
* Private function.
* Synopsis:
* AstPolyMap **GetJacobian( AstPolyMap *this, int *status )
* Description:
* This function returns a set of PolyMaps which define the Jacobian
* matrix of the original forward transformation of the supplied PolyMap
* (i.e. the Negated attribute is assumed to be zero).
*
* The Jacobian matrix has "nout" rows and "nin" columns, where "nin"
* and "nout" are the number of inputs and outputs of the original PolyMap.
* Row "i", column "j" of the matrix holds the rate of change of the
* i'th PolyMap output with respect to the j'th PolyMap input.
*
* Since the values in the Jacobian matrix vary across the input space
* of the PolyMap, the matrix is returned in the form of a set of new
* PolyMaps which generate the elements of the Jacobian for any given
* position in the input space. The "nout" values in a single column of
* the Jacobian matrix are generated by the "nout" outputs from a single
* new PolyMap. The whole matrix is described by "nin" PolyMaps.
*
* The returned PolyMaps are cached in the supplied PolyMap object in
* order to speed up subsequent calls to this function.
* Parameters:
* this
* The PolyMap for which the Jacbian is required.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A pointer to an array of "nin" PolyMap pointers, where "nin" is the number
* of inputs for the sipplied PolyMap. The returned array should not be changed
* in any way, and the PolyMaps should not be freed (they will be freed when
* the supplied PolyMap is deleted).
*/
/* Local Variables: */
double *coeffs;
double *pc;
int icof;
int icol;
int iin;
int irow;
int ncof;
int ncof_row;
int ncof_total;
int nin;
int nout;
int power;
/* Check inherited status */
if( !astOK ) return NULL;
/* Ensure there is a Jacobian stored in the PolyMap. */
if( !this->jacobian ) {
/* Get the number of inputs and outputs of the original forward
transformation. */
if( astGetInvert( this ) ){
nout = astGetNin( this );
nin = astGetNout( this );
} else {
nin = astGetNin( this );
nout = astGetNout( this );
}
/* Allocate memory to hold pointers to the PolyMaps used to describe the
Jacobian matrix. */
this->jacobian = astCalloc( nin, sizeof(AstPolyMap *) );
/* Find the total number of coefficients used to describe the supplied
PolyMap (forward transformation) and allocate work space to hold the
coefficients for a single new PolyMap forward transformation. */
ncof = 0;
for( irow = 0; irow < nout; irow++ ) {
ncof += this->ncoeff_f[ irow ];
}
coeffs = astMalloc( ncof*( 2 + nin )*sizeof( double ) );
/* Check pointers can be used safely. */
if( astOK ) {
/* The Jacobian matrix has "nout" rows and "nin" columns. The "nout" values
in a single column of the Jacobian matrix corresponds to the "nout" outputs
from a single PolyMap. The whole matrix is described by "nin" PolyMaps.
Loop over each column of the Matrix, creating the corresponding PolyMap
for each. */
for( icol = 0; icol < nin; icol++ ) {
/* Initialise the total number of coefficients used to describe the
element of the PolyMap. */
ncof_total = 0;
/* Loop over each row of the Jacobian matrix (i.e. each PolyMap output). */
pc = coeffs;
for( irow = 0; irow < nout; irow++ ) {
/* Loop over each coefficient used in the polynomial that generates the
current PolyMap output. */
ncof_row = this->ncoeff_f[ irow ];
for( icof = 0; icof < ncof_row; icof++ ) {
/* Get the power of input "icol" associated with the current coefficient. */
power = (int)( this->power_f[ irow ][ icof ][ icol ] + 0.5 );
/* We can skip the coefficient if the power is zero. */
if( power > 0 ) {
ncof_total++;
/* Store the coefficient value, modified so that it describes a
polynomial that has been differentiated with respect to input "icol". */
*(pc++) = this->coeff_f[ irow ][ icof ]*power;
/* Store the output PolyMap to which the coeff relates. */
*(pc++) = irow + 1;
/* Store the powers of the inputs associated with the coeff. These are
the same as the original powers, except that the power of "icol"
(the input with respect to which the output has been differentiated)
is reduced by one. */
for( iin = 0; iin < nin; iin++ ) {
if( iin != icol ) {
*(pc++) = this->power_f[ irow ][ icof ][ iin ];
} else {
*(pc++) = this->power_f[ irow ][ icof ][ iin ] - 1;
}
}
}
}
}
/* Create the PolyMap and store a pointer to it in the jacobian array in
the supplied PolyMap. */
(this->jacobian)[ icol ] = astPolyMap( nin, nout, ncof_total, coeffs,
0, NULL, " ", status );
}
}
/* Free resources */
coeffs = astFree( coeffs );
}
/* Return the Jacobian. */
return this->jacobian;
}
static int GetObjSize( AstObject *this_object, int *status ) {
/*
* Name:
* GetObjSize
* Purpose:
* Return the in-memory size of an Object.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* int GetObjSize( AstObject *this, int *status )
* Class Membership:
* PolyMap member function (over-rides the astGetObjSize protected
* method inherited from the parent class).
* Description:
* This function returns the in-memory size of the supplied PolyMap,
* in bytes.
* Parameters:
* this
* Pointer to the PolyMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The Object size, in bytes.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstPolyMap *this;
int ic;
int nc;
int result;
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointers to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Invoke the GetObjSize method inherited from the parent class, and then
add on any components of the class structure defined by this class
which are stored in dynamically allocated memory. */
result = (*parent_getobjsize)( this_object, status );
if( this->jacobian ) {
nc = astGetNin( this );
for( ic = 0; ic < nc; ic++ ) {
result += astGetObjSize( (this->jacobian)[ ic ] );
}
result += sizeof( AstPolyMap * )*nc;
}
/* If an error occurred, clear the result value. */
if ( !astOK ) result = 0;
/* Return the result, */
return result;
}
static int GetTranForward( AstMapping *this, int *status ) {
/*
*
* Name:
* GetTranForward
* Purpose:
* Determine if a PolyMap defines a forward coordinate transformation.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* int GetTranForward( AstMapping *this, int *status )
* Class Membership:
* PolyMap member function (over-rides the astGetTranForward method
* inherited from the Mapping class).
* Description:
* This function returns a value indicating if the PolyMap is able
* to perform a forward coordinate transformation.
* Parameters:
* this
* Pointer to the PolyMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Zero if the forward coordinate transformation is not defined, or 1 if it
* is.
* Notes:
* - A value of zero will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstPolyMap *map; /* Pointer to PolyMap to be queried */
int result; /* The returned value */
/* Check the global error status. */
if ( !astOK ) return 0;
/* Obtain a pointer to the PolyMap. */
map = (AstPolyMap *) this;
/* First deal with cases where the PolyMap has not been inverted. */
if( !astGetInvert( this ) ) {
/* The PolyMap has a defined forward transformation if one or more
coefficients values were supplied for the original forward
transformation. It is not possible to replace the original forward
transformation with an iterative algorithm. */
result = map->ncoeff_f ? 1 : 0;
/* Now deal with cases where the PolyMap has been inverted. */
} else {
/* The PolyMap has a defined forward transformation if one or more
coefficients values were supplied for the original inverse
transformation, or if the original inverse transformation is being
approximated using an iterative algorithm. */
result = ( map->ncoeff_i || astGetIterInverse( map ) ) ? 1 : 0;
}
/* Return the result. */
return result;
}
static int GetTranInverse( AstMapping *this, int *status ) {
/*
*
* Name:
* GetTranInverse
* Purpose:
* Determine if a PolyMap defines an inverse coordinate transformation.
* Type:
* Private function.
* Synopsis:
* #include "matrixmap.h"
* int GetTranInverse( AstMapping *this, int *status )
* Class Membership:
* PolyMap member function (over-rides the astGetTranInverse method
* inherited from the Mapping class).
* Description:
* This function returns a value indicating if the PolyMap is able
* to perform an inverse coordinate transformation.
* Parameters:
* this
* Pointer to the PolyMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Zero if the inverse coordinate transformation is not defined, or 1 if it
* is.
* Notes:
* - A value of zero will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstPolyMap *map; /* Pointer to PolyMap to be queried */
int result; /* The returned value */
/* Check the global error status. */
if ( !astOK ) return 0;
/* Obtain a pointer to the PolyMap. */
map = (AstPolyMap *) this;
/* First deal with cases where the PolyMap has not been inverted. */
if( !astGetInvert( this ) ) {
/* The PolyMap has a defined inverse transformation if one or more
coefficients values were supplied for the original inverse
transformation, or if the original inverse transformation is being
approximated using an iterative algorithm. */
result = ( map->ncoeff_i || astGetIterInverse( map ) ) ? 1 : 0;
/* Now deal with cases where the PolyMap has been inverted. */
} else {
/* The PolyMap has a defined inverse transformation if one or more
coefficients values were supplied for the original forward
transformation. It is not possible to replace the original forward
transformation with an iterative algorithm. */
result = map->ncoeff_f ? 1 : 0;
}
/* Return the result. */
return result;
}
void astInitPolyMapVtab_( AstPolyMapVtab *vtab, const char *name, int *status ) {
/*
*+
* Name:
* astInitPolyMapVtab
* Purpose:
* Initialise a virtual function table for a PolyMap.
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* void astInitPolyMapVtab( AstPolyMapVtab *vtab, const char *name )
* Class Membership:
* PolyMap vtab initialiser.
* Description:
* This function initialises the component of a virtual function
* table which is used by the PolyMap class.
* Parameters:
* vtab
* Pointer to the virtual function table. The components used by
* all ancestral classes will be initialised if they have not already
* been initialised.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the virtual function table belongs (it
* is this pointer value that will subsequently be returned by the Object
* astClass function).
*-
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstObjectVtab *object; /* Pointer to Object component of Vtab */
AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */
/* Check the local error status. */
if ( !astOK ) return;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Initialize the component of the virtual function table used by the
parent class. */
astInitMappingVtab( (AstMappingVtab *) vtab, name );
/* Store a unique "magic" value in the virtual function table. This
will be used (by astIsAPolyMap) to determine if an object belongs
to this class. We can conveniently use the address of the (static)
class_check variable to generate this unique value. */
vtab->id.check = &class_check;
vtab->id.parent = &(((AstMappingVtab *) vtab)->id);
/* Initialise member function pointers. */
/* ------------------------------------ */
/* Store pointers to the member functions (implemented here) that provide
virtual methods for this class. */
vtab->PolyPowers = PolyPowers;
vtab->FitPoly1DInit = FitPoly1DInit;
vtab->FitPoly2DInit = FitPoly2DInit;
vtab->PolyTran = PolyTran;
vtab->PolyCoeffs = PolyCoeffs;
vtab->ClearIterInverse = ClearIterInverse;
vtab->GetIterInverse = GetIterInverse;
vtab->SetIterInverse = SetIterInverse;
vtab->TestIterInverse = TestIterInverse;
vtab->ClearNiterInverse = ClearNiterInverse;
vtab->GetNiterInverse = GetNiterInverse;
vtab->SetNiterInverse = SetNiterInverse;
vtab->TestNiterInverse = TestNiterInverse;
vtab->ClearTolInverse = ClearTolInverse;
vtab->GetTolInverse = GetTolInverse;
vtab->SetTolInverse = SetTolInverse;
vtab->TestTolInverse = TestTolInverse;
/* Save the inherited pointers to methods that will be extended, and
replace them with pointers to the new member functions. */
object = (AstObjectVtab *) vtab;
mapping = (AstMappingVtab *) vtab;
parent_getobjsize = object->GetObjSize;
object->GetObjSize = GetObjSize;
#if defined(THREAD_SAFE)
parent_managelock = object->ManageLock;
object->ManageLock = ManageLock;
#endif
parent_clearattrib = object->ClearAttrib;
object->ClearAttrib = ClearAttrib;
parent_getattrib = object->GetAttrib;
object->GetAttrib = GetAttrib;
parent_setattrib = object->SetAttrib;
object->SetAttrib = SetAttrib;
parent_testattrib = object->TestAttrib;
object->TestAttrib = TestAttrib;
parent_transform = mapping->Transform;
mapping->Transform = Transform;
mapping->GetTranForward = GetTranForward;
mapping->GetTranInverse = GetTranInverse;
/* Store replacement pointers for methods which will be over-ridden by
new member functions implemented here. */
object->Equal = Equal;
mapping->MapMerge = MapMerge;
/* Declare the destructor and copy constructor. */
astSetDelete( (AstObjectVtab *) vtab, Delete );
astSetCopy( (AstObjectVtab *) vtab, Copy );
/* Declare the class dump function. */
astSetDump( vtab, Dump, "PolyMap", "Polynomial transformation" );
/* If we have just initialised the vtab for the current class, indicate
that the vtab is now initialised, and store a pointer to the class
identifier in the base "object" level of the vtab. */
if( vtab == &class_vtab ) {
class_init = 1;
astSetVtabClassIdentifier( vtab, &(vtab->id) );
}
}
static void IterInverse( AstPolyMap *this, AstPointSet *out, AstPointSet *result,
int *status ){
/*
* Name:
* IterInverse
* Purpose:
* Use an iterative method to evaluate the original inverse transformation
* of a PolyMap at a set of (original) output positions.
* Type:
* Private function.
* Synopsis:
* void IterInverse( AstPolyMap *this, AstPointSet *out, AstPointSet *result,
* int *status )
* Description:
* This function transforms a set of PolyMap positions using the original
* inverse transformation of the PolyMap (i.e. the Negated attribute
* is assumed to be zero). An iterative Newton-Raphson method is used
* which only required the original forward transformation of the PolyMap
* to be defined.
* Parameters:
* this
* The PolyMap.
* out
* A PointSet holding the positions that are to be transformed using
* the original inverse transformation. These corresponds to
* outputs of the original (i.e. uninverted) PolyMap
* result
* A PointSet into which the transformed positions are to be stored.
* These corresponds to inputs of the original (i.e. uninverted) PolyMap
* status
* Pointer to the inherited status variable.
*/
/* Local Variables: */
AstMapping *lintrunc;
AstPointSet *work;
AstPointSet **ps_jac;
AstPolyMap **jacob;
double *vec;
double *pb;
double **ptr_work;
double ***ptr_jac;
double *mat;
double **ptr_out;
double **ptr_in;
double *pa;
double det;
double maxerr;
double vlensq;
double xlensq;
double xx;
int *flags;
int *iw;
int fwd;
int icol;
int icoord;
int ipoint;
int irow;
int iter;
int maxiter;
int nconv;
int ncoord;
int npoint;
int sing;
/* Check inherited status */
if( !astOK ) return;
/* Check the PolyMap has equal numbers of inputs and outputs. */
ncoord = astGetNin( this );
if( ncoord != astGetNout( this ) ) {
astError( AST__INTER, "astTransform(%s): Supplied %s has unequal numbers"
" of inputs and outputs and therefore an iterative inverse "
"cannot be used (internal AST Programming errpr).", status,
astGetClass(this), astGetClass(this) );
}
/* Get information about the Jacobian matrix for the forward polynomial
transformation. This matrix is a ncoord X ncoord matrix, in which
element (row=I,col=J) is the rate of change of output coord I with
respect to input coord J, of the supplied PolyMap's forward transformation.
The numerical values of the matrix vary depending on where it is
evaluated within the input space of the PolyMap. For this reason, the
"jacob" variable holds a vector of "ncoord" PolyMaps. The outputs of
each of these PolyMaps corresponds to a single column in the Jacobian
matrix. */
jacob = GetJacobian( this, status );
/* Get the number of points to be transformed. */
npoint = astGetNpoint( out );
/* Get another PointSet to hold intermediate results. */
work = astPointSet( npoint, ncoord, " ", status );
/* See if the PolyMap has been inverted.*/
fwd = !astGetInvert( this );
/* Get pointers to the data arrays for all PointSets. Note, here "in" and
"out" refer to inputs and outputs of the PolyMap (i.e. the forward
transformation). These are respectively *outputs* and *inputs* of the
inverse transformation. */
ptr_in = astGetPoints( result ); /* Returned input positions */
ptr_out = astGetPoints( out ); /* Supplied output positions */
ptr_work = astGetPoints( work ); /* Work space */
/* Allocate an array of PointSets to hold the elements of the Jacobian
matrix. */
ptr_jac = astMalloc( sizeof( double ** )*ncoord );
ps_jac = astCalloc( ncoord, sizeof( AstPointSet * ) );
if( astOK ) {
for( icoord = 0; icoord < ncoord; icoord++ ) {
ps_jac[ icoord ] = astPointSet( npoint, ncoord, " ", status );
ptr_jac[ icoord ] = astGetPoints( ps_jac[ icoord ] );
}
}
/* Allocate an array to hold flags indicating if each position has
converged. Initialise it to hold zero at every element. */
flags = astCalloc( npoint, sizeof( int ) );
/* Allocate memory to hold the Jacobian matrix at a single point. */
mat = astMalloc( sizeof( double )*ncoord*ncoord );
/* Allocate memory to hold the offset vector. */
vec = astMalloc( sizeof( double )*ncoord );
/* Allocate memory to hold work space for palDmat. */
iw = astMalloc( sizeof( int )*ncoord );
/* Check pointers can be used safely. */
if( astOK ) {
/* Store the initial guess at the required input positions. These are
determined by transforming the supplied output positions using the
inverse of a linear truncation of the PolyMap's forward
transformation. */
lintrunc = LinearGuess( this, status );
(void) astTransform( lintrunc, out, 0, result );
lintrunc = astAnnul( lintrunc );
/* Get the maximum number of iterations to perform. */
maxiter = astGetNiterInverse( this );
/* Get the target relative error for the returned input axis values, and
square it. */
maxerr = astGetTolInverse( this );
maxerr *= maxerr;
/* Initialise the number of positions which have reached the required
accuracy. */
nconv = 0;
/* Loop round doing iterations of a Newton-Raphson algorithm, until
all points have achieved the required relative error, or the
maximum number of iterations have been performed. */
for( iter = 0; iter < maxiter && nconv < npoint && astOK; iter++ ) {
/* Use the original forward transformation of the supplied PolyMap to
transform the current guesses at the required input positions into
the corresponding output positions. Store the results in the "work"
PointSet. */
(void) astTransform( this, result, fwd, work );
/* Modify the work PointSet so that it holds the offsets from the output
positions produced by the current input position guesses, and the
required output positions. */
for( icoord = 0; icoord < ncoord; icoord++ ) {
pa = ptr_out[ icoord ];
pb = ptr_work[ icoord ];
for( ipoint = 0; ipoint< npoint; ipoint++,pa++,pb++ ) {
if( *pa != AST__BAD && *pb != AST__BAD ){
*pb = *pa - *pb;
} else {
*pb = AST__BAD;
}
}
}
/* Evaluate the elements of the Jacobian matrix at the current input
position guesses. */
for( icoord = 0; icoord < ncoord; icoord++ ) {
(void) astTransform( jacob[ icoord ], result, 1, ps_jac[ icoord ] );
}
/* For each position, we now invert the matrix equation
Dy = Jacobian.Dx
to find a guess at the vector (dx) holding the offsets from the
current input positions guesses to their required values. Loop over all
points. */
for( ipoint = 0; ipoint < npoint; ipoint++ ) {
/* Do not change positions that have already converged. */
if( !flags[ ipoint ] ) {
/* Get the numerical values for the elements of the Jacobian matrix at
the current point. */
pa = mat;
for( irow = 0; irow < ncoord; irow++ ) {
for( icol = 0; icol < ncoord; icol++ ) {
*(pa++) = ptr_jac[ icol ][ irow ][ ipoint ];
}
/* Store the offset from the current output position to the required
output position. */
vec[ irow ] = ptr_work[ irow ][ ipoint ];
}
/* Find the corresponding offset from the current input position to the required
input position. */
palDmat( ncoord, mat, vec, &det, &sing, iw );
/* If the matrix was singular, the input position cannot be evaluated so
store a bad value for it and indicate it has converged. */
if( sing ) {
for( icoord = 0; icoord < ncoord; icoord++ ) {
ptr_in[ icoord ][ ipoint ] = AST__BAD;
}
flags[ ipoint ] = 1;
nconv++;
/* Otherwise, update the input position guess. */
} else {
vlensq = 0.0;
xlensq = 0.0;
pa = vec;
for( icoord = 0; icoord < ncoord; icoord++,pa++ ) {
xx = ptr_in[ icoord ][ ipoint ] + (*pa);
ptr_in[ icoord ][ ipoint ] = xx;
xlensq += xx*xx;
vlensq += (*pa)*(*pa);
}
/* Check for convergence. */
if( vlensq <= maxerr*xlensq ) {
flags[ ipoint ] = 1;
nconv++;
}
}
}
}
}
}
/* Free resources. */
vec = astFree( vec );
iw = astFree( iw );
mat = astFree( mat );
flags = astFree( flags );
work = astAnnul( work );
if( ps_jac ) {
for( icoord = 0; icoord < ncoord; icoord++ ) {
ps_jac[ icoord ] = astAnnul( ps_jac[ icoord ] );
}
ps_jac = astFree( ps_jac );
}
ptr_jac = astFree( ptr_jac );
}
static AstMapping *LinearGuess( AstPolyMap *this, int *status ){
/*
* Name:
* LinearTruncation
* Purpose:
* Get a Mapping representing a linear approximation of a PolyMap
* Type:
* Private function.
* Synopsis:
* AstMapping *LinearGuess( AstPolyMap *this, int *status )
* Description:
* This function returns a linear Mapping approximating the original
* forward transformation of the supplied PolyMap (i.e. the Invert
* flag is assume to be zero). The linear and constant terms in the
* supplied PolyMap are used for all outputs that have such terms. Any
* other outputs are assumed to be equal to the corresponding inputs.
* If the forward transformation of the PolyMap is defined, then it is
* used to determine the returned Mapping. Otherwise, the inverse
* transformation of the PolyMap is used. The forward transformation of
* the returned Mapping always represents the forward transformation of
* the original (i.e. uninverted) PolyMap.
* Parameters:
* this
* Pointer to the PolyMap.
* status
* Pointer to the inherited status variable.
* Returned Value:
* The returned linear Mapping, or NULL if an error occurs.
*/
/* Local Variables: */
AstMapping *result; /* Pointer to returned Mapping */
AstMapping *mm; /* MatrixMap representing linear terms */
AstMapping *sm; /* ShiftMap representing offset terms */
double **coeff; /* Pointer to coefficient value arrays */
double *matrix; /* Linear scaling matrix */
double *vector; /* Offset vector */
int ***power; /* Pointer to coefficient power arrays */
int *ncoeff; /* Pointer to no. of coefficients */
int flag; /* Indicates nature of current coeff */
int ico; /* Coefficient index */
int iin; /* Index of transformation input */
int inverse; /* PolyMap inverse transformation selected? */
int iout; /* Index of transformation output */
int jin; /* Transformation input for current coeff */
int nin; /* No. of i/ps for selected transformation */
int nout; /* No. of o/ps for selected transformation */
int ok; /* Current output is defined? */
int pow; /* Power for current coeff and input */
/* Initialise returned value */
result = NULL;
/* Check inherited status */
if( !astOK ) return result;
/* If the required Mapping has already been determined, return a pointer
to it. */
if( this->lintrunc ) return astClone( this->lintrunc );
/* Get pointers to the arrays holding the required coefficient
values and powers. Use the forward transformation of the original
(uninverted) PolyMap if it is defined and the inverse transformation
otherwise. */
if ( this->ncoeff_f ){
ncoeff = this->ncoeff_f;
coeff = this->coeff_f;
power = this->power_f;
nin = astGetNin( this );
nout = astGetNout( this );
inverse = 0;
} else {
ncoeff = this->ncoeff_i;
coeff = this->coeff_i;
power = this->power_i;
nout = astGetNin( this );
nin = astGetNout( this );
inverse = 1;
}
/* Allocate memory to hold a matrix holding the linear terms of the
PolyMap transformation selected above. Initialise it to hold zeros. */
matrix = astCalloc( nin*nout, sizeof( double * ) );
/* Allocate memory to hold a vector holding the offset terms of the
PolyMap transformation selected above. Initialise it to hold zeros. */
vector = astCalloc( nout, sizeof( double * ) );
if( astOK ){
/* Loop round all the outputs of the transformation selected above. */
for( iout = 0; iout < nout; iout++ ){
/* Loop round all the coefficients for the current transformation output. */
for( ico = 0; ico < ncoeff[iout]; ico++ ){
/* Initialise a tristate flag that indicates if the current coefficient is
constant (0), linear (1) or something else (2). */
flag = 0;
/* Look for the first input axis for which the current coeff uses a
non-zero power. If the power is not one, the current coeff is neither
linear nor constant, and so we can pass on to the next coeff. If any
subsequent non-zero power is found, the coeff is not linear. */
jin = 0;
for( iin = 0; iin < nin; iin++ ){
pow = power[iout][ico][iin];
if( pow ) {
if( pow != 1 ) {
flag = 2;
break;
} else if( flag == 1 ) {
flag = 2;
break;
} else {
flag = 1;
jin = iin;
}
}
}
/* If the coeff is a constant term, insert it into the offset vector. */
if( flag == 0 ) {
vector[ iout ] = coeff[ iout ][ ico ];
/* If the coeff is a linear term, insert it into the matrix. */
} else if( flag == 1 ) {
matrix[ jin + iout*nin ] = coeff[ iout ][ ico ];
}
}
}
/* If any PolyMap output has no linear terms, the matrix will not be
invertable. So insert a 1.0 value on the diagonal of such rows. */
for( iout = 0; iout < nout; iout++ ){
ok = 0;
for( iin = 0; iin < nin; iin++ ) {
if( matrix[ iin + iout*nin ] != 0.0 ) {
ok = 1;
break;
}
}
if( ! ok ) matrix[ iout + iout*nin ] = 1.0;
}
/* Create a MatrixMap to represent the matrix. */
mm = (AstMapping *) astMatrixMap( nin, nout, 0, matrix, " ", status );
/* If the MatrixMap cannot be inverted, use a unit map instead. */
if( !astGetTranInverse( mm ) ) {
mm = astAnnul( mm );
mm = (AstMapping *) astUnitMap( nin, " ", status );
}
/* Create a ShiftMap to represent the offset. */
sm = (AstMapping *) astShiftMap( nout, vector, " ", status );
/* Combine them in series into a single compound Mapping. */
result = (AstMapping *) astCmpMap( mm, sm, 1, " ", status );
/* If this CmpMap represents the inverse transformation of the original
(i.e. uninverted) PolyMap, invert it so that it represents the forward
transformation. */
if( inverse ) astInvert( result );
/* Free resources */
mm = astAnnul( mm );
sm = astAnnul( sm );
/* Store the Mapping in the PolyMap structure so we do not need to
recalculate it every time it is needed. */
if( astOK ) this->lintrunc = astClone( result );
}
/* Free resources */
matrix = astFree( matrix );
vector = astFree( vector );
/* Return the required Mapping. */
return result;
}
static void LMFunc1D( const double *p, double *hx, int m, int n, void *adata ){
/*
* Name:
* LMFunc1D
* Purpose:
* Evaluate a test 1D polynomal.
* Type:
* Private function.
* Synopsis:
* void LMFunc1D( const double *p, double *hx, int m, int n, void *adata )
* Description:
* This function finds the residuals implied by a supplied set of
* candidate polynomial coefficients. Each residual is a candidate
* polynomial evaluated at one of the sample points, minus the
* supplied target value for the polynomial at that test point.
*
* The minimisation process minimises the sum of the squared residuals.
* Parameters:
* p
* An array of "m" coefficients for the candidate polynomial. The
* coefficients are ordered C0, C1, C2, etc.
* hx
* An array in which to return the "n" residuals. The residual at
* sample "k" is returned in element (k).
* m
* The length of the "p" array. This should be equal to order.
* n
* The length of the "hx" array. This should be equal to nsamp.
* adata
* Pointer to a structure holding the sample positions and values,
* and other information.
*/
/* Local Variables: */
AstMinPackData *data;
double *px1;
double *py;
const double *vp;
double *vr;
double res;
int k;
int w1;
/* Get a pointer to the data structure. */
data = (AstMinPackData *) adata;
/* Initialise a pointer to the current returned residual value. */
vr = hx;
/* Initialise a pointer to the sampled Y values for the polynomial output. */
py = data->y[ 0 ];
/* Initialise a pointer to the powers of the input X values at the curent
(i.e. first) sample. */
px1 = data->xp1;
/* Loop over the index of the sample to which this residual refers. */
for( k = 0; k < data->nsamp; k++ ) {
/* Initialise a pointer to the first coefficient (the constant term) for the
polynomial output coordinate. */
vp = p;
/* Initialise this residual to hold the sampled Y value. Increment the
pointer to the next sampled value for the current polynomial output. */
res = -( *(py++) );
/* Loop over the coefficients. */
for( w1 = 0; w1 < data->order; w1++ ) {
/* Increment the residual by the value of the current term Cw1*(x1^w1).
Increment the pointer to the next coefficient (C). Also increment the
pointer to the next higher power of X1. */
res += ( *(vp++) )*( *(px1++) );
}
/* Store the complete residual in the returned array, and increment the
pointer to the next residual. */
*(vr++) = res;
}
}
static void LMFunc2D( const double *p, double *hx, int m, int n, void *adata ){
/*
* Name:
* LMFunc2D
* Purpose:
* Evaluate a test 2D polynomal.
* Type:
* Private function.
* Synopsis:
* void LMFunc2D( const double *p, double *hx, int m, int n, void *adata )
* Description:
* This function finds the residuals implied by a supplied set of
* candidate polynomial coefficients. Each residual is a candidate
* polynomial (either P1 or P2) evaluated at one of the sample points
* (x1,x2), minus the supplied target value for the polynomial at that
* test point.
*
* The minimisation process minimises the sum of the squared residuals.
* Parameters:
* p
* An array of "m" coefficients for the candidate polynomial. All the
* coefficients for polynomial P1 come first, followed by those for P2.
* Within each each polynomial, the coefficients are order C00, C10,
* C01, C20, C11, C02, C30, C21, C12, C03, etc. So the coefficient
* of (x1^j*x2^k) (=Cjk) for polynomial Pi is stored in element
* [k + (j + k)*(j + k + 1)/2 + i*order*(order+1)/2] of the "p" array.
* hx
* An array in which to return the "n" residuals. The residual at
* sample "k" for polynomial "i" is returned in element (k + nsamp*i).
* m
* The length of the "p" array. This should be equal to order*(order+1).
* n
* The length of the "hx" array. This should be equal to 2*nsamp.
* adata
* Pointer to a structure holding the sample positions and values,
* and other information.
*/
/* Local Variables: */
AstMinPackData *data;
const double *vp0;
const double *vp;
double *py;
double *px1;
double *px10;
double *px20;
double *vr;
double res;
double *px2;
int iout;
int k;
int w12;
int w2;
/* Get a pointer to the data structure. */
data = (AstMinPackData *) adata;
/* Initialise a pointer to the current returned residual value. */
vr = hx;
/* Initialise a pointer to the first coefficient (the constant term) for the
current (i.e. first) polynomial output coordinate. */
vp0 = p;
/* Loop over each polynomial output coordinate. */
for( iout = 0; iout < 2; iout++ ) {
/* Initialise a pointer to the sampled Y values for the first polynomial
output. */
py = data->y[ iout ];
/* Initialise pointers to the powers of the input X values at the curent
(i.e. first) sample. */
px10 = data->xp1;
px20 = data->xp2;
/* Loop over the index of the sample to which this residual refers. */
for( k = 0; k < data->nsamp; k++ ) {
/* Reset the pointer to the first coefficient (the constant term)
for the current polynomial output coordinate. */
vp = vp0;
/* Initialise this residual to hold the sampled Y value. Increment the
pointer to the next sampled value for the current polynomial output. */
res = -( *(py++) );
/* The w12 value is the sum of the powers of X1 and X2. So w12=0
corresponds to the constant term in the polynomial, and (e.g.) w12=6
corresponds to all the terms for which the sum of the powerss (w1+w2)
is 6. Loop over all possible w12 values. */
for( w12 = 0; w12 < data->order; w12++ ) {
/* The next coeff refers to (x1^w12)*(x2^0). Get pointers to the values
holding x1^w12 and x2^0. */
px1 = px10++;
px2 = px20;
/* Loop over powers of x2. The corresponding power of x1 is "w12-w2", but
is not explicitly needed here. So x1 moves down from w12 to zero, as
w2 moves up from zero to w12. */
for( w2 = 0; w2 <= w12; w2++ ) {
/* Increment the residual by the value of the current term Cw1w2*(x1^w1)*(x2^w2).
Increment the pointer tio the next coefficient (C). Also decrement the
pointer to the next lower power of X1, and increment the pointer to the next
higher power of X2. */
res += ( *(vp++) )*( *(px1--) )*( *(px2++) );
}
}
/* Move on to the x2 powers for the next sample. Don't need to do this
for x1 since px10 is incremented within the above loop. */
px20 += data->order;
/* Store the complete residual in the returned array, and increment the
pointer to the next residual. */
*(vr++) = res;
}
/* Get a pointer to the first coefficient (the constant term) for the
next polynomial output coordinate. */
vp0 += data->order*( 1 + data->order )/2;
}
}
static void LMJacob1D( const double *p, double *jac, int m, int n, void *adata ){
/*
* Name:
* LMJacob1D
* Purpose:
* Evaluate the Jacobian matrix of a test 1D polynomal.
* Type:
* Private function.
* Synopsis:
* void LMJacob1D( const double *p, double *jac, int m, int n, void *adata )
* Description:
* This function finds the Jacobian matrix that describes the rate of
* change of every residual with respect to every polynomial coefficient.
* Each residual is a candidate polynomial evaluated at one of the sample
* points minus the supplied target value for the polynomial at that test
* point.
*
* For a polynomial the Jacobian matrix is constant (i.e. does not
* depend on the values of the polynomial coefficients). So we only
* evaluate it on the first call.
* Parameters:
* p
* An array of "m" coefficients for the candidate polynomial.
* jac
* An array in which to return the "m*n" elements of the Jacobian
* matrix. The rate of change of residual "r" with respect to
* coefficient "c" is returned in element "r + c*n". The residual
* at sample "k" of polynomial Pi has an "r" index of (k + nsamp*i).
* The coefficient of (x1^j) for polynomial Pi has a "c" index
* of j.
* m
* The length of the "p" array. This should be equal to order.
* n
* The number of residuals. This should be equal to nsamp.
* adata
* Pointer to a structure holding the sample positions and values,
* and other information.
*/
/* Local Variables: */
AstMinPackData *data;
int k;
int w1;
/* Get a pointer to the data structure. */
data = (AstMinPackData *) adata;
/* The Jacobian of the residuals with respect to the polynomial
coefficients is constant (i.e. does not depend on the values of the
polynomial coefficients). So we only need to calculate it once. If
this is the first call, calculate the Jacobian and return it in "jac".
otherwise, just return immediately retaining the supplied "jac" values
(which will be the values returned by the previous call to this
function). */
if( data->init_jac ) {
data->init_jac = 0;
/* Loop over all residuals. */
for( k = 0; k < n; k++ ) {
/* Loop over all parameters (i.e. polynomial coefficients). */
for( w1 = 0; w1 < m; w1++ ) {
/* Store the Jacobian. */
jac[ k + w1*n ] = (data->xp1)[ w1 + k*data->order ];
}
}
}
}
static void LMJacob2D( const double *p, double *jac, int m, int n, void *adata ){
/*
* Name:
* LMJacob2D
* Purpose:
* Evaluate the Jacobian matrix of a test 2D polynomal.
* Type:
* Private function.
* Synopsis:
* void LMJacob2D( const double *p, double *jac, int m, int n, void *adata )
* Description:
* This function finds the Jacobian matrix that describes the rate of
* change of every residual with respect to every polynomial coefficient.
* Each residual is a candidate polynomial (either P1 or P2) evaluated
* at one of the sample points (x1,x2), minus the supplied target value
* for the polynomial at that test point.
*
* For a polynomial the Jacobian matrix is constant (i.e. does not
* depend on the values of the polynomial coefficients). So we only
* evaluate it on the first call.
* Parameters:
* p
* An array of "m" coefficients for the candidate polynomial. All the
* coefficients for polynomial P1 come first, followed by those for P2.
* Within each each polynomial, the coefficients are order C00, C10,
* C01, C20, C11, C02, C30, C21, C12, C03, etc. So the coefficient
* of (x1^j*x2^k) (=Cjk) for polynomial Pi is stored in element
* [k + (j + k)*(j + k + 1)/2 + i*order*(order+1)/2] of the "p" array.
* jac
* An array in which to return the "m*n" elements of the Jacobian
* matrix. The rate of change of residual "r" with respect to
* coefficient "c" is returned in element "r + c*n". The residual
* at sample "k" of polynomial Pi has an "r" index of (k + nsamp*i).
* The coefficient of (x1^j*x2^k) for polynomial Pi has a "c" index
* of [k + (j + k)*(j + k + 1)/2 + i*order*(order+1)/2].
* m
* The length of the "p" array. This should be equal to order*(order+1).
* n
* The number of residuals. This should be equal to 2*nsamp.
* adata
* Pointer to a structure holdin gthe sample positions and values,
* and other information.
*/
/* Local Variables: */
AstMinPackData *data;
int iout;
int k;
int ncof;
int vp;
int vr;
int w1;
int w12;
int w2;
/* Get a pointer to the data structure. */
data = (AstMinPackData *) adata;
/* The Jacobian of the residuals with respect to the polynomial
coefficients is constant (i.e. does not depend on the values of the
polynomial coefficients). So we only need to calculate it once. If
this is the first call, calculate the Jacobian and return it in "jac".
otherwise, just return immediately retaining the supplied "jac" values
(which will be the values returned by the previous call to this
function). */
if( data->init_jac ) {
data->init_jac = 0;
/* Store the number of coefficients in one polynomial. */
ncof = data->order*( 1 + data->order )/2;
/* Loop over all residuals. */
for( vr = 0; vr < n; vr++ ) {
/* Calculate the polynomial output index, and sample index, that creates
the current residual. */
iout = vr/data->nsamp;
k = vr - iout*data->nsamp;
/* Loop over all parameters (i.e. polynomial coefficients). */
for( vp = 0; vp < m; vp++ ) {
/* If this coefficient is not used in the creation of the current
polynomial output value, then the Jacobian value is zero. */
if( vp/ncof != iout ) {
jac[ vr + vp*n ] = 0.0;
/* Otherwise, get the powers of the two polynomial inputs, to which
the current coefficient relates. */
} else {
w12 = ( -1.0 + sqrt( 1.0 + 8.0*(vp - iout*ncof) ) )/2.0;
w2 = vp - iout*ncof - w12*( w12 + 1 )/2;
w1 = w12 - w2;
/* Store the Jacobian. */
jac[ vr + vp*n ] = (data->xp1)[ w1 + k*data->order ]*
(data->xp2)[ w2 + k*data->order ];
}
}
}
}
}
#if defined(THREAD_SAFE)
static int ManageLock( AstObject *this_object, int mode, int extra,
AstObject **fail, int *status ) {
/*
* Name:
* ManageLock
* Purpose:
* Manage the thread lock on an Object.
* Type:
* Private function.
* Synopsis:
* #include "object.h"
* AstObject *ManageLock( AstObject *this, int mode, int extra,
* AstObject **fail, int *status )
* Class Membership:
* PolyMap member function (over-rides the astManageLock protected
* method inherited from the parent class).
* Description:
* This function manages the thread lock on the supplied Object. The
* lock can be locked, unlocked or checked by this function as
* deteremined by parameter "mode". See astLock for details of the way
* these locks are used.
* Parameters:
* this
* Pointer to the Object.
* mode
* An integer flag indicating what the function should do:
*
* AST__LOCK: Lock the Object for exclusive use by the calling
* thread. The "extra" value indicates what should be done if the
* Object is already locked (wait or report an error - see astLock).
*
* AST__UNLOCK: Unlock the Object for use by other threads.
*
* AST__CHECKLOCK: Check that the object is locked for use by the
* calling thread (report an error if not).
* extra
* Extra mode-specific information.
* fail
* If a non-zero function value is returned, a pointer to the
* Object that caused the failure is returned at "*fail". This may
* be "this" or it may be an Object contained within "this". Note,
* the Object's reference count is not incremented, and so the
* returned pointer should not be annulled. A NULL pointer is
* returned if this function returns a value of zero.
* status
* Pointer to the inherited status variable.
* Returned Value:
* A local status value:
* 0 - Success
* 1 - Could not lock or unlock the object because it was already
* locked by another thread.
* 2 - Failed to lock a POSIX mutex
* 3 - Failed to unlock a POSIX mutex
* 4 - Bad "mode" value supplied.
* Notes:
* - This function attempts to execute even if an error has already
* occurred.
*/
/* Local Variables: */
AstPolyMap *this;
int ic;
int result;
int nc;
/* Initialise */
result = 0;
/* Check the supplied pointer is not NULL. */
if( !this_object ) return result;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Invoke the ManageLock method inherited from the parent class. */
if( !result ) result = (*parent_managelock)( this_object, mode, extra,
fail, status );
/* Invoke the astManageLock method on any Objects contained within
the supplied Object. */
if( this->jacobian ) {
nc = astGetNin( this );
for( ic = 0; ic < nc && result; ic++ ) {
result = astManageLock( (this->jacobian)[ ic ], mode,
extra, fail );
}
}
return result;
}
#endif
static int MapMerge( AstMapping *this, int where, int series, int *nmap,
AstMapping ***map_list, int **invert_list, int *status ) {
/*
* Name:
* MapMerge
* Purpose:
* Simplify a sequence of Mappings containing a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "mapping.h"
* int MapMerge( AstMapping *this, int where, int series, int *nmap,
* AstMapping ***map_list, int **invert_list, int *status )
* Class Membership:
* PolyMap method (over-rides the protected astMapMerge method
* inherited from the Mapping class).
* Description:
* This function attempts to simplify a sequence of Mappings by
* merging a nominated PolyMap in the sequence with its neighbours,
* so as to shorten the sequence if possible.
*
* In many cases, simplification will not be possible and the
* function will return -1 to indicate this, without further
* action.
*
* In most cases of interest, however, this function will either
* attempt to replace the nominated PolyMap with a Mapping which it
* considers simpler, or to merge it with the Mappings which
* immediately precede it or follow it in the sequence (both will
* normally be considered). This is sufficient to ensure the
* eventual simplification of most Mapping sequences by repeated
* application of this function.
*
* In some cases, the function may attempt more elaborate
* simplification, involving any number of other Mappings in the
* sequence. It is not restricted in the type or scope of
* simplification it may perform, but will normally only attempt
* elaborate simplification in cases where a more straightforward
* approach is not adequate.
* Parameters:
* this
* Pointer to the nominated PolyMap which is to be merged with
* its neighbours. This should be a cloned copy of the PolyMap
* pointer contained in the array element "(*map_list)[where]"
* (see below). This pointer will not be annulled, and the
* PolyMap it identifies will not be modified by this function.
* where
* Index in the "*map_list" array (below) at which the pointer
* to the nominated PolyMap resides.
* series
* A non-zero value indicates that the sequence of Mappings to
* be simplified will be applied in series (i.e. one after the
* other), whereas a zero value indicates that they will be
* applied in parallel (i.e. on successive sub-sets of the
* input/output coordinates).
* nmap
* Address of an int which counts the number of Mappings in the
* sequence. On entry this should be set to the initial number
* of Mappings. On exit it will be updated to record the number
* of Mappings remaining after simplification.
* map_list
* Address of a pointer to a dynamically allocated array of
* Mapping pointers (produced, for example, by the astMapList
* method) which identifies the sequence of Mappings. On entry,
* the initial sequence of Mappings to be simplified should be
* supplied.
*
* On exit, the contents of this array will be modified to
* reflect any simplification carried out. Any form of
* simplification may be performed. This may involve any of: (a)
* removing Mappings by annulling any of the pointers supplied,
* (b) replacing them with pointers to new Mappings, (c)
* inserting additional Mappings and (d) changing their order.
*
* The intention is to reduce the number of Mappings in the
* sequence, if possible, and any reduction will be reflected in
* the value of "*nmap" returned. However, simplifications which
* do not reduce the length of the sequence (but improve its
* execution time, for example) may also be performed, and the
* sequence might conceivably increase in length (but normally
* only in order to split up a Mapping into pieces that can be
* more easily merged with their neighbours on subsequent
* invocations of this function).
*
* If Mappings are removed from the sequence, any gaps that
* remain will be closed up, by moving subsequent Mapping
* pointers along in the array, so that vacated elements occur
* at the end. If the sequence increases in length, the array
* will be extended (and its pointer updated) if necessary to
* accommodate any new elements.
*
* Note that any (or all) of the Mapping pointers supplied in
* this array may be annulled by this function, but the Mappings
* to which they refer are not modified in any way (although
* they may, of course, be deleted if the annulled pointer is
* the final one).
* invert_list
* Address of a pointer to a dynamically allocated array which,
* on entry, should contain values to be assigned to the Invert
* attributes of the Mappings identified in the "*map_list"
* array before they are applied (this array might have been
* produced, for example, by the astMapList method). These
* values will be used by this function instead of the actual
* Invert attributes of the Mappings supplied, which are
* ignored.
*
* On exit, the contents of this array will be updated to
* correspond with the possibly modified contents of the
* "*map_list" array. If the Mapping sequence increases in
* length, the "*invert_list" array will be extended (and its
* pointer updated) if necessary to accommodate any new
* elements.
* status
* Pointer to the inherited status variable.
* Returned Value:
* If simplification was possible, the function returns the index
* in the "map_list" array of the first element which was
* modified. Otherwise, it returns -1 (and makes no changes to the
* arrays supplied).
* Notes:
* - A value of -1 will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*/
/* Local Variables: */
AstPolyMap *pmap0; /* Nominated PolyMap */
AstPolyMap *pmap1; /* Neighbouring PolyMap */
int i; /* Index of neighbour */
int nin; /* Number of input coordinates for nominated PolyMap */
int nout; /* Number of output coordinates for nominated PolyMap */
int ok; /* Are PolyMaps equivalent? */
int oldinv0; /* Original Invert value in pmap0 */
int oldinv1; /* Original Invert value in pmap1 */
int result; /* Result value to return */
/* Initialise. */
result = -1;
/* Check the global error status. */
if ( !astOK ) return result;
/* Save a pointer to the nominated PolyMap. */
pmap0 = (AstPolyMap *) ( *map_list )[ where ];
/* The only simplification which can currently be performed is to merge a PolyMap
with its own inverse. This can only be done in series. Obviously,
there are potentially other simplications which could be performed, but
time does not currently allow these to be coded. */
if( series ) {
/* Temporarily set the Invert flag of the nominated PolyMap to the
required value, first saving the original value so that it can be
re-instated later. */
oldinv0 = astGetInvert( pmap0 );
astSetInvert( pmap0, ( *invert_list )[ where ] );
/* Get the number of inputs and outputs to the nominated PolyMap. */
nin = astGetNin( pmap0 );
nout = astGetNout( pmap0 );
/* Check each neighbour. */
for( i = where - 1; i <= where + 1; i += 2 ) {
/* Continue with the next pass if the neighbour does not exist. */
if( i < 0 || i >= *nmap ) continue;
/* Continue with the next pass if this neighbour is not a PermMap. */
if( ! astIsAPolyMap( ( *map_list )[ i ] ) ) continue;
/* Get a pointer to it. */
pmap1 = (AstPolyMap *) ( *map_list )[ i ];
/* Check it is used in the opposite direction to the nominated PolyMap. */
if( ( *invert_list )[ i ] == ( *invert_list )[ where ] ) continue;
/* We use the astEqual method to check that the two PolyMaps are equal.
But at the moment they may not be equal because they may have
different Invert flags. Therefore, temporarily set the invert flag
of the neighbour so that it is the same as the nominated PolyMap,
first saving the original value so that it can be re-instated later.
Note, we have already checked that the two PolyMaps are used in opposite
directions within the CmpMap. */
oldinv1 = astGetInvert( pmap1 );
astSetInvert( pmap1, ( *invert_list )[ where ] );
/* Use astEqual to check that the coefficients etc are equal in the two
PolyMaps. */
ok = astEqual( pmap0, pmap1 );
/* Re-instate the original value of the Invert flag in the neighbour. */
astSetInvert( pmap1, oldinv1 );
/* Pass on to the next neighbour if the current neighbour differs from
the nominated PolyMap. */
if( !ok ) continue;
/* If we get this far, then the nominated PolyMap and the current
neighbour cancel each other out, so replace each by a UnitMap. */
pmap0 = astAnnul( pmap0 );
pmap1 = astAnnul( pmap1 );
if( i < where ) {
( *map_list )[ where ] = (AstMapping *) astUnitMap( nout, "", status );
( *map_list )[ i ] = (AstMapping *) astUnitMap( nout, "", status );
( *invert_list )[ where ] = 0;
( *invert_list )[ i ] = 0;
result = i;
} else {
( *map_list )[ where ] = (AstMapping *) astUnitMap( nin, "", status );
( *map_list )[ i ] = (AstMapping *) astUnitMap( nin, "", status );
( *invert_list )[ where ] = 0;
( *invert_list )[ i ] = 0;
result = where;
}
/* Leave the loop. */
break;
}
/* If the nominated PolyMap was not replaced by a UnitMap, then
re-instate its original value for the Invert flag. */
if( pmap0 ) astSetInvert( pmap0, oldinv0 );
}
/* Return the result. */
return result;
}
static int MPFunc1D( void *p, int m, int n, const double *x, double *fvec,
double *fjac, int ldfjac, int iflag ) {
/*
* Name:
* MPFunc1D
* Purpose:
* Evaluate a test 1D polynomal or its Jacobian.
* Type:
* Private function.
* Synopsis:
* int MPFunc1D( void *p, int m, int n, const double *x, double *fvec,
* double *fjac, int ldfjac, int iflag )
* Description:
* This function finds the residuals or Jacobian implied by a supplied
* set of candidate polynomial coefficients. Each residual is a candidate
* polynomial evaluated at one of the sample points, minus the
* supplied target value for the polynomial at that test point.
*
* The minimisation process minimises the sum of the squared residuals.
* Parameters:
* p
* A pointer to data needed to evaluate the required residuals or
* Jacobians.
* m
* The number of residuals.
* n
* The number of coefficients.
* x
* An array of "n" coefficients for the candidate polynomial.
* fvec
* An array in which to return the "m" residuals.
* fjac
* An array in which to return the "mxn" Jacobian values.
* ldflac
* Unused (should always be equal to "m").
* iflag
* If 1 calculate the residuals, otherwise calculate the Jacobians.
*/
/* If required, calculate the function values at X, and return this
vector in fvec. Do not alter fjac. */
if( iflag == 1 ) {
LMFunc1D( x, fvec, n, m, p );
/* Otherwise, calculate the Jacobian values at X, and return this
matrix in fjac. Do not alter fvec. */
} else {
LMJacob1D( x, fjac, n, m, p );
}
return 0;
}
static int MPFunc2D( void *p, int m, int n, const double *x, double *fvec,
double *fjac, int ldfjac, int iflag ) {
/*
* Name:
* MPFunc1D
* Purpose:
* Evaluate a test 2D polynomal or its Jacobian.
* Type:
* Private function.
* Synopsis:
* int MPFunc2D( void *p, int m, int n, const double *x, double *fvec,
* double *fjac, int ldfjac, int iflag )
* Description:
* This function finds the residuals or Jacobian implied by a supplied
* set of candidate polynomial coefficients. Each residual is a candidate
* polynomial evaluated at one of the sample points, minus the
* supplied target value for the polynomial at that test point.
*
* The minimisation process minimises the sum of the squared residuals.
* Parameters:
* p
* A pointer to data needed to evaluate the required residuals or
* Jacobians.
* m
* The number of residuals.
* n
* The number of coefficients.
* x
* An array of "n" coefficients for the candidate polynomial.
* fvec
* An array in which to return the "m" residuals.
* fjac
* An array in which to return the "mxn" Jacobian values.
* ldflac
* Unused (should always be equal to "m").
* iflag
* If 1 calculate the residuals, otherwise calculate the Jacobians.
*/
/* If required, calculate the function values at X, and return this
vector in fvec. Do not alter fjac. */
if( iflag == 1 ) {
LMFunc2D( x, fvec, n, m, p );
/* Otherwise, calculate the Jacobian values at X, and return this
matrix in fjac. Do not alter fvec. */
} else {
LMJacob2D( x, fjac, n, m, p );
}
return 0;
}
static void PolyCoeffs( AstPolyMap *this, int forward, int nel, double *coeffs,
int *ncoeff, int *status ){
/*
*++
* Name:
c astPolyCoeffs
f AST_POLYCOEFFS
* Purpose:
* Retrieve the coefficient values used by a PolyMap.
* Type:
* Public function.
* Synopsis:
c #include "polymap.h"
c void astPolyCoeffs( AstPolyMap *this, int forward, int nel, double *coeffs,
c int *ncoeff )
f CALL AST_POLYCOEFFS( THIS, FORWARD, NEL, COEFFS, NCOEFF, STATUS )
* Class Membership:
* PolyMap method.
* Description:
* This function returns the coefficient values used by either the
* forward or inverse transformation of a PolyMap, in the same form
* that they are supplied to the PolyMap constructor.
*
* Usually, you should call this method first with
c "nel"
f NEL
* set to zero to determine the number of coefficients used by the
* PolyMap. This allows you to allocate an array of the correct size to
* hold all coefficient data. You should then call this method a
* second time to get the coefficient data.
* Parameters:
c this
f THIS = INTEGER (Given)
* Pointer to the original Mapping.
c forward
f FORWARD = LOGICAL (Given)
c If non-zero,
f If .TRUE.,
* the coefficients of the forward PolyMap transformation are
* returned. Otherwise the inverse transformation coefficients are
* returned.
c nel
f NEL = INTEGER (Given)
* The length of the supplied
c "coeffs"
f COEFFS
* array. It should be at least "ncoeff*( nin + 2 )" if
c "foward" is non-zero,
f FORWARD is .TRUE.,
* and "ncoeff*( nout + 2 )" otherwise, where "ncoeff" is the
* number of coefficients to be returned. If a value of zero
* is supplied, no coefficient values are returned, but the
* number of coefficients used by the transformation is still
* returned in
c "ncoeff".
f NCOEFF.
c coeffs
f COEFFS( NEL ) = DOUBLE PRECISION (Returned)
* An array in which to return the coefficients used by the
* requested transformation of the PolyMap. Ignored if
c "nel" is zero.
f NEL is zero.
* The coefficient data is returned in the form in which it is
* supplied to the PolyMap constructor. That is, each group of
* "2 + nin" or "2 + nout" adjacent elements describe a single
* coefficient of the forward or inverse transformation. See the
* PolyMap constructor documentation for further details.
*
* If the supplied array is too short to hold all the coefficients,
* trailing coefficients are excluded. If the supplied array is
* longer than needed to hold all the coefficients, trailing
* elements are filled with zeros.
c ncoeff
f NCOEFF = INTEGER (Returned)
* The number of coefficients used by the requested transformation.
* A value of zero is returned if the transformation does not
* have any defining polynomials. A value is returned for this argument
* even if
c "nel" is zero.
f NEL is zero.
f STATUS = INTEGER (Given and Returned)
f The global status.
*--
*/
/* Local Variables: */
double **coeff;
int ***power;
int *nco;
int *pp;
int iax;
int icoeff;
int iel;
int ipoly;
int nax;
int npoly;
/* Initialise */
*ncoeff = 0;
/* Check the inherited status. */
if ( !astOK ) return;
/* Fill any supplied array with zeros. */
if( nel ) memset( coeffs, 0, nel*sizeof( *coeffs ) );
/* Get the values to use, taking account of whether the PolyMap has been
inverted or not. */
if( forward != astGetInvert( this ) ){
nco = this->ncoeff_f;
power = this->power_f;
coeff = this->coeff_f;
npoly = astGetNout( this );
nax = astGetNin( this );
} else {
nco = this->ncoeff_i;
power = this->power_i;
coeff = this->coeff_i;
npoly = astGetNin( this );
nax = astGetNout( this );
}
/* Notheg to do if there are no coeffs. */
if( nco && power && coeff ) {
/* Initialise index of next value to store in returned array. */
iel = 0;
/* Loop round each 1D polynomial. */
for( ipoly = 0; ipoly < npoly; ipoly++ ){
/* Loop round coefficients. */
for( icoeff = 0; icoeff < nco[ ipoly ]; icoeff++ ) {
/* Store the coefficient value in the next element of the returned array,
if the array is not already full. Increment the pointer to the next
element. */
if( iel < nel ) coeffs[ iel++ ] = coeff[ipoly][icoeff];
/* Next store the integer index of the PolyMap input or output which uses
the coefficient within its defining polynomial (the first axis has
index 1). */
if( iel < nel ) coeffs[ iel++ ] = ipoly + 1;
/* The remaining elements of the group give the integer powers to use
with each input or output coordinate value. */
pp = power[ipoly][icoeff];
for( iax = 0; iax < nax; iax++,pp++ ) {
if( iel < nel ) coeffs[ iel++ ] = *pp;
}
}
/* Increment the total number of coefficients used by the transformation. */
*ncoeff += nco[ ipoly ];
}
}
}
static void PolyPowers( AstPolyMap *this, double **work, int ncoord,
const int *mxpow, double **ptr, int point,
int fwd, int *status ){
/*
*+
* Name:
* astPolyPowers
* Purpose:
* Find the required powers of the input axis values.
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* void astPolyPowers( AstPolyMap *this, double **work, int ncoord,
* const int *mxpow, double **ptr, int point,
* int fwd )
* Class Membership:
* PolyMap virtual function.
* Description:
* This function is used by astTransform to calculate the powers of
* the axis values for a single input position. In the case of
* sub-classes, the powers may not be simply powers of the supplied
* axis values but may be more complex quantities such as a Chebyshev
* polynomial of the required degree evaluated at the input axis values.
* Parameters:
* this
* Pointer to the PolyMap.
* work
* An array of "ncoord" pointers, each pointing to an array of
* length "max(2,mxpow)". The required values are placed in this
* array on exit.
* ncoord
* The number of axes.
* mxpow
* Pointer to an array holding the maximum power required of each
* axis value. Should have "ncoord" elements.
* ptr
* An array of "ncoord" pointers, each pointing to an array holding
* the axis values. Each of these arrays of axis values must have
* at least "point+1" elements.
* point
* The zero based index of the point within "ptr" that holds the
* axis values to be exponentiated.
* fwd
* Do the supplied coefficients define the foward transformation of
* the PolyMap?
*-
*/
/* Local Variables; */
double *pwork;
double x;
int coord;
int ip;
/* Check the local error status. */
if ( !astOK ) return;
/* For the base PolyMap class, this method simply raises each input axis
value to the required power. Loop over all input axes. */
for( coord = 0; coord < ncoord; coord++ ) {
/* Get a pointer to the array in which the powers of the current axis
value are to be returned. */
pwork = work[ coord ];
/* Anything to the power zero is 1.0. */
pwork[ 0 ] = 1.0;
/* Get the input axis value. If it is bad, store bad values for all
remaining powers. */
x = ptr[ coord ][ point ];
if( x == AST__BAD ) {
for( ip = 1; ip <= mxpow[ coord ]; ip++ ) pwork[ ip ] = AST__BAD;
/* Otherwise, form and store the required powers of the input axis value. */
} else {
for( ip = 1; ip <= mxpow[ coord ]; ip++ ) {
pwork[ ip ] = pwork[ ip - 1 ]*x;
}
}
}
}
static AstPolyMap *PolyTran( AstPolyMap *this, int forward, double acc,
double maxacc, int maxorder, const double *lbnd,
const double *ubnd, int *status ){
/*
*++
* Name:
c astPolyTran
f AST_POLYTRAN
* Purpose:
* Fit a PolyMap inverse or forward transformation.
* Type:
* Public function.
* Synopsis:
c #include "polymap.h"
c AstPolyMap *astPolyTran( AstPolyMap *this, int forward, double acc,
c double maxacc, int maxorder, const double *lbnd,
c const double *ubnd )
f RESULT = AST_POLYTRAN( THIS, FORWARD, ACC, MAXACC, MAXORDER, LBND,
f UBND, STATUS )
* Class Membership:
* PolyMap method.
* Description:
* This function creates a new PolyMap which is a copy of the supplied
* PolyMap, in which a specified transformation (forward or inverse)
* has been replaced by a new polynomial transformation. The
* coefficients of the new transformation are estimated by sampling
* the other transformation and performing a least squares polynomial
* fit in the opposite direction to the sampled positions and values.
*
* This method can only be used on (1-input,1-output) or (2-input,2-output)
* PolyMaps.
*
* The transformation to create is specified by the
c "forward" parameter.
f FORWARD parameter.
* In what follows "X" refers to the inputs of the PolyMap, and "Y" to
* the outputs of the PolyMap. The forward transformation transforms
* input values (X) into output values (Y), and the inverse transformation
* transforms output values (Y) into input values (X). Within a PolyMap,
* each transformation is represented by an independent set of
* polynomials, P_f or P_i: Y=P_f(X) for the forward transformation and
* X=P_i(Y) for the inverse transformation.
*
c The "forward"
f The FORWARD
* parameter specifies the transformation to be replaced. If it is
c non-zero,
f is .TRUE.,
* a new forward transformation is created
* by first finding the input values (X) using the inverse transformation
* (which must be available) at a regular grid of points (Y) covering a
* rectangular region of the PolyMap's output space. The coefficients of
* the required forward polynomial, Y=P_f(X), are chosen in order to
* minimise the sum of the squared residuals between the sampled values
* of Y and P_f(X).
*
c If "forward" is zero (probably the most likely case),
f If FORWARD is .FALSE. (probably the most likely case),
* a new inverse transformation is created by
* first finding the output values (Y) using the forward transformation
* (which must be available) at a regular grid of points (X) covering a
* rectangular region of the PolyMap's input space. The coefficients of
* the required inverse polynomial, X=P_i(Y), are chosen in order to
* minimise the sum of the squared residuals between the sampled values
* of X and P_i(Y).
*
* This fitting process is performed repeatedly with increasing
* polynomial orders (starting with linear) until the target
* accuracy is achieved, or a specified maximum order is reached. If
* the target accuracy cannot be achieved even with this maximum-order
* polynomial, the best fitting maximum-order polynomial is returned so
* long as its accuracy is better than
c "maxacc".
f MAXACC.
* If it is not, a NULL pointer is returned but no error is reported.
* Parameters:
c this
f THIS = INTEGER (Given)
* Pointer to the original Mapping.
c forward
f FORWARD = LOGICAL (Given)
c If non-zero,
f If .TRUE.,
* the forward PolyMap transformation is replaced. Otherwise the
* inverse transformation is replaced.
c acc
f ACC = DOUBLE (Given)
* The target accuracy, expressed as a geodesic distance within
* the PolyMap's input space (if
c "forward" is zero) or output space (if "forward" is non-zero).
f FORWARD is .FALSE.) or output space (if FORWARD is .TRUE.).
c maxacc
f MAXACC = DOUBLE (Given)
* The maximum allowed accuracy for an acceptable polynomial,
* expressed as a geodesic distance within the PolyMap's input
* space (if
c "forward" is zero) or output space (if "forward" is non-zero).
f FORWARD is .FALSE.) or output space (if FORWARD is .TRUE.).
c maxorder
f MAXORDER = INTEGER (Given)
* The maximum allowed polynomial order. This is one more than the
* maximum power of either input axis. So for instance, a value of
* 3 refers to a quadratic polynomial. Note, cross terms with total
* powers greater than or equal to
c maxorder
f MAXORDER
* are not inlcuded in the fit. So the maximum number of terms in
* each of the fitted polynomials is
c maxorder*(maxorder+1)/2.
f MAXORDER*(MAXORDER+1)/2.
c lbnd
f LBND( * ) = DOUBLE PRECISION (Given)
c Pointer to an
f An
* array holding the lower bounds of a rectangular region within
* the PolyMap's input space (if
c "forward" is zero) or output space (if "forward" is non-zero).
f FORWARD is .FALSE.) or output space (if FORWARD is .TRUE.).
* The new polynomial will be evaluated over this rectangle. The
* length of this array should equal the value of the PolyMap's Nin
* or Nout attribute, depending on
c "forward".
f FORWARD.
c ubnd
f UBND( * ) = DOUBLE PRECISION (Given)
c Pointer to an
f An
* array holding the upper bounds of a rectangular region within
* the PolyMap's input space (if
c "forward" is zero) or output space (if "forward" is non-zero).
f FORWARD is .FALSE.) or output space (if FORWARD is .TRUE.).
* The new polynomial will be evaluated over this rectangle. The
* length of this array should equal the value of the PolyMap's Nin
* or Nout attribute, depending on
c "forward".
f FORWARD.
f STATUS = INTEGER (Given and Returned)
f The global status.
* Returned Value:
c astPolyTran()
f AST_POLYTRAN = INTEGER
* A pointer to the new PolyMap.
c A NULL pointer
f AST__NULL
* will be returned if the fit fails to achieve the accuracy
* specified by
c "maxacc",
f MAXACC,
* but no error will be reported.
* Applicability:
* PolyMap
* All PolyMaps have this method.
* ChebyMap
c The ChebyMap implementation of this method allows
c NULL pointers to be supplied for "lbnd" and/or "ubnd",
c in which case the corresponding bounds supplied when the ChebyMap
c was created are used.
* The returned PolyMap will be a ChebyMap, and the new transformation
* will be defined as a weighted sum of Chebyshev functions of the
* first kind.
* Notes:
* - The IterInverse attribute is always cleared in the returned PolyMap.
* This means that the returned PolyMap will always use the new fit by
* default, rather than the iterative inverse, regardless of the setting
* of IterInverse in the supplied PolyMap.
* - This function can only be used on 1D or 2D PolyMaps which have
* the same number of inputs and outputs.
* - A null Object pointer (AST__NULL) will be returned if this
c function is invoked with the AST error status set, or if it
f function is invoked with STATUS set to an error value, or if it
* should fail for any reason.
*--
*/
/* Local Variables: */
AstPolyMap *result;
int ok;
/* Initialise. */
result = NULL;
/* Check the inherited status. */
if ( !astOK ) return result;
/* Take a copy of the supplied PolyMap. */
result = astCopy( this );
/* Replace the required transformation. */
ok = ReplaceTransformation( result, forward, acc, maxacc, maxorder, lbnd,
ubnd, status );
/* If an error occurred, or the fit was not good enough, annul the returned
PolyMap. */
if ( !ok || !astOK ) {
result = astAnnul( result );
/* Otherwise, ensure the new fit is used in preference to the iterative
inverse by clearing the IterInverse attribute. */
} else {
astClearIterInverse( result );
}
/* Return the result. */
return result;
}
static int ReplaceTransformation( AstPolyMap *this, int forward, double acc,
double maxacc, int maxorder, const double *lbnd,
const double *ubnd, int *status ){
/*
* Name:
* ReplaceTransformation
* Purpose:
* Create a new inverse or forward transformation for a PolyMap.
* Type:
* Private function.
* Synopsis:
* int ReplaceTransformation( AstPolyMap *this, int forward, double acc,
* double maxacc, int maxorder, const double *lbnd,
* const double *ubnd, int *status )
* Description:
* This function creates a new forward or inverse transformation for
* the supplied PolyMap (replacing any existing transformation), by
* sampling the other transformation and performing a least squares
* polynomial fit to the sample positions and values.
*
* The transformation to create is specified by the "forward" parameter.
* In what follows "X" refers to the inputs of the PolyMap, and "Y" to
* the outputs of the PolyMap. The forward transformation transforms
* input values (X) into output values (Y), and the inverse transformation
* transforms output values (Y) into input values (X). Within a PolyMap,
* each transformation is represented by an independent set of
* polynomials: Y=P_f(X) for the forward transformation and X=P_i(Y)
* for the inverse transformation.
*
* If "forward" is zero then a new inverse transformation is created by
* first finding the output values (Y) using the forward transformation
* (which must be available) at a regular grid of points (X) covering a
* rectangular region of the PolyMap's input space. The coefficients of
* the required inverse polynomial, X=P_i(Y), are chosen in order to
* minimise the sum of the squared residuals between the sampled values
* of X and P_i(Y).
*
* If "forward" is non-zero then a new forward transformation is created
* by first finding the input values (X) using the inverse transformation
* (which must be available) at a regular grid of points (Y) covering a
* rectangular region of the PolyMap's output space. The coefficients of
* the required forward polynomial, Y=P_f(X), are chosen in order to
* minimise the sum of the squared residuals between the sampled values
* of Y and P_f(X).
*
* This fitting process is performed repeatedly with increasing
* polynomial orders (starting with linear) until the target
* accuracy is achieved, or a specified maximum order is reached. If
* the target accuracy cannot be achieved even with this maximum-order
* polynomial, the best fitting maximum-order polynomial is returned so
* long as its accuracy is better than "maxacc".
* Parameters:
* this
* The PolyMap.
* forward
* If non-zero, then the forward PolyMap transformation is
* replaced. Otherwise the inverse transformation is replaced.
* acc
* The target accuracy, expressed as a geodesic distance within
* the PolyMap's input space (if "forward" is zero) or output
* space (if "forward" is non-zero).
* maxacc
* The maximum allowed accuracy for an acceptable polynomial,
* expressed as a geodesic distance within the PolyMap's input
* space (if "forward" is zero) or output space (if "forward" is
* non-zero).
* maxorder
* The maximum allowed polynomial order. This is one more than the
* maximum power of either input axis. So for instance, a value of
* 3 refers to a quadratic polynomial. Note, cross terms with total
* powers greater than or equal to maxorder are not inlcuded in the
* fit. So the maximum number of terms in each of the fitted polynomials
* is maxorder*(maxorder+1)/2.
* lbnd
* An array holding the lower bounds of a rectangular region within
* the PolyMap's input space (if "forward" is zero) or output
* space (if "forward" is non-zero). The new polynomial will be
* evaluated over this rectangle.
* ubnd
* An array holding the upper bounds of a rectangular region within
* the PolyMap's input space (if "forward" is zero) or output
* space (if "forward" is non-zero). The new polynomial will be
* evaluated over this rectangle.
* status
* Pointer to the inherited status variable.
* Returned Value:
* - Non-zero if a fit was performed succesfully, to at least the
* maximum allowed accuracy. Zero if the fit failed, or an error
* occurred.
* Notes:
* - No error is reported if the fit fails to achieve the required
* maximum accuracy.
* - An error is reported if the transformation that is not being
* replaced is not defined.
* - An error is reported if the PolyMap does not have equal numbers
* of inputs and outputs.
* - An error is reported if the PolyMap has more than 2 inputs or outputs.
*/
/* Local Variables: */
double **table;
double *cofs;
double racc;
double scales[ 4 ];
int ndim;
int ncof;
int nsamp;
int order;
int result;
/* Check inherited status */
if( !astOK ) return 0;
/* Check the PolyMap can be used. */
ndim = astGetNin( this );
if( astGetNout( this ) != ndim && astOK ) {
astError( AST__BADNI, "astPolyTran(%s): Supplied %s has "
"different number of inputs (%d) and outputs (%d).",
status, astGetClass( this ), astGetClass( this ), ndim,
astGetNout( this ) );
} else if( ndim > 2 && astOK ) {
astError( AST__BADNI, "astPolyTran(%s): Supplied %s has "
"too many inputs and outputs (%d) - must be 1 or 2.",
status, astGetClass( this ), astGetClass( this ), ndim );
}
if( forward != astGetInvert( this ) ){
if( ! this->ncoeff_i && astOK ) {
astError( AST__NODEF, "astPolyTran(%s): Supplied %s has "
"no inverse transformation.", status, astGetClass( this ),
astGetClass( this ) );
}
} else {
if( ! this->ncoeff_f && astOK ) {
astError( AST__NODEF, "astPolyTran(%s): Supplied %s has "
"no forward transformation.", status, astGetClass( this ),
astGetClass( this ) );
}
}
/* Check the bounds can be used. */
if( !lbnd || !ubnd ) {
astError( AST__NODEF, "astPolyTran(%s): No upper and/or lower bounds "
"supplied.", status, astGetClass( this ) );
} else if( lbnd[ 0 ] >= ubnd[ 0 ] && astOK ) {
astError( AST__NODEF, "astPolyTran(%s): Supplied upper "
"bound for the first axis (%g) is less than or equal to the "
"supplied lower bound (%g).", status, astGetClass( this ),
lbnd[ 0 ], ubnd[ 0 ] );
} else if( ndim == 2 && lbnd[ 1 ] >= ubnd[ 1 ] && astOK ) {
astError( AST__NODEF, "astPolyTran(%s): Supplied upper "
"bound for the second axis (%g) is less than or equal to the "
"supplied lower bound (%g).", status, astGetClass( this ),
lbnd[ 1 ], ubnd[ 1 ] );
}
/* Initialise pointer to work space. */
table = NULL;
/* Loop over increasing polynomial orders until the required accuracy is
achieved, up to the specified maximum order. The "order" value is one more
than the maximum power in the polynomial (so a quadratic has "order" 3). */
if( maxorder < 2 ) maxorder = 2;
for( order = 2; order <= maxorder; order++ ) {
/* First do 2D PolyMaps. */
if( ndim == 2 ) {
/* Sample the requested polynomial transformation at a grid of points. This
grid covers the user-supplied region, using 2*order points on each
axis. */
table = SamplePoly2D( this, !forward, table, lbnd, ubnd, 2*order,
&nsamp, scales, status );
/* Fit the polynomial. Always fit a linear polynomial ("order" 2) to any
dummy second axis. If successfull, replace the PolyMap transformation
and break out of the order loop. */
cofs = FitPoly2D( this, forward, nsamp, acc, order, table, scales,
&ncof, &racc, status );
/* Now do 1D PolyMaps. */
} else {
table = SamplePoly1D( this, !forward, table, lbnd[ 0 ], ubnd[ 0 ],
2*order, &nsamp, scales, status );
cofs = FitPoly1D( this, forward, nsamp, acc, order, table, scales,
&ncof, &racc, status );
}
/* If the fit was succesful, replace the PolyMap transformation and break
out of the order loop. */
if( cofs && ( racc < acc || ( racc < maxacc && order == maxorder ) ) ) {
StoreArrays( this, forward, ncof, cofs, status );
break;
} else {
cofs = astFree( cofs );
}
}
/* If no fit was produced, return zero. */
result = cofs ? 1 : 0;
/* Free resources. */
cofs = astFree( cofs );
table = astFreeDouble( table );
/* Return the result. */
return result;
}
static double **SamplePoly1D( AstPolyMap *this, int forward, double **table,
double lbnd, double ubnd, int npoint, int *nsamp,
double scales[2], int *status ){
/*
* Name:
* SamplePoly1D
* Purpose:
* Create a table of input and output positions for a 1D PolyMap.
* Type:
* Private function.
* Synopsis:
* double **SamplePoly1D( AstPolyMap *this, int forward, double **table,
* double lbnd, double ubnd, int npoint, int *nsamp,
* double scales[2], int *status )
* Description:
* This function creates a table containing samples of the requested
* polynomial transformation at a grid of input points. This grid covers
* the user-supplied region, using "npoint" points.
* Parameters:
* this
* The PolyMap.
* forward
* If non-zero, then the forward PolyMap transformation is sampled.
* Otherwise the inverse transformation is sampled.
* table
* Pointer to a previous table created by this function, which is
* to be re-used, or NULL.
* lbnd
* The lower bounds of the region within the PolyMap's 1D input space
* (if "forward" is non-zero) or output space (if "forward" is zero).
* The new polynomial will be evaluated over this region.
* ubnd
* The upper bounds of the region within the PolyMap's 1D input space
* (if "forward" is non-zero) or output space (if "forward" is zero).
* The new polynomial will be evaluated over this region.
* npoint
* The number of points to use.
* nsamp
* Address of an int in which to return the total number of samples
* in the returned table.
* scales
* Array in which to return the scaling factors for the two columns
* of the returned table. Multiplying the returned table values by
* the scale factor produces PolyMap input or output axis values.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to an array of 2 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the sampled values for y1
* and x1 in that order. Here x1 is the input value for the sampled
* transformation (these are spaced on the regular grid specified
* by lbnd, ubnd and npoint), and y1 is the output position produced
* by the sampled transformation. The returned values are scaled so
* that each column has an RMS value of 1.0. The scaling factors that
* convert scaled values into original values are returned in "scales".
* The returned pointer should be freed using astFreeDouble when no
* longer needed.
*/
/* Local Variables: */
AstPointSet *ps1;
AstPointSet *ps2;
double **result;
double *p0;
double *p1;
double *ptr1[ 1 ];
double *ptr2[ 1 ];
double delta0;
double rms;
double sum;
double val0;
int i;
int icol;
/* Initialise returned value */
result = table;
*nsamp = 0;
/* Check inherited status */
if( !astOK ) return result;
/* Ensure we have a table of the correct size. */
*nsamp = npoint;
if( !result ) result = astCalloc( 2, sizeof( double * ) );
if( result ) {
for( i = 0; i < 2; i++ ) {
result[ i ] = astRealloc( result[ i ] , (*nsamp)*sizeof( double ) );
}
}
/* Work out the step sizes for the grid. */
delta0 = ( ubnd - lbnd )/( npoint - 1 );
/* Create a PointSet to hold the grid of input positions. Use column 1
of the table to hold the PointSet values. */
ps1 = astPointSet( *nsamp, 1, " ", status );
ptr1[ 0 ] = result[ 1 ];
astSetPoints( ps1, ptr1 );
/* Create a PointSet to hold the grid of output positions. Use column 0
of the table to hold the PointSet values. */
ps2 = astPointSet( *nsamp, 1, " ", status );
ptr2[ 0 ] = result[ 0 ];
astSetPoints( ps2, ptr2 );
if( astOK ) {
/* Calculate the grid of input positions and store in the PointSet and
therefore also in the returned table. Rounding error may cause the
final point to be just over the upper bound, so we leave the final
point out of the loop and set it explicitly to the upper bound
afterwards. */
val0 = lbnd;
p0 = ptr1[ 0 ];
for( i = 0; i < npoint-1; i++ ) {
*(p0++) = val0;
val0 += delta0;
}
*p0 = ubnd;
/* Transform the input grid to get the output grid. */
(void) astTransform( this, ps1, forward, ps2 );
/* Scale each column in turn. */
for( icol = 0; icol < 2; icol++ ) {
/* Find the RMS of the values in the column. */
sum = 0.0;
p0 = result[ icol ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) sum += ( *p0 )*( *p0 );
rms = sqrt( sum/(*nsamp) );
/* Divide the table values by the RMS. */
p0 = result[ icol ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) *p0 /= rms;
/* Return the RMS as the scale factor. */
scales[ icol ] = rms;
}
}
/* Free resources */
ps1 = astAnnul( ps1 );
ps2 = astAnnul( ps2 );
/* If an error occurred, free the returned array. */
if( !astOK ) result = astFreeDouble( result );
/* Return a pointer to the table. */
return result;
}
static double **SamplePoly2D( AstPolyMap *this, int forward, double **table,
const double *lbnd, const double *ubnd, int npoint,
int *nsamp, double scales[4], int *status ){
/*
* Name:
* SamplePoly2D
* Purpose:
* Create a table of input and output positions for a 2D PolyMap.
* Type:
* Private function.
* Synopsis:
* double **SamplePoly2D( AstPolyMap *this, int forward, double **table,
* const double *lbnd, const double *ubnd, int npoint,
* int *nsamp, double scales[4], int *status )
* Description:
* This function creates a table containing samples of the requested
* polynomial transformation at a grid of input points. This grid covers
* the user-supplied region, using "npoint" points on each axis.
* Parameters:
* this
* The PolyMap.
* forward
* If non-zero, then the forward PolyMap transformation is sampled.
* Otherwise the inverse transformation is sampled.
* table
* Pointer to a previous table created by this function, which is
* to be re-used, or NULL.
* lbnd
* An array holding the lower bounds of a rectangular region within
* the PolyMap's input space (if "forward" is non-zero) or output
* space (if "forward" is zero). The new polynomial will be
* evaluated over this rectangle.
* ubnd
* An array holding the upper bounds of a rectangular region within
* the PolyMap's input space (if "forward" is non-zero) or output
* space (if "forward" is zero). The new polynomial will be
* evaluated over this rectangle.
* npoint
* The number of points along each edge of the grid.
* nsamp
* Address of an int in which to return the total number of samples
* in the returned table.
* scales
* Array in which to return the scaling factors for the four
* columns of the returned table. Multiplying the returned table
* values by the scale factor produces PolyMap input or output axis
* values.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to an array of 4 pointers. Each of these pointers points
* to an array of "nsamp" doubles, being the sampled values for y1,
* y2, x1 or x2 in that order. Here (x1,x2) are the input values
* for the sampled transformation (these are spaced on the regular
* grid specified by lbnd, ubnd and npoint), and (y1,y2) are the
* output positions produced by the sampled transformation. The
* returned values are scaled so that each column has an RMS value
* of 1.0. The scaling factors that convert scaled values into
* original values are returned in "scales". The returned pointer
* should be freed using astFreeDouble when no longer needed.
*/
/* Local Variables: */
AstPointSet *ps1;
AstPointSet *ps2;
double **result;
double *p0;
double *p1;
double *ptr1[ 2 ];
double *ptr2[ 2 ];
double delta1;
double delta0;
double rms;
double sum;
double val0;
double val1;
int i;
int icol;
int j;
/* Initialise returned value */
result = table;
*nsamp = 0;
/* Check inherited status */
if( !astOK ) return result;
/* Ensure we have a table of the correct size. */
*nsamp = npoint*npoint;
if( !result ) result = astCalloc( 4, sizeof( double * ) );
if( result ) {
for( i = 0; i < 4; i++ ) {
result[ i ] = astRealloc( result[ i ] , (*nsamp)*sizeof( double ) );
}
}
/* Work out the step sizes for the grid. */
delta0 = ( ubnd[ 0 ] - lbnd[ 0 ] )/( npoint - 1 );
delta1 = ( ubnd[ 1 ] - lbnd[ 1 ] )/( npoint - 1 );
/* Create a PointSet to hold the grid of input positions. Use columns 2
and 3 of the table to hold the PointSet values. */
ps1 = astPointSet( *nsamp, 2, " ", status );
ptr1[ 0 ] = result[ 2 ];
ptr1[ 1 ] = result[ 3 ];
astSetPoints( ps1, ptr1 );
/* Create a PointSet to hold the grid of output positions. Use columns 0
and 1 of the table to hold the PointSet values. */
ps2 = astPointSet( *nsamp, 2, " ", status );
ptr2[ 0 ] = result[ 0 ];
ptr2[ 1 ] = result[ 1 ];
astSetPoints( ps2, ptr2 );
if( astOK ) {
/* Calculate the grid of input positions and store in the PointSet and
therefore also in the returned table. Rounding error may cause the
final point on each axis to be just over the upper bound, so we leave
the final point out of the loop and set it explicitly to the upper bound
afterwards. */
val0 = lbnd[ 0 ];
p0 = ptr1[ 0 ];
p1 = ptr1[ 1 ];
for( i = 0; i < npoint - 1; i++ ) {
val1 = lbnd[ 1 ];
for( j = 0; j < npoint-1; j++ ) {
*(p0++) = val0;
*(p1++) = val1;
val1 += delta1;
}
*(p0++) = val0;
*(p1++) = ubnd[ 1 ];
val0 += delta0;
}
val1 = lbnd[ 1 ];
for( j = 0; j < npoint-1; j++ ) {
*(p0++) = ubnd[ 0 ];
*(p1++) = val1;
val1 += delta1;
}
*(p0++) = ubnd[ 0 ];
*(p1++) = ubnd[ 1 ];
/* Transform the input grid to get the output grid. */
(void) astTransform( this, ps1, forward, ps2 );
/* Scale each pair of columns in turn. Use the same scale factor for
each axis in order to ensure an isotropic metric. */
for( icol = 0; icol < 4; icol += 2 ) {
/* Find the RMS of the values in the two columns. */
sum = 0.0;
p0 = result[ icol ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) sum += ( *p0 )*( *p0 );
p0 = result[ icol + 1 ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) sum += ( *p0 )*( *p0 );
rms = sqrt( sum/(2*(*nsamp)) );
/* Divide the table values by the RMS. */
p0 = result[ icol ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) *p0 /= rms;
p0 = result[ icol + 1 ];
p1 = p0 + (*nsamp);
for( ; p0 < p1; p0++ ) *p0 /= rms;
/* Return the RMS as the scale factor. */
scales[ icol ] = rms;
scales[ icol + 1 ] = rms;
}
}
/* Free resources */
ps1 = astAnnul( ps1 );
ps2 = astAnnul( ps2 );
/* If an error occurred, free the returned array. */
if( !astOK ) result = astFreeDouble( result );
/* Return a pointer to the table. */
return result;
}
static void SetAttrib( AstObject *this_object, const char *setting, int *status ) {
/*
* Name:
* SetAttrib
* Purpose:
* Set an attribute value for a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* void SetAttrib( AstObject *this, const char *setting )
* Class Membership:
* PolyMap member function (over-rides the astSetAttrib protected
* method inherited from the Mapping class).
* Description:
* This function assigns an attribute value for a PolyMap, the
* attribute and its value being specified by means of a string of
* the form:
*
* "attribute= value "
*
* Here, "attribute" specifies the attribute name and should be in
* lower case with no white space present. The value to the right
* of the "=" should be a suitable textual representation of the
* value to be assigned and this will be interpreted according to
* the attribute's data type. White space surrounding the value is
* only significant for string attributes.
* Parameters:
* this
* Pointer to the PolyMap.
* setting
* Pointer to a null-terminated string specifying the new attribute
* value.
*/
/* Local Variables: */
AstPolyMap *this; /* Pointer to the PolyMap structure */
double dval; /* Floating point attribute value */
int ival; /* Integer attribute value */
int len; /* Length of setting string */
int nc; /* Number of characters read by astSscanf */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Obtain the length of the setting string. */
len = (int) strlen( setting );
/* Test for each recognised attribute in turn, using "astSscanf" to parse
the setting string and extract the attribute value (or an offset to
it in the case of string values). In each case, use the value set
in "nc" to check that the entire string was matched. Once a value
has been obtained, use the appropriate method to set it. */
/* IterInverse. */
/* ------------ */
if ( nc = 0,
( 1 == astSscanf( setting, "iterinverse= %d %n", &ival, &nc ) )
&& ( nc >= len ) ) {
astSetIterInverse( this, ival );
/* NiterInverse. */
/* ------------- */
} else if ( nc = 0,
( 1 == astSscanf( setting, "niterinverse= %d %n", &ival, &nc ) )
&& ( nc >= len ) ) {
astSetNiterInverse( this, ival );
/* TolInverse. */
/* ----------- */
} else if ( nc = 0,
( 1 == astSscanf( setting, "tolinverse= %lg %n", &dval, &nc ) )
&& ( nc >= len ) ) {
astSetTolInverse( this, dval );
/* If the attribute is still not recognised, pass it on to the parent
method for further interpretation. */
} else {
(*parent_setattrib)( this_object, setting, status );
}
}
static void StoreArrays( AstPolyMap *this, int forward, int ncoeff,
const double *coeff, int *status ){
/*
* Name:
* StoreArrays
* Purpose:
* Store the dynamic arrays for a single transformation within a PolyMap
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* void StoreArrays( AstPolyMap *this, int forward, int ncoeff,
* const double *coeff, int *status )
* Class Membership:
* PolyMap initialiser.
* Description:
* This function sets up the arrays within a PolyMap structure that
* describes either the forward or inverse transformation.
* Parameters:
* this
* The PolyMap.
* forward
* If non-zero, replace the forward transformation. Otherwise,
* replace the inverse transformation.
* ncoeff
* The number of non-zero coefficients necessary to define the
* specified transformation of the PolyMap. If zero is supplied, the
* transformation will be undefined.
* coeff
* An array containing "ncof*( 2 + nin )" elements. Each group
* of "2 + nin" adjacent elements describe a single coefficient of
* the transformation. Within each such group, the first
* element is the coefficient value; the next element is the
* integer index of the PolyMap output which uses the coefficient
* within its defining polynomial (the first output has index 1);
* the remaining elements of the group give the integer powers to
* use with each input coordinate value (powers must not be
* negative).
* status
* Pointer to inherited status.
*/
/* Local Variables: */
const double *group; /* Pointer to start of next coeff. description */
int *pows; /* Pointer to powers for current coeff. */
int gsize; /* Length of each coeff. description */
int i; /* Loop count */
int ico; /* Index of next coeff. for current input or output */
int iin; /* Input index extracted from coeff. description */
int iout; /* Output index extracted from coeff. description */
int j; /* Loop count */
int nin; /* Number of orignal inputs */
int nout; /* Number of original outputs */
int pow; /* Power extracted from coeff. description */
/* Check the global status. */
if ( !astOK ) return;
/* First Free any existing arrays. */
FreeArrays( this, forward, status );
/* Get the number of inputs and outputs of the original uninverted PolyMap.
Swap the transformation to be set if the PolyMap has been inverted. */
if( astGetInvert( this ) ) {
nout = astGetNin( this );
nin = astGetNout( this );
forward = !forward;
} else {
nin = astGetNin( this );
nout = astGetNout( this );
}
/* Now initialise the original forward transformation, if required. */
if( forward && ncoeff > 0 ) {
/* Create the arrays decribing the forward transformation. */
this->ncoeff_f = astMalloc( sizeof( int )*(size_t) nout );
this->mxpow_f = astMalloc( sizeof( int )*(size_t) nin );
this->power_f = astMalloc( sizeof( int ** )*(size_t) nout );
this->coeff_f = astMalloc( sizeof( double * )*(size_t) nout );
if( astOK ) {
/* Initialise the count of coefficients for each output coordinate to zero. */
for( i = 0; i < nout; i++ ) this->ncoeff_f[ i ] = 0;
/* Initialise max power for each input coordinate to zero. */
for( j = 0; j < nin; j++ ) this->mxpow_f[ j ] = 0;
/* Scan through the supplied forward coefficient array, counting the
number of coefficients which relate to each output. Also find the
highest power used for each input axis. Report errors if any unusable
values are found in the supplied array. */
group = coeff;
gsize = 2 + nin;
for( i = 0; i < ncoeff && astOK; i++, group += gsize ) {
iout = floor( group[ 1 ] + 0.5 );
if( iout < 1 || iout > nout ) {
astError( AST__BADCI, "astInitPolyMap(%s): Forward "
"coefficient %d referred to an illegal output "
"coordinate %d.", status, astGetClass( this ), i + 1,
iout );
astError( AST__BADCI, "This number should be in the "
"range 1 to %d.", status, nout );
break;
}
this->ncoeff_f[ iout - 1 ]++;
for( j = 0; j < nin; j++ ) {
pow = floor( group[ 2 + j ] + 0.5 );
if( pow < 0 ) {
astError( AST__BADPW, "astInitPolyMap(%s): Forward "
"coefficient %d has a negative power (%d) "
"for input coordinate %d.", status,
astGetClass( this ), i + 1, pow, j + 1 );
astError( AST__BADPW, "All powers should be zero or "
"positive." , status);
break;
}
if( pow > this->mxpow_f[ j ] ) this->mxpow_f[ j ] = pow;
}
}
/* Allocate the arrays to store the input powers associated with each
coefficient, and the coefficient values. Reset the coefficient count
for each axis to zero afterwards so that we can use the array as an index
to the next vacant slot within the following loop. */
for( i = 0; i < nout; i++ ) {
this->power_f[ i ] = astMalloc( sizeof( int * )*
(size_t) this->ncoeff_f[ i ] );
this->coeff_f[ i ] = astMalloc( sizeof( double )*
(size_t) this->ncoeff_f[ i ] );
this->ncoeff_f[ i ] = 0;
}
if( astOK ) {
/* Extract the coefficient values and powers form the supplied array and
store them in the arrays created above. */
group = coeff;
for( i = 0; i < ncoeff && astOK; i++, group += gsize ) {
iout = floor( group[ 1 ] + 0.5 ) - 1;
ico = ( this->ncoeff_f[ iout ] )++;
this->coeff_f[ iout ][ ico ] = group[ 0 ];
pows = astMalloc( sizeof( int )*(size_t) nin );
this->power_f[ iout ][ ico ] = pows;
if( astOK ) {
for( j = 0; j < nin; j++ ) {
pows[ j ] = floor( group[ 2 + j ] + 0.5 );
}
}
}
}
}
}
/* Now initialise the original inverse transformation, if required. */
if( !forward && ncoeff > 0 ) {
/* Create the arrays decribing the inverse transformation. */
this->ncoeff_i = astMalloc( sizeof( int )*(size_t) nin );
this->mxpow_i = astMalloc( sizeof( int )*(size_t) nout );
this->power_i = astMalloc( sizeof( int ** )*(size_t) nin );
this->coeff_i = astMalloc( sizeof( double * )*(size_t) nin );
if( astOK ) {
/* Initialise the count of coefficients for each input coordinate to zero. */
for( i = 0; i < nin; i++ ) this->ncoeff_i[ i ] = 0;
/* Initialise max power for each output coordinate to zero. */
for( j = 0; j < nout; j++ ) this->mxpow_i[ j ] = 0;
/* Scan through the supplied inverse coefficient array, counting the
number of coefficients which relate to each input. Also find the
highest power used for each output axis. Report errors if any unusable
values are found in the supplied array. */
group = coeff;
gsize = 2 + nout;
for( i = 0; i < ncoeff && astOK; i++, group += gsize ) {
iin = floor( group[ 1 ] + 0.5 );
if( iin < 1 || iin > nin ) {
astError( AST__BADCI, "astInitPolyMap(%s): Inverse "
"coefficient %d referred to an illegal input "
"coordinate %d.", status, astGetClass( this ),
i + 1, iin );
astError( AST__BADCI, "This number should be in the "
"range 1 to %d.", status, nin );
break;
}
this->ncoeff_i[ iin - 1 ]++;
for( j = 0; j < nout; j++ ) {
pow = floor( group[ 2 + j ] + 0.5 );
if( pow < 0 ) {
astError( AST__BADPW, "astInitPolyMap(%s): Inverse "
"coefficient %d has a negative power (%d) "
"for output coordinate %d.", status,
astGetClass( this ), i + 1, pow, j + 1 );
astError( AST__BADPW, "All powers should be zero or "
"positive." , status);
break;
}
if( pow > this->mxpow_i[ j ] ) this->mxpow_i[ j ] = pow;
}
}
/* Allocate the arrays to store the output powers associated with each
coefficient, and the coefficient values. Reset the coefficient count
for each axis to zero afterwards so that we can use the array as an index
to the next vacant slot within the following loop. */
for( i = 0; i < nin; i++ ) {
this->power_i[ i ] = astMalloc( sizeof( int * )*
(size_t) this->ncoeff_i[ i ] );
this->coeff_i[ i ] = astMalloc( sizeof( double )*
(size_t) this->ncoeff_i[ i ] );
this->ncoeff_i[ i ] = 0;
}
if( astOK ) {
/* Extract the coefficient values and powers form the supplied array and
store them in the arrays created above. */
group = coeff;
for( i = 0; i < ncoeff && astOK; i++, group += gsize ) {
iin = floor( group[ 1 ] + 0.5 ) - 1;
ico = ( this->ncoeff_i[ iin ] )++;
this->coeff_i[ iin ][ ico ] = group[ 0 ];
pows = astMalloc( sizeof( int )*(size_t) nout );
this->power_i[ iin ][ ico ] = pows;
if( astOK ) {
for( j = 0; j < nout; j++ ) {
pows[ j ] = floor( group[ 2 + j ] + 0.5 );
}
}
}
}
}
}
}
static int TestAttrib( AstObject *this_object, const char *attrib, int *status ) {
/*
* Name:
* TestAttrib
* Purpose:
* Test if a specified attribute value is set for a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* int TestAttrib( AstObject *this, const char *attrib, int *status )
* Class Membership:
* PolyMap member function (over-rides the astTestAttrib protected
* method inherited from the Mapping class).
* Description:
* This function returns a boolean result (0 or 1) to indicate whether
* a value has been set for one of a PolyMap's attributes.
* Parameters:
* this
* Pointer to the PolyMap.
* attrib
* Pointer to a null-terminated string specifying the attribute
* name. This should be in lower case with no surrounding white
* space.
* status
* Pointer to the inherited status variable.
* Returned Value:
* One if a value has been set, otherwise zero.
* Notes:
* - A value of zero will be returned if this function is invoked
* with the global status set, or if it should fail for any reason.
*/
/* Local Variables: */
AstPolyMap *this; /* Pointer to the PolyMap structure */
int result; /* Result value to return */
/* Initialise. */
result = 0;
/* Check the global error status. */
if ( !astOK ) return result;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Check the attribute name and test the appropriate attribute. */
/* IterInverse. */
/* ------------ */
if ( !strcmp( attrib, "iterinverse" ) ) {
result = astTestIterInverse( this );
/* NiterInverse. */
/* ------------- */
} else if ( !strcmp( attrib, "niterinverse" ) ) {
result = astTestNiterInverse( this );
/* TolInverse. */
/* ----------- */
} else if ( !strcmp( attrib, "tolinverse" ) ) {
result = astTestTolInverse( this );
/* If the attribute is still not recognised, pass it on to the parent
method for further interpretation. */
} else {
result = (*parent_testattrib)( this_object, attrib, status );
}
/* Return the result, */
return result;
}
static AstPointSet *Transform( AstMapping *this, AstPointSet *in,
int forward, AstPointSet *out, int *status ) {
/*
* Name:
* Transform
* Purpose:
* Apply a PolyMap to transform a set of points.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* AstPointSet *Transform( AstMapping *this, AstPointSet *in,
* int forward, AstPointSet *out, int *status )
* Class Membership:
* PolyMap member function (over-rides the astTransform protected
* method inherited from the Mapping class).
* Description:
* This function takes a PolyMap and a set of points encapsulated in a
* PointSet and transforms the points.
* Parameters:
* this
* Pointer to the PolyMap.
* in
* Pointer to the PointSet holding the input coordinate data.
* forward
* A non-zero value indicates that the forward coordinate transformation
* should be applied, while a zero value requests the inverse
* transformation.
* out
* Pointer to a PointSet which will hold the transformed (output)
* coordinate values. A NULL value may also be given, in which case a
* new PointSet will be created by this function.
* status
* Pointer to the inherited status variable.
* Returned Value:
* Pointer to the output (possibly new) PointSet.
* Notes:
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
* - The number of coordinate values per point in the input PointSet must
* match the number of columns in the PolyMap being applied.
* - The number of coordinate values per point in the output PointSet will
* equal the number of rows in the PolyMap being applied.
* - If an output PointSet is supplied, it must have space for sufficient
* number of points and coordinate values per point to accommodate the
* result. Any excess space will be ignored.
*/
/* Local Variables: */
AstPointSet *result; /* Pointer to output PointSet */
AstPolyMap *map; /* Pointer to PolyMap to be applied */
double **coeff; /* Pointer to coefficient value arrays */
double **ptr_in; /* Pointer to input coordinate data */
double **ptr_out; /* Pointer to output coordinate data */
double **work; /* Pointer to exponentiated axis values */
double *outcof; /* Pointer to next coefficient value */
double outval; /* Output axis value */
double term; /* Term to be added to output value */
double xp; /* Exponentiated input axis value */
int ***power; /* Pointer to coefficient power arrays */
int **outpow; /* Pointer to next set of axis powers */
int *mxpow; /* Pointer to max used power for each input */
int *ncoeff; /* Pointer to no. of coefficients */
int in_coord; /* Index of output coordinate */
int ico; /* Coefficient index */
int nc; /* No. of coefficients in polynomial */
int ncoord_in; /* Number of coordinates per input point */
int ncoord_out; /* Number of coordinates per output point */
int npoint; /* Number of points */
int out_coord; /* Index of output coordinate */
int point; /* Loop counter for points */
int pow; /* Next axis power */
/* Check the global error status. */
if ( !astOK ) return NULL;
/* Obtain a pointer to the PolyMap. */
map = (AstPolyMap *) this;
/* Apply the parent mapping using the stored pointer to the Transform member
function inherited from the parent Mapping class. This function validates
all arguments and generates an output PointSet if necessary, but does not
actually transform any coordinate values. */
result = (*parent_transform)( this, in, forward, out, status );
/* Determine whether to apply the original forward or inverse mapping,
according to the direction specified and whether the mapping has been
inverted. */
if ( astGetInvert( map ) ) forward = !forward;
/* We will now extend the parent astTransform method by performing the
calculations needed to generate the output coordinate values. */
/* If we are using the original inverse transformatiom, and the IterInverse
attribute is non-zero, use an iterative inverse algorithm rather than any
inverse transformation defined within the PolyMap. */
if( !forward && astGetIterInverse(map) ) {
IterInverse( map, in, result, status );
/* Otherwise, determine the numbers of points and coordinates per point from
the input and output PointSets and obtain pointers for accessing the input
and output coordinate values. */
} else {
ncoord_in = astGetNcoord( in );
ncoord_out = astGetNcoord( result );
npoint = astGetNpoint( in );
ptr_in = astGetPoints( in );
ptr_out = astGetPoints( result );
/* Get a pointer to the arrays holding the required coefficient
values and powers, according to the direction of mapping required. */
if ( forward ) {
ncoeff = map->ncoeff_f;
coeff = map->coeff_f;
power = map->power_f;
mxpow = map->mxpow_f;
} else {
ncoeff = map->ncoeff_i;
coeff = map->coeff_i;
power = map->power_i;
mxpow = map->mxpow_i;
}
/* Allocate memory to hold the required powers of the input axis values. */
work = astMalloc( sizeof( double * )*(size_t) ncoord_in );
for( in_coord = 0; in_coord < ncoord_in; in_coord++ ) {
work[ in_coord ] = astMalloc( sizeof( double )*
(size_t) ( astMAX( 2, mxpow[in_coord]+1 ) ) );
}
/* Perform coordinate arithmetic. */
/* ------------------------------ */
if ( astOK ) {
/* Loop to apply the polynomial to each point in turn.*/
for ( point = 0; point < npoint; point++ ) {
/* Find the required powers of the input axis values and store them
in the work array. Note, using a virtual method here slows the PolyMap
Transform function down by about 5%, compared to doing the equivalent
calculations in-line. But we need some way to allow the ChebyMap class
to over-ride the calculation of the powers, so we must do something
like this. If the 5% slow-down is too much, it can be reduced down to
about 2% by replacing the invocation of the astPolyPowers_ interface
function with a direct call to the implementation function itself.
This involves replacing the astPolyPowers call below with this:
(**astMEMBER(this,PolyMap,PolyPowers))( (AstPolyMap *) this, work, ncoord_in,
mxpow, ptr_in, point, forward, status );
The above could be wrapped up in an alternative implementation of the
astPolyPowers macro, so that it looks the same as the existing code.
In fact, this scheme could be more widely used to speed up invocation
of virtual functions within AST. The disadvantage is that the interface
functions for some virtual methods includes some extra processing,
over and above simply invoking the implementation function.
Of course the other way to get rid of the 5% slow down, is to
revert to using in-line code below, and then replicate this entire
function in the ChebyMap class, making suitable changes to use
Chebyshev functions in place of simple powers. But that is bad
structuring... */
astPolyPowers( this, work, ncoord_in, mxpow, ptr_in, point,
forward );
/* Loop round each output. */
for( out_coord = 0; out_coord < ncoord_out; out_coord++ ) {
/* Initialise the output value. */
outval = 0.0;
/* Get pointers to the coefficients and powers for this output. */
outcof = coeff[ out_coord ];
outpow = power[ out_coord ];
/* Loop round all polynomial coefficients.*/
nc = ncoeff[ out_coord ];
for ( ico = 0; ico < nc && outval != AST__BAD;
ico++, outcof++, outpow++ ) {
/* Initialise the current term to be equal to the value of the coefficient.
If it is bad, store a bad output value. */
term = *outcof;
if( term == AST__BAD ) {
outval = AST__BAD;
/* Otherwise, loop round all inputs */
} else {
for( in_coord = 0; in_coord < ncoord_in; in_coord++ ) {
/* Get the power of the current input axis value used by the current
coefficient. If it is zero, pass on. */
pow = (*outpow)[ in_coord ];
if( pow > 0 ) {
/* Get the axis value raised to the appropriate power. */
xp = work[ in_coord ][ pow ];
/* If bad, set the output value bad and break. */
if( xp == AST__BAD ) {
outval = AST__BAD;
break;
/* Otherwise multiply the current term by the exponentiated axis value. */
} else {
term *= xp;
}
}
}
}
/* Increment the output value by the current term of the polynomial. */
if( outval != AST__BAD ) outval += term;
}
/* Store the output value. */
ptr_out[ out_coord ][ point ] = outval;
}
}
}
/* Free resources. */
for( in_coord = 0; in_coord < ncoord_in; in_coord++ ) {
work[ in_coord ] = astFree( work[ in_coord ] );
}
work = astFree( work );
}
/* Return a pointer to the output PointSet. */
return result;
}
/* Functions which access class attributes. */
/* ---------------------------------------- */
/* Implement member functions to access the attributes associated with
this class using the macros defined for this purpose in the
"object.h" file. For a description of each attribute, see the class
interface (in the associated .h file). */
/*
*att++
* Name:
* IterInverse
* Purpose:
* Provide an iterative inverse transformation?
* Type:
* Public attribute.
* Synopsis:
* Integer (boolean).
* Description:
* This attribute indicates whether the original inverse transformation
* of the PolyMap should be implemented via an iterative Newton-Raphson
* approximation that uses the forward transformation to transform
* candidate input positions until an output position is found which
* is close to the required output position. By default, an iterative
* inverse is provided if, and only if, no inverse polynomial was supplied
* when the PolyMap was constructed.
*
* Note, the term "inverse transformation" here refers to the inverse
* transformation of the original PolyMap, ignoring any subsequent
* inversions. Also, "input" and "output" refer to the inputs and
* outputs of the original PolyMap.
* The NiterInverse and TolInverse attributes provide parameters that
* control the behaviour of the inverse approximation method.
*
* The iterative inverse returns AST__BAD axis values at positions
* for which the inverse transformation is undefined. For instance,
* if the forward transformation is y = x*x, the iterative inverse
* will return x = AST__BAD at y = -1. If the inverse transformation
* is multiply defined, the position returned by the iterative inverse
* will be the position of the solution that is closest to the
* supplied position. For instance, using the above example, y = x*x,
* the iterative inverse will return x = +2 at y = 4, because x = +2
* is the closest solution to 4 (the other solution is x = -2).
* Applicability:
* PolyMap
* All PolyMaps have this attribute.
* ChebyMap
* The ChebyMap class does not currently provide an option for an
* iterative inverse, and so the IterInverse value is always zero.
* Setting or clearing the IterInverse attribute of a ChebyMap has
* no effect.
* Notes:
* - The transformation replaced by the iterative algorithm is the
* transformation from the original PolyMap output space to the
* original PolyMap input space (i.e. the input and output spaces as
* defined by the arguments of the PolyMap constructor). This is still
* the case even if the PolyMap has subsequently been inverted. In
* other words if a PolyMap is created and then inverted, setting
* the IterInverse to a non-zero value will replace the forward
* transformation of the inverted PolyMap (i.e. the inverse
* transformation of the original PolyMap). It is not possible to
* replace the other transformation (i.e. from the original PolyMap
* input space to the original PolyMap output space) with an iterative
* algorithm.
* - If a PolyMap that has an iterative inverse transformation is
* subsequently inverted, the inverted PolyMap will have an iterative
* forward transformation.
* - An iterative inverse can only be used if the PolyMap has equal
* numbers of inputs and outputs, as given by the Nin and Nout
* attributes. An error will be reported if IterInverse is set non-zero
* for a PolyMap that does not meet this requirement.
*att--
*/
astMAKE_CLEAR(PolyMap,IterInverse,iterinverse,-INT_MAX)
astMAKE_GET(PolyMap,IterInverse,int,0,( ( this->iterinverse == -INT_MAX ) ?
(this->ncoeff_i == 0) : this->iterinverse ))
astMAKE_SET(PolyMap,IterInverse,int,iterinverse,
(((astGetNin(this)==astGetNout(this))||!value)?((value?1:0)):(astError(AST__ATTIN,"astSetIterInverse(%s):"
"Cannot use an iterative inverse because the %s has unequal numbers of "
"inputs and outputs.", status, astGetClass(this),astGetClass(this)),this->iterinverse)))
astMAKE_TEST(PolyMap,IterInverse,( this->iterinverse != -INT_MAX ))
/* NiterInverse. */
/* --------- */
/*
*att++
* Name:
* NiterInverse
* Purpose:
* Maximum number of iterations for the iterative inverse transformation.
* Type:
* Public attribute.
* Synopsis:
* Integer.
* Description:
* This attribute controls the iterative inverse transformation
* used if the IterInverse attribute is non-zero.
*
* Its value gives the maximum number of iterations of the
* Newton-Raphson algorithm to be used for each transformed position.
* The default value is 4. See also attribute TolInverse.
* Applicability:
* PolyMap
* All PolyMaps have this attribute.
*att--
*/
astMAKE_CLEAR(PolyMap,NiterInverse,niterinverse,-INT_MAX)
astMAKE_GET(PolyMap,NiterInverse,int,0,( this->niterinverse == -INT_MAX ? 4 : this->niterinverse))
astMAKE_SET(PolyMap,NiterInverse,int,niterinverse,value)
astMAKE_TEST(PolyMap,NiterInverse,( this->niterinverse != -INT_MAX ))
/* TolInverse. */
/* ----------- */
/*
*att++
* Name:
* TolInverse
* Purpose:
* Target relative error for the iterative inverse transformation.
* Type:
* Public attribute.
* Synopsis:
* Floating point.
* Description:
* This attribute controls the iterative inverse transformation
* used if the IterInverse attribute is non-zero.
*
* Its value gives the target relative error in the axis values of
* each transformed position. Further iterations will be performed
* until the target relative error is reached, or the maximum number
* of iterations given by attribute NiterInverse is reached.
* The default value is 1.0E-6.
* Applicability:
* PolyMap
* All PolyMaps have this attribute.
*att--
*/
astMAKE_CLEAR(PolyMap,TolInverse,tolinverse,AST__BAD)
astMAKE_GET(PolyMap,TolInverse,double,0.0,( this->tolinverse == AST__BAD ? 1.0E-6 : this->tolinverse))
astMAKE_SET(PolyMap,TolInverse,double,tolinverse,value)
astMAKE_TEST(PolyMap,TolInverse,( this->tolinverse != AST__BAD ))
/* Copy constructor. */
/* ----------------- */
static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
/*
* Name:
* Copy
* Purpose:
* Copy constructor for PolyMap objects.
* Type:
* Private function.
* Synopsis:
* void Copy( const AstObject *objin, AstObject *objout, int *status )
* Description:
* This function implements the copy constructor for PolyMap objects.
* Parameters:
* objin
* Pointer to the object to be copied.
* objout
* Pointer to the object being constructed.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* - This constructor makes a deep copy, including a copy of the
* coefficients associated with the input PolyMap.
*/
/* Local Variables: */
AstPolyMap *in; /* Pointer to input PolyMap */
AstPolyMap *out; /* Pointer to output PolyMap */
int nin; /* No. of input coordinates */
int nout; /* No. of output coordinates */
int i; /* Loop count */
int j; /* Loop count */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain pointers to the input and output PolyMaps. */
in = (AstPolyMap *) objin;
out = (AstPolyMap *) objout;
/* Nullify the pointers stored in the output object since these will
currently be pointing at the input data (since the output is a simple
byte-for-byte copy of the input). Otherwise, the input data could be
freed by accidient if the output object is deleted due to an error
occuring in this function. */
out->ncoeff_f = NULL;
out->power_f = NULL;
out->coeff_f = NULL;
out->mxpow_f = NULL;
out->ncoeff_i = NULL;
out->power_i = NULL;
out->coeff_i = NULL;
out->mxpow_i = NULL;
out->jacobian = NULL;
out->lintrunc = NULL;
/* Get the number of inputs and outputs of the uninverted Mapping. */
nin = ( (AstMapping *) in )->nin;
nout = ( (AstMapping *) in )->nout;
/* Copy the number of coefficients associated with each output of the
forward transformation of the uninverted Mapping. */
if( in->ncoeff_f ) {
out->ncoeff_f = (int *) astStore( NULL, (void *) in->ncoeff_f,
sizeof( int )*(size_t) nout );
/* Copy the maximum power of each input axis value used by the forward
transformation. */
out->mxpow_f = (int *) astStore( NULL, (void *) in->mxpow_f,
sizeof( int )*(size_t) nin );
/* Copy the coefficient values used by the forward transformation. */
if( in->coeff_f ) {
out->coeff_f = astMalloc( sizeof( double * )*(size_t) nout );
if( astOK ) {
for( i = 0; i < nout; i++ ) {
out->coeff_f[ i ] = (double *) astStore( NULL, (void *) in->coeff_f[ i ],
sizeof( double )*(size_t) in->ncoeff_f[ i ] );
}
}
}
/* Copy the input axis powers associated with each coefficient of the forward
transformation. */
if( in->power_f ) {
out->power_f = astMalloc( sizeof( int ** )*(size_t) nout );
if( astOK ) {
for( i = 0; i < nout; i++ ) {
out->power_f[ i ] = astMalloc( sizeof( int * )*(size_t) in->ncoeff_f[ i ] );
if( astOK ) {
for( j = 0; j < in->ncoeff_f[ i ]; j++ ) {
out->power_f[ i ][ j ] = (int *) astStore( NULL, (void *) in->power_f[ i ][ j ],
sizeof( int )*(size_t) nin );
}
}
}
}
}
}
/* Do the same for the inverse transformation. */
if( in->ncoeff_i ) {
out->ncoeff_i = (int *) astStore( NULL, (void *) in->ncoeff_i,
sizeof( int )*(size_t) nin );
out->mxpow_i = (int *) astStore( NULL, (void *) in->mxpow_i,
sizeof( int )*(size_t) nout );
if( in->coeff_i ) {
out->coeff_i = astMalloc( sizeof( double * )*(size_t) nin );
if( astOK ) {
for( i = 0; i < nin; i++ ) {
out->coeff_i[ i ] = (double *) astStore( NULL, (void *) in->coeff_i[ i ],
sizeof( double )*(size_t) in->ncoeff_i[ i ] );
}
}
}
if( in->power_i ) {
out->power_i = astMalloc( sizeof( int ** )*(size_t) nin );
if( astOK ) {
for( i = 0; i < nin; i++ ) {
out->power_i[ i ] = astMalloc( sizeof( int * )*(size_t) in->ncoeff_i[ i ] );
if( astOK ) {
for( j = 0; j < in->ncoeff_i[ i ]; j++ ) {
out->power_i[ i ][ j ] = (int *) astStore( NULL, (void *) in->power_i[ i ][ j ],
sizeof( int )*(size_t) nout );
}
}
}
}
}
}
/* Copy the linear truncation of the PolyMap - if it has been found. */
if( in->lintrunc ) out->lintrunc = astCopy( in->lintrunc );
/* If an error has occurred, free all the resources allocated above. */
if( !astOK ) {
FreeArrays( out, 1, status );
FreeArrays( out, 0, status );
}
return;
}
/* Destructor. */
/* ----------- */
static void Delete( AstObject *obj, int *status ) {
/*
* Name:
* Delete
* Purpose:
* Destructor for PolyMap objects.
* Type:
* Private function.
* Synopsis:
* void Delete( AstObject *obj, int *status )
* Description:
* This function implements the destructor for PolyMap objects.
* Parameters:
* obj
* Pointer to the object to be deleted.
* status
* Pointer to the inherited status variable.
* Returned Value:
* void
* Notes:
* This function attempts to execute even if the global error status is
* set.
*/
/* Local Variables: */
AstPolyMap *this;
int nc;
int ic;
int lstat;
int error;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) obj;
/* Free the arrays. */
FreeArrays( this, 1, status );
FreeArrays( this, 0, status );
/* Free the resources used to store the Jacobian of the forward
transformation. */
if( this->jacobian ) {
/* Get the number of PolyMap inputs. We need to clear any error status
first since astGetNin returns zero if an error has occurred. The
Jacobian will only be non-NULL if the number of inputs and outputs
are equal. */
error = !astOK;
if( error ) {
lstat = astStatus;
astClearStatus;
}
nc = astGetNin( this );
if( error ) astSetStatus( lstat );
for( ic = 0; ic < nc; ic++ ) {
(this->jacobian)[ ic ] = astAnnul( (this->jacobian)[ ic ] );
}
this->jacobian = astFree( this->jacobian );
}
/* Free the linear truncation. */
if( this->lintrunc ) this->lintrunc = astAnnul( this->lintrunc );
}
/* Dump function. */
/* -------------- */
static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
/*
* Name:
* Dump
* Purpose:
* Dump function for PolyMap objects.
* Type:
* Private function.
* Synopsis:
* void Dump( AstObject *this, AstChannel *channel, int *status )
* Description:
* This function implements the Dump function which writes out data
* for the PolyMap class to an output Channel.
* Parameters:
* this
* Pointer to the PolyMap whose data are being written.
* channel
* Pointer to the Channel to which the data are being written.
* status
* Pointer to the inherited status variable.
*/
#define KEY_LEN 50 /* Maximum length of a keyword */
/* Local Variables: */
AstPolyMap *this; /* Pointer to the PolyMap structure */
char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
char comm[ 100 ]; /* Buffer for comment string */
double dval; /* Floating point attribute value */
int i; /* Loop index */
int iv; /* Vectorised keyword index */
int ival; /* Integer value */
int j; /* Loop index */
int k; /* Loop index */
int nin; /* No. of input coords */
int nout; /* No. of output coords */
int set; /* Attribute value set? */
/* Check the global error status. */
if ( !astOK ) return;
/* Obtain a pointer to the PolyMap structure. */
this = (AstPolyMap *) this_object;
/* Find the number of inputs and outputs of the uninverted Mapping. */
nin = ( (AstMapping *) this )->nin;
nout = ( (AstMapping *) this )->nout;
/* Write out values representing the instance variables for the
PolyMap class. */
/* First do the forward transformation arrays. Check they are used. */
if( this->ncoeff_f ) {
/* Store the maximum power of each input axis value used by the forward
transformation. */
for( i = 0; i < nin; i++ ){
(void) sprintf( buff, "MPF%d", i + 1 );
(void) sprintf( comm, "Max. power of input %d in any forward polynomial", i + 1 );
astWriteInt( channel, buff, 1, 1, (this->mxpow_f)[ i ], comm );
}
/* Store the number of coefficients associated with each output of the forward
transformation. */
for( i = 0; i < nout; i++ ){
(void) sprintf( buff, "NCF%d", i + 1 );
(void) sprintf( comm, "No. of coeff.s for forward polynomial %d", i + 1 );
astWriteInt( channel, buff, 1, 1, (this->ncoeff_f)[ i ], comm );
}
/* Store the coefficient values used by the forward transformation. */
iv = 1;
for( i = 0; i < nout; i++ ){
for( j = 0; j < this->ncoeff_f[ i ]; j++, iv++ ){
if( (this->coeff_f)[ i ][ j ] != AST__BAD ) {
(void) sprintf( buff, "CF%d", iv );
(void) sprintf( comm, "Coeff %d of forward polynomial %d", j + 1, i + 1 );
astWriteDouble( channel, buff, 1, 1, (this->coeff_f)[ i ][ j ], comm );
}
}
}
/* Store the input axis powers associated with each coefficient of the forward
transformation. */
iv = 1;
for( i = 0; i < nout; i++ ){
for( j = 0; j < this->ncoeff_f[ i ]; j++ ){
for( k = 0; k < nin; k++, iv++ ){
if( (this->power_f)[ i ][ j ][ k ] > 0 ) {
(void) sprintf( buff, "PF%d", iv );
(void) sprintf( comm, "Power of i/p %d for coeff %d of fwd poly %d", k + 1, j + 1, i + 1 );
astWriteDouble( channel, buff, 1, 1, (this->power_f)[ i ][ j ][ k ], comm );
}
}
}
}
}
/* Now do the inverse transformation arrays. Check they are used. */
if( this->ncoeff_i ) {
/* Store the maximum power of each output axis value used by the inverse
transformation. */
for( i = 0; i < nout; i++ ){
(void) sprintf( buff, "MPI%d", i + 1 );
(void) sprintf( comm, "Max. power of output %d in any inverse polynomial", i + 1 );
astWriteInt( channel, buff, 1, 1, (this->mxpow_i)[ i ], comm );
}
/* Store the number of coefficients associated with each input of the inverse
transformation. */
for( i = 0; i < nin; i++ ){
(void) sprintf( buff, "NCI%d", i + 1 );
(void) sprintf( comm, "No. of coeff.s for inverse polynomial %d", i + 1 );
astWriteInt( channel, buff, 1, 1, (this->ncoeff_i)[ i ], comm );
}
/* Store the coefficient values used by the inverse transformation. */
iv = 1;
for( i = 0; i < nin; i++ ){
for( j = 0; j < this->ncoeff_i[ i ]; j++, iv++ ){
if( (this->coeff_i)[ i ][ j ] != AST__BAD ) {
(void) sprintf( buff, "CI%d", iv );
(void) sprintf( comm, "Coeff %d of inverse polynomial %d", j + 1, i + 1 );
astWriteDouble( channel, buff, 1, 1, (this->coeff_i)[ i ][ j ], comm );
}
}
}
/* Store the output axis powers associated with each coefficient of the inverse
transformation. */
iv = 1;
for( i = 0; i < nin; i++ ){
for( j = 0; j < this->ncoeff_i[ i ]; j++ ){
for( k = 0; k < nout; k++, iv++ ){
if( (this->power_i)[ i ][ j ][ k ] > 0 ) {
(void) sprintf( buff, "PI%d", iv );
(void) sprintf( comm, "Power of o/p %d for coeff %d of inv poly %d", k + 1, j + 1, i + 1 );
astWriteDouble( channel, buff, 1, 1, (this->power_i)[ i ][ j ][ k ], comm );
}
}
}
}
}
/* Use an iterative inverse? */
set = TestIterInverse( this, status );
ival = set ? GetIterInverse( this, status ) : astGetIterInverse( this );
astWriteInt( channel, "IterInv", set, 0, ival, ival ? "Use an iterative inverse" : "Do not use an iterative inverse" );
/* Max number of iterations for iterative inverse. */
set = TestNiterInverse( this, status );
ival = set ? GetNiterInverse( this, status ) : astGetNiterInverse( this );
astWriteInt( channel, "NiterInv", set, 0, ival, "Max number of iterations for iterative inverse" );
/* Target relative error for iterative inverse. */
set = TestTolInverse( this, status );
dval = set ? GetTolInverse( this, status ) : astGetTolInverse( this );
astWriteDouble( channel, "TolInv", set, 0, dval, "Target relative error for iterative inverse" );
/* Undefine macros local to this function. */
#undef KEY_LEN
}
/* Standard class functions. */
/* ========================= */
/* Implement the astIsAPolyMap and astCheckPolyMap functions using the macros
defined for this purpose in the "object.h" header file. */
astMAKE_ISA(PolyMap,Mapping)
astMAKE_CHECK(PolyMap)
AstPolyMap *astPolyMap_( int nin, int nout, int ncoeff_f, const double coeff_f[],
int ncoeff_i, const double coeff_i[], const char *options, int *status, ...){
/*
*++
* Name:
c astPolyMap
f AST_POLYMAP
* Purpose:
* Create a PolyMap.
* Type:
* Public function.
* Synopsis:
c #include "polymap.h"
c AstPolyMap *astPolyMap( int nin, int nout, int ncoeff_f, const double coeff_f[],
c int ncoeff_i, const double coeff_i[],
c const char *options, ... )
f RESULT = AST_POLYMAP( NIN, NOUT, NCOEFF_F, COEFF_F, NCOEFF_I, COEFF_I,
f OPTIONS, STATUS )
* Class Membership:
* PolyMap constructor.
* Description:
* This function creates a new PolyMap and optionally initialises
* its attributes.
*
* A PolyMap is a form of Mapping which performs a general polynomial
* transformation. Each output coordinate is a polynomial function of
* all the input coordinates. The coefficients are specified separately
* for each output coordinate. The forward and inverse transformations
* are defined independantly by separate sets of coefficients. If no
* inverse transformation is supplied, the default behaviour is to use
* an iterative method to evaluate the inverse based only on the forward
* transformation (see attribute IterInverse).
* Parameters:
c nin
f NIN = INTEGER (Given)
* The number of input coordinates.
c nout
f NOUT = INTEGER (Given)
* The number of output coordinates.
c ncoeff_f
f NCOEFF_F = INTEGER (Given)
* The number of non-zero coefficients necessary to define the
* forward transformation of the PolyMap. If zero is supplied, the
* forward transformation will be undefined.
c coeff_f
f COEFF_F( * ) = DOUBLE PRECISION (Given)
* An array containing
c "ncoeff_f*( 2 + nin )" elements. Each group of "2 + nin"
f "NCOEFF_F*( 2 + NIN )" elements. Each group of "2 + NIN"
* adjacent elements describe a single coefficient of the forward
* transformation. Within each such group, the first element is the
* coefficient value; the next element is the integer index of the
* PolyMap output which uses the coefficient within its defining
* polynomial (the first output has index 1); the remaining elements
* of the group give the integer powers to use with each input
* coordinate value (powers must not be negative, and floating
* point values are rounded to the nearest integer).
c If "ncoeff_f" is zero, a NULL pointer may be supplied for "coeff_f".
*
* For instance, if the PolyMap has 3 inputs and 2 outputs, each group
* consisting of 5 elements, A groups such as "(1.2, 2.0, 1.0, 3.0, 0.0)"
* describes a coefficient with value 1.2 which is used within the
* definition of output 2. The output value is incremented by the
* product of the coefficient value, the value of input coordinate
* 1 raised to the power 1, and the value of input coordinate 2 raised
* to the power 3. Input coordinate 3 is not used since its power is
* specified as zero. As another example, the group "(-1.0, 1.0,
* 0.0, 0.0, 0.0 )" describes adds a constant value -1.0 onto
* output 1 (it is a constant value since the power for every input
* axis is given as zero).
*
c Each final output coordinate value is the sum of the "ncoeff_f" terms
c described by the "ncoeff_f" groups within the supplied array.
f Each final output coordinate value is the sum of the "NCOEFF_F" terms
f described by the "NCOEFF_F" groups within the supplied array.
c ncoeff_i
f NCOEFF_I = INTEGER (Given)
* The number of non-zero coefficients necessary to define the
* inverse transformation of the PolyMap. If zero is supplied, the
* default behaviour is to use an iterative method to evaluate the
* inverse based only on the forward transformation (see attribute
* IterInverse).
c coeff_i
f COEFF_I( * ) = DOUBLE PRECISION (Given)
* An array containing
c "ncoeff_i*( 2 + nout )" elements. Each group of "2 + nout"
f "NCOEFF_I*( 2 + NOUT )" elements. Each group of "2 + NOUT"
* adjacent elements describe a single coefficient of the inverse
c transformation, using the same schame as "coeff_f",
f transformation, using the same schame as "COEFF_F",
* except that "inputs" and "outputs" are transposed.
c If "ncoeff_i" is zero, a NULL pointer may be supplied for "coeff_i".
c options
f OPTIONS = CHARACTER * ( * ) (Given)
c Pointer to a null-terminated string containing an optional
c comma-separated list of attribute assignments to be used for
c initialising the new PolyMap. The syntax used is identical to
c that for the astSet function and may include "printf" format
c specifiers identified by "%" symbols in the normal way.
f A character string containing an optional comma-separated
f list of attribute assignments to be used for initialising the
f new PolyMap. The syntax used is identical to that for the
f AST_SET routine.
c ...
c If the "options" string contains "%" format specifiers, then
c an optional list of additional arguments may follow it in
c order to supply values to be substituted for these
c specifiers. The rules for supplying these are identical to
c those for the astSet function (and for the C "printf"
c function).
f STATUS = INTEGER (Given and Returned)
f The global status.
* Returned Value:
c astPolyMap()
f AST_POLYMAP = INTEGER
* A pointer to the new PolyMap.
* Notes:
* - A null Object pointer (AST__NULL) will be returned if this
c function is invoked with the AST error status set, or if it
f function is invoked with STATUS set to an error value, or if it
* should fail for any reason.
*--
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstPolyMap *new; /* Pointer to new PolyMap */
va_list args; /* Variable argument list */
/* Check the global status. */
if ( !astOK ) return NULL;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Initialise the PolyMap, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitPolyMap( NULL, sizeof( AstPolyMap ), !class_init,
&class_vtab, "PolyMap", nin, nout,
ncoeff_f, coeff_f, ncoeff_i, coeff_i );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new PolyMap's attributes. */
va_start( args, status );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new PolyMap. */
return new;
}
AstPolyMap *astPolyMapId_( int nin, int nout, int ncoeff_f, const double coeff_f[],
int ncoeff_i, const double coeff_i[], const char *options, ... ){
/*
* Name:
* astPolyMapId_
* Purpose:
* Create a PolyMap.
* Type:
* Private function.
* Synopsis:
* #include "polymap.h"
* AstPolyMap *astPolyMap( int nin, int nout, int ncoeff_f, const double coeff_f[],
* int ncoeff_i, const double coeff_i[],
* const char *options, ... )
* Class Membership:
* PolyMap constructor.
* Description:
* This function implements the external (public) interface to the
* astPolyMap constructor function. It returns an ID value (instead
* of a true C pointer) to external users, and must be provided
* because astPolyMap_ has a variable argument list which cannot be
* encapsulated in a macro (where this conversion would otherwise
* occur).
*
* The variable argument list also prevents this function from
* invoking astPolyMap_ directly, so it must be a re-implementation
* of it in all respects, except for the final conversion of the
* result to an ID value.
* Parameters:
* As for astPolyMap_.
* Returned Value:
* The ID value associated with the new PolyMap.
*/
/* Local Variables: */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
AstPolyMap *new; /* Pointer to new PolyMap */
va_list args; /* Variable argument list */
int *status; /* Pointer to inherited status value */
/* Get a pointer to the inherited status value. */
status = astGetStatusPtr;
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(NULL);
/* Check the global status. */
if ( !astOK ) return NULL;
/* Initialise the PolyMap, allocating memory and initialising the
virtual function table as well if necessary. */
new = astInitPolyMap( NULL, sizeof( AstPolyMap ), !class_init,
&class_vtab, "PolyMap", nin, nout,
ncoeff_f, coeff_f, ncoeff_i, coeff_i );
/* If successful, note that the virtual function table has been
initialised. */
if ( astOK ) {
class_init = 1;
/* Obtain the variable argument list and pass it along with the options string
to the astVSet method to initialise the new PolyMap's attributes. */
va_start( args, options );
astVSet( new, options, NULL, args );
va_end( args );
/* If an error occurred, clean up by deleting the new object. */
if ( !astOK ) new = astDelete( new );
}
/* Return an ID value for the new PolyMap. */
return astMakeId( new );
}
AstPolyMap *astInitPolyMap_( void *mem, size_t size, int init,
AstPolyMapVtab *vtab, const char *name,
int nin, int nout, int ncoeff_f, const double coeff_f[],
int ncoeff_i, const double coeff_i[], int *status ){
/*
*+
* Name:
* astInitPolyMap
* Purpose:
* Initialise a PolyMap.
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* AstPolyMap *astInitPolyMap( void *mem, size_t size, int init,
* AstPolyMapVtab *vtab, const char *name,
* int nin, int nout, int ncoeff_f,
* const double coeff_f[], int ncoeff_i,
* const double coeff_i[] )
* Class Membership:
* PolyMap initialiser.
* Description:
* This function is provided for use by class implementations to initialise
* a new PolyMap object. It allocates memory (if necessary) to accommodate
* the PolyMap plus any additional data associated with the derived class.
* It then initialises a PolyMap structure at the start of this memory. If
* the "init" flag is set, it also initialises the contents of a virtual
* function table for a PolyMap at the start of the memory passed via the
* "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory in which the PolyMap is to be initialised.
* This must be of sufficient size to accommodate the PolyMap data
* (sizeof(PolyMap)) plus any data used by the derived class. If a value
* of NULL is given, this function will allocate the memory itself using
* the "size" parameter to determine its size.
* size
* The amount of memory used by the PolyMap (plus derived class data).
* This will be used to allocate memory if a value of NULL is given for
* the "mem" parameter. This value is also stored in the PolyMap
* structure, so a valid value must be supplied even if not required for
* allocating memory.
* init
* A logical flag indicating if the PolyMap's virtual function table is
* to be initialised. If this value is non-zero, the virtual function
* table will be initialised by this function.
* vtab
* Pointer to the start of the virtual function table to be associated
* with the new PolyMap.
* name
* Pointer to a constant null-terminated character string which contains
* the name of the class to which the new object belongs (it is this
* pointer value that will subsequently be returned by the astGetClass
* method).
* nin
* The number of input coordinate values per point. This is the
* same as the number of columns in the matrix.
* nout
* The number of output coordinate values per point. This is the
* same as the number of rows in the matrix.
* ncoeff_f
* The number of non-zero coefficients necessary to define the
* forward transformation of the PolyMap. If zero is supplied, the
* forward transformation will be undefined.
* coeff_f
* An array containing "ncoeff_f*( 2 + nin )" elements. Each group
* of "2 + nin" adjacent elements describe a single coefficient of
* the forward transformation. Within each such group, the first
* element is the coefficient value; the next element is the
* integer index of the PolyMap output which uses the coefficient
* within its defining polynomial (the first output has index 1);
* the remaining elements of the group give the integer powers to
* use with each input coordinate value (powers must not be
* negative)
*
* For instance, if the PolyMap has 3 inputs and 2 outputs, each group
* consisting of 5 elements, A groups such as "(1.2, 2.0, 1.0, 3.0, 0.0)"
* describes a coefficient with value 1.2 which is used within the
* definition of output 2. The output value is incremented by the
* product of the coefficient value, the value of input coordinate
* 1 raised to the power 1, and the value of input coordinate 2 raised
* to the power 3. Input coordinate 3 is not used since its power is
* specified as zero. As another example, the group "(-1.0, 1.0,
* 0.0, 0.0, 0.0 )" describes adds a constant value -1.0 onto
* output 1 (it is a constant value since the power for every input
* axis is given as zero).
*
* Each final output coordinate value is the sum of the "ncoeff_f" terms
* described by the "ncoeff_f" groups within the supplied array.
* ncoeff_i
* The number of non-zero coefficients necessary to define the
* inverse transformation of the PolyMap. If zero is supplied, the
* inverse transformation will be undefined.
* coeff_i
* An array containing
* "ncoeff_i*( 2 + nout )" elements. Each group of "2 + nout"
* adjacent elements describe a single coefficient of the inverse
* transformation, using the same schame as "coeff_f", except that
* "inputs" and "outputs" are transposed.
* Returned Value:
* A pointer to the new PolyMap.
* Notes:
* - A null pointer will be returned if this function is invoked with the
* global error status set, or if it should fail for any reason.
*-
*/
/* Local Variables: */
AstPolyMap *new; /* Pointer to new PolyMap */
/* Check the global status. */
if ( !astOK ) return NULL;
/* If necessary, initialise the virtual function table. */
if ( init ) astInitPolyMapVtab( vtab, name );
/* Initialise a Mapping structure (the parent class) as the first component
within the PolyMap structure, allocating memory if necessary. Specify that
the Mapping should be defined in both the forward and inverse directions. */
new = (AstPolyMap *) astInitMapping( mem, size, 0,
(AstMappingVtab *) vtab, name,
nin, nout, 1, 1 );
if ( astOK ) {
/* Initialise the PolyMap data. */
/* ---------------------------- */
/* First initialise the pointers in case of errors. */
new->ncoeff_f = NULL;
new->power_f = NULL;
new->coeff_f = NULL;
new->mxpow_f = NULL;
new->ncoeff_i = NULL;
new->power_i = NULL;
new->coeff_i = NULL;
new->mxpow_i = NULL;
/* Store the forward transformation. */
StoreArrays( new, 1, ncoeff_f, coeff_f, status );
/* Store the inverse transformation. */
StoreArrays( new, 0, ncoeff_i, coeff_i, status );
/* Other class attributes. */
new->iterinverse = -INT_MAX;
new->niterinverse = -INT_MAX;
new->tolinverse = AST__BAD;
new->jacobian = NULL;
new->lintrunc = NULL;
/* If an error occurred, clean up by deleting the new PolyMap. */
if ( !astOK ) new = astDelete( new );
}
/* Return a pointer to the new PolyMap. */
return new;
}
AstPolyMap *astLoadPolyMap_( void *mem, size_t size,
AstPolyMapVtab *vtab, const char *name,
AstChannel *channel, int *status ) {
/*
*+
* Name:
* astLoadPolyMap
* Purpose:
* Load a PolyMap.
* Type:
* Protected function.
* Synopsis:
* #include "polymap.h"
* AstPolyMap *astLoadPolyMap( void *mem, size_t size,
* AstPolyMapVtab *vtab, const char *name,
* AstChannel *channel )
* Class Membership:
* PolyMap loader.
* Description:
* This function is provided to load a new PolyMap using data read
* from a Channel. It first loads the data used by the parent class
* (which allocates memory if necessary) and then initialises a
* PolyMap structure in this memory, using data read from the input
* Channel.
*
* If the "init" flag is set, it also initialises the contents of a
* virtual function table for a PolyMap at the start of the memory
* passed via the "vtab" parameter.
* Parameters:
* mem
* A pointer to the memory into which the PolyMap is to be
* loaded. This must be of sufficient size to accommodate the
* PolyMap data (sizeof(PolyMap)) plus any data used by derived
* classes. If a value of NULL is given, this function will
* allocate the memory itself using the "size" parameter to
* determine its size.
* size
* The amount of memory used by the PolyMap (plus derived class
* data). This will be used to allocate memory if a value of
* NULL is given for the "mem" parameter. This value is also
* stored in the PolyMap structure, so a valid value must be
* supplied even if not required for allocating memory.
*
* If the "vtab" parameter is NULL, the "size" value is ignored
* and sizeof(AstPolyMap) is used instead.
* vtab
* Pointer to the start of the virtual function table to be
* associated with the new PolyMap. If this is NULL, a pointer
* to the (static) virtual function table for the PolyMap class
* is used instead.
* name
* Pointer to a constant null-terminated character string which
* contains the name of the class to which the new object
* belongs (it is this pointer value that will subsequently be
* returned by the astGetClass method).
*
* If the "vtab" parameter is NULL, the "name" value is ignored
* and a pointer to the string "PolyMap" is used instead.
* Returned Value:
* A pointer to the new PolyMap.
* Notes:
* - A null pointer will be returned if this function is invoked
* with the global error status set, or if it should fail for any
* reason.
*-
*/
#define KEY_LEN 50 /* Maximum length of a keyword */
astDECLARE_GLOBALS /* Pointer to thread-specific global data */
/* Local Variables: */
AstPolyMap *new; /* Pointer to the new PolyMap */
char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
int i; /* Loop index */
int iv; /* Vectorised keyword index */
int j; /* Loop index */
int k; /* Loop index */
int nin; /* No. of input coords */
int nout; /* No. of output coords */
int undef; /* Is the transformation undefined? */
/* Get a pointer to the thread specific global data structure. */
astGET_GLOBALS(channel);
/* Initialise. */
new = NULL;
/* Check the global error status. */
if ( !astOK ) return new;
/* If a NULL virtual function table has been supplied, then this is
the first loader to be invoked for this PolyMap. In this case the
PolyMap belongs to this class, so supply appropriate values to be
passed to the parent class loader (and its parent, etc.). */
if ( !vtab ) {
size = sizeof( AstPolyMap );
vtab = &class_vtab;
name = "PolyMap";
/* If required, initialise the virtual function table for this class. */
if ( !class_init ) {
astInitPolyMapVtab( vtab, name );
class_init = 1;
}
}
/* Invoke the parent class loader to load data for all the ancestral
classes of the current one, returning a pointer to the resulting
partly-built PolyMap. */
new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
channel );
if ( astOK ) {
/* Get the number of inputs and outputs for the uninverted Mapping. */
nin = ( (AstMapping *) new )->nin;
nout = ( (AstMapping *) new )->nout;
/* Read input data. */
/* ================ */
/* Request the input Channel to read all the input data appropriate to
this class into the internal "values list". */
astReadClassData( channel, "PolyMap" );
/* Allocate memory to hold the forward arrays. */
new->ncoeff_f = astMalloc( sizeof( int )*(size_t) nout );
new->mxpow_f = astMalloc( sizeof( int )*(size_t) nin );
new->power_f = astMalloc( sizeof( int ** )*(size_t) nout );
new->coeff_f = astMalloc( sizeof( double * )*(size_t) nout );
if( astOK ) {
/* Assume the forward transformation is defined. */
undef = 0;
/* Get the maximum power of each input axis value used by the forward
transformation. Set a flag "undef" if no values relating to the
forward transformation are found (this indicates that the forward
transformation is not defined). */
for( i = 0; i < nin && !undef; i++ ){
(void) sprintf( buff, "mpf%d", i + 1 );
(new->mxpow_f)[ i ] = astReadInt( channel, buff, INT_MAX );
if( (new->mxpow_f)[ i ] == INT_MAX ) undef = 1;
}
/* Get the number of coefficients associated with each output of the forward
transformation. */
for( i = 0; i < nout && !undef; i++ ){
(void) sprintf( buff, "ncf%d", i + 1 );
(new->ncoeff_f)[ i ] = astReadInt( channel, buff, INT_MAX );
if( (new->ncoeff_f)[ i ] == INT_MAX ) undef = 1;
}
/* Get the coefficient values used by the forward transformation. This
uses new style vectorised key names if available. Otherwise it uses
old style indexed names (which were superceded by vectorised names
because they are shorter and so work better with FitsChans). */
iv = 0;
for( i = 0; i < nout && !undef; i++ ){
(new->coeff_f)[ i ] = astMalloc( sizeof( double )*
(size_t) new->ncoeff_f[ i ] );
if( astOK ) {
for( j = 0; j < new->ncoeff_f[ i ]; j++ ){
(void) sprintf( buff, "cf%d", ++iv );
(new->coeff_f)[ i ][ j ] = astReadDouble( channel, buff, AST__BAD );
if( (new->coeff_f)[ i ][ j ] == AST__BAD ) {
(void) sprintf( buff, "cf%d_%d", i + 1, j + 1 );
(new->coeff_f)[ i ][ j ] = astReadDouble( channel, buff, AST__BAD );
}
}
}
}
/* Get the input axis powers associated with each coefficient of the forward
transformation. */
iv = 0;
for( i = 0; i < nout && !undef; i++ ){
(new->power_f)[ i ] = astMalloc( sizeof( int * )*
(size_t) new->ncoeff_f[ i ] );
if( astOK ) {
for( j = 0; j < new->ncoeff_f[ i ]; j++ ){
(new->power_f)[ i ][ j ] = astMalloc( sizeof( int )* (size_t) nin );
if( astOK ) {
for( k = 0; k < nin; k++ ){
(void) sprintf( buff, "pf%d", ++iv );
(new->power_f)[ i ][ j ][ k ] = astReadInt( channel, buff, 0 );
if( (new->power_f)[ i ][ j ][ k ] == 0 ) {
(void) sprintf( buff, "pf%d_%d_%d", i + 1, j + 1, k + 1 );
(new->power_f)[ i ][ j ][ k ] = astReadInt( channel, buff, 0 );
}
}
}
}
}
}
/* Free the arrays if the forward transformation is undefined. */
if( undef ) {
new->ncoeff_f = astFree( new->ncoeff_f );
new->mxpow_f = astFree( new->mxpow_f );
new->power_f = astFree( new->power_f );
new->coeff_f = astFree( new->coeff_f );
}
}
/* Allocate memory to hold the inverse arrays. */
new->ncoeff_i = astMalloc( sizeof( int )*(size_t) nin );
new->mxpow_i = astMalloc( sizeof( int )*(size_t) nout );
new->power_i = astMalloc( sizeof( int ** )*(size_t) nin );
new->coeff_i = astMalloc( sizeof( double * )*(size_t) nin );
if( astOK ) {
/* Assume the inverse transformation is defined. */
undef = 0;
/* Get the maximum power of each output axis value used by the inverse
transformation. Set a flag "undef" if no values relating to the
inverse transformation are found (this indicates that the inverse
transformation is not defined). */
for( i = 0; i < nout && !undef; i++ ){
(void) sprintf( buff, "mpi%d", i + 1 );
(new->mxpow_i)[ i ] = astReadInt( channel, buff, INT_MAX );
if( (new->mxpow_i)[ i ] == INT_MAX ) undef = 1;
}
/* Get the number of coefficients associated with each input of the inverse
transformation. */
for( i = 0; i < nin && !undef; i++ ){
(void) sprintf( buff, "nci%d", i + 1 );
(new->ncoeff_i)[ i ] = astReadInt( channel, buff, INT_MAX );
if( (new->ncoeff_i)[ i ] == INT_MAX ) undef = 1;
}
/* Get the coefficient values used by the inverse transformation. */
iv = 0;
for( i = 0; i < nin && !undef; i++ ){
(new->coeff_i)[ i ] = astMalloc( sizeof( double )*
(size_t) new->ncoeff_i[ i ] );
if( astOK ) {
for( j = 0; j < new->ncoeff_i[ i ]; j++ ){
(void) sprintf( buff, "ci%d", ++iv );
(new->coeff_i)[ i ][ j ] = astReadDouble( channel, buff, AST__BAD );
if( (new->coeff_i)[ i ][ j ] == AST__BAD ) {
(void) sprintf( buff, "ci%d_%d", i + 1, j + 1 );
(new->coeff_i)[ i ][ j ] = astReadDouble( channel, buff, AST__BAD );
}
}
}
}
/* Get the output axis powers associated with each coefficient of the inverse
transformation. */
iv = 0;
for( i = 0; i < nin && !undef; i++ ){
(new->power_i)[ i ] = astMalloc( sizeof( int * )*
(size_t) new->ncoeff_i[ i ] );
if( astOK ) {
for( j = 0; j < new->ncoeff_i[ i ]; j++ ){
(new->power_i)[ i ][ j ] = astMalloc( sizeof( int )* (size_t) nout );
if( astOK ) {
for( k = 0; k < nout; k++ ){
(void) sprintf( buff, "pi%d", ++iv );
(new->power_i)[ i ][ j ][ k ] = astReadInt( channel, buff, 0 );
if( (new->power_i)[ i ][ j ][ k ] == 0 ) {
(void) sprintf( buff, "pi%d_%d_%d", i + 1, j + 1, k + 1 );
(new->power_i)[ i ][ j ][ k ] = astReadInt( channel, buff, 0 );
}
}
}
}
}
}
/* Free the arrays if the inverse transformation is undefined. */
if( undef ) {
new->ncoeff_i = astFree( new->ncoeff_i );
new->mxpow_i = astFree( new->mxpow_i );
new->power_i = astFree( new->power_i );
new->coeff_i = astFree( new->coeff_i );
}
}
/* Whether to use an iterative inverse transformation. */
new->iterinverse = astReadInt( channel, "iterinv", -INT_MAX );
if ( TestIterInverse( new, status ) ) SetIterInverse( new, new->iterinverse, status );
/* Max number of iterations for iterative inverse transformation. */
new->niterinverse = astReadInt( channel, "niterinv", -INT_MAX );
if ( TestNiterInverse( new, status ) ) SetNiterInverse( new, new->niterinverse, status );
/* Target relative error for iterative inverse transformation. */
new->tolinverse = astReadDouble( channel, "tolinv", AST__BAD );
if ( TestTolInverse( new, status ) ) SetTolInverse( new, new->tolinverse, status );
/* The Jacobian of the PolyMap's forward transformation has not yet been
found. */
new->jacobian = NULL;
/* The linear truncation of the PolyMap has not yet been found. */
new->lintrunc = NULL;
/* If an error occurred, clean up by deleting the new PolyMap. */
if ( !astOK ) new = astDelete( new );
}
/* Return the new PolyMap pointer. */
return new;
/* Undefine macros local to this function. */
#undef KEY_LEN
}
/* Virtual function interfaces. */
/* ============================ */
/* These provide the external interface to the virtual functions defined by
this class. Each simply checks the global error status and then locates and
executes the appropriate member function, using the function pointer stored
in the object's virtual function table (this pointer is located using the
astMEMBER macro defined in "object.h").
Note that the member function may not be the one defined here, as it may
have been over-ridden by a derived class. However, it should still have the
same interface. */
void astPolyPowers_( AstPolyMap *this, double **work, int ncoord,
const int *mxpow, double **ptr, int point, int fwd,
int *status ){
if ( !astOK ) return;
(**astMEMBER(this,PolyMap,PolyPowers))( this, work, ncoord, mxpow, ptr,
point, fwd, status );
}
AstPolyMap *astPolyTran_( AstPolyMap *this, int forward, double acc,
double maxacc, int maxorder, const double *lbnd,
const double *ubnd, int *status ){
if ( !astOK ) return NULL;
return (**astMEMBER(this,PolyMap,PolyTran))( this, forward, acc,
maxacc, maxorder, lbnd,
ubnd, status );
}
void astPolyCoeffs_( AstPolyMap *this, int forward, int nel, double *array,
int *ncoeff, int *status ){
if ( !astOK ) return;
(**astMEMBER(this,PolyMap,PolyCoeffs))( this, forward, nel,
array, ncoeff, status );
}
void astFitPoly1DInit_( AstPolyMap *this, int forward, double **table,
AstMinPackData *data, double *scales,
int *status ){
if ( !astOK ) return;
(**astMEMBER(this,PolyMap,FitPoly1DInit))( this, forward, table, data, scales,
status );
}
void astFitPoly2DInit_( AstPolyMap *this, int forward, double **table,
AstMinPackData *data, double *scales,
int *status ){
if ( !astOK ) return;
(**astMEMBER(this,PolyMap,FitPoly2DInit))( this, forward, table, data, scales,
status );
}
|