1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
|
// Copyright (C) 1999-2018
// Smithsonian Astrophysical Observatory, Cambridge, MA, USA
// For conditions of distribution and use, see copyright notice in "copyright"
// This source has been modified from the original authored by
// Dr. Mark Calabretta as distributed with WCSLIBS under GNU GPL version 3
// WCSLIB 4.7 - an implementation of the FITS WCS standard.
// Copyright (C) 1995-2011, Mark Calabretta
#include <ctype.h>
#include "hpx.h"
#include "util.h"
FitsHPX::FitsHPX(FitsFile* fits, Order oo, CoordSys ss, Layout ll,
int cc, int qq)
: order_(oo), coord_(ss), layout_(ll), quad_(qq)
{
FitsHead* head = fits->head();
FitsTableHDU* hdu = (FitsTableHDU*)(head->hdu());
col_ = (FitsBinColumn*)hdu->find(cc);
if (!col_)
return;
int nrow = hdu->rows();
int nelem = col_->repeat();
nside_ = head->getInteger("NSIDE",0);
long firstpix = head->getInteger("FIRSTPIX",-1);
long lastpix = head->getInteger("LASTPIX",-1);
if (!nside_) {
// Deduce NSIDE
if (lastpix >= 0) {
// If LASTPIX is present without NSIDE we can only assume it's npix.
nside_ = (int)(sqrt((double)((lastpix+1) / 12)) + 0.5);
}
else if (nrow)
nside_ = (int)(sqrt((double)((nrow * nelem) / 12)) + 0.5);
}
long npix = 12*nside_*nside_;
if (firstpix < 0)
firstpix = 0;
if (lastpix < 0)
lastpix = npix - 1;
build(fits);
if (byteswap_)
swap();
valid_ = 1;
}
FitsHPX::~FitsHPX()
{
if (data_)
delete [] (float*)data_;
}
void FitsHPX::build(FitsFile* fits)
{
// Number of facets on a side of each layout
const int NFACET[] = {5, 4, 4};
// Arrays that define the facet location and rotation for each recognised
// layout. Bear in mind that these appear to be upside-down, i.e. the top
// line contains facet numbers for the bottom row of the output image.
// Facets numbered -1 are blank.
// Equatorial (diagonal) facet layout.
const int FACETS[][5][5] = {{{ 6, 9, -1, -1, -1},
{ 1, 5, 8, -1, -1},
{-1, 0, 4, 11, -1},
{-1, -1, 3, 7, 10},
{-1, -1, -1, 2, 6}},
// North polar (X) facet layout.
{{ 8, 4, 4, 11, -1},
{ 5, 0, 3, 7, -1},
{ 5, 1, 2, 7, -1},
{ 9, 6, 6, 10, -1},
{-1, -1, -1, -1, -1}},
// South polar (X) facet layout.
{{ 1, 6, 6, 2, -1},
{ 5, 9, 10, 7, -1},
{ 5, 8, 11, 7, -1},
{ 0, 4, 4, 3, -1},
{-1, -1, -1, -1, -1}}};
// All facets of the equatorial layout are rotated by +45 degrees with
// respect to the normal orientation, i.e. that with the equator running
// horizontally. The rotation recorded for the polar facets is the number
// of additional positive (anti-clockwise) 90 degree turns with respect to
// the equatorial layout.
// Equatorial (diagonal), no facet rotation.
const int FROTAT[][5][5] = {{{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0}},
// North polar (X) facet rotation.
{{ 3, 3, 0, 0, 0},
{ 3, 3, 0, 0, 0},
{ 2, 2, 1, 1, 0},
{ 2, 2, 1, 1, 0},
{ 0, 0, 0, 0, 0}},
// South polar (X) facet rotation.
{{ 1, 1, 2, 2, 0},
{ 1, 1, 2, 2, 0},
{ 0, 0, 3, 3, 0},
{ 0, 0, 3, 3, 0},
{ 0, 0, 0, 0, 0}}};
// Facet halving codes. 0: the facet is whole (or wholly blank),
// 1: blanked bottom-right, 2: top-right, 3: top-left, 4: bottom-left.
// Positive values mean that the diagonal is included, otherwise not.
// Equatorial (diagonal), no facet halving.
const int FHALVE[][5][5] = {{{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0}},
// North polar (X) facet halving.
{{ 0, 1, -4, 0, 0},
{-3, 0, 0, 2, 0},
{ 4, 0, 0, -1, 0},
{ 0, -2, 3, 0, 0},
{ 0, 0, 0, 0, 0}},
// South polar (X) facet halving.
{{ 0, 1, -4, 0, 0},
{-3, 0, 0, 2, 0},
{ 4, 0, 0, -1, 0},
{ 0, -2, 3, 0, 0},
{ 0, 0, 0, 0, 0}}};
FitsHead* head = fits->head();
FitsTableHDU* hdu = (FitsTableHDU*)(head->hdu());
int rowlen = hdu->width();
int nrow = hdu->rows();
int repeat = col_->repeat();
char* data = (char*)fits->data();
int nside = nside_;
int layout = layout_;
int nfacet = NFACET[layout];
pWidth_ = nfacet*nside;
pHeight_ = pWidth_;
// create image space
size_t pSize = (size_t)pWidth_*pHeight_;
float* dest = new float[pSize];
for (long long ii=0; ii<pSize; ii++)
dest[ii] = NAN;
// Write WCS keyrecords
initHeader(fits);
// Allocate arrays
long healidx[nside];
float row[nside];
// Loop vertically facet-by-facet.
long long fpixel = 1;
// longlong group = 0;
long long nelem = (long long)nside;
for (int jfacet = 0; jfacet<nfacet; jfacet++) {
// Loop row-by-row.
for (int jj = 0; jj<nside; jj++) {
// Loop horizontally facet-by-facet
for (int ifacet = 0; ifacet<nfacet; ifacet++) {
int facet = FACETS[layout][jfacet][ifacet];
int rotn = FROTAT[layout][jfacet][ifacet];
int halve = FHALVE[layout][jfacet][ifacet];
// Recentre longitude?
if (quad_ && facet >= 0) {
if (facet <= 3) {
facet += quad_;
if (facet > 3) facet -= 4;
}
else if (facet <= 7) {
facet += quad_;
if (facet > 7) facet -= 4;
}
else {
facet += quad_;
if (facet > 11) facet -= 4;
}
}
// Write out the data
if (facet < 0)
;
else {
switch (order_) {
case NESTED:
NESTidx(nside, facet, rotn, jj, healidx);
break;
case RING:
RINGidx(nside, facet, rotn, jj, healidx);
break;
}
// Gather data into the output vector.
/*
long* healp = healidx;
for (float* rowp = row; rowp < row+nside; rowp++)
*rowp = col_->value(data+*(healp++),0);
*/
for (int ii=0; ii<nside_; ii++) {
int aa = healidx[ii]/repeat;
int bb = healidx[ii] - (aa*repeat);
if (aa<nrow)
row[ii] = col_->value(data+aa*rowlen,bb);
else
row[ii] = 0;
}
// Apply blanking to halved facets.
if (halve) {
int i1;
int i2;
if (abs(halve) == 1) {
// Blank bottom-right.
i1 = jj;
i2 = nside;
if (halve > 0)
i1++;
} else if (abs(halve) == 2) {
// Blank top-right.
i1 = nside - jj;
i2 = nside;
if (halve < 0)
i1--;
} else if (abs(halve) == 3) {
// Blank top-left.
i1 = 0;
i2 = jj;
if (halve < 0)
i2++;
} else {
// Blank bottom-left.
i1 = 0;
i2 = nside - jj;
if (halve > 0)
i2--;
}
for (float* rowp = row+i1; rowp < row+i2; rowp++)
*rowp = NAN;
}
// Write out this facet's contribution to this row of the map.
memcpy(dest+fpixel-1, row, nside*sizeof(float));
}
fpixel += nelem;
}
}
}
data_ = dest;
dataSize_ = pSize;
dataSkip_ = 0;
}
// (imap,jmap) are 0-relative pixel coordinates in the output map with origin
// at the bottom-left corner of the specified facet which is rotated by
// (45 + rotn * 90) degrees from its natural orientation; imap increases to
// the right and jmap upwards.
void FitsHPX::NESTidx(int nside, int facet, int rotn, int jmap, long *healidx)
{
// Nested index (0-relative) of the first pixel in this facet.
int hh = facet*nside*nside;
int nside1 = nside - 1;
long* hp = healidx;
for (int imap = 0; imap < nside; imap++, hp++) {
// (ii,jj) are 0-relative pixel coordinates with origin in the southern
// corner of the facet; i increases to the north-east and j to the
// north-west.
int ii =0;
int jj =0;
if (rotn == 0) {
ii = nside1 - imap;
jj = jmap;
}
else if (rotn == 1) {
ii = nside1 - jmap;
jj = nside1 - imap;
}
else if (rotn == 2) {
ii = imap;
jj = nside1 - jmap;
}
else if (rotn == 3) {
ii = jmap;
jj = imap;
}
*hp = 0;
int bit = 1;
while (ii || jj) {
if (ii & 1) *hp |= bit;
bit <<= 1;
if (jj & 1) *hp |= bit;
bit <<= 1;
ii >>= 1;
jj >>= 1;
}
*hp += hh;
}
}
// (imap,jmap) pixel coordinates are as described above for NESTidx(). This
// function computes the double-pixelisation index then converts it to the
// regular ring index.
void FitsHPX::RINGidx(int nside, int facet, int rotn, int jmap, long *healidx)
{
const int I0[] = { 1, 3, -3, -1, 0, 2, 4, -2, 1, 3, -3, -1};
const int J0[] = { 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1};
int n2side = 2 * nside;
int n8side = 8 * nside;
// Double-pixelisation index of the last pixel in the north polar cap. */
int npole = (n2side - 1) * (n2side - 1) - 1;
// Double-pixelisation pixel coordinates of the centre of the facet. */
int i0 = nside * I0[facet];
int j0 = nside * J0[facet];
int nside1 = nside - 1;
long* hp = healidx;
for (int imap = 0; imap < nside; imap++, hp++) {
// (ii,jj) are 0-relative, double-pixelisation pixel coordinates. The
// origin is at the intersection of the equator and prime meridian,
// i increases to the east (N.B.) and j to the north.
int ii =0;
int jj =0;
if (rotn == 0) {
ii = i0 + nside1 - (jmap + imap);
jj = j0 + jmap - imap;
}
else if (rotn == 1) {
ii = i0 + imap - jmap;
jj = j0 + nside1 - (imap + jmap);
}
else if (rotn == 2) {
ii = i0 + (imap + jmap) - nside1;
jj = j0 + imap - jmap;
}
else if (rotn == 3) {
ii = i0 + jmap - imap;
jj = j0 + jmap + imap - nside1;
}
// Convert i for counting pixels
if (ii < 0)
ii += n8side;
ii++;
if (jj > nside) {
// North polar regime.
if (jj == n2side)
*hp = 0;
else {
// Number of pixels in a polar facet with this value of jj.
int npj = 2 * (n2side - jj);
// Index of the last pixel in the row above this.
*hp = (npj - 1) * (npj - 1) - 1;
// Number of pixels in this row in the polar facets before this.
*hp += npj * (ii/n2side);
// Pixel number in this polar facet.
*hp += ii%n2side - (jj - nside) - 1;
}
}
else if (jj >= -nside) {
// Equatorial regime.
*hp = npole + n8side * (nside - jj) + ii;
}
else {
// South polar regime.
*hp = 24 * nside * nside + 1;
if (jj > -n2side) {
// Number of pixels in a polar facet with this value of jj.
int npj = 2 * (jj + n2side);
// Total number of pixels in this row or below it.
*hp -= (npj + 1) * (npj + 1);
// Number of pixels in this row in the polar facets before this.
*hp += npj * (ii/n2side);
// Pixel number in this polar facet.
*hp += ii%n2side + (nside + jj) - 1;
}
}
// Convert double-pixelisation index to regular.
*hp -= 1;
*hp /= 2;
}
}
void FitsHPX::initHeader(FitsFile* fits)
{
FitsHead* src = fits->head();
// create header
head_ = new FitsHead(pWidth_, pHeight_, 1, -32);
// OBJECT
char* object = src->getString("OBJECT");
if (object)
head_->appendString("OBJECT", object, NULL);
// CRPIX1/2
float crpix1;
switch (layout_) {
case EQUATOR:
crpix1 = (5 * nside_ + 1) / 2.;
break;
case NORTH:
case SOUTH:
crpix1 = (4 * nside_ + 1) / 2.;
break;
}
float crpix2 = crpix1;
head_->appendReal("CRPIX1", crpix1, 8, "Coordinate reference pixel");
head_->appendReal("CRPIX2", crpix2, 8, "Coordinate reference pixel");
// PCx_y
float cos45 = sqrt(2.0) / 2.0;
if (layout_ == EQUATOR) {
head_->appendReal("PC1_1", cos45, 8, "Transformation matrix element");
head_->appendReal("PC1_2", cos45, 8, "Transformation matrix element");
head_->appendReal("PC2_1", -cos45, 8, "Transformation matrix element");
head_->appendReal("PC2_2", cos45, 8, "Transformation matrix element");
}
// CDELT1/2
float cdelt1 = -90.0 / nside_ / sqrt(2.);
float cdelt2 = -cdelt1;
head_->appendReal("CDELT1", cdelt1, 8, "[deg] Coordinate increment");
head_->appendReal("CDELT2", cdelt2, 8, "[deg] Coordinate increment");
// CTYPE1/2
const char* pcode;
switch (layout_) {
case EQUATOR:
pcode = "HPX";
break;
case NORTH:
case SOUTH:
pcode = "XPH";
break;
}
const char* ctype1;
const char* ctype2;
const char* descr1;
const char* descr2;
switch (coord_) {
case EQU:
ctype1 = "RA--";
ctype2 = "DEC-";
descr1 = "Right ascension";
descr2 = "Declination";
break;
case GAL:
ctype1 = "GLON";
ctype2 = "GLAT";
descr1 = "Galactic longitude";
descr2 = "Galactic latitude";
break;
case ECL:
ctype1 = "ELON";
ctype2 = "ELAT";
descr1 = "Ecliptic longitude";
descr2 = "Ecliptic latitude";
break;
case UNKNOWN:
ctype1 = "XLON";
ctype2 = "XLAT";
descr1 = "Longitude";
descr2 = " Latitude";
}
{
ostringstream cval;
cval << ctype1 << '-' << pcode << ends;
ostringstream comm;
comm << descr1 << " in an " << pcode << " projection" << ends;
head_->appendString("CTYPE1", cval.str().c_str(), comm.str().c_str());
}
{
ostringstream cval;
cval << ctype2 << '-' << pcode << ends;
ostringstream comm;
comm << descr2 << " in an " << pcode << " projection" << ends;
head_->appendString("CTYPE2", cval.str().c_str(), comm.str().c_str());
}
// CRVAL1/CRVAL2
float crval1 = 0. + 90.*quad_;
float crval2;
switch (layout_) {
case EQUATOR:
crval2 = 0.;
break;
case NORTH:
crval1 += 180.;
crval2 = 90.;
break;
case SOUTH:
crval1 += 180.;
crval2 = -90.;
break;
}
if (360. < crval1)
crval1 -= 360.;
{
ostringstream comm;
comm << "[deg] " << descr1 << " at the reference point" << ends;
head_->appendReal("CRVAL1", crval1, 8, comm.str().c_str());
}
{
ostringstream comm;
comm << "[deg] " << descr2 << " at the reference point" << ends;
head_->appendReal("CRVAL2", crval2, 8, comm.str().c_str());
}
// PV2_1/2
switch (layout_) {
case EQUATOR:
head_->appendInteger("PV2_1", 4, "HPX H parameter (longitude)");
head_->appendInteger("PV2_2", 3, "HPX K parameter (latitude)");
break;
case NORTH:
case SOUTH:
head_->appendReal("LONPOLE", 180., 8, "[deg] Native longitude of the celestial pole");
break;
}
// we added cards
head_->updateHDU();
}
void FitsHPX::swap()
{
if (!data_)
return;
// we now need to byteswap back to native form
float* dest = (float*)data_;
for (int ii=0; ii<dataSize_; ii++) {
const char* p = (char*)(dest+ii);
union {
char c[4];
float f;
} u;
u.c[3] = *p++;
u.c[2] = *p++;
u.c[1] = *p++;
u.c[0] = *p;
dest[ii] = u.f;
}
}
|