summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>2007-11-27 22:38:36 (GMT)
committerGuido van Rossum <guido@python.org>2007-11-27 22:38:36 (GMT)
commit715ec1818de43836cffea50d5f4b5e53fc68a849 (patch)
tree0c6fca13960a035e451fbda4b1d2839afa7e26d9
parentb61a1f5219fb52d3d5a6a8bee427b94efeee4894 (diff)
downloadcpython-715ec1818de43836cffea50d5f4b5e53fc68a849.zip
cpython-715ec1818de43836cffea50d5f4b5e53fc68a849.tar.gz
cpython-715ec1818de43836cffea50d5f4b5e53fc68a849.tar.bz2
Patch # 1507 by Mark Dickinson. Make complex(x, -0) retain the sign of
the imaginary part (as long as it's not complex). Backport candidate?
-rw-r--r--Lib/test/test_complex.py13
-rw-r--r--Objects/complexobject.c24
2 files changed, 28 insertions, 9 deletions
diff --git a/Lib/test/test_complex.py b/Lib/test/test_complex.py
index 3035c2d..64297e2 100644
--- a/Lib/test/test_complex.py
+++ b/Lib/test/test_complex.py
@@ -9,6 +9,7 @@ warnings.filterwarnings(
)
from random import random
+from math import atan2
# These tests ensure that complex math does the right thing
@@ -225,6 +226,18 @@ class ComplexTest(unittest.TestCase):
self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
+ # check that the sign of a zero in the real or imaginary part
+ # is preserved when constructing from two floats. (These checks
+ # are harmless on systems without support for signed zeros.)
+ def split_zeros(x):
+ """Function that produces different results for 0. and -0."""
+ return atan2(x, -1.)
+
+ self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
+ self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
+ self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
+ self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
+
c = 3.14 + 1j
self.assert_(complex(c) is c)
del c
diff --git a/Objects/complexobject.c b/Objects/complexobject.c
index 7de4d5c..ed0b8be 100644
--- a/Objects/complexobject.c
+++ b/Objects/complexobject.c
@@ -897,6 +897,8 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
PyNumberMethods *nbr, *nbi = NULL;
Py_complex cr, ci;
int own_r = 0;
+ int cr_is_complex = 0;
+ int ci_is_complex = 0;
static PyObject *complexstr;
static char *kwlist[] = {"real", "imag", 0};
@@ -977,6 +979,7 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
retaining its real & imag parts here, and the return
value is (properly) of the builtin complex type. */
cr = ((PyComplexObject*)r)->cval;
+ cr_is_complex = 1;
if (own_r) {
Py_DECREF(r);
}
@@ -985,7 +988,6 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
/* The "real" part really is entirely real, and contributes
nothing in the imaginary direction.
Just treat it as a double. */
- cr.imag = 0.0;
tmp = PyNumber_Float(r);
if (own_r) {
/* r was a newly created complex number, rather
@@ -1005,15 +1007,14 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
}
if (i == NULL) {
ci.real = 0.0;
- ci.imag = 0.0;
}
- else if (PyComplex_Check(i))
+ else if (PyComplex_Check(i)) {
ci = ((PyComplexObject*)i)->cval;
- else {
+ ci_is_complex = 1;
+ } else {
/* The "imag" part really is entirely imaginary, and
contributes nothing in the real direction.
Just treat it as a double. */
- ci.imag = 0.0;
tmp = (*nbi->nb_float)(i);
if (tmp == NULL)
return NULL;
@@ -1021,11 +1022,16 @@ complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
Py_DECREF(tmp);
}
/* If the input was in canonical form, then the "real" and "imag"
- parts are real numbers, so that ci.real and cr.imag are zero.
+ parts are real numbers, so that ci.imag and cr.imag are zero.
We need this correction in case they were not real numbers. */
- cr.real -= ci.imag;
- cr.imag += ci.real;
- return complex_subtype_from_c_complex(type, cr);
+
+ if (ci_is_complex) {
+ cr.real -= ci.imag;
+ }
+ if (cr_is_complex) {
+ ci.real += cr.imag;
+ }
+ return complex_subtype_from_doubles(type, cr.real, ci.real);
}
PyDoc_STRVAR(complex_doc,