summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2009-02-17 11:00:27 (GMT)
committerRaymond Hettinger <python@rcn.com>2009-02-17 11:00:27 (GMT)
commit0aee942a0819855e67cce8f9d106eed21d172bb2 (patch)
treef6013cc42d4dc7e3e4cfcdffa5fb447cb7bebb53
parentf6bbd0e71d986e0acefb4b3708d9129a9bce4a17 (diff)
downloadcpython-0aee942a0819855e67cce8f9d106eed21d172bb2.zip
cpython-0aee942a0819855e67cce8f9d106eed21d172bb2.tar.gz
cpython-0aee942a0819855e67cce8f9d106eed21d172bb2.tar.bz2
Fixup intro paragraphs for the itertools docs. Add some tables for quick reference.
-rw-r--r--Doc/library/itertools.rst79
1 files changed, 52 insertions, 27 deletions
diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst
index 89d5056..64aa634 100644
--- a/Doc/library/itertools.rst
+++ b/Doc/library/itertools.rst
@@ -14,40 +14,65 @@
.. versionadded:: 2.3
-This module implements a number of :term:`iterator` building blocks inspired by
-constructs from the Haskell and SML programming languages. Each has been recast
-in a form suitable for Python.
+This module implements a number of :term:`iterator` building blocks inspired
+by constructs from APL, Haskell, and SML. Each has been recast in a form
+suitable for Python.
The module standardizes a core set of fast, memory efficient tools that are
-useful by themselves or in combination. Standardization helps avoid the
-readability and reliability problems which arise when many different individuals
-create their own slightly varying implementations, each with their own quirks
-and naming conventions.
-
-The tools are designed to combine readily with one another. This makes it easy
-to construct more specialized tools succinctly and efficiently in pure Python.
+useful by themselves or in combination. Together, they form an "iterator
+algebra" making it possible to construct specialized tools succinctly and
+efficiently in pure Python.
For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
-:func:`count` which can be combined to form ``imap(f, count())`` and produce an
+:func:`count` which can be combined to form ``imap(f, count())`` to produce an
equivalent result.
-Likewise, the functional tools are designed to work well with the high-speed
-functions provided by the :mod:`operator` module.
-
-Whether cast in pure python form or compiled code, tools that use iterators are
-more memory efficient (and often faster) than their list based counterparts. Adopting
-the principles of just-in-time manufacturing, they create data when and where
-needed instead of consuming memory with the computer equivalent of "inventory".
-
-
-.. seealso::
-
- The Standard ML Basis Library, `The Standard ML Basis Library
- <http://www.standardml.org/Basis/>`_.
-
- Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
- Libraries <http://www.haskell.org/definition/>`_.
+The tools also work well with the high-speed functions in the :mod:`operator`
+module. For example, the plus-operator can be mapped across two vectors to
+form an efficient dot-product: ``sum(imap(operator.add, vector1, vector2))``.
+
+
+**Infinite Iterators:**
+
+ ================== ================= =================================================
+ Iterator Arguments Results
+ ================== ================= =================================================
+ :func:`count` start, [step] start, start+step, start+2*step, ...
+ :func:`cycle` p p0, p1, ... plast, p0, p1, ...
+ :func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times
+ ================== ================= =================================================
+
+**Iterators terminating on the shortest input sequence:**
+
+ ==================== ============================ =================================================
+ Iterator Arguments Results
+ ==================== ============================ =================================================
+ :func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ...
+ :func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ...
+ :func:`dropwhile` pred, seq seq[n], seq[n+1], starting when pred fails
+ :func:`groupby` iterable[, keyfunc] sub-iterators grouped by value of keyfunc(v)
+ :func:`ifilter` pred, seq elements of seq where pred(elem) is True
+ :func:`ifilterfalse` pred, seq elements of seq where pred(elem) is False
+ :func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step]
+ :func:`imap` func, p, q, ... func(p0, q0), fun(p1, q1), ...
+ :func:`starmap` func, seq func(\*seq[0]), fun(\*seq[1]), ...
+ :func:`tee` it, n it1, it2 , ... itn splits one iterator into n
+ :func:`takewhile` pred, seq seq[0], seq[1], until pred fails
+ :func:`izip` p, q, ... (p[0], q[0]), (p[1], q[1]), ...
+ :func:`izip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ...
+ ==================== ============================ =================================================
+
+**Combinatoric generators:**
+
+ ===================================== ==================== =================================================
+ Iterator Arguments Results
+ ===================================== ==================== =================================================
+ :func:`product` p, q, ... [repeat=1] cartesian product
+ :func:`permutations` p[, r] r-length permutations (without repeated elements)
+ :func:`combinations` p[, r] r-length combinations (sorted and no repeats)
+ :func:`combinations_with_replacement` p[, r] r-length combinations (sorted but with repeats)
+ ===================================== ==================== =================================================
.. _itertools-functions: