diff options
author | Guido van Rossum <guido@python.org> | 2007-01-10 01:28:32 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 2007-01-10 01:28:32 (GMT) |
commit | 33552e92fe37194c867921675a2cf25e7432008c (patch) | |
tree | b295ab25918393368d06239f8e3bf7a145931479 | |
parent | 902d6ebddd07a6086b54ae42929293418f0852d7 (diff) | |
download | cpython-33552e92fe37194c867921675a2cf25e7432008c.zip cpython-33552e92fe37194c867921675a2cf25e7432008c.tar.gz cpython-33552e92fe37194c867921675a2cf25e7432008c.tar.bz2 |
Excise the sets module. SF #1500611 by Collin Winter.
-rw-r--r-- | Doc/Makefile.deps | 1 | ||||
-rw-r--r-- | Doc/lib/lib.tex | 1 | ||||
-rw-r--r-- | Doc/lib/libsets.tex | 264 | ||||
-rw-r--r-- | Doc/lib/libstdtypes.tex | 10 | ||||
-rw-r--r-- | Lib/msilib/__init__.py | 10 | ||||
-rw-r--r-- | Lib/sets.py | 577 | ||||
-rw-r--r-- | Lib/test/test_cookielib.py | 1 | ||||
-rw-r--r-- | Lib/test/test_set.py | 1 | ||||
-rw-r--r-- | Lib/test/test_sets.py | 853 |
9 files changed, 5 insertions, 1713 deletions
diff --git a/Doc/Makefile.deps b/Doc/Makefile.deps index f828e1b..3371f61 100644 --- a/Doc/Makefile.deps +++ b/Doc/Makefile.deps @@ -109,7 +109,6 @@ LIBFILES= $(MANSTYLES) $(INDEXSTYLES) $(COMMONTEX) \ lib/libplatform.tex \ lib/libfpectl.tex \ lib/libgc.tex \ - lib/libsets.tex \ lib/libweakref.tex \ lib/libinspect.tex \ lib/libpydoc.tex \ diff --git a/Doc/lib/lib.tex b/Doc/lib/lib.tex index 837c759..427d71d 100644 --- a/Doc/lib/lib.tex +++ b/Doc/lib/lib.tex @@ -104,7 +104,6 @@ and how to embed it in other applications. \input{libheapq} \input{libbisect} \input{libarray} -\input{libsets} \input{libsched} \input{libmutex} \input{libqueue} diff --git a/Doc/lib/libsets.tex b/Doc/lib/libsets.tex index 22bf34b..e69de29 100644 --- a/Doc/lib/libsets.tex +++ b/Doc/lib/libsets.tex @@ -1,264 +0,0 @@ -\section{\module{sets} --- - Unordered collections of unique elements} - -\declaremodule{standard}{sets} -\modulesynopsis{Implementation of sets of unique elements.} -\moduleauthor{Greg V. Wilson}{gvwilson@nevex.com} -\moduleauthor{Alex Martelli}{aleax@aleax.it} -\moduleauthor{Guido van Rossum}{guido@python.org} -\sectionauthor{Raymond D. Hettinger}{python@rcn.com} - -\versionadded{2.3} - -The \module{sets} module provides classes for constructing and manipulating -unordered collections of unique elements. Common uses include membership -testing, removing duplicates from a sequence, and computing standard math -operations on sets such as intersection, union, difference, and symmetric -difference. - -Like other collections, sets support \code{\var{x} in \var{set}}, -\code{len(\var{set})}, and \code{for \var{x} in \var{set}}. Being an -unordered collection, sets do not record element position or order of -insertion. Accordingly, sets do not support indexing, slicing, or -other sequence-like behavior. - -Most set applications use the \class{Set} class which provides every set -method except for \method{__hash__()}. For advanced applications requiring -a hash method, the \class{ImmutableSet} class adds a \method{__hash__()} -method but omits methods which alter the contents of the set. Both -\class{Set} and \class{ImmutableSet} derive from \class{BaseSet}, an -abstract class useful for determining whether something is a set: -\code{isinstance(\var{obj}, BaseSet)}. - -The set classes are implemented using dictionaries. Accordingly, the -requirements for set elements are the same as those for dictionary keys; -namely, that the element defines both \method{__eq__} and \method{__hash__}. -As a result, sets -cannot contain mutable elements such as lists or dictionaries. -However, they can contain immutable collections such as tuples or -instances of \class{ImmutableSet}. For convenience in implementing -sets of sets, inner sets are automatically converted to immutable -form, for example, \code{Set([Set(['dog'])])} is transformed to -\code{Set([ImmutableSet(['dog'])])}. - -\begin{classdesc}{Set}{\optional{iterable}} -Constructs a new empty \class{Set} object. If the optional \var{iterable} -parameter is supplied, updates the set with elements obtained from iteration. -All of the elements in \var{iterable} should be immutable or be transformable -to an immutable using the protocol described in -section~\ref{immutable-transforms}. -\end{classdesc} - -\begin{classdesc}{ImmutableSet}{\optional{iterable}} -Constructs a new empty \class{ImmutableSet} object. If the optional -\var{iterable} parameter is supplied, updates the set with elements obtained -from iteration. All of the elements in \var{iterable} should be immutable or -be transformable to an immutable using the protocol described in -section~\ref{immutable-transforms}. - -Because \class{ImmutableSet} objects provide a \method{__hash__()} method, -they can be used as set elements or as dictionary keys. \class{ImmutableSet} -objects do not have methods for adding or removing elements, so all of the -elements must be known when the constructor is called. -\end{classdesc} - - -\subsection{Set Objects \label{set-objects}} - -Instances of \class{Set} and \class{ImmutableSet} both provide -the following operations: - -\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result} - \lineiii{len(\var{s})}{}{cardinality of set \var{s}} - - \hline - \lineiii{\var{x} in \var{s}}{} - {test \var{x} for membership in \var{s}} - \lineiii{\var{x} not in \var{s}}{} - {test \var{x} for non-membership in \var{s}} - \lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}} - {test whether every element in \var{s} is in \var{t}} - \lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}} - {test whether every element in \var{t} is in \var{s}} - - \hline - \lineiii{\var{s}.union(\var{t})}{\var{s} \textbar{} \var{t}} - {new set with elements from both \var{s} and \var{t}} - \lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}} - {new set with elements common to \var{s} and \var{t}} - \lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}} - {new set with elements in \var{s} but not in \var{t}} - \lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}} - {new set with elements in either \var{s} or \var{t} but not both} - \lineiii{\var{s}.copy()}{} - {new set with a shallow copy of \var{s}} -\end{tableiii} - -Note, the non-operator versions of \method{union()}, -\method{intersection()}, \method{difference()}, and -\method{symmetric_difference()} will accept any iterable as an argument. -In contrast, their operator based counterparts require their arguments to -be sets. This precludes error-prone constructions like -\code{Set('abc') \&\ 'cbs'} in favor of the more readable -\code{Set('abc').intersection('cbs')}. -\versionchanged[Formerly all arguments were required to be sets]{2.3.1} - -In addition, both \class{Set} and \class{ImmutableSet} -support set to set comparisons. Two sets are equal if and only if -every element of each set is contained in the other (each is a subset -of the other). -A set is less than another set if and only if the first set is a proper -subset of the second set (is a subset, but is not equal). -A set is greater than another set if and only if the first set is a proper -superset of the second set (is a superset, but is not equal). - -The subset and equality comparisons do not generalize to a complete -ordering function. For example, any two disjoint sets are not equal and -are not subsets of each other, so \emph{all} of the following return -\code{False}: \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or -\code{\var{a}>\var{b}}. -Accordingly, sets do not implement the \method{__cmp__} method. - -Since sets only define partial ordering (subset relationships), the output -of the \method{list.sort()} method is undefined for lists of sets. - -The following table lists operations available in \class{ImmutableSet} -but not found in \class{Set}: - -\begin{tableii}{c|l}{code}{Operation}{Result} - \lineii{hash(\var{s})}{returns a hash value for \var{s}} -\end{tableii} - -The following table lists operations available in \class{Set} -but not found in \class{ImmutableSet}: - -\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result} - \lineiii{\var{s}.update(\var{t})} - {\var{s} \textbar= \var{t}} - {return set \var{s} with elements added from \var{t}} - \lineiii{\var{s}.intersection_update(\var{t})} - {\var{s} \&= \var{t}} - {return set \var{s} keeping only elements also found in \var{t}} - \lineiii{\var{s}.difference_update(\var{t})} - {\var{s} -= \var{t}} - {return set \var{s} after removing elements found in \var{t}} - \lineiii{\var{s}.symmetric_difference_update(\var{t})} - {\var{s} \textasciicircum= \var{t}} - {return set \var{s} with elements from \var{s} or \var{t} - but not both} - - \hline - \lineiii{\var{s}.add(\var{x})}{} - {add element \var{x} to set \var{s}} - \lineiii{\var{s}.remove(\var{x})}{} - {remove \var{x} from set \var{s}; raises \exception{KeyError} - if not present} - \lineiii{\var{s}.discard(\var{x})}{} - {removes \var{x} from set \var{s} if present} - \lineiii{\var{s}.pop()}{} - {remove and return an arbitrary element from \var{s}; raises - \exception{KeyError} if empty} - \lineiii{\var{s}.clear()}{} - {remove all elements from set \var{s}} -\end{tableiii} - -Note, the non-operator versions of \method{update()}, -\method{intersection_update()}, \method{difference_update()}, and -\method{symmetric_difference_update()} will accept any iterable as -an argument. -\versionchanged[Formerly all arguments were required to be sets]{2.3.1} - -Also note, the module also includes a \method{union_update()} method -which is an alias for \method{update()}. The method is included for -backwards compatibility. Programmers should prefer the -\method{update()} method because it is supported by the builtin -\class{set()} and \class{frozenset()} types. - -\subsection{Example \label{set-example}} - -\begin{verbatim} ->>> from sets import Set ->>> engineers = Set(['John', 'Jane', 'Jack', 'Janice']) ->>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice']) ->>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack']) ->>> employees = engineers | programmers | managers # union ->>> engineering_management = engineers & managers # intersection ->>> fulltime_management = managers - engineers - programmers # difference ->>> engineers.add('Marvin') # add element ->>> print engineers -Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack']) ->>> employees.issuperset(engineers) # superset test -False ->>> employees.union_update(engineers) # update from another set ->>> employees.issuperset(engineers) -True ->>> for group in [engineers, programmers, managers, employees]: -... group.discard('Susan') # unconditionally remove element -... print group -... -Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack']) -Set(['Janice', 'Jack', 'Sam']) -Set(['Jane', 'Zack', 'Jack']) -Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack']) -\end{verbatim} - - -\subsection{Protocol for automatic conversion to immutable - \label{immutable-transforms}} - -Sets can only contain immutable elements. For convenience, mutable -\class{Set} objects are automatically copied to an \class{ImmutableSet} -before being added as a set element. - -The mechanism is to always add a hashable element, or if it is not -hashable, the element is checked to see if it has an -\method{__as_immutable__()} method which returns an immutable equivalent. - -Since \class{Set} objects have a \method{__as_immutable__()} method -returning an instance of \class{ImmutableSet}, it is possible to -construct sets of sets. - -A similar mechanism is needed by the \method{__contains__()} and -\method{remove()} methods which need to hash an element to check -for membership in a set. Those methods check an element for hashability -and, if not, check for a \method{__as_temporarily_immutable__()} method -which returns the element wrapped by a class that provides temporary -methods for \method{__hash__()}, \method{__eq__()}, and \method{__ne__()}. - -The alternate mechanism spares the need to build a separate copy of -the original mutable object. - -\class{Set} objects implement the \method{__as_temporarily_immutable__()} -method which returns the \class{Set} object wrapped by a new class -\class{_TemporarilyImmutableSet}. - -The two mechanisms for adding hashability are normally invisible to the -user; however, a conflict can arise in a multi-threaded environment -where one thread is updating a set while another has temporarily wrapped it -in \class{_TemporarilyImmutableSet}. In other words, sets of mutable sets -are not thread-safe. - - -\subsection{Comparison to the built-in \class{set} types - \label{comparison-to-builtin-set}} - -The built-in \class{set} and \class{frozenset} types were designed based -on lessons learned from the \module{sets} module. The key differences are: - -\begin{itemize} -\item \class{Set} and \class{ImmutableSet} were renamed to \class{set} and - \class{frozenset}. -\item There is no equivalent to \class{BaseSet}. Instead, use - \code{isinstance(x, (set, frozenset))}. -\item The hash algorithm for the built-ins performs significantly better - (fewer collisions) for most datasets. -\item The built-in versions have more space efficient pickles. -\item The built-in versions do not have a \method{union_update()} method. - Instead, use the \method{update()} method which is equivalent. -\item The built-in versions do not have a \method{_repr(sorted=True)} method. - Instead, use the built-in \function{repr()} and \function{sorted()} - functions: \code{repr(sorted(s))}. -\item The built-in version does not have a protocol for automatic conversion - to immutable. Many found this feature to be confusing and no one - in the community reported having found real uses for it. -\end{itemize} diff --git a/Doc/lib/libstdtypes.tex b/Doc/lib/libstdtypes.tex index 8a527f6..a07e7d7 100644 --- a/Doc/lib/libstdtypes.tex +++ b/Doc/lib/libstdtypes.tex @@ -1334,16 +1334,6 @@ Note, the non-operator versions of the \method{update()}, \method{intersection_update()}, \method{difference_update()}, and \method{symmetric_difference_update()} methods will accept any iterable as an argument. - -The design of the set types was based on lessons learned from the -\module{sets} module. - -\begin{seealso} - \seelink{comparison-to-builtin-set.html} - {Comparison to the built-in set types} - {Differences between the \module{sets} module and the - built-in set types.} -\end{seealso} \section{Mapping Types --- \class{dict} \label{typesmapping}} diff --git a/Lib/msilib/__init__.py b/Lib/msilib/__init__.py index 07053ba..9efef91 100644 --- a/Lib/msilib/__init__.py +++ b/Lib/msilib/__init__.py @@ -2,7 +2,7 @@ # Copyright (C) 2005 Martin v. Löwis # Licensed to PSF under a Contributor Agreement. from _msi import * -import sets, os, string, re +import os, string, re Win64=0 @@ -184,7 +184,7 @@ class CAB: def __init__(self, name): self.name = name self.files = [] - self.filenames = sets.Set() + self.filenames = set() self.index = 0 def gen_id(self, file): @@ -215,7 +215,7 @@ class CAB: os.unlink(filename) db.Commit() -_directories = sets.Set() +_directories = set() class Directory: def __init__(self, db, cab, basedir, physical, _logical, default, componentflags=None): """Create a new directory in the Directory table. There is a current component @@ -239,8 +239,8 @@ class Directory: self.physical = physical self.logical = logical self.component = None - self.short_names = sets.Set() - self.ids = sets.Set() + self.short_names = set() + self.ids = set() self.keyfiles = {} self.componentflags = componentflags if basedir: diff --git a/Lib/sets.py b/Lib/sets.py deleted file mode 100644 index 55f93a6d..0000000 --- a/Lib/sets.py +++ /dev/null @@ -1,577 +0,0 @@ -"""Classes to represent arbitrary sets (including sets of sets). - -This module implements sets using dictionaries whose values are -ignored. The usual operations (union, intersection, deletion, etc.) -are provided as both methods and operators. - -Important: sets are not sequences! While they support 'x in s', -'len(s)', and 'for x in s', none of those operations are unique for -sequences; for example, mappings support all three as well. The -characteristic operation for sequences is subscripting with small -integers: s[i], for i in range(len(s)). Sets don't support -subscripting at all. Also, sequences allow multiple occurrences and -their elements have a definite order; sets on the other hand don't -record multiple occurrences and don't remember the order of element -insertion (which is why they don't support s[i]). - -The following classes are provided: - -BaseSet -- All the operations common to both mutable and immutable - sets. This is an abstract class, not meant to be directly - instantiated. - -Set -- Mutable sets, subclass of BaseSet; not hashable. - -ImmutableSet -- Immutable sets, subclass of BaseSet; hashable. - An iterable argument is mandatory to create an ImmutableSet. - -_TemporarilyImmutableSet -- A wrapper around a Set, hashable, - giving the same hash value as the immutable set equivalent - would have. Do not use this class directly. - -Only hashable objects can be added to a Set. In particular, you cannot -really add a Set as an element to another Set; if you try, what is -actually added is an ImmutableSet built from it (it compares equal to -the one you tried adding). - -When you ask if `x in y' where x is a Set and y is a Set or -ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and -what's tested is actually `z in y'. - -""" - -# Code history: -# -# - Greg V. Wilson wrote the first version, using a different approach -# to the mutable/immutable problem, and inheriting from dict. -# -# - Alex Martelli modified Greg's version to implement the current -# Set/ImmutableSet approach, and make the data an attribute. -# -# - Guido van Rossum rewrote much of the code, made some API changes, -# and cleaned up the docstrings. -# -# - Raymond Hettinger added a number of speedups and other -# improvements. - -from __future__ import generators -try: - from itertools import ifilter, ifilterfalse -except ImportError: - # Code to make the module run under Py2.2 - def ifilter(predicate, iterable): - if predicate is None: - def predicate(x): - return x - for x in iterable: - if predicate(x): - yield x - def ifilterfalse(predicate, iterable): - if predicate is None: - def predicate(x): - return x - for x in iterable: - if not predicate(x): - yield x - try: - True, False - except NameError: - True, False = (0==0, 0!=0) - -__all__ = ['BaseSet', 'Set', 'ImmutableSet'] - -class BaseSet(object): - """Common base class for mutable and immutable sets.""" - - __slots__ = ['_data'] - - # Constructor - - def __init__(self): - """This is an abstract class.""" - # Don't call this from a concrete subclass! - if self.__class__ is BaseSet: - raise TypeError, ("BaseSet is an abstract class. " - "Use Set or ImmutableSet.") - - # Standard protocols: __len__, __repr__, __str__, __iter__ - - def __len__(self): - """Return the number of elements of a set.""" - return len(self._data) - - def __repr__(self): - """Return string representation of a set. - - This looks like 'Set([<list of elements>])'. - """ - return self._repr() - - # __str__ is the same as __repr__ - __str__ = __repr__ - - def _repr(self, sorted=False): - elements = self._data.keys() - if sorted: - elements.sort() - return '%s(%r)' % (self.__class__.__name__, elements) - - def __iter__(self): - """Return an iterator over the elements or a set. - - This is the keys iterator for the underlying dict. - """ - return self._data.iterkeys() - - # Three-way comparison is not supported. However, because __eq__ is - # tried before __cmp__, if Set x == Set y, x.__eq__(y) returns True and - # then cmp(x, y) returns 0 (Python doesn't actually call __cmp__ in this - # case). - - def __cmp__(self, other): - raise TypeError, "can't compare sets using cmp()" - - # Equality comparisons using the underlying dicts. Mixed-type comparisons - # are allowed here, where Set == z for non-Set z always returns False, - # and Set != z always True. This allows expressions like "x in y" to - # give the expected result when y is a sequence of mixed types, not - # raising a pointless TypeError just because y contains a Set, or x is - # a Set and y contain's a non-set ("in" invokes only __eq__). - # Subtle: it would be nicer if __eq__ and __ne__ could return - # NotImplemented instead of True or False. Then the other comparand - # would get a chance to determine the result, and if the other comparand - # also returned NotImplemented then it would fall back to object address - # comparison (which would always return False for __eq__ and always - # True for __ne__). However, that doesn't work, because this type - # *also* implements __cmp__: if, e.g., __eq__ returns NotImplemented, - # Python tries __cmp__ next, and the __cmp__ here then raises TypeError. - - def __eq__(self, other): - if isinstance(other, BaseSet): - return self._data == other._data - else: - return False - - def __ne__(self, other): - if isinstance(other, BaseSet): - return self._data != other._data - else: - return True - - # Copying operations - - def copy(self): - """Return a shallow copy of a set.""" - result = self.__class__() - result._data.update(self._data) - return result - - __copy__ = copy # For the copy module - - def __deepcopy__(self, memo): - """Return a deep copy of a set; used by copy module.""" - # This pre-creates the result and inserts it in the memo - # early, in case the deep copy recurses into another reference - # to this same set. A set can't be an element of itself, but - # it can certainly contain an object that has a reference to - # itself. - from copy import deepcopy - result = self.__class__() - memo[id(self)] = result - data = result._data - value = True - for elt in self: - data[deepcopy(elt, memo)] = value - return result - - # Standard set operations: union, intersection, both differences. - # Each has an operator version (e.g. __or__, invoked with |) and a - # method version (e.g. union). - # Subtle: Each pair requires distinct code so that the outcome is - # correct when the type of other isn't suitable. For example, if - # we did "union = __or__" instead, then Set().union(3) would return - # NotImplemented instead of raising TypeError (albeit that *why* it - # raises TypeError as-is is also a bit subtle). - - def __or__(self, other): - """Return the union of two sets as a new set. - - (I.e. all elements that are in either set.) - """ - if not isinstance(other, BaseSet): - return NotImplemented - return self.union(other) - - def union(self, other): - """Return the union of two sets as a new set. - - (I.e. all elements that are in either set.) - """ - result = self.__class__(self) - result._update(other) - return result - - def __and__(self, other): - """Return the intersection of two sets as a new set. - - (I.e. all elements that are in both sets.) - """ - if not isinstance(other, BaseSet): - return NotImplemented - return self.intersection(other) - - def intersection(self, other): - """Return the intersection of two sets as a new set. - - (I.e. all elements that are in both sets.) - """ - if not isinstance(other, BaseSet): - other = Set(other) - if len(self) <= len(other): - little, big = self, other - else: - little, big = other, self - common = ifilter(big._data.__contains__, little) - return self.__class__(common) - - def __xor__(self, other): - """Return the symmetric difference of two sets as a new set. - - (I.e. all elements that are in exactly one of the sets.) - """ - if not isinstance(other, BaseSet): - return NotImplemented - return self.symmetric_difference(other) - - def symmetric_difference(self, other): - """Return the symmetric difference of two sets as a new set. - - (I.e. all elements that are in exactly one of the sets.) - """ - result = self.__class__() - data = result._data - value = True - selfdata = self._data - try: - otherdata = other._data - except AttributeError: - otherdata = Set(other)._data - for elt in ifilterfalse(otherdata.__contains__, selfdata): - data[elt] = value - for elt in ifilterfalse(selfdata.__contains__, otherdata): - data[elt] = value - return result - - def __sub__(self, other): - """Return the difference of two sets as a new Set. - - (I.e. all elements that are in this set and not in the other.) - """ - if not isinstance(other, BaseSet): - return NotImplemented - return self.difference(other) - - def difference(self, other): - """Return the difference of two sets as a new Set. - - (I.e. all elements that are in this set and not in the other.) - """ - result = self.__class__() - data = result._data - try: - otherdata = other._data - except AttributeError: - otherdata = Set(other)._data - value = True - for elt in ifilterfalse(otherdata.__contains__, self): - data[elt] = value - return result - - # Membership test - - def __contains__(self, element): - """Report whether an element is a member of a set. - - (Called in response to the expression `element in self'.) - """ - try: - return element in self._data - except TypeError: - transform = getattr(element, "__as_temporarily_immutable__", None) - if transform is None: - raise # re-raise the TypeError exception we caught - return transform() in self._data - - # Subset and superset test - - def issubset(self, other): - """Report whether another set contains this set.""" - self._binary_sanity_check(other) - if len(self) > len(other): # Fast check for obvious cases - return False - for elt in ifilterfalse(other._data.__contains__, self): - return False - return True - - def issuperset(self, other): - """Report whether this set contains another set.""" - self._binary_sanity_check(other) - if len(self) < len(other): # Fast check for obvious cases - return False - for elt in ifilterfalse(self._data.__contains__, other): - return False - return True - - # Inequality comparisons using the is-subset relation. - __le__ = issubset - __ge__ = issuperset - - def __lt__(self, other): - self._binary_sanity_check(other) - return len(self) < len(other) and self.issubset(other) - - def __gt__(self, other): - self._binary_sanity_check(other) - return len(self) > len(other) and self.issuperset(other) - - # Assorted helpers - - def _binary_sanity_check(self, other): - # Check that the other argument to a binary operation is also - # a set, raising a TypeError otherwise. - if not isinstance(other, BaseSet): - raise TypeError, "Binary operation only permitted between sets" - - def _compute_hash(self): - # Calculate hash code for a set by xor'ing the hash codes of - # the elements. This ensures that the hash code does not depend - # on the order in which elements are added to the set. This is - # not called __hash__ because a BaseSet should not be hashable; - # only an ImmutableSet is hashable. - result = 0 - for elt in self: - result ^= hash(elt) - return result - - def _update(self, iterable): - # The main loop for update() and the subclass __init__() methods. - data = self._data - - # Use the fast update() method when a dictionary is available. - if isinstance(iterable, BaseSet): - data.update(iterable._data) - return - - value = True - - if type(iterable) in (list, tuple, xrange): - # Optimized: we know that __iter__() and next() can't - # raise TypeError, so we can move 'try:' out of the loop. - it = iter(iterable) - while True: - try: - for element in it: - data[element] = value - return - except TypeError: - transform = getattr(element, "__as_immutable__", None) - if transform is None: - raise # re-raise the TypeError exception we caught - data[transform()] = value - else: - # Safe: only catch TypeError where intended - for element in iterable: - try: - data[element] = value - except TypeError: - transform = getattr(element, "__as_immutable__", None) - if transform is None: - raise # re-raise the TypeError exception we caught - data[transform()] = value - - -class ImmutableSet(BaseSet): - """Immutable set class.""" - - __slots__ = ['_hashcode'] - - # BaseSet + hashing - - def __init__(self, iterable=None): - """Construct an immutable set from an optional iterable.""" - self._hashcode = None - self._data = {} - if iterable is not None: - self._update(iterable) - - def __hash__(self): - if self._hashcode is None: - self._hashcode = self._compute_hash() - return self._hashcode - - def __getstate__(self): - return self._data, self._hashcode - - def __setstate__(self, state): - self._data, self._hashcode = state - -class Set(BaseSet): - """ Mutable set class.""" - - __slots__ = [] - - # BaseSet + operations requiring mutability; no hashing - - def __init__(self, iterable=None): - """Construct a set from an optional iterable.""" - self._data = {} - if iterable is not None: - self._update(iterable) - - def __getstate__(self): - # getstate's results are ignored if it is not - return self._data, - - def __setstate__(self, data): - self._data, = data - - def __hash__(self): - """A Set cannot be hashed.""" - # We inherit object.__hash__, so we must deny this explicitly - raise TypeError, "Can't hash a Set, only an ImmutableSet." - - # In-place union, intersection, differences. - # Subtle: The xyz_update() functions deliberately return None, - # as do all mutating operations on built-in container types. - # The __xyz__ spellings have to return self, though. - - def __ior__(self, other): - """Update a set with the union of itself and another.""" - self._binary_sanity_check(other) - self._data.update(other._data) - return self - - def union_update(self, other): - """Update a set with the union of itself and another.""" - self._update(other) - - def __iand__(self, other): - """Update a set with the intersection of itself and another.""" - self._binary_sanity_check(other) - self._data = (self & other)._data - return self - - def intersection_update(self, other): - """Update a set with the intersection of itself and another.""" - if isinstance(other, BaseSet): - self &= other - else: - self._data = (self.intersection(other))._data - - def __ixor__(self, other): - """Update a set with the symmetric difference of itself and another.""" - self._binary_sanity_check(other) - self.symmetric_difference_update(other) - return self - - def symmetric_difference_update(self, other): - """Update a set with the symmetric difference of itself and another.""" - data = self._data - value = True - if not isinstance(other, BaseSet): - other = Set(other) - if self is other: - self.clear() - for elt in other: - if elt in data: - del data[elt] - else: - data[elt] = value - - def __isub__(self, other): - """Remove all elements of another set from this set.""" - self._binary_sanity_check(other) - self.difference_update(other) - return self - - def difference_update(self, other): - """Remove all elements of another set from this set.""" - data = self._data - if not isinstance(other, BaseSet): - other = Set(other) - if self is other: - self.clear() - for elt in ifilter(data.__contains__, other): - del data[elt] - - # Python dict-like mass mutations: update, clear - - def update(self, iterable): - """Add all values from an iterable (such as a list or file).""" - self._update(iterable) - - def clear(self): - """Remove all elements from this set.""" - self._data.clear() - - # Single-element mutations: add, remove, discard - - def add(self, element): - """Add an element to a set. - - This has no effect if the element is already present. - """ - try: - self._data[element] = True - except TypeError: - transform = getattr(element, "__as_immutable__", None) - if transform is None: - raise # re-raise the TypeError exception we caught - self._data[transform()] = True - - def remove(self, element): - """Remove an element from a set; it must be a member. - - If the element is not a member, raise a KeyError. - """ - try: - del self._data[element] - except TypeError: - transform = getattr(element, "__as_temporarily_immutable__", None) - if transform is None: - raise # re-raise the TypeError exception we caught - del self._data[transform()] - - def discard(self, element): - """Remove an element from a set if it is a member. - - If the element is not a member, do nothing. - """ - try: - self.remove(element) - except KeyError: - pass - - def pop(self): - """Remove and return an arbitrary set element.""" - return self._data.popitem()[0] - - def __as_immutable__(self): - # Return a copy of self as an immutable set - return ImmutableSet(self) - - def __as_temporarily_immutable__(self): - # Return self wrapped in a temporarily immutable set - return _TemporarilyImmutableSet(self) - - -class _TemporarilyImmutableSet(BaseSet): - # Wrap a mutable set as if it was temporarily immutable. - # This only supplies hashing and equality comparisons. - - def __init__(self, set): - self._set = set - self._data = set._data # Needed by ImmutableSet.__eq__() - - def __hash__(self): - return self._set._compute_hash() diff --git a/Lib/test/test_cookielib.py b/Lib/test/test_cookielib.py index 991506c..544f29f 100644 --- a/Lib/test/test_cookielib.py +++ b/Lib/test/test_cookielib.py @@ -1723,7 +1723,6 @@ class LWPCookieTests(TestCase): def test_main(verbose=None): - from test import test_sets test_support.run_unittest( DateTimeTests, HeaderTests, diff --git a/Lib/test/test_set.py b/Lib/test/test_set.py index 6641ff8..9bd0d43 100644 --- a/Lib/test/test_set.py +++ b/Lib/test/test_set.py @@ -1451,7 +1451,6 @@ class TestVariousIteratorArgs(unittest.TestCase): #============================================================================== def test_main(verbose=None): - from test import test_sets test_classes = ( TestSet, TestSetSubclass, diff --git a/Lib/test/test_sets.py b/Lib/test/test_sets.py deleted file mode 100644 index 88cfcac..0000000 --- a/Lib/test/test_sets.py +++ /dev/null @@ -1,853 +0,0 @@ -#!/usr/bin/env python - -import unittest, operator, copy, pickle, random -from sets import Set, ImmutableSet -from test import test_support - -empty_set = Set() - -#============================================================================== - -class TestBasicOps(unittest.TestCase): - - def test_repr(self): - if self.repr is not None: - self.assertEqual(repr(self.set), self.repr) - - def test_length(self): - self.assertEqual(len(self.set), self.length) - - def test_self_equality(self): - self.assertEqual(self.set, self.set) - - def test_equivalent_equality(self): - self.assertEqual(self.set, self.dup) - - def test_copy(self): - self.assertEqual(self.set.copy(), self.dup) - - def test_self_union(self): - result = self.set | self.set - self.assertEqual(result, self.dup) - - def test_empty_union(self): - result = self.set | empty_set - self.assertEqual(result, self.dup) - - def test_union_empty(self): - result = empty_set | self.set - self.assertEqual(result, self.dup) - - def test_self_intersection(self): - result = self.set & self.set - self.assertEqual(result, self.dup) - - def test_empty_intersection(self): - result = self.set & empty_set - self.assertEqual(result, empty_set) - - def test_intersection_empty(self): - result = empty_set & self.set - self.assertEqual(result, empty_set) - - def test_self_symmetric_difference(self): - result = self.set ^ self.set - self.assertEqual(result, empty_set) - - def checkempty_symmetric_difference(self): - result = self.set ^ empty_set - self.assertEqual(result, self.set) - - def test_self_difference(self): - result = self.set - self.set - self.assertEqual(result, empty_set) - - def test_empty_difference(self): - result = self.set - empty_set - self.assertEqual(result, self.dup) - - def test_empty_difference_rev(self): - result = empty_set - self.set - self.assertEqual(result, empty_set) - - def test_iteration(self): - for v in self.set: - self.assert_(v in self.values) - - def test_pickling(self): - p = pickle.dumps(self.set) - copy = pickle.loads(p) - self.assertEqual(self.set, copy, - "%s != %s" % (self.set, copy)) - -#------------------------------------------------------------------------------ - -class TestBasicOpsEmpty(TestBasicOps): - def setUp(self): - self.case = "empty set" - self.values = [] - self.set = Set(self.values) - self.dup = Set(self.values) - self.length = 0 - self.repr = "Set([])" - -#------------------------------------------------------------------------------ - -class TestBasicOpsSingleton(TestBasicOps): - def setUp(self): - self.case = "unit set (number)" - self.values = [3] - self.set = Set(self.values) - self.dup = Set(self.values) - self.length = 1 - self.repr = "Set([3])" - - def test_in(self): - self.failUnless(3 in self.set) - - def test_not_in(self): - self.failUnless(2 not in self.set) - -#------------------------------------------------------------------------------ - -class TestBasicOpsTuple(TestBasicOps): - def setUp(self): - self.case = "unit set (tuple)" - self.values = [(0, "zero")] - self.set = Set(self.values) - self.dup = Set(self.values) - self.length = 1 - self.repr = "Set([(0, 'zero')])" - - def test_in(self): - self.failUnless((0, "zero") in self.set) - - def test_not_in(self): - self.failUnless(9 not in self.set) - -#------------------------------------------------------------------------------ - -class TestBasicOpsTriple(TestBasicOps): - def setUp(self): - self.case = "triple set" - self.values = [0, "zero", operator.add] - self.set = Set(self.values) - self.dup = Set(self.values) - self.length = 3 - self.repr = None - -#============================================================================== - -def baditer(): - raise TypeError - yield True - -def gooditer(): - yield True - -class TestExceptionPropagation(unittest.TestCase): - """SF 628246: Set constructor should not trap iterator TypeErrors""" - - def test_instanceWithException(self): - self.assertRaises(TypeError, Set, baditer()) - - def test_instancesWithoutException(self): - # All of these iterables should load without exception. - Set([1,2,3]) - Set((1,2,3)) - Set({'one':1, 'two':2, 'three':3}) - Set(xrange(3)) - Set('abc') - Set(gooditer()) - -#============================================================================== - -class TestSetOfSets(unittest.TestCase): - def test_constructor(self): - inner = Set([1]) - outer = Set([inner]) - element = outer.pop() - self.assertEqual(type(element), ImmutableSet) - outer.add(inner) # Rebuild set of sets with .add method - outer.remove(inner) - self.assertEqual(outer, Set()) # Verify that remove worked - outer.discard(inner) # Absence of KeyError indicates working fine - -#============================================================================== - -class TestBinaryOps(unittest.TestCase): - def setUp(self): - self.set = Set((2, 4, 6)) - - def test_eq(self): # SF bug 643115 - self.assertEqual(self.set, Set({2:1,4:3,6:5})) - - def test_union_subset(self): - result = self.set | Set([2]) - self.assertEqual(result, Set((2, 4, 6))) - - def test_union_superset(self): - result = self.set | Set([2, 4, 6, 8]) - self.assertEqual(result, Set([2, 4, 6, 8])) - - def test_union_overlap(self): - result = self.set | Set([3, 4, 5]) - self.assertEqual(result, Set([2, 3, 4, 5, 6])) - - def test_union_non_overlap(self): - result = self.set | Set([8]) - self.assertEqual(result, Set([2, 4, 6, 8])) - - def test_intersection_subset(self): - result = self.set & Set((2, 4)) - self.assertEqual(result, Set((2, 4))) - - def test_intersection_superset(self): - result = self.set & Set([2, 4, 6, 8]) - self.assertEqual(result, Set([2, 4, 6])) - - def test_intersection_overlap(self): - result = self.set & Set([3, 4, 5]) - self.assertEqual(result, Set([4])) - - def test_intersection_non_overlap(self): - result = self.set & Set([8]) - self.assertEqual(result, empty_set) - - def test_sym_difference_subset(self): - result = self.set ^ Set((2, 4)) - self.assertEqual(result, Set([6])) - - def test_sym_difference_superset(self): - result = self.set ^ Set((2, 4, 6, 8)) - self.assertEqual(result, Set([8])) - - def test_sym_difference_overlap(self): - result = self.set ^ Set((3, 4, 5)) - self.assertEqual(result, Set([2, 3, 5, 6])) - - def test_sym_difference_non_overlap(self): - result = self.set ^ Set([8]) - self.assertEqual(result, Set([2, 4, 6, 8])) - - def test_cmp(self): - a, b = Set('a'), Set('b') - self.assertRaises(TypeError, cmp, a, b) - - # In py3k, this works! - self.assertRaises(TypeError, cmp, a, a) - - self.assertRaises(TypeError, cmp, a, 12) - self.assertRaises(TypeError, cmp, "abc", a) - - def test_inplace_on_self(self): - t = self.set.copy() - t |= t - self.assertEqual(t, self.set) - t &= t - self.assertEqual(t, self.set) - t -= t - self.assertEqual(len(t), 0) - t = self.set.copy() - t ^= t - self.assertEqual(len(t), 0) - - -#============================================================================== - -class TestUpdateOps(unittest.TestCase): - def setUp(self): - self.set = Set((2, 4, 6)) - - def test_union_subset(self): - self.set |= Set([2]) - self.assertEqual(self.set, Set((2, 4, 6))) - - def test_union_superset(self): - self.set |= Set([2, 4, 6, 8]) - self.assertEqual(self.set, Set([2, 4, 6, 8])) - - def test_union_overlap(self): - self.set |= Set([3, 4, 5]) - self.assertEqual(self.set, Set([2, 3, 4, 5, 6])) - - def test_union_non_overlap(self): - self.set |= Set([8]) - self.assertEqual(self.set, Set([2, 4, 6, 8])) - - def test_union_method_call(self): - self.set.union_update(Set([3, 4, 5])) - self.assertEqual(self.set, Set([2, 3, 4, 5, 6])) - - def test_intersection_subset(self): - self.set &= Set((2, 4)) - self.assertEqual(self.set, Set((2, 4))) - - def test_intersection_superset(self): - self.set &= Set([2, 4, 6, 8]) - self.assertEqual(self.set, Set([2, 4, 6])) - - def test_intersection_overlap(self): - self.set &= Set([3, 4, 5]) - self.assertEqual(self.set, Set([4])) - - def test_intersection_non_overlap(self): - self.set &= Set([8]) - self.assertEqual(self.set, empty_set) - - def test_intersection_method_call(self): - self.set.intersection_update(Set([3, 4, 5])) - self.assertEqual(self.set, Set([4])) - - def test_sym_difference_subset(self): - self.set ^= Set((2, 4)) - self.assertEqual(self.set, Set([6])) - - def test_sym_difference_superset(self): - self.set ^= Set((2, 4, 6, 8)) - self.assertEqual(self.set, Set([8])) - - def test_sym_difference_overlap(self): - self.set ^= Set((3, 4, 5)) - self.assertEqual(self.set, Set([2, 3, 5, 6])) - - def test_sym_difference_non_overlap(self): - self.set ^= Set([8]) - self.assertEqual(self.set, Set([2, 4, 6, 8])) - - def test_sym_difference_method_call(self): - self.set.symmetric_difference_update(Set([3, 4, 5])) - self.assertEqual(self.set, Set([2, 3, 5, 6])) - - def test_difference_subset(self): - self.set -= Set((2, 4)) - self.assertEqual(self.set, Set([6])) - - def test_difference_superset(self): - self.set -= Set((2, 4, 6, 8)) - self.assertEqual(self.set, Set([])) - - def test_difference_overlap(self): - self.set -= Set((3, 4, 5)) - self.assertEqual(self.set, Set([2, 6])) - - def test_difference_non_overlap(self): - self.set -= Set([8]) - self.assertEqual(self.set, Set([2, 4, 6])) - - def test_difference_method_call(self): - self.set.difference_update(Set([3, 4, 5])) - self.assertEqual(self.set, Set([2, 6])) - -#============================================================================== - -class TestMutate(unittest.TestCase): - def setUp(self): - self.values = ["a", "b", "c"] - self.set = Set(self.values) - - def test_add_present(self): - self.set.add("c") - self.assertEqual(self.set, Set("abc")) - - def test_add_absent(self): - self.set.add("d") - self.assertEqual(self.set, Set("abcd")) - - def test_add_until_full(self): - tmp = Set() - expected_len = 0 - for v in self.values: - tmp.add(v) - expected_len += 1 - self.assertEqual(len(tmp), expected_len) - self.assertEqual(tmp, self.set) - - def test_remove_present(self): - self.set.remove("b") - self.assertEqual(self.set, Set("ac")) - - def test_remove_absent(self): - try: - self.set.remove("d") - self.fail("Removing missing element should have raised LookupError") - except LookupError: - pass - - def test_remove_until_empty(self): - expected_len = len(self.set) - for v in self.values: - self.set.remove(v) - expected_len -= 1 - self.assertEqual(len(self.set), expected_len) - - def test_discard_present(self): - self.set.discard("c") - self.assertEqual(self.set, Set("ab")) - - def test_discard_absent(self): - self.set.discard("d") - self.assertEqual(self.set, Set("abc")) - - def test_clear(self): - self.set.clear() - self.assertEqual(len(self.set), 0) - - def test_pop(self): - popped = {} - while self.set: - popped[self.set.pop()] = None - self.assertEqual(len(popped), len(self.values)) - for v in self.values: - self.failUnless(v in popped) - - def test_update_empty_tuple(self): - self.set.union_update(()) - self.assertEqual(self.set, Set(self.values)) - - def test_update_unit_tuple_overlap(self): - self.set.union_update(("a",)) - self.assertEqual(self.set, Set(self.values)) - - def test_update_unit_tuple_non_overlap(self): - self.set.union_update(("a", "z")) - self.assertEqual(self.set, Set(self.values + ["z"])) - -#============================================================================== - -class TestSubsets(unittest.TestCase): - - case2method = {"<=": "issubset", - ">=": "issuperset", - } - - reverse = {"==": "==", - "!=": "!=", - "<": ">", - ">": "<", - "<=": ">=", - ">=": "<=", - } - - def test_issubset(self): - x = self.left - y = self.right - for case in "!=", "==", "<", "<=", ">", ">=": - expected = case in self.cases - # Test the binary infix spelling. - result = eval("x" + case + "y", locals()) - self.assertEqual(result, expected) - # Test the "friendly" method-name spelling, if one exists. - if case in TestSubsets.case2method: - method = getattr(x, TestSubsets.case2method[case]) - result = method(y) - self.assertEqual(result, expected) - - # Now do the same for the operands reversed. - rcase = TestSubsets.reverse[case] - result = eval("y" + rcase + "x", locals()) - self.assertEqual(result, expected) - if rcase in TestSubsets.case2method: - method = getattr(y, TestSubsets.case2method[rcase]) - result = method(x) - self.assertEqual(result, expected) -#------------------------------------------------------------------------------ - -class TestSubsetEqualEmpty(TestSubsets): - left = Set() - right = Set() - name = "both empty" - cases = "==", "<=", ">=" - -#------------------------------------------------------------------------------ - -class TestSubsetEqualNonEmpty(TestSubsets): - left = Set([1, 2]) - right = Set([1, 2]) - name = "equal pair" - cases = "==", "<=", ">=" - -#------------------------------------------------------------------------------ - -class TestSubsetEmptyNonEmpty(TestSubsets): - left = Set() - right = Set([1, 2]) - name = "one empty, one non-empty" - cases = "!=", "<", "<=" - -#------------------------------------------------------------------------------ - -class TestSubsetPartial(TestSubsets): - left = Set([1]) - right = Set([1, 2]) - name = "one a non-empty proper subset of other" - cases = "!=", "<", "<=" - -#------------------------------------------------------------------------------ - -class TestSubsetNonOverlap(TestSubsets): - left = Set([1]) - right = Set([2]) - name = "neither empty, neither contains" - cases = "!=" - -#============================================================================== - -class TestOnlySetsInBinaryOps(unittest.TestCase): - - def test_eq_ne(self): - # Unlike the others, this is testing that == and != *are* allowed. - self.assertEqual(self.other == self.set, False) - self.assertEqual(self.set == self.other, False) - self.assertEqual(self.other != self.set, True) - self.assertEqual(self.set != self.other, True) - - def test_ge_gt_le_lt(self): - self.assertRaises(TypeError, lambda: self.set < self.other) - self.assertRaises(TypeError, lambda: self.set <= self.other) - self.assertRaises(TypeError, lambda: self.set > self.other) - self.assertRaises(TypeError, lambda: self.set >= self.other) - - self.assertRaises(TypeError, lambda: self.other < self.set) - self.assertRaises(TypeError, lambda: self.other <= self.set) - self.assertRaises(TypeError, lambda: self.other > self.set) - self.assertRaises(TypeError, lambda: self.other >= self.set) - - def test_union_update_operator(self): - try: - self.set |= self.other - except TypeError: - pass - else: - self.fail("expected TypeError") - - def test_union_update(self): - if self.otherIsIterable: - self.set.union_update(self.other) - else: - self.assertRaises(TypeError, self.set.union_update, self.other) - - def test_union(self): - self.assertRaises(TypeError, lambda: self.set | self.other) - self.assertRaises(TypeError, lambda: self.other | self.set) - if self.otherIsIterable: - self.set.union(self.other) - else: - self.assertRaises(TypeError, self.set.union, self.other) - - def test_intersection_update_operator(self): - try: - self.set &= self.other - except TypeError: - pass - else: - self.fail("expected TypeError") - - def test_intersection_update(self): - if self.otherIsIterable: - self.set.intersection_update(self.other) - else: - self.assertRaises(TypeError, - self.set.intersection_update, - self.other) - - def test_intersection(self): - self.assertRaises(TypeError, lambda: self.set & self.other) - self.assertRaises(TypeError, lambda: self.other & self.set) - if self.otherIsIterable: - self.set.intersection(self.other) - else: - self.assertRaises(TypeError, self.set.intersection, self.other) - - def test_sym_difference_update_operator(self): - try: - self.set ^= self.other - except TypeError: - pass - else: - self.fail("expected TypeError") - - def test_sym_difference_update(self): - if self.otherIsIterable: - self.set.symmetric_difference_update(self.other) - else: - self.assertRaises(TypeError, - self.set.symmetric_difference_update, - self.other) - - def test_sym_difference(self): - self.assertRaises(TypeError, lambda: self.set ^ self.other) - self.assertRaises(TypeError, lambda: self.other ^ self.set) - if self.otherIsIterable: - self.set.symmetric_difference(self.other) - else: - self.assertRaises(TypeError, self.set.symmetric_difference, self.other) - - def test_difference_update_operator(self): - try: - self.set -= self.other - except TypeError: - pass - else: - self.fail("expected TypeError") - - def test_difference_update(self): - if self.otherIsIterable: - self.set.difference_update(self.other) - else: - self.assertRaises(TypeError, - self.set.difference_update, - self.other) - - def test_difference(self): - self.assertRaises(TypeError, lambda: self.set - self.other) - self.assertRaises(TypeError, lambda: self.other - self.set) - if self.otherIsIterable: - self.set.difference(self.other) - else: - self.assertRaises(TypeError, self.set.difference, self.other) - -#------------------------------------------------------------------------------ - -class TestOnlySetsNumeric(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = 19 - self.otherIsIterable = False - -#------------------------------------------------------------------------------ - -class TestOnlySetsDict(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = {1:2, 3:4} - self.otherIsIterable = True - -#------------------------------------------------------------------------------ - -class TestOnlySetsOperator(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = operator.add - self.otherIsIterable = False - -#------------------------------------------------------------------------------ - -class TestOnlySetsTuple(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = (2, 4, 6) - self.otherIsIterable = True - -#------------------------------------------------------------------------------ - -class TestOnlySetsString(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = 'abc' - self.otherIsIterable = True - -#------------------------------------------------------------------------------ - -class TestOnlySetsGenerator(TestOnlySetsInBinaryOps): - def setUp(self): - def gen(): - for i in xrange(0, 10, 2): - yield i - self.set = Set((1, 2, 3)) - self.other = gen() - self.otherIsIterable = True - -#------------------------------------------------------------------------------ - -class TestOnlySetsofSets(TestOnlySetsInBinaryOps): - def setUp(self): - self.set = Set((1, 2, 3)) - self.other = [Set('ab'), ImmutableSet('cd')] - self.otherIsIterable = True - -#============================================================================== - -class TestCopying(unittest.TestCase): - - def test_copy(self): - dup = self.set.copy() - dup_list = sorted(dup, key=repr) - set_list = sorted(self.set, key=repr) - self.assertEqual(len(dup_list), len(set_list)) - for i in range(len(dup_list)): - self.failUnless(dup_list[i] is set_list[i]) - - def test_deep_copy(self): - dup = copy.deepcopy(self.set) - ##print type(dup), repr(dup) - dup_list = sorted(dup, key=repr) - set_list = sorted(self.set, key=repr) - self.assertEqual(len(dup_list), len(set_list)) - for i in range(len(dup_list)): - self.assertEqual(dup_list[i], set_list[i]) - -#------------------------------------------------------------------------------ - -class TestCopyingEmpty(TestCopying): - def setUp(self): - self.set = Set() - -#------------------------------------------------------------------------------ - -class TestCopyingSingleton(TestCopying): - def setUp(self): - self.set = Set(["hello"]) - -#------------------------------------------------------------------------------ - -class TestCopyingTriple(TestCopying): - def setUp(self): - self.set = Set(["zero", 0, None]) - -#------------------------------------------------------------------------------ - -class TestCopyingTuple(TestCopying): - def setUp(self): - self.set = Set([(1, 2)]) - -#------------------------------------------------------------------------------ - -class TestCopyingNested(TestCopying): - def setUp(self): - self.set = Set([((1, 2), (3, 4))]) - -#============================================================================== - -class TestIdentities(unittest.TestCase): - def setUp(self): - self.a = Set([random.randrange(100) for i in xrange(50)]) - self.b = Set([random.randrange(100) for i in xrange(50)]) - - def test_binopsVsSubsets(self): - a, b = self.a, self.b - self.assert_(a - b <= a) - self.assert_(b - a <= b) - self.assert_(a & b <= a) - self.assert_(a & b <= b) - self.assert_(a | b >= a) - self.assert_(a | b >= b) - self.assert_(a ^ b <= a | b) - - def test_commutativity(self): - a, b = self.a, self.b - self.assertEqual(a&b, b&a) - self.assertEqual(a|b, b|a) - self.assertEqual(a^b, b^a) - if a != b: - self.assertNotEqual(a-b, b-a) - - def test_reflexsive_relations(self): - a, zero = self.a, Set() - self.assertEqual(a ^ a, zero) - self.assertEqual(a - a, zero) - self.assertEqual(a | a, a) - self.assertEqual(a & a, a) - self.assert_(a <= a) - self.assert_(a >= a) - self.assert_(a == a) - - def test_summations(self): - # check that sums of parts equal the whole - a, b = self.a, self.b - self.assertEqual((a-b)|(a&b)|(b-a), a|b) - self.assertEqual((a&b)|(a^b), a|b) - self.assertEqual(a|(b-a), a|b) - self.assertEqual((a-b)|b, a|b) - self.assertEqual((a-b)|(a&b), a) - self.assertEqual((b-a)|(a&b), b) - self.assertEqual((a-b)|(b-a), a^b) - - def test_exclusion(self): - # check that inverse operations do not overlap - a, b, zero = self.a, self.b, Set() - self.assertEqual((a-b)&b, zero) - self.assertEqual((b-a)&a, zero) - self.assertEqual((a&b)&(a^b), zero) - - def test_cardinality_relations(self): - a, b = self.a, self.b - self.assertEqual(len(a), len(a-b) + len(a&b)) - self.assertEqual(len(b), len(b-a) + len(a&b)) - self.assertEqual(len(a^b), len(a-b) + len(b-a)) - self.assertEqual(len(a|b), len(a-b) + len(a&b) + len(b-a)) - self.assertEqual(len(a^b) + len(a&b), len(a|b)) - -#============================================================================== - -libreftest = """ -Example from the Library Reference: Doc/lib/libsets.tex - ->>> from sets import Set as Base # override _repr to get sorted output ->>> class Set(Base): -... def _repr(self): -... return Base._repr(self, sorted=True) ->>> engineers = Set(['John', 'Jane', 'Jack', 'Janice']) ->>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice']) ->>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack']) ->>> employees = engineers | programmers | managers # union ->>> engineering_management = engineers & managers # intersection ->>> fulltime_management = managers - engineers - programmers # difference ->>> engineers.add('Marvin') ->>> print engineers -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin']) ->>> employees.issuperset(engineers) # superset test -False ->>> employees.union_update(engineers) # update from another set ->>> employees.issuperset(engineers) -True ->>> for group in [engineers, programmers, managers, employees]: -... group.discard('Susan') # unconditionally remove element -... print group -... -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin']) -Set(['Jack', 'Janice', 'Sam']) -Set(['Jack', 'Jane', 'Zack']) -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin', 'Sam', 'Zack']) -""" - -#============================================================================== - -__test__ = {'libreftest' : libreftest} - -def test_main(verbose=None): - import doctest - from test import test_sets - test_support.run_unittest( - TestSetOfSets, - TestExceptionPropagation, - TestBasicOpsEmpty, - TestBasicOpsSingleton, - TestBasicOpsTuple, - TestBasicOpsTriple, - TestBinaryOps, - TestUpdateOps, - TestMutate, - TestSubsetEqualEmpty, - TestSubsetEqualNonEmpty, - TestSubsetEmptyNonEmpty, - TestSubsetPartial, - TestSubsetNonOverlap, - TestOnlySetsNumeric, - TestOnlySetsDict, - TestOnlySetsOperator, - TestOnlySetsTuple, - TestOnlySetsString, - TestOnlySetsGenerator, - TestOnlySetsofSets, - TestCopyingEmpty, - TestCopyingSingleton, - TestCopyingTriple, - TestCopyingTuple, - TestCopyingNested, - TestIdentities, - doctest.DocTestSuite(test_sets), - ) - -if __name__ == "__main__": - test_main(verbose=True) |