diff options
author | Raymond Hettinger <python@rcn.com> | 2003-01-05 09:20:06 (GMT) |
---|---|---|
committer | Raymond Hettinger <python@rcn.com> | 2003-01-05 09:20:06 (GMT) |
commit | 3dd990c53a8d5c24bc7f1555872b0892f0e7cdf8 (patch) | |
tree | f7100d2d5f0da047f308debe2f8e7fcfe8ea56f0 | |
parent | 541ceec3e6e0b5b02c2d299ebf8af040d6193a5e (diff) | |
download | cpython-3dd990c53a8d5c24bc7f1555872b0892f0e7cdf8.zip cpython-3dd990c53a8d5c24bc7f1555872b0892f0e7cdf8.tar.gz cpython-3dd990c53a8d5c24bc7f1555872b0892f0e7cdf8.tar.bz2 |
Move the statistical tests for four distributions into the unittest suite.
-rw-r--r-- | Lib/random.py | 3 | ||||
-rw-r--r-- | Lib/test/test_random.py | 41 |
2 files changed, 41 insertions, 3 deletions
diff --git a/Lib/random.py b/Lib/random.py index 4ddac4c..ccac440 100644 --- a/Lib/random.py +++ b/Lib/random.py @@ -752,7 +752,6 @@ def _test(N=2000): _test_generator(N, 'normalvariate(0.0, 1.0)') _test_generator(N, 'lognormvariate(0.0, 1.0)') _test_generator(N, 'cunifvariate(0.0, 1.0)') - _test_generator(N, 'expovariate(1.0)') _test_generator(N, 'vonmisesvariate(0.0, 1.0)') _test_generator(N, 'gammavariate(0.01, 1.0)') _test_generator(N, 'gammavariate(0.1, 1.0)') @@ -765,8 +764,6 @@ def _test(N=2000): _test_generator(N, 'gammavariate(200.0, 1.0)') _test_generator(N, 'gauss(0.0, 1.0)') _test_generator(N, 'betavariate(3.0, 3.0)') - _test_generator(N, 'paretovariate(1.0)') - _test_generator(N, 'weibullvariate(1.0, 1.0)') _test_generator(N, '_sample_generator(50, 5)') # expected s.d.: 14.4 _test_generator(N, '_sample_generator(50, 45)') # expected s.d.: 14.4 diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py index d917281..1f6abfe 100644 --- a/Lib/test/test_random.py +++ b/Lib/test/test_random.py @@ -3,6 +3,7 @@ import unittest import random import time +from math import log, exp, sqrt, pi from test import test_support class TestBasicOps(unittest.TestCase): @@ -182,6 +183,18 @@ class MersenneTwister_TestBasicOps(TestBasicOps): seed = (1L << (10000 * 8)) - 1 # about 10K bytes self.gen.seed(seed) +_gammacoeff = (0.9999999999995183, 676.5203681218835, -1259.139216722289, + 771.3234287757674, -176.6150291498386, 12.50734324009056, + -0.1385710331296526, 0.9934937113930748e-05, 0.1659470187408462e-06) + +def gamma(z, cof=_gammacoeff, g=7): + z -= 1.0 + sum = cof[0] + for i in xrange(1,len(cof)): + sum += cof[i] / (z+i) + z += 0.5 + return (z+g)**z / exp(z+g) * sqrt(2*pi) * sum + class TestDistributions(unittest.TestCase): def test_zeroinputs(self): # Verify that distributions can handle a series of zero inputs' @@ -200,6 +213,34 @@ class TestDistributions(unittest.TestCase): g.random = x[:].pop; g.gammavariate(200.0, 1.0) g.random = x[:].pop; g.betavariate(3.0, 3.0) + def test_avg_std(self): + # Use integration to test distribution average and standard deviation. + # Only works for distributions which do not consume variates in pairs + g = random.Random() + N = 5000 + x = [i/float(N) for i in xrange(1,N)] + for variate, args, mu, sigmasqrd in [ + (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12), + (g.expovariate, (1.5,), 1/1.5, 1/1.5**2), + (g.paretovariate, (5.0,), 5.0/(5.0-1), + 5.0/((5.0-1)**2*(5.0-2))), + (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0), + gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]: + g.random = x[:].pop + y = [] + for i in xrange(len(x)): + try: + y.append(variate(*args)) + except IndexError: + pass + s1 = s2 = 0 + for e in y: + s1 += e + s2 += (e - mu) ** 2 + N = len(y) + self.assertAlmostEqual(s1/N, mu, 2) + self.assertAlmostEqual(s2/(N-1), sigmasqrd, 2) + class TestModule(unittest.TestCase): def testMagicConstants(self): self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) |