summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2018-07-28 14:48:04 (GMT)
committerGitHub <noreply@github.com>2018-07-28 14:48:04 (GMT)
commitc6dabe37e3c4d449562182b044184d1756bea037 (patch)
treebbb89623d68962192e810c5327ae98ff28084025
parent50326927465c3f5c6c0168fc43310c8e97db0a47 (diff)
downloadcpython-c6dabe37e3c4d449562182b044184d1756bea037.zip
cpython-c6dabe37e3c4d449562182b044184d1756bea037.tar.gz
cpython-c6dabe37e3c4d449562182b044184d1756bea037.tar.bz2
bpo-33089: Multidimensional math.hypot() (GH-8474)
-rw-r--r--Doc/library/math.rst15
-rw-r--r--Lib/test/test_math.py76
-rw-r--r--Misc/NEWS.d/next/Library/2018-07-25-22-38-54.bpo-33089.C3CB7e.rst1
-rw-r--r--Modules/clinic/mathmodule.c.h31
-rw-r--r--Modules/mathmodule.c101
5 files changed, 143 insertions, 81 deletions
diff --git a/Doc/library/math.rst b/Doc/library/math.rst
index 33aec57..e60d029 100644
--- a/Doc/library/math.rst
+++ b/Doc/library/math.rst
@@ -330,10 +330,19 @@ Trigonometric functions
Return the cosine of *x* radians.
-.. function:: hypot(x, y)
+.. function:: hypot(*coordinates)
- Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
- from the origin to point ``(x, y)``.
+ Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
+ This is the length of the vector from the origin to the point
+ given by the coordinates.
+
+ For a two dimensional point ``(x, y)``, this is equivalent to computing
+ the hypotenuse of a right triangle using the Pythagorean theorem,
+ ``sqrt(x*x + y*y)``.
+
+ .. versionchanged:: 3.8
+ Added support for n-dimensional points. Formerly, only the two
+ dimensional case was supported.
.. function:: sin(x)
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index 44785d3..4843899 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -16,6 +16,7 @@ NAN = float('nan')
INF = float('inf')
NINF = float('-inf')
FLOAT_MAX = sys.float_info.max
+FLOAT_MIN = sys.float_info.min
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
@@ -720,16 +721,71 @@ class MathTests(unittest.TestCase):
self.assertEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)
def testHypot(self):
- self.assertRaises(TypeError, math.hypot)
- self.ftest('hypot(0,0)', math.hypot(0,0), 0)
- self.ftest('hypot(3,4)', math.hypot(3,4), 5)
- self.assertEqual(math.hypot(NAN, INF), INF)
- self.assertEqual(math.hypot(INF, NAN), INF)
- self.assertEqual(math.hypot(NAN, NINF), INF)
- self.assertEqual(math.hypot(NINF, NAN), INF)
- self.assertRaises(OverflowError, math.hypot, FLOAT_MAX, FLOAT_MAX)
- self.assertTrue(math.isnan(math.hypot(1.0, NAN)))
- self.assertTrue(math.isnan(math.hypot(NAN, -2.0)))
+ from decimal import Decimal
+ from fractions import Fraction
+
+ hypot = math.hypot
+
+ # Test different numbers of arguments (from zero to five)
+ # against a straightforward pure python implementation
+ args = math.e, math.pi, math.sqrt(2.0), math.gamma(3.5), math.sin(2.1)
+ for i in range(len(args)+1):
+ self.assertAlmostEqual(
+ hypot(*args[:i]),
+ math.sqrt(sum(s**2 for s in args[:i]))
+ )
+
+ # Test allowable types (those with __float__)
+ self.assertEqual(hypot(12.0, 5.0), 13.0)
+ self.assertEqual(hypot(12, 5), 13)
+ self.assertEqual(hypot(Decimal(12), Decimal(5)), 13)
+ self.assertEqual(hypot(Fraction(12, 32), Fraction(5, 32)), Fraction(13, 32))
+ self.assertEqual(hypot(bool(1), bool(0), bool(1), bool(1)), math.sqrt(3))
+
+ # Test corner cases
+ self.assertEqual(hypot(0.0, 0.0), 0.0) # Max input is zero
+ self.assertEqual(hypot(-10.5), 10.5) # Negative input
+ self.assertEqual(hypot(), 0.0) # Negative input
+ self.assertEqual(1.0,
+ math.copysign(1.0, hypot(-0.0)) # Convert negative zero to positive zero
+ )
+
+ # Test handling of bad arguments
+ with self.assertRaises(TypeError): # Reject keyword args
+ hypot(x=1)
+ with self.assertRaises(TypeError): # Reject values without __float__
+ hypot(1.1, 'string', 2.2)
+
+ # Any infinity gives positive infinity.
+ self.assertEqual(hypot(INF), INF)
+ self.assertEqual(hypot(0, INF), INF)
+ self.assertEqual(hypot(10, INF), INF)
+ self.assertEqual(hypot(-10, INF), INF)
+ self.assertEqual(hypot(NAN, INF), INF)
+ self.assertEqual(hypot(INF, NAN), INF)
+ self.assertEqual(hypot(NINF, NAN), INF)
+ self.assertEqual(hypot(NAN, NINF), INF)
+ self.assertEqual(hypot(-INF, INF), INF)
+ self.assertEqual(hypot(-INF, -INF), INF)
+ self.assertEqual(hypot(10, -INF), INF)
+
+ # If no infinity, any NaN gives a Nan.
+ self.assertTrue(math.isnan(hypot(NAN)))
+ self.assertTrue(math.isnan(hypot(0, NAN)))
+ self.assertTrue(math.isnan(hypot(NAN, 10)))
+ self.assertTrue(math.isnan(hypot(10, NAN)))
+ self.assertTrue(math.isnan(hypot(NAN, NAN)))
+ self.assertTrue(math.isnan(hypot(NAN)))
+
+ # Verify scaling for extremely large values
+ fourthmax = FLOAT_MAX / 4.0
+ for n in range(32):
+ self.assertEqual(hypot(*([fourthmax]*n)), fourthmax * math.sqrt(n))
+
+ # Verify scaling for extremely small values
+ for exp in range(32):
+ scale = FLOAT_MIN / 2.0 ** exp
+ self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale)
def testLdexp(self):
self.assertRaises(TypeError, math.ldexp)
diff --git a/Misc/NEWS.d/next/Library/2018-07-25-22-38-54.bpo-33089.C3CB7e.rst b/Misc/NEWS.d/next/Library/2018-07-25-22-38-54.bpo-33089.C3CB7e.rst
new file mode 100644
index 0000000..83152a7
--- /dev/null
+++ b/Misc/NEWS.d/next/Library/2018-07-25-22-38-54.bpo-33089.C3CB7e.rst
@@ -0,0 +1 @@
+Enhanced math.hypot() to support more than two dimensions.
diff --git a/Modules/clinic/mathmodule.c.h b/Modules/clinic/mathmodule.c.h
index ffebb07..3a487bd 100644
--- a/Modules/clinic/mathmodule.c.h
+++ b/Modules/clinic/mathmodule.c.h
@@ -269,35 +269,6 @@ exit:
return return_value;
}
-PyDoc_STRVAR(math_hypot__doc__,
-"hypot($module, x, y, /)\n"
-"--\n"
-"\n"
-"Return the Euclidean distance, sqrt(x*x + y*y).");
-
-#define MATH_HYPOT_METHODDEF \
- {"hypot", (PyCFunction)math_hypot, METH_FASTCALL, math_hypot__doc__},
-
-static PyObject *
-math_hypot_impl(PyObject *module, double x, double y);
-
-static PyObject *
-math_hypot(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
-{
- PyObject *return_value = NULL;
- double x;
- double y;
-
- if (!_PyArg_ParseStack(args, nargs, "dd:hypot",
- &x, &y)) {
- goto exit;
- }
- return_value = math_hypot_impl(module, x, y);
-
-exit:
- return return_value;
-}
-
PyDoc_STRVAR(math_pow__doc__,
"pow($module, x, y, /)\n"
"--\n"
@@ -516,4 +487,4 @@ math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject
exit:
return return_value;
}
-/*[clinic end generated code: output=e554bad553045546 input=a9049054013a1b77]*/
+/*[clinic end generated code: output=1c35516a10443902 input=a9049054013a1b77]*/
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 5d9fe5a..726fc56 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -2031,49 +2031,74 @@ math_fmod_impl(PyObject *module, double x, double y)
return PyFloat_FromDouble(r);
}
-
-/*[clinic input]
-math.hypot
-
- x: double
- y: double
- /
-
-Return the Euclidean distance, sqrt(x*x + y*y).
-[clinic start generated code]*/
-
+/* AC: cannot convert yet, waiting for *args support */
static PyObject *
-math_hypot_impl(PyObject *module, double x, double y)
-/*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/
+math_hypot(PyObject *self, PyObject *args)
{
- double r;
- /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
- if (Py_IS_INFINITY(x))
- return PyFloat_FromDouble(fabs(x));
- if (Py_IS_INFINITY(y))
- return PyFloat_FromDouble(fabs(y));
- errno = 0;
- PyFPE_START_PROTECT("in math_hypot", return 0);
- r = hypot(x, y);
- PyFPE_END_PROTECT(r);
- if (Py_IS_NAN(r)) {
- if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
- errno = EDOM;
- else
- errno = 0;
+ Py_ssize_t i, n;
+ PyObject *item;
+ double *coordinates;
+ double max = 0.0;
+ double csum = 0.0;
+ double x, result;
+ int found_nan = 0;
+
+ n = PyTuple_GET_SIZE(args);
+ coordinates = (double *) PyObject_Malloc(n * sizeof(double));
+ if (coordinates == NULL)
+ return NULL;
+ for (i=0 ; i<n ; i++) {
+ item = PyTuple_GET_ITEM(args, i);
+ x = PyFloat_AsDouble(item);
+ if (x == -1.0 && PyErr_Occurred()) {
+ PyObject_Free(coordinates);
+ return NULL;
+ }
+ x = fabs(x);
+ coordinates[i] = x;
+ found_nan |= Py_IS_NAN(x);
+ if (x > max) {
+ max = x;
+ }
}
- else if (Py_IS_INFINITY(r)) {
- if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
- errno = ERANGE;
- else
- errno = 0;
+ if (Py_IS_INFINITY(max)) {
+ result = max;
+ goto done;
}
- if (errno && is_error(r))
- return NULL;
- else
- return PyFloat_FromDouble(r);
+ if (found_nan) {
+ result = Py_NAN;
+ goto done;
+ }
+ if (max == 0.0) {
+ result = 0.0;
+ goto done;
+ }
+ for (i=0 ; i<n ; i++) {
+ x = coordinates[i] / max;
+ csum += x * x;
+ }
+ result = max * sqrt(csum);
+
+ done:
+ PyObject_Free(coordinates);
+ return PyFloat_FromDouble(result);
}
+PyDoc_STRVAR(math_hypot_doc,
+ "hypot(*coordinates) -> value\n\n\
+Multidimensional Euclidean distance from the origin to a point.\n\
+\n\
+Roughly equivalent to:\n\
+ sqrt(sum(x**2 for x in coordinates))\n\
+\n\
+For a two dimensional point (x, y), gives the hypotenuse\n\
+using the Pythagorean theorem: sqrt(x*x + y*y).\n\
+\n\
+For example, the hypotenuse of a 3/4/5 right triangle is:\n\
+\n\
+ >>> hypot(3.0, 4.0)\n\
+ 5.0\n\
+");
/* pow can't use math_2, but needs its own wrapper: the problem is
that an infinite result can arise either as a result of overflow
@@ -2345,7 +2370,7 @@ static PyMethodDef math_methods[] = {
MATH_FSUM_METHODDEF
{"gamma", math_gamma, METH_O, math_gamma_doc},
MATH_GCD_METHODDEF
- MATH_HYPOT_METHODDEF
+ {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
MATH_ISCLOSE_METHODDEF
MATH_ISFINITE_METHODDEF
MATH_ISINF_METHODDEF