summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTymoteusz Wołodźko <twolodzko@users.noreply.github.com>2021-04-25 11:45:09 (GMT)
committerGitHub <noreply@github.com>2021-04-25 11:45:09 (GMT)
commit09aa6f914dc313875ff18474770a0a7c13ea8dea (patch)
tree8f4ea916f3016fd3845b87705b1eb6f85c4fb190
parent172c0f2752d8708b6dda7b42e6c5a3519420a4e8 (diff)
downloadcpython-09aa6f914dc313875ff18474770a0a7c13ea8dea.zip
cpython-09aa6f914dc313875ff18474770a0a7c13ea8dea.tar.gz
cpython-09aa6f914dc313875ff18474770a0a7c13ea8dea.tar.bz2
bpo-38490: statistics: Add covariance, Pearson's correlation, and simple linear regression (#16813)
Co-authored-by: Tymoteusz Wołodźko <twolodzko+gitkraken@gmail.com
-rw-r--r--Doc/library/statistics.rst103
-rw-r--r--Doc/whatsnew/3.10.rst8
-rw-r--r--Lib/statistics.py136
-rw-r--r--Lib/test/test_statistics.py78
-rw-r--r--Misc/ACKS1
-rw-r--r--Misc/NEWS.d/next/Library/2019-10-16-08-08-14.bpo-38490.QbDXEF.rst1
6 files changed, 326 insertions, 1 deletions
diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst
index 695fb49..117d2b6 100644
--- a/Doc/library/statistics.rst
+++ b/Doc/library/statistics.rst
@@ -68,6 +68,17 @@ tends to deviate from the typical or average values.
:func:`variance` Sample variance of data.
======================= =============================================
+Statistics for relations between two inputs
+-------------------------------------------
+
+These functions calculate statistics regarding relations between two inputs.
+
+========================= =====================================================
+:func:`covariance` Sample covariance for two variables.
+:func:`correlation` Pearson's correlation coefficient for two variables.
+:func:`linear_regression` Intercept and slope for simple linear regression.
+========================= =====================================================
+
Function details
----------------
@@ -566,6 +577,98 @@ However, for reading convenience, most of the examples show sorted sequences.
.. versionadded:: 3.8
+.. function:: covariance(x, y, /)
+
+ Return the sample covariance of two inputs *x* and *y*. Covariance
+ is a measure of the joint variability of two inputs.
+
+ Both inputs must be of the same length (no less than two), otherwise
+ :exc:`StatisticsError` is raised.
+
+ Examples:
+
+ .. doctest::
+
+ >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
+ >>> covariance(x, y)
+ 0.75
+ >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
+ >>> covariance(x, z)
+ -7.5
+ >>> covariance(z, x)
+ -7.5
+
+ .. versionadded:: 3.10
+
+.. function:: correlation(x, y, /)
+
+ Return the `Pearson's correlation coefficient
+ <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
+ for two inputs. Pearson's correlation coefficient *r* takes values
+ between -1 and +1. It measures the strength and direction of the linear
+ relationship, where +1 means very strong, positive linear relationship,
+ -1 very strong, negative linear relationship, and 0 no linear relationship.
+
+ Both inputs must be of the same length (no less than two), and need
+ not to be constant, otherwise :exc:`StatisticsError` is raised.
+
+ Examples:
+
+ .. doctest::
+
+ >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
+ >>> correlation(x, x)
+ 1.0
+ >>> correlation(x, y)
+ -1.0
+
+ .. versionadded:: 3.10
+
+.. function:: linear_regression(regressor, dependent_variable)
+
+ Return the intercept and slope of `simple linear regression
+ <https://en.wikipedia.org/wiki/Simple_linear_regression>`_
+ parameters estimated using ordinary least squares. Simple linear
+ regression describes relationship between *regressor* and
+ *dependent variable* in terms of linear function:
+
+ *dependent_variable = intercept + slope \* regressor + noise*
+
+ where ``intercept`` and ``slope`` are the regression parameters that are
+ estimated, and noise term is an unobserved random variable, for the
+ variability of the data that was not explained by the linear regression
+ (it is equal to the difference between prediction and the actual values
+ of dependent variable).
+
+ Both inputs must be of the same length (no less than two), and regressor
+ needs not to be constant, otherwise :exc:`StatisticsError` is raised.
+
+ For example, if we took the data on the data on `release dates of the Monty
+ Python films <https://en.wikipedia.org/wiki/Monty_Python#Films>`_, and used
+ it to predict the cumulative number of Monty Python films produced, we could
+ predict what would be the number of films they could have made till year
+ 2019, assuming that they kept the pace.
+
+ .. doctest::
+
+ >>> year = [1971, 1975, 1979, 1982, 1983]
+ >>> films_total = [1, 2, 3, 4, 5]
+ >>> intercept, slope = linear_regression(year, films_total)
+ >>> round(intercept + slope * 2019)
+ 16
+
+ We could also use it to "predict" how many Monty Python films existed when
+ Brian Cohen was born.
+
+ .. doctest::
+
+ >>> round(intercept + slope * 1)
+ -610
+
+ .. versionadded:: 3.10
+
Exceptions
----------
diff --git a/Doc/whatsnew/3.10.rst b/Doc/whatsnew/3.10.rst
index ab0b46f..1d9c03c 100644
--- a/Doc/whatsnew/3.10.rst
+++ b/Doc/whatsnew/3.10.rst
@@ -1051,6 +1051,14 @@ The :mod:`shelve` module now uses :data:`pickle.DEFAULT_PROTOCOL` by default
instead of :mod:`pickle` protocol ``3`` when creating shelves.
(Contributed by Zackery Spytz in :issue:`34204`.)
+statistics
+----------
+
+Added :func:`~statistics.covariance`, Pearson's
+:func:`~statistics.correlation`, and simple
+:func:`~statistics.linear_regression` functions.
+(Contributed by Tymoteusz Wołodźko in :issue:`38490`.)
+
site
----
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 2414869..673a162 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -73,6 +73,30 @@ second argument to the four "spread" functions to avoid recalculating it:
2.5
+Statistics for relations between two inputs
+-------------------------------------------
+
+================== ====================================================
+Function Description
+================== ====================================================
+covariance Sample covariance for two variables.
+correlation Pearson's correlation coefficient for two variables.
+linear_regression Intercept and slope for simple linear regression.
+================== ====================================================
+
+Calculate covariance, Pearson's correlation, and simple linear regression
+for two inputs:
+
+>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
+>>> covariance(x, y)
+0.75
+>>> correlation(x, y) #doctest: +ELLIPSIS
+0.31622776601...
+>>> linear_regression(x, y) #doctest:
+LinearRegression(intercept=1.5, slope=0.1)
+
+
Exceptions
----------
@@ -98,6 +122,9 @@ __all__ = [
'quantiles',
'stdev',
'variance',
+ 'correlation',
+ 'covariance',
+ 'linear_regression',
]
import math
@@ -110,7 +137,7 @@ from itertools import groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
from operator import itemgetter
-from collections import Counter
+from collections import Counter, namedtuple
# === Exceptions ===
@@ -826,6 +853,113 @@ def pstdev(data, mu=None):
return math.sqrt(var)
+# === Statistics for relations between two inputs ===
+
+# See https://en.wikipedia.org/wiki/Covariance
+# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
+# https://en.wikipedia.org/wiki/Simple_linear_regression
+
+
+def covariance(x, y, /):
+ """Covariance
+
+ Return the sample covariance of two inputs *x* and *y*. Covariance
+ is a measure of the joint variability of two inputs.
+
+ >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
+ >>> covariance(x, y)
+ 0.75
+ >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
+ >>> covariance(x, z)
+ -7.5
+ >>> covariance(z, x)
+ -7.5
+
+ """
+ n = len(x)
+ if len(y) != n:
+ raise StatisticsError('covariance requires that both inputs have same number of data points')
+ if n < 2:
+ raise StatisticsError('covariance requires at least two data points')
+ xbar = mean(x)
+ ybar = mean(y)
+ total = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
+ return total / (n - 1)
+
+
+def correlation(x, y, /):
+ """Pearson's correlation coefficient
+
+ Return the Pearson's correlation coefficient for two inputs. Pearson's
+ correlation coefficient *r* takes values between -1 and +1. It measures the
+ strength and direction of the linear relationship, where +1 means very
+ strong, positive linear relationship, -1 very strong, negative linear
+ relationship, and 0 no linear relationship.
+
+ >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+ >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
+ >>> correlation(x, x)
+ 1.0
+ >>> correlation(x, y)
+ -1.0
+
+ """
+ n = len(x)
+ if len(y) != n:
+ raise StatisticsError('correlation requires that both inputs have same number of data points')
+ if n < 2:
+ raise StatisticsError('correlation requires at least two data points')
+ cov = covariance(x, y)
+ stdx = stdev(x)
+ stdy = stdev(y)
+ try:
+ return cov / (stdx * stdy)
+ except ZeroDivisionError:
+ raise StatisticsError('at least one of the inputs is constant')
+
+
+LinearRegression = namedtuple('LinearRegression', ['intercept', 'slope'])
+
+
+def linear_regression(regressor, dependent_variable, /):
+ """Intercept and slope for simple linear regression
+
+ Return the intercept and slope of simple linear regression
+ parameters estimated using ordinary least squares. Simple linear
+ regression describes relationship between *regressor* and
+ *dependent variable* in terms of linear function::
+
+ dependent_variable = intercept + slope * regressor + noise
+
+ where ``intercept`` and ``slope`` are the regression parameters that are
+ estimated, and noise term is an unobserved random variable, for the
+ variability of the data that was not explained by the linear regression
+ (it is equal to the difference between prediction and the actual values
+ of dependent variable).
+
+ The parameters are returned as a named tuple.
+
+ >>> regressor = [1, 2, 3, 4, 5]
+ >>> noise = NormalDist().samples(5, seed=42)
+ >>> dependent_variable = [2 + 3 * regressor[i] + noise[i] for i in range(5)]
+ >>> linear_regression(regressor, dependent_variable) #doctest: +ELLIPSIS
+ LinearRegression(intercept=1.75684970486..., slope=3.09078914170...)
+
+ """
+ n = len(regressor)
+ if len(dependent_variable) != n:
+ raise StatisticsError('linear regression requires that both inputs have same number of data points')
+ if n < 2:
+ raise StatisticsError('linear regression requires at least two data points')
+ try:
+ slope = covariance(regressor, dependent_variable) / variance(regressor)
+ except ZeroDivisionError:
+ raise StatisticsError('regressor is constant')
+ intercept = mean(dependent_variable) - slope * mean(regressor)
+ return LinearRegression(intercept=intercept, slope=slope)
+
+
## Normal Distribution #####################################################
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 4b8686b..70d269d 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -2407,6 +2407,84 @@ class TestQuantiles(unittest.TestCase):
quantiles([10, None, 30], n=4) # data is non-numeric
+class TestBivariateStatistics(unittest.TestCase):
+
+ def test_unequal_size_error(self):
+ for x, y in [
+ ([1, 2, 3], [1, 2]),
+ ([1, 2], [1, 2, 3]),
+ ]:
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.covariance(x, y)
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.correlation(x, y)
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.linear_regression(x, y)
+
+ def test_small_sample_error(self):
+ for x, y in [
+ ([], []),
+ ([], [1, 2,]),
+ ([1, 2,], []),
+ ([1,], [1,]),
+ ([1,], [1, 2,]),
+ ([1, 2,], [1,]),
+ ]:
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.covariance(x, y)
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.correlation(x, y)
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.linear_regression(x, y)
+
+
+class TestCorrelationAndCovariance(unittest.TestCase):
+
+ def test_results(self):
+ for x, y, result in [
+ ([1, 2, 3], [1, 2, 3], 1),
+ ([1, 2, 3], [-1, -2, -3], -1),
+ ([1, 2, 3], [3, 2, 1], -1),
+ ([1, 2, 3], [1, 2, 1], 0),
+ ([1, 2, 3], [1, 3, 2], 0.5),
+ ]:
+ self.assertAlmostEqual(statistics.correlation(x, y), result)
+ self.assertAlmostEqual(statistics.covariance(x, y), result)
+
+ def test_different_scales(self):
+ x = [1, 2, 3]
+ y = [10, 30, 20]
+ self.assertAlmostEqual(statistics.correlation(x, y), 0.5)
+ self.assertAlmostEqual(statistics.covariance(x, y), 5)
+
+ y = [.1, .2, .3]
+ self.assertAlmostEqual(statistics.correlation(x, y), 1)
+ self.assertAlmostEqual(statistics.covariance(x, y), 0.1)
+
+
+class TestLinearRegression(unittest.TestCase):
+
+ def test_constant_input_error(self):
+ x = [1, 1, 1,]
+ y = [1, 2, 3,]
+ with self.assertRaises(statistics.StatisticsError):
+ statistics.linear_regression(x, y)
+
+ def test_results(self):
+ for x, y, true_intercept, true_slope in [
+ ([1, 2, 3], [0, 0, 0], 0, 0),
+ ([1, 2, 3], [1, 2, 3], 0, 1),
+ ([1, 2, 3], [100, 100, 100], 100, 0),
+ ([1, 2, 3], [12, 14, 16], 10, 2),
+ ([1, 2, 3], [-1, -2, -3], 0, -1),
+ ([1, 2, 3], [21, 22, 23], 20, 1),
+ ([1, 2, 3], [5.1, 5.2, 5.3], 5, 0.1),
+ ]:
+ intercept, slope = statistics.linear_regression(x, y)
+ self.assertAlmostEqual(intercept, true_intercept)
+ self.assertAlmostEqual(slope, true_slope)
+
+
class TestNormalDist:
# General note on precision: The pdf(), cdf(), and overlap() methods
diff --git a/Misc/ACKS b/Misc/ACKS
index 760d6c7..7d9af85 100644
--- a/Misc/ACKS
+++ b/Misc/ACKS
@@ -1927,6 +1927,7 @@ David Wolever
Klaus-Juergen Wolf
Dan Wolfe
Richard Wolff
+Tymoteusz Wołodźko
Adam Woodbeck
William Woodruff
Steven Work
diff --git a/Misc/NEWS.d/next/Library/2019-10-16-08-08-14.bpo-38490.QbDXEF.rst b/Misc/NEWS.d/next/Library/2019-10-16-08-08-14.bpo-38490.QbDXEF.rst
new file mode 100644
index 0000000..82b9e33
--- /dev/null
+++ b/Misc/NEWS.d/next/Library/2019-10-16-08-08-14.bpo-38490.QbDXEF.rst
@@ -0,0 +1 @@
+Covariance, Pearson's correlation, and simple linear regression functionality was added to statistics module. Patch by Tymoteusz Wołodźko. \ No newline at end of file