diff options
author | Raymond Hettinger <python@rcn.com> | 2014-05-26 07:58:56 (GMT) |
---|---|---|
committer | Raymond Hettinger <python@rcn.com> | 2014-05-26 07:58:56 (GMT) |
commit | 41331e8193041f5de6134e82c7d728df0111c537 (patch) | |
tree | 7c2e1f159cb5e492dae05d17ec07a79c27576017 | |
parent | 79cae680a3c84477fdcadeed14f8392842d93c01 (diff) | |
download | cpython-41331e8193041f5de6134e82c7d728df0111c537.zip cpython-41331e8193041f5de6134e82c7d728df0111c537.tar.gz cpython-41331e8193041f5de6134e82c7d728df0111c537.tar.bz2 |
Minor clean-ups for heapq.
-rw-r--r-- | Lib/heapq.py | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/Lib/heapq.py b/Lib/heapq.py index 41626c5..121a9bb 100644 --- a/Lib/heapq.py +++ b/Lib/heapq.py @@ -127,8 +127,6 @@ From all times, sorting has always been a Great Art! :-) __all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge', 'nlargest', 'nsmallest', 'heappushpop'] -from itertools import islice, count - def heappush(heap, item): """Push item onto heap, maintaining the heap invariant.""" heap.append(item) @@ -378,8 +376,10 @@ def merge(*iterables): # 2 n - k compare remaining elements to top of heap # 3 k * (1 + lg2(k)) * ln(n/k) replace the topmost value on the heap # 4 k * lg2(k) - (k/2) final sort of the k most extreme values +# # Combining and simplifying for a rough estimate gives: -# comparisons = n + k * (1 + log(n/k)) * (1 + log(k, 2)) +# +# comparisons = n + k * (log(k, 2) * log(n/k)) + log(k, 2) + log(n/k)) # # Computing the number of comparisons for step 3: # ----------------------------------------------- @@ -391,12 +391,12 @@ def merge(*iterables): # * The probabilty times the cost gives: # (k/i) * (1 + log(k, 2)) # * Summing across the remaining n-k elements gives: -# sum((k/i) * (1 + log(k, 2)) for xrange(k+1, n+1)) +# sum((k/i) * (1 + log(k, 2)) for i in range(k+1, n+1)) # * This reduces to: # (H(n) - H(k)) * k * (1 + log(k, 2)) # * Where H(n) is the n-th harmonic number estimated by: # gamma = 0.5772156649 -# H(n) = log(n, e) + gamma + 1.0 / (2.0 * n) +# H(n) = log(n, e) + gamma + 1 / (2 * n) # http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence # * Substituting the H(n) formula: # comparisons = k * (1 + log(k, 2)) * (log(n/k, e) + (1/n - 1/k) / 2) @@ -445,12 +445,12 @@ def nsmallest(n, iterable, key=None): # When key is none, use simpler decoration if key is None: it = iter(iterable) - result = list(islice(zip(it, count()), n)) + result = [(elem, i) for i, elem in zip(range(n), it)] if not result: return result _heapify_max(result) - order = n top = result[0][0] + order = n _heapreplace = _heapreplace_max for elem in it: if elem < top: @@ -466,8 +466,8 @@ def nsmallest(n, iterable, key=None): if not result: return result _heapify_max(result) - order = n top = result[0][0] + order = n _heapreplace = _heapreplace_max for elem in it: k = key(elem) @@ -506,12 +506,12 @@ def nlargest(n, iterable, key=None): # When key is none, use simpler decoration if key is None: it = iter(iterable) - result = list(islice(zip(it, count(0, -1)), n)) + result = [(elem, i) for i, elem in zip(range(0, -n, -1), it)] if not result: return result heapify(result) - order = -n top = result[0][0] + order = -n _heapreplace = heapreplace for elem in it: if top < elem: @@ -527,8 +527,8 @@ def nlargest(n, iterable, key=None): if not result: return result heapify(result) - order = -n top = result[0][0] + order = -n _heapreplace = heapreplace for elem in it: k = key(elem) |