diff options
| author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2023-07-15 19:43:09 (GMT) |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2023-07-15 19:43:09 (GMT) |
| commit | e2ec0bad67552e27174255db86dda90fc72e6694 (patch) | |
| tree | 85fa3ab6ff34ebecaf428f91a6804753912872c4 | |
| parent | 22980dc7c9dcec4b74fea815542601ef582c230e (diff) | |
| download | cpython-e2ec0bad67552e27174255db86dda90fc72e6694.zip cpython-e2ec0bad67552e27174255db86dda90fc72e6694.tar.gz cpython-e2ec0bad67552e27174255db86dda90fc72e6694.tar.bz2 | |
Add more examples to the recipe docs (GH-106782)
Demonstrate that factor() works for large composites and large primes.
| -rw-r--r-- | Doc/library/itertools.rst | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index a2d1798..f885254 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -1045,6 +1045,8 @@ The following recipes have a more mathematical flavor: def factor(n): "Prime factors of n." # factor(99) --> 3 3 11 + # factor(1_000_000_000_000_007) --> 47 59 360620266859 + # factor(1_000_000_000_000_403) --> 1000000000000403 for prime in sieve(math.isqrt(n) + 1): while True: quotient, remainder = divmod(n, prime) |
