diff options
author | Skip Montanaro <skip@pobox.com> | 2003-03-20 23:31:24 (GMT) |
---|---|---|
committer | Skip Montanaro <skip@pobox.com> | 2003-03-20 23:31:24 (GMT) |
commit | f823f11c36c4acfdfa818168cee0824a58e46551 (patch) | |
tree | 5e9ad3ed28ee86525058a92738c2766c1654c5df | |
parent | b4a0417e9112126070316d21cb1f54a7c365a24c (diff) | |
download | cpython-f823f11c36c4acfdfa818168cee0824a58e46551.zip cpython-f823f11c36c4acfdfa818168cee0824a58e46551.tar.gz cpython-f823f11c36c4acfdfa818168cee0824a58e46551.tar.bz2 |
forgot Cliff's sniffer
-rw-r--r-- | Lib/csv/util/sniffer.py | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/Lib/csv/util/sniffer.py b/Lib/csv/util/sniffer.py new file mode 100644 index 0000000..7b9b060 --- /dev/null +++ b/Lib/csv/util/sniffer.py @@ -0,0 +1,289 @@ +""" +dialect = Sniffer().sniff(file('csv/easy.csv')) +print "delimiter", dialect.delimiter +print "quotechar", dialect.quotechar +print "skipinitialspace", dialect.skipinitialspace +""" + +from csv import csv +import re + +# ------------------------------------------------------------------------------ +class Sniffer: + """ + "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) + Returns a csv.Dialect object. + """ + def __init__(self, sample = 16 * 1024): + # in case there is more than one possible delimiter + self.preferred = [',', '\t', ';', ' ', ':'] + + # amount of data (in bytes) to sample + self.sample = sample + + + def sniff(self, fileobj): + """ + Takes a file-like object and returns a dialect (or None) + """ + + self.fileobj = fileobj + + data = fileobj.read(self.sample) + + quotechar, delimiter, skipinitialspace = self._guessQuoteAndDelimiter(data) + if delimiter is None: + delimiter, skipinitialspace = self._guessDelimiter(data) + + class Dialect(csv.Dialect): + _name = "sniffed" + lineterminator = '\r\n' + quoting = csv.QUOTE_MINIMAL + # escapechar = '' + doublequote = False + Dialect.delimiter = delimiter + Dialect.quotechar = quotechar + Dialect.skipinitialspace = skipinitialspace + + self.dialect = Dialect + return self.dialect + + + def hasHeaders(self): + return self._hasHeaders(self.fileobj, self.dialect) + + + def register_dialect(self, name = 'sniffed'): + csv.register_dialect(name, self.dialect) + + + def _guessQuoteAndDelimiter(self, data): + """ + Looks for text enclosed between two identical quotes + (the probable quotechar) which are preceded and followed + by the same character (the probable delimiter). + For example: + ,'some text', + The quote with the most wins, same with the delimiter. + If there is no quotechar the delimiter can't be determined + this way. + """ + + matches = [] + for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", + '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", + '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" + '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) + regexp = re.compile(restr, re.S | re.M) + matches = regexp.findall(data) + if matches: + break + + if not matches: + return ('', None, 0) # (quotechar, delimiter, skipinitialspace) + + quotes = {} + delims = {} + spaces = 0 + for m in matches: + n = regexp.groupindex['quote'] - 1 + key = m[n] + if key: + quotes[key] = quotes.get(key, 0) + 1 + try: + n = regexp.groupindex['delim'] - 1 + key = m[n] + except KeyError: + continue + if key: + delims[key] = delims.get(key, 0) + 1 + try: + n = regexp.groupindex['space'] - 1 + except KeyError: + continue + if m[n]: + spaces += 1 + + quotechar = reduce(lambda a, b, quotes = quotes: + (quotes[a] > quotes[b]) and a or b, quotes.keys()) + + if delims: + delim = reduce(lambda a, b, delims = delims: + (delims[a] > delims[b]) and a or b, delims.keys()) + skipinitialspace = delims[delim] == spaces + if delim == '\n': # most likely a file with a single column + delim = '' + else: + # there is *no* delimiter, it's a single column of quoted data + delim = '' + skipinitialspace = 0 + + return (quotechar, delim, skipinitialspace) + + + def _guessDelimiter(self, data): + """ + The delimiter /should/ occur the same number of times on + each row. However, due to malformed data, it may not. We don't want + an all or nothing approach, so we allow for small variations in this + number. + 1) build a table of the frequency of each character on every line. + 2) build a table of freqencies of this frequency (meta-frequency?), + e.g. "x occurred 5 times in 10 rows, 6 times in 1000 rows, + 7 times in 2 rows" + 3) use the mode of the meta-frequency to determine the /expected/ + frequency for that character + 4) find out how often the character actually meets that goal + 5) the character that best meets its goal is the delimiter + For performance reasons, the data is evaluated in chunks, so it can + try and evaluate the smallest portion of the data possible, evaluating + additional chunks as necessary. + """ + + data = filter(None, data.split('\n')) + + ascii = [chr(c) for c in range(127)] # 7-bit ASCII + + # build frequency tables + chunkLength = min(10, len(data)) + iteration = 0 + charFrequency = {} + modes = {} + delims = {} + start, end = 0, min(chunkLength, len(data)) + while start < len(data): + iteration += 1 + for line in data[start:end]: + for char in ascii: + metafrequency = charFrequency.get(char, {}) + freq = line.strip().count(char) # must count even if frequency is 0 + metafrequency[freq] = metafrequency.get(freq, 0) + 1 # value is the mode + charFrequency[char] = metafrequency + + for char in charFrequency.keys(): + items = charFrequency[char].items() + if len(items) == 1 and items[0][0] == 0: + continue + # get the mode of the frequencies + if len(items) > 1: + modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, items) + # adjust the mode - subtract the sum of all other frequencies + items.remove(modes[char]) + modes[char] = (modes[char][0], modes[char][1] + - reduce(lambda a, b: (0, a[1] + b[1]), items)[1]) + else: + modes[char] = items[0] + + # build a list of possible delimiters + modeList = modes.items() + total = float(chunkLength * iteration) + consistency = 1.0 # (rows of consistent data) / (number of rows) = 100% + threshold = 0.9 # minimum consistency threshold + while len(delims) == 0 and consistency >= threshold: + for k, v in modeList: + if v[0] > 0 and v[1] > 0: + if (v[1]/total) >= consistency: + delims[k] = v + consistency -= 0.01 + + if len(delims) == 1: + delim = delims.keys()[0] + skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim) + return (delim, skipinitialspace) + + # analyze another chunkLength lines + start = end + end += chunkLength + + if not delims: + return ('', 0) + + # if there's more than one, fall back to a 'preferred' list + if len(delims) > 1: + for d in self.preferred: + if d in delims.keys(): + skipinitialspace = data[0].count(d) == data[0].count("%c " % d) + return (d, skipinitialspace) + + # finally, just return the first damn character in the list + delim = delims.keys()[0] + skipinitialspace = data[0].count(delim) == data[0].count("%c " % delim) + return (delim, skipinitialspace) + + + def _hasHeaders(self, fileobj, dialect): + # Creates a dictionary of types of data in each column. If any column + # is of a single type (say, integers), *except* for the first row, then the first + # row is presumed to be labels. If the type can't be determined, it is assumed to + # be a string in which case the length of the string is the determining factor: if + # all of the rows except for the first are the same length, it's a header. + # Finally, a 'vote' is taken at the end for each column, adding or subtracting from + # the likelihood of the first row being a header. + + def seval(item): + """ + Strips parens from item prior to calling eval in an attempt to make it safer + """ + return eval(item.replace('(', '').replace(')', '')) + + fileobj.seek(0) # rewind the fileobj - this might not work for some file-like objects... + + reader = csv.reader(fileobj, + delimiter = dialect.delimiter, + quotechar = dialect.quotechar, + skipinitialspace = dialect.skipinitialspace) + + header = reader.next() # assume first row is header + + columns = len(header) + columnTypes = {} + for i in range(columns): columnTypes[i] = None + + checked = 0 + for row in reader: + if checked > 20: # arbitrary number of rows to check, to keep it sane + break + checked += 1 + + if len(row) != columns: + continue # skip rows that have irregular number of columns + + for col in columnTypes.keys(): + try: + try: + # is it a built-in type (besides string)? + thisType = type(seval(row[col])) + except OverflowError: + # a long int? + thisType = type(seval(row[col] + 'L')) + thisType = type(0) # treat long ints as int + except: + # fallback to length of string + thisType = len(row[col]) + + if thisType != columnTypes[col]: + if columnTypes[col] is None: # add new column type + columnTypes[col] = thisType + else: # type is inconsistent, remove column from consideration + del columnTypes[col] + + # finally, compare results against first row and "vote" on whether it's a header + hasHeader = 0 + for col, colType in columnTypes.items(): + if type(colType) == type(0): # it's a length + if len(header[col]) != colType: + hasHeader += 1 + else: + hasHeader -= 1 + else: # attempt typecast + try: + eval("%s(%s)" % (colType.__name__, header[col])) + except: + hasHeader += 1 + else: + hasHeader -= 1 + + return hasHeader > 0 + + + |