summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorGeorg Brandl <georg@python.org>2012-03-24 07:12:41 (GMT)
committerGeorg Brandl <georg@python.org>2012-03-24 07:12:41 (GMT)
commit226ed7ecbd47e84bd1e71c967c8130027c02f54f (patch)
treee4fd88308571d43b5bcf9fed9195741f8da7bd5f
parent60187b5ee5119094b52f11d7cdc742d1c36403ea (diff)
downloadcpython-226ed7ecbd47e84bd1e71c967c8130027c02f54f.zip
cpython-226ed7ecbd47e84bd1e71c967c8130027c02f54f.tar.gz
cpython-226ed7ecbd47e84bd1e71c967c8130027c02f54f.tar.bz2
Fix indentation.
-rw-r--r--Doc/library/stdtypes.rst48
1 files changed, 24 insertions, 24 deletions
diff --git a/Doc/library/stdtypes.rst b/Doc/library/stdtypes.rst
index 8fbfcd1..8b8400e 100644
--- a/Doc/library/stdtypes.rst
+++ b/Doc/library/stdtypes.rst
@@ -645,30 +645,30 @@ made available to Python as the :attr:`modulus` attribute of
Here are the rules in detail:
- - If ``x = m / n`` is a nonnegative rational number and ``n`` is not divisible
- by ``P``, define ``hash(x)`` as ``m * invmod(n, P) % P``, where ``invmod(n,
- P)`` gives the inverse of ``n`` modulo ``P``.
-
- - If ``x = m / n`` is a nonnegative rational number and ``n`` is
- divisible by ``P`` (but ``m`` is not) then ``n`` has no inverse
- modulo ``P`` and the rule above doesn't apply; in this case define
- ``hash(x)`` to be the constant value ``sys.hash_info.inf``.
-
- - If ``x = m / n`` is a negative rational number define ``hash(x)``
- as ``-hash(-x)``. If the resulting hash is ``-1``, replace it with
- ``-2``.
-
- - The particular values ``sys.hash_info.inf``, ``-sys.hash_info.inf``
- and ``sys.hash_info.nan`` are used as hash values for positive
- infinity, negative infinity, or nans (respectively). (All hashable
- nans have the same hash value.)
-
- - For a :class:`complex` number ``z``, the hash values of the real
- and imaginary parts are combined by computing ``hash(z.real) +
- sys.hash_info.imag * hash(z.imag)``, reduced modulo
- ``2**sys.hash_info.width`` so that it lies in
- ``range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width -
- 1))``. Again, if the result is ``-1``, it's replaced with ``-2``.
+- If ``x = m / n`` is a nonnegative rational number and ``n`` is not divisible
+ by ``P``, define ``hash(x)`` as ``m * invmod(n, P) % P``, where ``invmod(n,
+ P)`` gives the inverse of ``n`` modulo ``P``.
+
+- If ``x = m / n`` is a nonnegative rational number and ``n`` is
+ divisible by ``P`` (but ``m`` is not) then ``n`` has no inverse
+ modulo ``P`` and the rule above doesn't apply; in this case define
+ ``hash(x)`` to be the constant value ``sys.hash_info.inf``.
+
+- If ``x = m / n`` is a negative rational number define ``hash(x)``
+ as ``-hash(-x)``. If the resulting hash is ``-1``, replace it with
+ ``-2``.
+
+- The particular values ``sys.hash_info.inf``, ``-sys.hash_info.inf``
+ and ``sys.hash_info.nan`` are used as hash values for positive
+ infinity, negative infinity, or nans (respectively). (All hashable
+ nans have the same hash value.)
+
+- For a :class:`complex` number ``z``, the hash values of the real
+ and imaginary parts are combined by computing ``hash(z.real) +
+ sys.hash_info.imag * hash(z.imag)``, reduced modulo
+ ``2**sys.hash_info.width`` so that it lies in
+ ``range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width -
+ 1))``. Again, if the result is ``-1``, it's replaced with ``-2``.
To clarify the above rules, here's some example Python code,