diff options
author | Raymond Hettinger <python@rcn.com> | 2010-08-15 03:30:45 (GMT) |
---|---|---|
committer | Raymond Hettinger <python@rcn.com> | 2010-08-15 03:30:45 (GMT) |
commit | f309828175e8db1b858d31dda23bbd984940a08a (patch) | |
tree | 582fef3dcf80cba6db31d1a239d93ea496c7baa2 | |
parent | 0f56e90f0582a4171a9e3e1e2ffde2781be4bffd (diff) | |
download | cpython-f309828175e8db1b858d31dda23bbd984940a08a.zip cpython-f309828175e8db1b858d31dda23bbd984940a08a.tar.gz cpython-f309828175e8db1b858d31dda23bbd984940a08a.tar.bz2 |
Remove the lfu_cache. Add more tests.
-rw-r--r-- | Doc/whatsnew/3.2.rst | 43 | ||||
-rw-r--r-- | Lib/functools.py | 52 | ||||
-rw-r--r-- | Lib/test/test_functools.py | 65 |
3 files changed, 30 insertions, 130 deletions
diff --git a/Doc/whatsnew/3.2.rst b/Doc/whatsnew/3.2.rst index bc31764..2c625a8 100644 --- a/Doc/whatsnew/3.2.rst +++ b/Doc/whatsnew/3.2.rst @@ -66,45 +66,32 @@ Some smaller changes made to the core Python language are: New, Improved, and Deprecated Modules ===================================== -* The functools module now includes two new decorators for caching function - calls, :func:`functools.lru_cache` and :func:`functools.lfu_cache`. These can - save repeated queries to an external resource whenever the results are - expected to be the same. +* The functools module now includes a new decorator for caching function calls. + :func:`functools.lru_cache` can save repeated queries to an external resource + whenever the results are expected to be the same. For example, adding a caching decorator to a database query function can save database accesses for popular searches:: - @functools.lfu_cache(maxsize=50) + @functools.lru_cache(maxsize=300) def get_phone_number(name): c = conn.cursor() c.execute('SELECT phonenumber FROM phonelist WHERE name=?', (name,)) return c.fetchone()[0] - The caches support two strategies for limiting their size to *maxsize*. The - LFU (least-frequently-used) cache works bests when popular queries remain the - same over time. In contrast, the LRU (least-recently-used) cache works best - query popularity changes over time (for example, the most popular news - articles change each day as newer articles are added). - - The two caching decorators can be composed (nested) to handle hybrid cases. - For example, music searches can reflect both long-term patterns (popular - classics) and short-term trends (new releases):: - - @functools.lfu_cache(maxsize=500) - @functools.lru_cache(maxsize=100) - def find_lyrics(song): - query = 'http://www.example.com/songlist/%s' % urllib.quote(song) - page = urllib.urlopen(query).read() - return parse_lyrics(page) - - To help with choosing an effective cache size, the wrapped function - is instrumented with two attributes *hits* and *misses*:: - - >>> for song in user_requests: - ... find_lyrics(song) - >>> print(find_lyrics.hits, find_lyrics.misses) + To help with choosing an effective cache size, the wrapped function is + instrumented with two attributes *hits* and *misses*:: + + >>> for name in user_requests: + ... get_phone_number(name) + >>> print(get_phone_number.hits, get_phone_number.misses) 4805 980 + If the phonelist table gets updated, the outdated contents of the cache can be + cleared with:: + + >>> get_phone_number.clear() + (Contributed by Raymond Hettinger) * The previously deprecated :func:`contextlib.nested` function has been diff --git a/Lib/functools.py b/Lib/functools.py index 9f28004..efc533c 100644 --- a/Lib/functools.py +++ b/Lib/functools.py @@ -110,58 +110,6 @@ def cmp_to_key(mycmp): raise TypeError('hash not implemented') return K -def lfu_cache(maxsize=100): - """Least-frequently-used cache decorator. - - Arguments to the cached function must be hashable. - Cache performance statistics stored in f.hits and f.misses. - Clear the cache using f.clear(). - http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used - - """ - def decorating_function(user_function, tuple=tuple, sorted=sorted, - len=len, KeyError=KeyError): - cache = {} # mapping of args to results - use_count = Counter() # times each key has been accessed - kwd_mark = object() # separate positional and keyword args - lock = Lock() - - @wraps(user_function) - def wrapper(*args, **kwds): - key = args - if kwds: - key += (kwd_mark,) + tuple(sorted(kwds.items())) - try: - with lock: - use_count[key] += 1 # count a use of this key - result = cache[key] - wrapper.hits += 1 - except KeyError: - result = user_function(*args, **kwds) - with lock: - use_count[key] += 1 # count a use of this key - cache[key] = result - wrapper.misses += 1 - if len(cache) > maxsize: - # purge the 10% least frequently used entries - for key, _ in nsmallest(maxsize // 10 or 1, - use_count.items(), - key=itemgetter(1)): - del cache[key], use_count[key] - return result - - def clear(): - """Clear the cache and cache statistics""" - with lock: - cache.clear() - use_count.clear() - wrapper.hits = wrapper.misses = 0 - - wrapper.hits = wrapper.misses = 0 - wrapper.clear = clear - return wrapper - return decorating_function - def lru_cache(maxsize=100): """Least-recently-used cache decorator. diff --git a/Lib/test/test_functools.py b/Lib/test/test_functools.py index 4dd6fab..f9e8a97 100644 --- a/Lib/test/test_functools.py +++ b/Lib/test/test_functools.py @@ -483,73 +483,38 @@ class TestLRU(unittest.TestCase): self.assertEqual(f.misses, 1) # test size zero (which means "never-cache") - f_cnt = 0 @functools.lru_cache(0) def f(): nonlocal f_cnt f_cnt += 1 return 20 - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f_cnt, 3) + f_cnt = 0 + for i in range(5): + self.assertEqual(f(), 20) + self.assertEqual(f_cnt, 5) # test size one - f_cnt = 0 @functools.lru_cache(1) def f(): nonlocal f_cnt f_cnt += 1 return 20 - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) + f_cnt = 0 + for i in range(5): + self.assertEqual(f(), 20) self.assertEqual(f_cnt, 1) - def test_lfu(self): - def orig(x, y): - return 3*x+y - f = functools.lfu_cache(maxsize=20)(orig) - - domain = range(5) - for i in range(1000): - x, y = choice(domain), choice(domain) - actual = f(x, y) - expected = orig(x, y) - self.assertEquals(actual, expected) - self.assert_(f.hits > f.misses) - self.assertEquals(f.hits + f.misses, 1000) - - f.clear() # test clearing - self.assertEqual(f.hits, 0) - self.assertEqual(f.misses, 0) - f(x, y) - self.assertEqual(f.hits, 0) - self.assertEqual(f.misses, 1) - - # test size zero (which means "never-cache") - f_cnt = 0 - @functools.lfu_cache(0) - def f(): + # test size two + @functools.lru_cache(2) + def f(x): nonlocal f_cnt f_cnt += 1 - return 20 - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f_cnt, 3) - - # test size one + return x*10 f_cnt = 0 - @functools.lfu_cache(1) - def f(): - nonlocal f_cnt - f_cnt += 1 - return 20 - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f(), 20) - self.assertEqual(f_cnt, 1) + for x in 7, 9, 7, 9, 7, 9, 8, 8, 8, 9, 9, 9, 8, 8, 8, 7: + # * * * * + self.assertEqual(f(x), x*10) + self.assertEqual(f_cnt, 4) def test_main(verbose=None): test_classes = ( |