diff options
author | Guido van Rossum <guido@python.org> | 1998-05-26 15:06:32 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1998-05-26 15:06:32 (GMT) |
commit | 9be628338def23e88691fbb3ca28804ea8e48a28 (patch) | |
tree | 172b250c9afb1a43a439591a053e4cffeae4f539 | |
parent | 16653cb27327288deb2068223501bf706cc65d46 (diff) | |
download | cpython-9be628338def23e88691fbb3ca28804ea8e48a28.zip cpython-9be628338def23e88691fbb3ca28804ea8e48a28.tar.gz cpython-9be628338def23e88691fbb3ca28804ea8e48a28.tar.bz2 |
Tim's quicksort on May 25.
-rw-r--r-- | Objects/listobject.c | 264 |
1 files changed, 141 insertions, 123 deletions
diff --git a/Objects/listobject.c b/Objects/listobject.c index 60e1592..b608d53 100644 --- a/Objects/listobject.c +++ b/Objects/listobject.c @@ -625,46 +625,11 @@ docompare(x, y, compare) } /* MINSIZE is the smallest array we care to partition; smaller arrays - are sorted using a straight insertion sort (above). It must be at - least 3 for the quicksort implementation to work. Assuming that - comparisons are more expensive than everything else (and this is a - good assumption for Python), it should be 10, which is the cutoff - point: quicksort requires more comparisons than insertion sort for - smaller arrays. */ -#define MINSIZE 10 - -/* Straight insertion sort. More efficient for sorting small arrays. */ - -static int -insertionsort(array, size, compare) - PyObject **array; /* Start of array to sort */ - int size; /* Number of elements to sort */ - PyObject *compare;/* Comparison function object, or NULL => default */ -{ - register PyObject **a = array; - register PyObject **end = array+size; - register PyObject **p; - - for (p = a+1; p < end; p++) { - register PyObject *key = *p; - register PyObject **q = p; - while (--q >= a) { - register int k = docompare(key, *q, compare); - /* if (p-q >= MINSIZE) - fprintf(stderr, "OUCH! %d\n", p-q); */ - if (k == CMPERROR) - return -1; - if (k < 0) { - *(q+1) = *q; - *q = key; /* For consistency */ - } - else - break; - } - } - - return 0; -} + are sorted using binary insertion. It must be at least 4 for the + quicksort implementation to work. Binary insertion always requires + fewer compares than quicksort, but does O(N**2) data movement. The + more expensive compares, the larger MINSIZE should be. */ +#define MINSIZE 49 /* STACKSIZE is the size of our work stack. A rough estimate is that this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large @@ -673,20 +638,20 @@ insertionsort(array, size, compare) exactly in two.) */ #define STACKSIZE 64 -/* Quicksort algorithm. Return -1 if an exception occurred; in this +/* quicksort algorithm. Return -1 if an exception occurred; in this case we leave the array partly sorted but otherwise in good health (i.e. no items have been removed or duplicated). */ static int quicksort(array, size, compare) - PyObject **array; /* Start of array to sort */ - int size; /* Number of elements to sort */ + PyObject **array; /* Start of array to sort */ + int size; /* Number of elements to sort */ PyObject *compare;/* Comparison function object, or NULL for default */ { register PyObject *tmp, *pivot; register PyObject **l, **r, **p; - register PyObject **lo, **hi; - int top, k, n; + PyObject **lo, **hi, **notp; + int top, k, n, lisp, risp; PyObject **lostack[STACKSIZE]; PyObject **histack[STACKSIZE]; @@ -699,55 +664,66 @@ quicksort(array, size, compare) while (--top >= 0) { lo = lostack[top]; hi = histack[top]; - - /* If it's a small one, use straight insertion sort */ n = hi - lo; - if (n < MINSIZE) + + /* If it's a small one, use binary insertion sort */ + if (n < MINSIZE) { + for (notp = lo+1; notp < hi; ++notp) { + /* set l to where *notp belongs */ + l = lo; + r = notp; + pivot = *r; + do { + p = l + ((r - l) >> 1); + k = docompare(pivot, *p, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + r = p; + else + l = p + 1; + } while (l < r); + /* Pivot should go at l -- slide over to + make room. Caution: using memmove + is much slower under MSVC 5; we're + not usually moving many slots. */ + for (p = notp; p > l; --p) + *p = *(p-1); + *l = pivot; + } continue; + } - /* Choose median of first, middle and last as pivot; - these 3 are reverse-sorted in the process; the ends - will be swapped on the first do-loop iteration. - */ - l = lo; /* First */ + /* Choose median of first, middle and last as pivot */ + l = lo; /* First */ p = lo + (n>>1); /* Middle */ - r = hi - 1; /* Last */ + r = hi - 1; /* Last */ - k = docompare(*l, *p, compare); + k = docompare(*p, *l, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *l; *l = *p; *p = tmp; } + { tmp = *p; *p = *l; *l = tmp; } - k = docompare(*p, *r, compare); + k = docompare(*r, *p, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *p; *p = *r; *r = tmp; } + { tmp = *r; *r = *p; *p = tmp; } - k = docompare(*l, *p, compare); + k = docompare(*p, *l, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *l; *l = *p; *p = tmp; } + { tmp = *p; *p = *l; *l = tmp; } pivot = *p; + l++; + r--; /* Partition the array */ - do { - tmp = *l; *l = *r; *r = tmp; - if (l == p) { - p = r; - l++; - } - else if (r == p) { - p = l; - r--; - } - else { - l++; - r--; - } + for (;;) { + lisp = risp = 1; /* presumed guilty */ /* Move left index to element >= pivot */ while (l < p) { @@ -756,8 +732,10 @@ quicksort(array, size, compare) return -1; if (k < 0) l++; - else + else { + lisp = 0; break; + } } /* Move right index to element <= pivot */ while (r > p) { @@ -766,79 +744,119 @@ quicksort(array, size, compare) return -1; if (k < 0) r--; - else + else { + risp = 0; break; + } + } + + if (lisp == risp) { + /* assert l < p < r or l == p == r + * This is the most common case, so we + * strive to get back to the top of the + * loop ASAP. + */ + tmp = *l; *l = *r; *r = tmp; + l++; r--; + if (l < r) + continue; + break; } - } while (l < r); + /* One (exactly) of the pointers is at p */ + /* assert (p == l) ^ (p == r) */ + notp = lisp ? r : l; + k = (r - l) >> 1; + if (k) { + *p = *notp; + if (lisp) { + p = r - k; + l++; + } + else { + p = l + k; + r--; + } + /* assert l < p < r */ + *notp = *p; + *p = pivot; /* for consistency */ + continue; + } - /* lo < l == p == r < hi-1 - *p == pivot + /* assert l+1 == r */ + *p = *notp; + *notp = pivot; + p = notp; + break; + } /* end of partitioning loop */ + /* assert *p == pivot All in [lo,p) are <= pivot At p == pivot All in [p+1,hi) are >= pivot - - Now extend as far as possible (around p) so that: - All in [lo,r) are <= pivot - All in [r,l) are == pivot - All in [l,hi) are >= pivot - This wastes two compares if no elements are == to the - pivot, but can win big when there are duplicates. - Mildly tricky: continue using only "<" -- we deduce - equality indirectly. */ - while (r > lo) { - /* because r-1 < p, *(r-1) <= pivot is known */ - k = docompare(*(r-1), pivot, compare); - if (k == CMPERROR) - return -1; - if (k < 0) - break; - /* <= and not < implies == */ - r--; - } - l++; - while (l < hi) { - /* because l > p, pivot <= *l is known */ - k = docompare(pivot, *l, compare); - if (k == CMPERROR) - return -1; - if (k < 0) - break; - /* <= and not < implies == */ + r = p; + l = p + 1; + /* Partitions are [lo,r) and [l,hi). + * See whether *l == pivot; we know *l >= pivot, so + * they're equal iff *l <= pivot too, or not pivot < *l. + * This wastes a compare if it fails, but can win big + * when there are runs of duplicates. + */ + k = docompare(pivot, *l, compare); + if (k == CMPERROR) + return -1; + if (!(k < 0)) { + /* Now extend as far as possible (around p) so that: + All in [lo,r) are <= pivot + All in [r,l) are == pivot + All in [l,hi) are >= pivot + Mildly tricky: continue using only "<" -- we + deduce equality indirectly. + */ + while (r > lo) { + /* because r-1 < p, *(r-1) <= pivot is known */ + k = docompare(*(r-1), pivot, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + break; + /* <= and not < implies == */ + r--; + } + l++; - } + while (l < hi) { + /* because l > p, pivot <= *l is known */ + k = docompare(pivot, *l, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + break; + /* <= and not < implies == */ + l++; + } + + } /* end of checking for duplicates */ /* Push biggest partition first */ if (r - lo >= hi - l) { /* First one is bigger */ - lostack[top] = lo; + lostack[top] = lo; histack[top++] = r; - lostack[top] = l; + lostack[top] = l; histack[top++] = hi; } else { /* Second one is bigger */ - lostack[top] = l; + lostack[top] = l; histack[top++] = hi; - lostack[top] = lo; + lostack[top] = lo; histack[top++] = r; } /* Should assert top <= STACKSIZE */ } - /* - * Ouch - even if I screwed up the quicksort above, the - * insertionsort below will cover up the problem - just a - * performance hit would be noticable. - */ - - /* insertionsort is pretty fast on the partially sorted list */ - - if (insertionsort(array, size, compare) < 0) - return -1; - /* Success */ return 0; } |