summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2017-01-21 13:10:52 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2017-01-21 13:10:52 (GMT)
commit5e65cd39dfe73891b16d9c771892e1bc282c1eb9 (patch)
tree1e35edf9a52cf7f8f677e971be50ad0391c48dd0
parentd1b230e48b81eb90d10f0ceb4e34c547800bd3a8 (diff)
downloadcpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.zip
cpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.tar.gz
cpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.tar.bz2
Issue #29282: Backed out changeset b33012ef1417
-rw-r--r--Doc/library/math.rst15
-rw-r--r--Doc/whatsnew/3.7.rst9
-rw-r--r--Lib/test/test_math.py234
-rw-r--r--Misc/NEWS3
-rw-r--r--Modules/clinic/mathmodule.c.h36
-rw-r--r--Modules/mathmodule.c42
6 files changed, 1 insertions, 338 deletions
diff --git a/Doc/library/math.rst b/Doc/library/math.rst
index 42bbb02..da2b8cc 100644
--- a/Doc/library/math.rst
+++ b/Doc/library/math.rst
@@ -57,21 +57,6 @@ Number-theoretic and representation functions
If *x* is not a float, delegates to ``x.__floor__()``, which should return an
:class:`~numbers.Integral` value.
-.. function:: fma(x, y, z)
-
- Fused multiply-add operation. Return ``(x * y) + z``, computed as though with
- infinite precision and range followed by a single round to the ``float``
- format. This operation often provides better accuracy than the direct
- expression ``(x * y) + z``.
-
- This function follows the specification of the fusedMultiplyAdd operation
- described in the IEEE 754-2008 standard. The standard leaves one case
- implementation-defined, namely the result of ``fma(0, inf, nan)``
- and ``fma(inf, 0, nan)``. In these cases, ``math.fma`` returns a NaN,
- and does not raise any exception.
-
- .. versionadded:: 3.7
-
.. function:: fmod(x, y)
diff --git a/Doc/whatsnew/3.7.rst b/Doc/whatsnew/3.7.rst
index 192a7ab..fe03def 100644
--- a/Doc/whatsnew/3.7.rst
+++ b/Doc/whatsnew/3.7.rst
@@ -100,15 +100,6 @@ The :const:`~unittest.mock.sentinel` attributes now preserve their identity
when they are :mod:`copied <copy>` or :mod:`pickled <pickle>`.
(Contributed by Serhiy Storchaka in :issue:`20804`.)
-math module
------------
-
-A new function :func:`~math.fma` for fused multiply-add operations has been
-added. This function computes ``x * y + z`` with only a single round, and so
-avoids any intermediate loss of precision. It wraps the ``fma`` function
-provided by C99, and follows the specification of the IEEE 754-2008
-"fusedMultiplyAdd" operation for special cases.
-
Optimizations
=============
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index 516a004..eaa41bc 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -4,7 +4,6 @@
from test.support import run_unittest, verbose, requires_IEEE_754
from test import support
import unittest
-import itertools
import math
import os
import platform
@@ -1411,244 +1410,11 @@ class IsCloseTests(unittest.TestCase):
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
-class FMATests(unittest.TestCase):
- """ Tests for math.fma. """
-
- def test_fma_nan_results(self):
- # Selected representative values.
- values = [
- -math.inf, -1e300, -2.3, -1e-300, -0.0,
- 0.0, 1e-300, 2.3, 1e300, math.inf, math.nan
- ]
-
- # If any input is a NaN, the result should be a NaN, too.
- for a, b in itertools.product(values, repeat=2):
- self.assertIsNaN(math.fma(math.nan, a, b))
- self.assertIsNaN(math.fma(a, math.nan, b))
- self.assertIsNaN(math.fma(a, b, math.nan))
-
- def test_fma_infinities(self):
- # Cases involving infinite inputs or results.
- positives = [1e-300, 2.3, 1e300, math.inf]
- finites = [-1e300, -2.3, -1e-300, -0.0, 0.0, 1e-300, 2.3, 1e300]
- non_nans = [-math.inf, -2.3, -0.0, 0.0, 2.3, math.inf]
-
- # ValueError due to inf * 0 computation.
- for c in non_nans:
- for infinity in [math.inf, -math.inf]:
- for zero in [0.0, -0.0]:
- with self.assertRaises(ValueError):
- math.fma(infinity, zero, c)
- with self.assertRaises(ValueError):
- math.fma(zero, infinity, c)
-
- # ValueError when a*b and c both infinite of opposite signs.
- for b in positives:
- with self.assertRaises(ValueError):
- math.fma(math.inf, b, -math.inf)
- with self.assertRaises(ValueError):
- math.fma(math.inf, -b, math.inf)
- with self.assertRaises(ValueError):
- math.fma(-math.inf, -b, -math.inf)
- with self.assertRaises(ValueError):
- math.fma(-math.inf, b, math.inf)
- with self.assertRaises(ValueError):
- math.fma(b, math.inf, -math.inf)
- with self.assertRaises(ValueError):
- math.fma(-b, math.inf, math.inf)
- with self.assertRaises(ValueError):
- math.fma(-b, -math.inf, -math.inf)
- with self.assertRaises(ValueError):
- math.fma(b, -math.inf, math.inf)
-
- # Infinite result when a*b and c both infinite of the same sign.
- for b in positives:
- self.assertEqual(math.fma(math.inf, b, math.inf), math.inf)
- self.assertEqual(math.fma(math.inf, -b, -math.inf), -math.inf)
- self.assertEqual(math.fma(-math.inf, -b, math.inf), math.inf)
- self.assertEqual(math.fma(-math.inf, b, -math.inf), -math.inf)
- self.assertEqual(math.fma(b, math.inf, math.inf), math.inf)
- self.assertEqual(math.fma(-b, math.inf, -math.inf), -math.inf)
- self.assertEqual(math.fma(-b, -math.inf, math.inf), math.inf)
- self.assertEqual(math.fma(b, -math.inf, -math.inf), -math.inf)
-
- # Infinite result when a*b finite, c infinite.
- for a, b in itertools.product(finites, finites):
- self.assertEqual(math.fma(a, b, math.inf), math.inf)
- self.assertEqual(math.fma(a, b, -math.inf), -math.inf)
-
- # Infinite result when a*b infinite, c finite.
- for b, c in itertools.product(positives, finites):
- self.assertEqual(math.fma(math.inf, b, c), math.inf)
- self.assertEqual(math.fma(-math.inf, b, c), -math.inf)
- self.assertEqual(math.fma(-math.inf, -b, c), math.inf)
- self.assertEqual(math.fma(math.inf, -b, c), -math.inf)
-
- self.assertEqual(math.fma(b, math.inf, c), math.inf)
- self.assertEqual(math.fma(b, -math.inf, c), -math.inf)
- self.assertEqual(math.fma(-b, -math.inf, c), math.inf)
- self.assertEqual(math.fma(-b, math.inf, c), -math.inf)
-
- def test_fma_zero_result(self):
- nonnegative_finites = [0.0, 1e-300, 2.3, 1e300]
-
- # Zero results from exact zero inputs.
- for b in nonnegative_finites:
- self.assertIsPositiveZero(math.fma(0.0, b, 0.0))
- self.assertIsPositiveZero(math.fma(0.0, b, -0.0))
- self.assertIsNegativeZero(math.fma(0.0, -b, -0.0))
- self.assertIsPositiveZero(math.fma(0.0, -b, 0.0))
- self.assertIsPositiveZero(math.fma(-0.0, -b, 0.0))
- self.assertIsPositiveZero(math.fma(-0.0, -b, -0.0))
- self.assertIsNegativeZero(math.fma(-0.0, b, -0.0))
- self.assertIsPositiveZero(math.fma(-0.0, b, 0.0))
-
- self.assertIsPositiveZero(math.fma(b, 0.0, 0.0))
- self.assertIsPositiveZero(math.fma(b, 0.0, -0.0))
- self.assertIsNegativeZero(math.fma(-b, 0.0, -0.0))
- self.assertIsPositiveZero(math.fma(-b, 0.0, 0.0))
- self.assertIsPositiveZero(math.fma(-b, -0.0, 0.0))
- self.assertIsPositiveZero(math.fma(-b, -0.0, -0.0))
- self.assertIsNegativeZero(math.fma(b, -0.0, -0.0))
- self.assertIsPositiveZero(math.fma(b, -0.0, 0.0))
-
- # Exact zero result from nonzero inputs.
- self.assertIsPositiveZero(math.fma(2.0, 2.0, -4.0))
- self.assertIsPositiveZero(math.fma(2.0, -2.0, 4.0))
- self.assertIsPositiveZero(math.fma(-2.0, -2.0, -4.0))
- self.assertIsPositiveZero(math.fma(-2.0, 2.0, 4.0))
-
- # Underflow to zero.
- tiny = 1e-300
- self.assertIsPositiveZero(math.fma(tiny, tiny, 0.0))
- self.assertIsNegativeZero(math.fma(tiny, -tiny, 0.0))
- self.assertIsPositiveZero(math.fma(-tiny, -tiny, 0.0))
- self.assertIsNegativeZero(math.fma(-tiny, tiny, 0.0))
- self.assertIsPositiveZero(math.fma(tiny, tiny, -0.0))
- self.assertIsNegativeZero(math.fma(tiny, -tiny, -0.0))
- self.assertIsPositiveZero(math.fma(-tiny, -tiny, -0.0))
- self.assertIsNegativeZero(math.fma(-tiny, tiny, -0.0))
-
- # Corner case where rounding the multiplication would
- # give the wrong result.
- x = float.fromhex('0x1p-500')
- y = float.fromhex('0x1p-550')
- z = float.fromhex('0x1p-1000')
- self.assertIsNegativeZero(math.fma(x-y, x+y, -z))
- self.assertIsPositiveZero(math.fma(y-x, x+y, z))
- self.assertIsNegativeZero(math.fma(y-x, -(x+y), -z))
- self.assertIsPositiveZero(math.fma(x-y, -(x+y), z))
-
- def test_fma_overflow(self):
- a = b = float.fromhex('0x1p512')
- c = float.fromhex('0x1p1023')
- # Overflow from multiplication.
- with self.assertRaises(OverflowError):
- math.fma(a, b, 0.0)
- self.assertEqual(math.fma(a, b/2.0, 0.0), c)
- # Overflow from the addition.
- with self.assertRaises(OverflowError):
- math.fma(a, b/2.0, c)
- # No overflow, even though a*b overflows a float.
- self.assertEqual(math.fma(a, b, -c), c)
-
- # Extreme case: a * b is exactly at the overflow boundary, so the
- # tiniest offset makes a difference between overflow and a finite
- # result.
- a = float.fromhex('0x1.ffffffc000000p+511')
- b = float.fromhex('0x1.0000002000000p+512')
- c = float.fromhex('0x0.0000000000001p-1022')
- with self.assertRaises(OverflowError):
- math.fma(a, b, 0.0)
- with self.assertRaises(OverflowError):
- math.fma(a, b, c)
- self.assertEqual(math.fma(a, b, -c),
- float.fromhex('0x1.fffffffffffffp+1023'))
-
- # Another extreme case: here a*b is about as large as possible subject
- # to math.fma(a, b, c) being finite.
- a = float.fromhex('0x1.ae565943785f9p+512')
- b = float.fromhex('0x1.3094665de9db8p+512')
- c = float.fromhex('0x1.fffffffffffffp+1023')
- self.assertEqual(math.fma(a, b, -c), c)
-
- def test_fma_single_round(self):
- a = float.fromhex('0x1p-50')
- self.assertEqual(math.fma(a - 1.0, a + 1.0, 1.0), a*a)
-
- def test_random(self):
- # A collection of randomly generated inputs for which the naive FMA
- # (with two rounds) gives a different result from a singly-rounded FMA.
-
- # tuples (a, b, c, expected)
- test_values = [
- ('0x1.694adde428b44p-1', '0x1.371b0d64caed7p-1',
- '0x1.f347e7b8deab8p-4', '0x1.19f10da56c8adp-1'),
- ('0x1.605401ccc6ad6p-2', '0x1.ce3a40bf56640p-2',
- '0x1.96e3bf7bf2e20p-2', '0x1.1af6d8aa83101p-1'),
- ('0x1.e5abd653a67d4p-2', '0x1.a2e400209b3e6p-1',
- '0x1.a90051422ce13p-1', '0x1.37d68cc8c0fbbp+0'),
- ('0x1.f94e8efd54700p-2', '0x1.123065c812cebp-1',
- '0x1.458f86fb6ccd0p-1', '0x1.ccdcee26a3ff3p-1'),
- ('0x1.bd926f1eedc96p-1', '0x1.eee9ca68c5740p-1',
- '0x1.960c703eb3298p-2', '0x1.3cdcfb4fdb007p+0'),
- ('0x1.27348350fbccdp-1', '0x1.3b073914a53f1p-1',
- '0x1.e300da5c2b4cbp-1', '0x1.4c51e9a3c4e29p+0'),
- ('0x1.2774f00b3497bp-1', '0x1.7038ec336bff0p-2',
- '0x1.2f6f2ccc3576bp-1', '0x1.99ad9f9c2688bp-1'),
- ('0x1.51d5a99300e5cp-1', '0x1.5cd74abd445a1p-1',
- '0x1.8880ab0bbe530p-1', '0x1.3756f96b91129p+0'),
- ('0x1.73cb965b821b8p-2', '0x1.218fd3d8d5371p-1',
- '0x1.d1ea966a1f758p-2', '0x1.5217b8fd90119p-1'),
- ('0x1.4aa98e890b046p-1', '0x1.954d85dff1041p-1',
- '0x1.122b59317ebdfp-1', '0x1.0bf644b340cc5p+0'),
- ('0x1.e28f29e44750fp-1', '0x1.4bcc4fdcd18fep-1',
- '0x1.fd47f81298259p-1', '0x1.9b000afbc9995p+0'),
- ('0x1.d2e850717fe78p-3', '0x1.1dd7531c303afp-1',
- '0x1.e0869746a2fc2p-2', '0x1.316df6eb26439p-1'),
- ('0x1.cf89c75ee6fbap-2', '0x1.b23decdc66825p-1',
- '0x1.3d1fe76ac6168p-1', '0x1.00d8ea4c12abbp+0'),
- ('0x1.3265ae6f05572p-2', '0x1.16d7ec285f7a2p-1',
- '0x1.0b8405b3827fbp-1', '0x1.5ef33c118a001p-1'),
- ('0x1.c4d1bf55ec1a5p-1', '0x1.bc59618459e12p-2',
- '0x1.ce5b73dc1773dp-1', '0x1.496cf6164f99bp+0'),
- ('0x1.d350026ac3946p-1', '0x1.9a234e149a68cp-2',
- '0x1.f5467b1911fd6p-2', '0x1.b5cee3225caa5p-1'),
- ]
- for a_hex, b_hex, c_hex, expected_hex in test_values:
- a = float.fromhex(a_hex)
- b = float.fromhex(b_hex)
- c = float.fromhex(c_hex)
- expected = float.fromhex(expected_hex)
- self.assertEqual(math.fma(a, b, c), expected)
- self.assertEqual(math.fma(b, a, c), expected)
-
- # Custom assertions.
- def assertIsNaN(self, value):
- self.assertTrue(
- math.isnan(value),
- msg="Expected a NaN, got {!r}".format(value)
- )
-
- def assertIsPositiveZero(self, value):
- self.assertTrue(
- value == 0 and math.copysign(1, value) > 0,
- msg="Expected a positive zero, got {!r}".format(value)
- )
-
- def assertIsNegativeZero(self, value):
- self.assertTrue(
- value == 0 and math.copysign(1, value) < 0,
- msg="Expected a negative zero, got {!r}".format(value)
- )
-
-
def test_main():
from doctest import DocFileSuite
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(MathTests))
suite.addTest(unittest.makeSuite(IsCloseTests))
- suite.addTest(unittest.makeSuite(FMATests))
suite.addTest(DocFileSuite("ieee754.txt"))
run_unittest(suite)
diff --git a/Misc/NEWS b/Misc/NEWS
index dd6169a..cb2ac85 100644
--- a/Misc/NEWS
+++ b/Misc/NEWS
@@ -215,9 +215,6 @@ Core and Builtins
Library
-------
-- Issue #29282: Added new math.fma function, wrapping C99's fma
- operation.
-
- Issue #29197: Removed deprecated function ntpath.splitunc().
- Issue #29210: Removed support of deprecated argument "exclude" in
diff --git a/Modules/clinic/mathmodule.c.h b/Modules/clinic/mathmodule.c.h
index 4e9fe20..84a7a70 100644
--- a/Modules/clinic/mathmodule.c.h
+++ b/Modules/clinic/mathmodule.c.h
@@ -80,40 +80,6 @@ PyDoc_STRVAR(math_factorial__doc__,
#define MATH_FACTORIAL_METHODDEF \
{"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__},
-PyDoc_STRVAR(math_fma__doc__,
-"fma($module, x, y, z, /)\n"
-"--\n"
-"\n"
-"Fused multiply-add operation. Compute (x * y) + z with a single round.");
-
-#define MATH_FMA_METHODDEF \
- {"fma", (PyCFunction)math_fma, METH_FASTCALL, math_fma__doc__},
-
-static PyObject *
-math_fma_impl(PyObject *module, double x, double y, double z);
-
-static PyObject *
-math_fma(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
-{
- PyObject *return_value = NULL;
- double x;
- double y;
- double z;
-
- if (!_PyArg_ParseStack(args, nargs, "ddd:fma",
- &x, &y, &z)) {
- goto exit;
- }
-
- if (!_PyArg_NoStackKeywords("fma", kwnames)) {
- goto exit;
- }
- return_value = math_fma_impl(module, x, y, z);
-
-exit:
- return return_value;
-}
-
PyDoc_STRVAR(math_trunc__doc__,
"trunc($module, x, /)\n"
"--\n"
@@ -570,4 +536,4 @@ math_isclose(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwna
exit:
return return_value;
}
-/*[clinic end generated code: output=f428e1075d00c334 input=a9049054013a1b77]*/
+/*[clinic end generated code: output=71806f73a5c4bf0b input=a9049054013a1b77]*/
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index 66e88b6..8bd38d0 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -1596,47 +1596,6 @@ math_factorial(PyObject *module, PyObject *arg)
/*[clinic input]
-math.fma
-
- x: double
- y: double
- z: double
- /
-
-Fused multiply-add operation. Compute (x * y) + z with a single round.
-[clinic start generated code]*/
-
-static PyObject *
-math_fma_impl(PyObject *module, double x, double y, double z)
-/*[clinic end generated code: output=4fc8626dbc278d17 input=2ae8bb2a6e0f8b77]*/
-{
- double r;
- r = fma(x, y, z);
-
- /* Fast path: if we got a finite result, we're done. */
- if (Py_IS_FINITE(r)) {
- return PyFloat_FromDouble(r);
- }
-
- /* Non-finite result. Raise an exception if appropriate, else return r. */
- if (Py_IS_NAN(r)) {
- if (!Py_IS_NAN(x) && !Py_IS_NAN(y) && !Py_IS_NAN(z)) {
- /* NaN result from non-NaN inputs. */
- PyErr_SetString(PyExc_ValueError, "invalid operation in fma");
- return NULL;
- }
- }
- else if (Py_IS_FINITE(x) && Py_IS_FINITE(y) && Py_IS_FINITE(z)) {
- /* Infinite result from finite inputs. */
- PyErr_SetString(PyExc_OverflowError, "overflow in fma");
- return NULL;
- }
-
- return PyFloat_FromDouble(r);
-}
-
-
-/*[clinic input]
math.trunc
x: object
@@ -2265,7 +2224,6 @@ static PyMethodDef math_methods[] = {
{"fabs", math_fabs, METH_O, math_fabs_doc},
MATH_FACTORIAL_METHODDEF
MATH_FLOOR_METHODDEF
- MATH_FMA_METHODDEF
MATH_FMOD_METHODDEF
MATH_FREXP_METHODDEF
MATH_FSUM_METHODDEF