diff options
author | Mark Dickinson <dickinsm@gmail.com> | 2017-01-21 13:10:52 (GMT) |
---|---|---|
committer | Mark Dickinson <dickinsm@gmail.com> | 2017-01-21 13:10:52 (GMT) |
commit | 5e65cd39dfe73891b16d9c771892e1bc282c1eb9 (patch) | |
tree | 1e35edf9a52cf7f8f677e971be50ad0391c48dd0 | |
parent | d1b230e48b81eb90d10f0ceb4e34c547800bd3a8 (diff) | |
download | cpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.zip cpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.tar.gz cpython-5e65cd39dfe73891b16d9c771892e1bc282c1eb9.tar.bz2 |
Issue #29282: Backed out changeset b33012ef1417
-rw-r--r-- | Doc/library/math.rst | 15 | ||||
-rw-r--r-- | Doc/whatsnew/3.7.rst | 9 | ||||
-rw-r--r-- | Lib/test/test_math.py | 234 | ||||
-rw-r--r-- | Misc/NEWS | 3 | ||||
-rw-r--r-- | Modules/clinic/mathmodule.c.h | 36 | ||||
-rw-r--r-- | Modules/mathmodule.c | 42 |
6 files changed, 1 insertions, 338 deletions
diff --git a/Doc/library/math.rst b/Doc/library/math.rst index 42bbb02..da2b8cc 100644 --- a/Doc/library/math.rst +++ b/Doc/library/math.rst @@ -57,21 +57,6 @@ Number-theoretic and representation functions If *x* is not a float, delegates to ``x.__floor__()``, which should return an :class:`~numbers.Integral` value. -.. function:: fma(x, y, z) - - Fused multiply-add operation. Return ``(x * y) + z``, computed as though with - infinite precision and range followed by a single round to the ``float`` - format. This operation often provides better accuracy than the direct - expression ``(x * y) + z``. - - This function follows the specification of the fusedMultiplyAdd operation - described in the IEEE 754-2008 standard. The standard leaves one case - implementation-defined, namely the result of ``fma(0, inf, nan)`` - and ``fma(inf, 0, nan)``. In these cases, ``math.fma`` returns a NaN, - and does not raise any exception. - - .. versionadded:: 3.7 - .. function:: fmod(x, y) diff --git a/Doc/whatsnew/3.7.rst b/Doc/whatsnew/3.7.rst index 192a7ab..fe03def 100644 --- a/Doc/whatsnew/3.7.rst +++ b/Doc/whatsnew/3.7.rst @@ -100,15 +100,6 @@ The :const:`~unittest.mock.sentinel` attributes now preserve their identity when they are :mod:`copied <copy>` or :mod:`pickled <pickle>`. (Contributed by Serhiy Storchaka in :issue:`20804`.) -math module ------------ - -A new function :func:`~math.fma` for fused multiply-add operations has been -added. This function computes ``x * y + z`` with only a single round, and so -avoids any intermediate loss of precision. It wraps the ``fma`` function -provided by C99, and follows the specification of the IEEE 754-2008 -"fusedMultiplyAdd" operation for special cases. - Optimizations ============= diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py index 516a004..eaa41bc 100644 --- a/Lib/test/test_math.py +++ b/Lib/test/test_math.py @@ -4,7 +4,6 @@ from test.support import run_unittest, verbose, requires_IEEE_754 from test import support import unittest -import itertools import math import os import platform @@ -1411,244 +1410,11 @@ class IsCloseTests(unittest.TestCase): self.assertAllNotClose(fraction_examples, rel_tol=1e-9) -class FMATests(unittest.TestCase): - """ Tests for math.fma. """ - - def test_fma_nan_results(self): - # Selected representative values. - values = [ - -math.inf, -1e300, -2.3, -1e-300, -0.0, - 0.0, 1e-300, 2.3, 1e300, math.inf, math.nan - ] - - # If any input is a NaN, the result should be a NaN, too. - for a, b in itertools.product(values, repeat=2): - self.assertIsNaN(math.fma(math.nan, a, b)) - self.assertIsNaN(math.fma(a, math.nan, b)) - self.assertIsNaN(math.fma(a, b, math.nan)) - - def test_fma_infinities(self): - # Cases involving infinite inputs or results. - positives = [1e-300, 2.3, 1e300, math.inf] - finites = [-1e300, -2.3, -1e-300, -0.0, 0.0, 1e-300, 2.3, 1e300] - non_nans = [-math.inf, -2.3, -0.0, 0.0, 2.3, math.inf] - - # ValueError due to inf * 0 computation. - for c in non_nans: - for infinity in [math.inf, -math.inf]: - for zero in [0.0, -0.0]: - with self.assertRaises(ValueError): - math.fma(infinity, zero, c) - with self.assertRaises(ValueError): - math.fma(zero, infinity, c) - - # ValueError when a*b and c both infinite of opposite signs. - for b in positives: - with self.assertRaises(ValueError): - math.fma(math.inf, b, -math.inf) - with self.assertRaises(ValueError): - math.fma(math.inf, -b, math.inf) - with self.assertRaises(ValueError): - math.fma(-math.inf, -b, -math.inf) - with self.assertRaises(ValueError): - math.fma(-math.inf, b, math.inf) - with self.assertRaises(ValueError): - math.fma(b, math.inf, -math.inf) - with self.assertRaises(ValueError): - math.fma(-b, math.inf, math.inf) - with self.assertRaises(ValueError): - math.fma(-b, -math.inf, -math.inf) - with self.assertRaises(ValueError): - math.fma(b, -math.inf, math.inf) - - # Infinite result when a*b and c both infinite of the same sign. - for b in positives: - self.assertEqual(math.fma(math.inf, b, math.inf), math.inf) - self.assertEqual(math.fma(math.inf, -b, -math.inf), -math.inf) - self.assertEqual(math.fma(-math.inf, -b, math.inf), math.inf) - self.assertEqual(math.fma(-math.inf, b, -math.inf), -math.inf) - self.assertEqual(math.fma(b, math.inf, math.inf), math.inf) - self.assertEqual(math.fma(-b, math.inf, -math.inf), -math.inf) - self.assertEqual(math.fma(-b, -math.inf, math.inf), math.inf) - self.assertEqual(math.fma(b, -math.inf, -math.inf), -math.inf) - - # Infinite result when a*b finite, c infinite. - for a, b in itertools.product(finites, finites): - self.assertEqual(math.fma(a, b, math.inf), math.inf) - self.assertEqual(math.fma(a, b, -math.inf), -math.inf) - - # Infinite result when a*b infinite, c finite. - for b, c in itertools.product(positives, finites): - self.assertEqual(math.fma(math.inf, b, c), math.inf) - self.assertEqual(math.fma(-math.inf, b, c), -math.inf) - self.assertEqual(math.fma(-math.inf, -b, c), math.inf) - self.assertEqual(math.fma(math.inf, -b, c), -math.inf) - - self.assertEqual(math.fma(b, math.inf, c), math.inf) - self.assertEqual(math.fma(b, -math.inf, c), -math.inf) - self.assertEqual(math.fma(-b, -math.inf, c), math.inf) - self.assertEqual(math.fma(-b, math.inf, c), -math.inf) - - def test_fma_zero_result(self): - nonnegative_finites = [0.0, 1e-300, 2.3, 1e300] - - # Zero results from exact zero inputs. - for b in nonnegative_finites: - self.assertIsPositiveZero(math.fma(0.0, b, 0.0)) - self.assertIsPositiveZero(math.fma(0.0, b, -0.0)) - self.assertIsNegativeZero(math.fma(0.0, -b, -0.0)) - self.assertIsPositiveZero(math.fma(0.0, -b, 0.0)) - self.assertIsPositiveZero(math.fma(-0.0, -b, 0.0)) - self.assertIsPositiveZero(math.fma(-0.0, -b, -0.0)) - self.assertIsNegativeZero(math.fma(-0.0, b, -0.0)) - self.assertIsPositiveZero(math.fma(-0.0, b, 0.0)) - - self.assertIsPositiveZero(math.fma(b, 0.0, 0.0)) - self.assertIsPositiveZero(math.fma(b, 0.0, -0.0)) - self.assertIsNegativeZero(math.fma(-b, 0.0, -0.0)) - self.assertIsPositiveZero(math.fma(-b, 0.0, 0.0)) - self.assertIsPositiveZero(math.fma(-b, -0.0, 0.0)) - self.assertIsPositiveZero(math.fma(-b, -0.0, -0.0)) - self.assertIsNegativeZero(math.fma(b, -0.0, -0.0)) - self.assertIsPositiveZero(math.fma(b, -0.0, 0.0)) - - # Exact zero result from nonzero inputs. - self.assertIsPositiveZero(math.fma(2.0, 2.0, -4.0)) - self.assertIsPositiveZero(math.fma(2.0, -2.0, 4.0)) - self.assertIsPositiveZero(math.fma(-2.0, -2.0, -4.0)) - self.assertIsPositiveZero(math.fma(-2.0, 2.0, 4.0)) - - # Underflow to zero. - tiny = 1e-300 - self.assertIsPositiveZero(math.fma(tiny, tiny, 0.0)) - self.assertIsNegativeZero(math.fma(tiny, -tiny, 0.0)) - self.assertIsPositiveZero(math.fma(-tiny, -tiny, 0.0)) - self.assertIsNegativeZero(math.fma(-tiny, tiny, 0.0)) - self.assertIsPositiveZero(math.fma(tiny, tiny, -0.0)) - self.assertIsNegativeZero(math.fma(tiny, -tiny, -0.0)) - self.assertIsPositiveZero(math.fma(-tiny, -tiny, -0.0)) - self.assertIsNegativeZero(math.fma(-tiny, tiny, -0.0)) - - # Corner case where rounding the multiplication would - # give the wrong result. - x = float.fromhex('0x1p-500') - y = float.fromhex('0x1p-550') - z = float.fromhex('0x1p-1000') - self.assertIsNegativeZero(math.fma(x-y, x+y, -z)) - self.assertIsPositiveZero(math.fma(y-x, x+y, z)) - self.assertIsNegativeZero(math.fma(y-x, -(x+y), -z)) - self.assertIsPositiveZero(math.fma(x-y, -(x+y), z)) - - def test_fma_overflow(self): - a = b = float.fromhex('0x1p512') - c = float.fromhex('0x1p1023') - # Overflow from multiplication. - with self.assertRaises(OverflowError): - math.fma(a, b, 0.0) - self.assertEqual(math.fma(a, b/2.0, 0.0), c) - # Overflow from the addition. - with self.assertRaises(OverflowError): - math.fma(a, b/2.0, c) - # No overflow, even though a*b overflows a float. - self.assertEqual(math.fma(a, b, -c), c) - - # Extreme case: a * b is exactly at the overflow boundary, so the - # tiniest offset makes a difference between overflow and a finite - # result. - a = float.fromhex('0x1.ffffffc000000p+511') - b = float.fromhex('0x1.0000002000000p+512') - c = float.fromhex('0x0.0000000000001p-1022') - with self.assertRaises(OverflowError): - math.fma(a, b, 0.0) - with self.assertRaises(OverflowError): - math.fma(a, b, c) - self.assertEqual(math.fma(a, b, -c), - float.fromhex('0x1.fffffffffffffp+1023')) - - # Another extreme case: here a*b is about as large as possible subject - # to math.fma(a, b, c) being finite. - a = float.fromhex('0x1.ae565943785f9p+512') - b = float.fromhex('0x1.3094665de9db8p+512') - c = float.fromhex('0x1.fffffffffffffp+1023') - self.assertEqual(math.fma(a, b, -c), c) - - def test_fma_single_round(self): - a = float.fromhex('0x1p-50') - self.assertEqual(math.fma(a - 1.0, a + 1.0, 1.0), a*a) - - def test_random(self): - # A collection of randomly generated inputs for which the naive FMA - # (with two rounds) gives a different result from a singly-rounded FMA. - - # tuples (a, b, c, expected) - test_values = [ - ('0x1.694adde428b44p-1', '0x1.371b0d64caed7p-1', - '0x1.f347e7b8deab8p-4', '0x1.19f10da56c8adp-1'), - ('0x1.605401ccc6ad6p-2', '0x1.ce3a40bf56640p-2', - '0x1.96e3bf7bf2e20p-2', '0x1.1af6d8aa83101p-1'), - ('0x1.e5abd653a67d4p-2', '0x1.a2e400209b3e6p-1', - '0x1.a90051422ce13p-1', '0x1.37d68cc8c0fbbp+0'), - ('0x1.f94e8efd54700p-2', '0x1.123065c812cebp-1', - '0x1.458f86fb6ccd0p-1', '0x1.ccdcee26a3ff3p-1'), - ('0x1.bd926f1eedc96p-1', '0x1.eee9ca68c5740p-1', - '0x1.960c703eb3298p-2', '0x1.3cdcfb4fdb007p+0'), - ('0x1.27348350fbccdp-1', '0x1.3b073914a53f1p-1', - '0x1.e300da5c2b4cbp-1', '0x1.4c51e9a3c4e29p+0'), - ('0x1.2774f00b3497bp-1', '0x1.7038ec336bff0p-2', - '0x1.2f6f2ccc3576bp-1', '0x1.99ad9f9c2688bp-1'), - ('0x1.51d5a99300e5cp-1', '0x1.5cd74abd445a1p-1', - '0x1.8880ab0bbe530p-1', '0x1.3756f96b91129p+0'), - ('0x1.73cb965b821b8p-2', '0x1.218fd3d8d5371p-1', - '0x1.d1ea966a1f758p-2', '0x1.5217b8fd90119p-1'), - ('0x1.4aa98e890b046p-1', '0x1.954d85dff1041p-1', - '0x1.122b59317ebdfp-1', '0x1.0bf644b340cc5p+0'), - ('0x1.e28f29e44750fp-1', '0x1.4bcc4fdcd18fep-1', - '0x1.fd47f81298259p-1', '0x1.9b000afbc9995p+0'), - ('0x1.d2e850717fe78p-3', '0x1.1dd7531c303afp-1', - '0x1.e0869746a2fc2p-2', '0x1.316df6eb26439p-1'), - ('0x1.cf89c75ee6fbap-2', '0x1.b23decdc66825p-1', - '0x1.3d1fe76ac6168p-1', '0x1.00d8ea4c12abbp+0'), - ('0x1.3265ae6f05572p-2', '0x1.16d7ec285f7a2p-1', - '0x1.0b8405b3827fbp-1', '0x1.5ef33c118a001p-1'), - ('0x1.c4d1bf55ec1a5p-1', '0x1.bc59618459e12p-2', - '0x1.ce5b73dc1773dp-1', '0x1.496cf6164f99bp+0'), - ('0x1.d350026ac3946p-1', '0x1.9a234e149a68cp-2', - '0x1.f5467b1911fd6p-2', '0x1.b5cee3225caa5p-1'), - ] - for a_hex, b_hex, c_hex, expected_hex in test_values: - a = float.fromhex(a_hex) - b = float.fromhex(b_hex) - c = float.fromhex(c_hex) - expected = float.fromhex(expected_hex) - self.assertEqual(math.fma(a, b, c), expected) - self.assertEqual(math.fma(b, a, c), expected) - - # Custom assertions. - def assertIsNaN(self, value): - self.assertTrue( - math.isnan(value), - msg="Expected a NaN, got {!r}".format(value) - ) - - def assertIsPositiveZero(self, value): - self.assertTrue( - value == 0 and math.copysign(1, value) > 0, - msg="Expected a positive zero, got {!r}".format(value) - ) - - def assertIsNegativeZero(self, value): - self.assertTrue( - value == 0 and math.copysign(1, value) < 0, - msg="Expected a negative zero, got {!r}".format(value) - ) - - def test_main(): from doctest import DocFileSuite suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(MathTests)) suite.addTest(unittest.makeSuite(IsCloseTests)) - suite.addTest(unittest.makeSuite(FMATests)) suite.addTest(DocFileSuite("ieee754.txt")) run_unittest(suite) @@ -215,9 +215,6 @@ Core and Builtins Library ------- -- Issue #29282: Added new math.fma function, wrapping C99's fma - operation. - - Issue #29197: Removed deprecated function ntpath.splitunc(). - Issue #29210: Removed support of deprecated argument "exclude" in diff --git a/Modules/clinic/mathmodule.c.h b/Modules/clinic/mathmodule.c.h index 4e9fe20..84a7a70 100644 --- a/Modules/clinic/mathmodule.c.h +++ b/Modules/clinic/mathmodule.c.h @@ -80,40 +80,6 @@ PyDoc_STRVAR(math_factorial__doc__, #define MATH_FACTORIAL_METHODDEF \ {"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__}, -PyDoc_STRVAR(math_fma__doc__, -"fma($module, x, y, z, /)\n" -"--\n" -"\n" -"Fused multiply-add operation. Compute (x * y) + z with a single round."); - -#define MATH_FMA_METHODDEF \ - {"fma", (PyCFunction)math_fma, METH_FASTCALL, math_fma__doc__}, - -static PyObject * -math_fma_impl(PyObject *module, double x, double y, double z); - -static PyObject * -math_fma(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) -{ - PyObject *return_value = NULL; - double x; - double y; - double z; - - if (!_PyArg_ParseStack(args, nargs, "ddd:fma", - &x, &y, &z)) { - goto exit; - } - - if (!_PyArg_NoStackKeywords("fma", kwnames)) { - goto exit; - } - return_value = math_fma_impl(module, x, y, z); - -exit: - return return_value; -} - PyDoc_STRVAR(math_trunc__doc__, "trunc($module, x, /)\n" "--\n" @@ -570,4 +536,4 @@ math_isclose(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwna exit: return return_value; } -/*[clinic end generated code: output=f428e1075d00c334 input=a9049054013a1b77]*/ +/*[clinic end generated code: output=71806f73a5c4bf0b input=a9049054013a1b77]*/ diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 66e88b6..8bd38d0 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -1596,47 +1596,6 @@ math_factorial(PyObject *module, PyObject *arg) /*[clinic input] -math.fma - - x: double - y: double - z: double - / - -Fused multiply-add operation. Compute (x * y) + z with a single round. -[clinic start generated code]*/ - -static PyObject * -math_fma_impl(PyObject *module, double x, double y, double z) -/*[clinic end generated code: output=4fc8626dbc278d17 input=2ae8bb2a6e0f8b77]*/ -{ - double r; - r = fma(x, y, z); - - /* Fast path: if we got a finite result, we're done. */ - if (Py_IS_FINITE(r)) { - return PyFloat_FromDouble(r); - } - - /* Non-finite result. Raise an exception if appropriate, else return r. */ - if (Py_IS_NAN(r)) { - if (!Py_IS_NAN(x) && !Py_IS_NAN(y) && !Py_IS_NAN(z)) { - /* NaN result from non-NaN inputs. */ - PyErr_SetString(PyExc_ValueError, "invalid operation in fma"); - return NULL; - } - } - else if (Py_IS_FINITE(x) && Py_IS_FINITE(y) && Py_IS_FINITE(z)) { - /* Infinite result from finite inputs. */ - PyErr_SetString(PyExc_OverflowError, "overflow in fma"); - return NULL; - } - - return PyFloat_FromDouble(r); -} - - -/*[clinic input] math.trunc x: object @@ -2265,7 +2224,6 @@ static PyMethodDef math_methods[] = { {"fabs", math_fabs, METH_O, math_fabs_doc}, MATH_FACTORIAL_METHODDEF MATH_FLOOR_METHODDEF - MATH_FMA_METHODDEF MATH_FMOD_METHODDEF MATH_FREXP_METHODDEF MATH_FSUM_METHODDEF |